1	
2	
3	Title: Ribosomal intergenic spacers are filled with transposon remnants
4	
5	Short Title: Transposons in rDNA
6	
7	Authors: Arnold J. Bendich ^{1*} and Scott O. Rogers ²
8	
9	Affiliations: ¹ Department of Biology, University of Washington, Seattle, WA 98195
10	² Department of Biological Sciences, Bowling Green State University, Bowling
11	Green, OH 43403
12	
13	*Correspondence: bendich@uw.edu (A.J. Bendich)
14	
15	Abstract
16	
17	Eukaryotic ribosomal DNA (rDNA) comprises tandem units of highly-conserved coding
18	genes separated by rapidly-evolving spacer DNA. The spacers of all 12 species examined
19	were filled with short direct repeats (DRs) and multiple long tandem repeats (TRs),
20	completing the rDNA maps that previously contained unannotated and inadequately
21	studied sequences. The external transcribed spacers also were filled with DRs and some
22	contained TRs. We infer that the spacers arose from transposon insertion, followed by
23	their imprecise excision, leaving short DRs characteristic of transposon visitation. The

24	spacers provided a favored location for transposon insertion because they occupy loci
25	containing hundreds to thousands of gene repeats. The spacers' primary cellular function
26	may be to link one rRNA transcription unit to the next, whereas transposons flourish here
27	because they have colonized the most frequently-used part of the genome.
28	
29	Key Words
30	rDNA, IGS, retrotransposons, satellite DNA, TSD, tandem repeats
31	
32	

33 Author Summary

34 The DNA loci containing the ribosomal RNA genes (the rDNA) in eukaryotes are puzzling. The 35 sections encoding the rRNA are so highly conserved that they can be used to assess evolutionary 36 relationships among diverse eukaryotes, yet the rDNA sequences between the rRNA genes (the 37 intergenic spacer sequences; IGS) are among the most rapidly evolving in the genome, including 38 varying within and between species and between individuals of a species, and within cells of an 39 individual. Here we report the presence of large numbers of direct repeats (DRs) throughout the 40 IGSs of a diverse set of organisms. Parasitic DNA and RNA elements often leave short DRs 41 when they are excised resulting in "molecular scars" in the DNA. These "scars" are absent from 42 the coding sections of the rDNA repeats, indicating that the IGSs have long been targets for 43 integration of these parasitic elements that have been eliminated from the coding sections by 44 selection. While these integration events are mostly detrimental to the organism, occasionally 45 they have caused beneficial changes in eukaryotes, thus allowing both the parasites and the hosts 46 to survive and co-evolve.

- 47
- 48

49 Introduction

51	The IGS part of any rDNA locus is typical of rapidly-evolving satellite DNA (see below),
52	variants of which are found elsewhere in the genome (near centromeres, e.g.), whereas the
53	coding part of the very same satellite rDNA unit evolves extremely slowly [1–4]. Here we
54	analyze rDNA sequences and propose a mechanism allowing such extreme differences in
55	rates of evolutionary change in closely linked DNA segments. The coding part of rDNA is
56	under heavy selection due to the vital function of ribosomes, whereas most of the IGS is the
57	product of selfish DNAs that have colonized susceptible sections of the genome including the
58	rDNA. Because rDNA loci contain hundreds to thousands of tandem copies, many of which are
59	actively transcribed, they present large targets for integration of mobile genetic elements.
60	
61	Maps of individual rDNA repeat units (Fig 1) include genes for the large, small, and 5.8S rRNA
62	
63	
64	Fig 1. Ribosomal DNA locus.
65	
66	
67	
68	subunits flanked by two external transcribed spacers (3' ETS and 5' ETS) and two internal
69	transcribed spacers (ITS1 and ITS2), as well as an IGS section that includes the 5S rRNA gene in

70	some fungal species (Saccharomyces cerevisiae, Flammulina velutipes, e.g.), whereas in other
71	fungi (Schizosaccharomyces pombe, Yarrowia lipolytica, e.g.), animals, plants, and protists the
72	5S genes are found outside of the rDNA loci, often on separate chromosomes [5–7]. What is
73	most interesting from our perspective, however, is the IGS where, except for some short
74	sequences representing transcription signals, several thousand bp of DNA are commonly
75	depicted as lines without annotation, as if those sequences were so inconsequential as to be
76	ignored. However, in recent work employing long-read sequencing, those sections were found to
77	contain a hodge-podge of satellite DNA variants for which neither functional significance nor
78	source was considered [6,8]. In some algae, electron microscopy of nucleolar material showed
79	transcriptionally-active tandem rDNA repeat units with long IGS sections, whereas other tandem
80	units from the same nucleolus had no discernable IGS (Figs 2A-D; [9]). In some species IGS
81	
82	
83	Fig 2. Transmission electron micrographs of rRNA transcription.
84	
85	
86	
87	sections exceed 10 kb in length (Homo sapiens, e.g.), while in most species IGSs are only a few
88	kb in length. Furthermore, many species have multiple variants of IGSs, with some longer and
89	some shorter than the mean length of the rDNA population [3,4,10]. Such variability makes any
90	functional contribution of the IGS to cellular phenotype difficult to discern.
01	

As will be described below, in prokaryotes the IGS appears to be absent and rDNA copy
numbers are low. In eukaryotes IGSs are prominent and of variable length, and rDNA copy
numbers can be high and vary greatly even among cells of an individual.
Our objective here was to reexamine rDNA sequence data so as to elucidate the structure and
raison d'être of the IGS sequences that have previously been inadequately studied. Why are these
seemingly paradoxical sequences and their divergent variants commonly found among diverse
eukaryotes? Do these satellites contribute to cellular phenotype? What biochemical mechanisms
can explain their genesis and rapid rates of change in sequence and copy number? How can we
account for the strikingly different rDNA properties in eukaryotes and prokaryotes?
Satellite DNA
When whole-cell DNA is analyzed by CsCl density gradient centrifugation, the major band is
sometimes accompanied by secondary bands of either lower and/or higher density that typically
differ in base composition from the major band: hence, "satellite DNA" (satDNA). In
contemporary usage "satellite" no longer implies a particular base composition or the same
sequence orientation between neighboring repeat units and may include "higher-order repeat
units" containing subrepeats and extraneous sequences within the repeating unit [11]. SatDNA
may contain tandemly-repeating sequences varying from as little as 2-6 base pairs (bp; termed
microsatellites) to hundreds of bp to several thousand bp (macrosatellites), although these
designations are rather arbitrary [12,13,14]. The degree of similarity in the tandem "repeats"
varies among species, tissues, and even chromosomes of an individual cell. It is the tandem
arrangement of repeating units-usually imperfectly repeating units-that best describes this

115 type of DNA. Satellites are generally concentrated in sections of chromosomes near the

116 centromere, telomeres, and in interstitial heterochromatic parts of chromosomes. Satellites could

117 potentially destabilize chromosome structure if they were to participate in recombination,

although this threat is usually suppressed.

119

120 Simple-sequence satDNAs can serve an important cellular function, such as in capping the ends 121 of chromosomes in many eukaryotes. However, reverse transcriptase (a hallmark of 122 retrotransposons) is also involved in this telomerase-dependent process. In Drosophila, tandem 123 copies of retrotransposons can serve as telomeres [15]. Another example of simple-sequence 124 usage is its contribution to the multi-protein kinetochore that connects chromosomes to 125 kinetochore microtubules during chromosome segregation prior to cell division. This simple-126 sequence DNA is transcribed to a noncoding RNA needed for kinetochore assembly with other 127 components, including DNA units in a cruciform structure, the nucleosomal histone H3 protein 128 variant centromeric protein A (CENP-A) and other proteins, as proposed by Thakur et al. [14]. 129 130 Tandemly-repeating simple-sequence DNA repeats can be created from parts of complex-131 sequence transposons. This conclusion applies to both animals and plants and to DNA 132 transposons and retrotransposons, including LINEs and SINEs [12,16]. The inference that such 133 DNA can move around the genome is supported by several observations ([17], and references 134 therein). Such DNA can be found in different sections of one or more chromosomes: High-copy 135 tandem arrays are located in constitutive heterochromatin and outside of it in either low-copy 136 arrays, single monomers or monomer fragments, and as short arrays within mobile DNA 137 elements. The same or related unit sequence can be found both within high- and low-copy

locations and as short arrays within MITE and Helitron transposons [12]. These examples show
that DNA sequences originating as or generated by genomic parasites can later become
indispensable to a host organism and illustrate the "bargain" struck between parasite and host.

141

142 Historical Perspective

143 Prior to about 1990, the principal tools used to analyze rDNA were electron microscopy,

144 restriction endonuclease digestion, and blot-hybridization. Three surprising conclusions were

145 drawn from these early studies. First, the rRNA coding sections were highly conserved among

146 eukaryotes, whereas the IGS sections evolved rapidly even among closely-related species [3,4].

147 Second, the length of the IGS could vary among species, individuals in a population, and even

148 during development of an individual plant or animal, whereas the rRNA coding section was not

149 variable. Third, the rDNA copy number per genome was similarly variable, leading to the

150 conclusion that there were more copies of rDNA than needed to support growth and development

151 of the individual [3,4].

152

After 1990, large numbers of rDNA sequences became available that confirmed the earlier generalizations. But the IGS sections were found to consist of subrepetitive sections and segments of unknown identity, so that it became difficult to map the coding and IGS sequences within the same rDNA repeat unit. This difficulty has only recently been overcome for a few species by using long-read sequencing methods.

158

159 Sections of DNA that are being transcribed have been visualized by annealing the nucleic acids

160 to a thin film of nitrocellulose on an electron microscope grid, and then shadowing with

161	palladium and/or platinum. These "spreads" are useful in observing the nuances of rDNA
162	transcription and in characterizing IGSs. Individual nucleoli were found to be simultaneously
163	transcribing rDNA with variable lengths of IGS (Figs 2A–D), including rDNA repeats that have
164	IGSs that are less than 350 bp in length in addition to those between 6.5 and 7.0 kb [9]. Unusual
165	transcriptionally-active rDNA repeats were also observed: head-to-head dimers; truncated rDNA
166	units (Figs 2E and F; [18,19]); and short transcripts (i.e., tufts) within the IGS sections (long
167	arrows in Figs 2H–L).
168	
169	Blot-hybridization, electron microscopy, and sequencing studies of the IGS reported long tandem
170	repeats (TRs) within most species that often varied in number within a species and within
171	individuals. The IGS in Vicia faba contained 0–23 (or more) 325-bp TRs and variable numbers
172	of 150-bp TRs [3,4,20,21]. Seven other species of Vicia also exhibited variation in IGS length
173	[4]. The IGSs within <i>Pisum sativum</i> had 0–30 (or more) 180-bp TRs [9,22,23,24]. Furthermore,
174	in <i>P. sativum</i> , there were two rDNA loci, one with only two IGS size classes and the other with a
175	wide range of IGS size classes [24]. The IGS in Arabidopsis thaliana also exhibited variability in
176	repetitive elements [25]. R-looping studies of V. faba rDNA hybridized to rRNAs showed that
177	the length of one IGS was unrelated to the lengths of the adjacent IGSs, exhibiting a seemingly
178	random organization of IGS size lengths along the chromosome [4]. In the same study,
179	individual plants exhibited a 95-fold variation in rDNA copy number, from 230 to 21,900 copies
180	per haploid genome. Within an individual, a 12-fold variation in copy number was measured,
181	and large copy number variations were reported from one generation to the next. Variation in

182 copy number has been reported in many species (including humans).

184	In summary, early research on the IGS revealed great variability in amount, spacing, and
185	sequence organization, so that its cellular function, if any, was perplexing. By contrast, its
186	flanking coding sections were highly conserved as expected, considering their translational
187	importance. Here we report that the extreme variation in the IGS sections was the result of
188	frequent insertions and deletions of transposons.
189	
190	
191	Results and Discussion
192	
193	Tandem Repeats
194	TRs were present in the IGS of all species examined, ranging in size from about 10 to more than
195	2000 bp (Figs 3A and B; Table 1). Each of the TR sections was flanked by a pair of short direct
196	
197	
198	Fig 3. Maps of nuclear rDNA IGS plus 3' ETS (red rectangles on left) and 5' ETS (red
199	rectangles on right) segments.
200	
201	
202	Table 1. IGS and ETS repeat characteristics.
203	
204	
205	repeats (DRs; 3–8 bp each), suggesting that they originated from a transposition event. Some
206	individual repeats within the TRs had the same DR sequences at each of their flanks (Fig 3: R in

207 *O. sativa*; R2 and R3 in *V. faba*; R1 in *A. thaliana*; R1 and R2 in *D. funebris*; and R1 in *G.*

- 208 gallus). TRs were also found within the 5' ETS in three of the plants examined (A. thaliana, V.
- 209 faba, and V. sativa) and one animal (C. nozakii). Two species had a single TR type (O. sativa
- and *P. sativum*). Four had two types of TRs (*A. thaliana*, *F. kerguelensis*, *C. nozakii*, *D.*
- 211 *funebris*), four had three types (V. sativa, F. velutipes, G. ultimum, G. gallus), one had five types
- 212 (V. faba), and H. sapiens contained two major TRs and dozens of Alu/SINE elements of various
- 213 lengths. In the basidiomycete, F. velutipes, a 5S rRNA gene was also present in the IGS and it
- was flanked by DRs, dividing the IGS into two sections (IGS1 and IGS2). The maps in Figure 3
- 215 represent only one version of each IGS and ETS section. As mentioned above, length variants
- are known for most of the species. Individual organisms, tissues, and loci may contain all or
- 217 most of the IGS size variants, or only a limited number. Each of the individual repeats within
- 218 each TR section was nearly identical, except some repeats in C. nozakii, O. sativa, and A.
- 219 *thaliana* were truncated (Figs 3A and B; Table 1), and most of the Alu/SINEs in the human IGS
- 220 were truncated variants (Fig 3B). Most of the TRs were unique among the species and within an
- IGS, although there were some similarities among closely-related species (e.g., *V. faba* and *V.*
- *sativa*). Primate IGS sequences exhibit sections that are somewhat conserved among all species
 and genera, while still containing long sections unique to each [26]. Overall, sections of the IGS
- and ETS exhibit vertical inheritance within a species or genus, but sequence similarity declinesrapidly above the genus level.
- 226

227 Short Direct Repeats and Microsatellites

- Large numbers of DRs (dozens per kb: Table 1; Figs 3A and B) were found throughout the IGS
- and ETS sections in all species. DRs ranged in length from 2 to 10 bp (per monomer), most of

230 which were in pairs, and occasionally three or more DRs occurred within a span of 4-40 bp. In 231 most cases, the individual repeats comprising the DRs were adjacent to one another, although 232 many were separated by several base pairs. Some DRs overlapped other unrelated DRs, possible 233 indications of insertion partially within an existing unrelated insertion element. This was 234 frequently observed in the G. gallus IGS. The number of DRs/kb in the IGSs + ETSs ranged 235 from 45 (H. sapiens) to 102 (G. gallus), with a mean of 63 DRs/kb. The total number of DRs in 236 the IGSs + ETSs ranged from 133 (O. sativa) to 1544 (G. gallus), with a mean of 409 DRs (193, 237 excluding G. gallus and H. sapiens). 238

239 The abundance of microsatellites ranged from a few in most species to >1000 in the vertebrates. 240 In O. sativa a "gc" monomer was repeated 3-4 times, and in V. faba a "cg" monomer was 241 repeated 5 times. Arabidopsis had "gt" up to 4 times, "cg" up to 6 times, and long tracts of "a". 242 The fungus and stramenopiles also had a few simple-sequence repeats. The jellyfish had "gt" repeated 4-5 times, while the fruit fly had "at" dinucleotides repeated up to 7 times and "tg" up 243 244 to 3 times. The number and lengths of microsatellites in the chicken IGS were much greater than 245 those in plants, fungi, and stramenopiles: at least 10 different microsatellite types (e.g., "cg", 246 "ccgg", "ga") repeated up to 8 times each at many sites and comprising hundreds of nucleotides, 247 as well as long tracts of repeating t, c, and g monomers. In the human IGS, microsatellite 248 expansion was even greater. At least 40 different microsatellite types were found (Fig 3B), some 249 repeated hundreds of times representing thousands of nucleotides. The IGSs in chicken and 250 human are much longer than in the other 10 species, with DRs and microsatellites accounting for 251 this difference.

253	Although the numerous DRs described above were identified by manual inspection of sequences
254	separated by no more than 40 bp, larger numbers of DRs were found when a bioinformatic
255	approach was used (see Materials and Methods). A program designed to find DRs (2-10 bp per
256	monomer) without the constraint to be separated by a short distance resulted in locating many
257	more DRs in the IGS and ETSs (Table S1, and Figs S1-S3). When compared to random
258	sequences of the same G+C percentage, the IGS+ETS sections in all species had significantly
259	more DRs than the random sequences at the p<0.01 level (Table S1), with the following
260	exceptions: 2-4 bp repeats in O. sativa and 2 bp repeats in C. nozakii. By contrast, the numbers
261	of DRs within the rDNA coding sequences were not significantly different from random
262	sequences.
263	
264	Summary of IGS data
265	For each of the 12 species investigated, our analysis revealed that the IGS and ETS sections were
266	composed mainly of TRs and DRs that may have originated from the entry and exit of
267	transposons. For each species all parts of the IGSs conformed to this pattern, so that no species
268	required an unannotated section to complete the map.

269

270 Parasitic Sequences

271 There are two previously-described types of parasitic DNAs that can proliferate within the

272 nuclear genome. The first utilizes a transposase encoded by an autonomous parasite to mobilize

- 273 itself as well as truncated nonautonomous versions of itself (e.g., LINEs and SINEs,
- 274 respectively). The second type, exemplified by MITEs, utilizes the transposase from other
- transposons (not classified as MITEs) for their own proliferation: a parasite of a parasite. For

276 both types, most of the enzymes required for transposition and proliferation are encoded by host 277 cell DNA and used by the parasitic DNA. SatDNA found in the IGS may represent a third type 278 in which there is no sequence-specific transposase and all the enzymes required for proliferation 279 are encoded by the host cell. The connection between transposons and satDNA has been reported 280 for numerous taxonomic groups of animals and plants [12,15,27]. A transposon transcript inserts 281 at a break in the DNA, followed by invasion and reverse transcription, which is an error-prone 282 process (Fig 4; [28]). A host DNA polymerase then synthesizes the opposite strand. Target site 283 duplications (TSDs), which are DRs, are formed on both flanks of the insert during synthesis and 284 integration.

285

286 The DRs that we identified within the IGSs represent the remnant TSDs from ancient 287 transposition events. When the transposons are eliminated from the site via recombination or 288 other mechanisms (Fig 4B; [29]), they can leave behind telltale signs of their visitation, including 289 DRs. While the human IGS contains mainly Alu/SINE elements, the type of transposons that 290 have been found in other species' IGS and ETS sections is unclear. However, DNA encoding 291 lncRNAs, miRNAs, and sRNAs have been shown to transpose within genomes [12], and the R1 292 repeats in the *A. thaliana* IGS have sequence similarities to some of these (Fig 3A). The 5S 293 genes in most species reside in loci separate from the large rDNA locus, and many species have 294 multiple 5S gene loci. However, 5S genes have been found in the IGS of many fungal species 295 (e.g. F. velutipes; Fig 3A). We identified DRs flanking the 5S gene in the F. velutipes IGS, 296 indicating that transposition of these genes is a likely cause for the different locations. 297

298 The large number and variety of repetitive sequences found in the IGS and ETS indicates that 299 transposition events have occurred often, probably over billions of years [30]. They appear to 300 have had minimal functional effects on these sections. The strongest evidence that the absence of 301 an IGS has no effect on rRNA production comes from transcriptional activity revealed in Miller 302 spreads (Figs 2A–D) and blot-hybridizations that demonstrate extremely short IGSs. These data 303 indicate that the entire IGS (except for the proximal promoter) can be removed from the rDNA, 304 thereby reducing the target for transposon invasion. For most species, however, the host cell 305 apparently tolerates the transposons, their remnants, and their elongated IGSs. 306

307 Copy number of rDNA

308 Eukaryotic cells contain many thousands to millions of ribosomes and many copies of rDNA.

309 For example, in *D. melanogaster*, *H. sapiens*, *S. cerevisiae*, and *V. faba*, typical rDNA copy

310 numbers range from 140 to 250 per haploid genome, although individuals can survive with fewer

than half of those copies [3,4,31,32,33]. Copy number variation within a population of

312 phenotypically indistinguishable individuals may exceed these mean values by 10- or even

313 100-fold [4]. It seems unlikely that these excessively-large numbers are useful to the host cell.

314 On the other hand, the repeating rDNA unit comprises not only the coding sequences, but the

315 intergenic section dominated by transposons and their variants. The main beneficiary of "excess"

316 rDNA copies may thus be the transposons enlarging their numbers and their target sites. The

317 transition from scattered rDNA units in prokaryotes to tandem units in eukaryotes may well have

- been initiated by the insertion of repetitive transposons and DRs at the flanks of the rRNA genes.
- 319

320 IGS Function

321	The promoter section for the rRNA genes is located within the 5' ETS (black triangles in Fig 3,
322	e.g.). Although similar sequences exist in some of the TRs (gray triangles in Fig 3), their
323	function has not been investigated in any of these 12 species. It is therefore unclear how, or
324	indeed whether the TRs are useful in producing the rRNAs in ribosomes or whether they are
325	simply products of transposition and recombination. The length differences among IGS and ETS
326	sections vary by as much as 15-fold (H. sapiens versus O. sativa) and stunningly from 5-fold to
327	25-fold within a species (V. faba and P. sativum, respectively). The smallest IGS sections are
328	devoid of any of the largest TRs that contain putative promoters [3,4,10], suggesting their lack of
329	cellular function in expression of the adjacent genes. Additionally, electron microscopy
330	demonstrated the transcription of rDNA repeat units that were separated by long as well as very
331	short IGS sections in the same nucleolus (Figs 2A–D; [9]).
332	
333	In A. thaliana, however, sequences in the IGS TRs also align with sRNAs, lncRNAs, and
333 334	In <i>A. thaliana</i> , however, sequences in the IGS TRs also align with sRNAs, lncRNAs, and miRNAs. These classes of RNAs are involved in regulating gene expression and have been
333334335	In <i>A. thaliana</i> , however, sequences in the IGS TRs also align with sRNAs, lncRNAs, and miRNAs. These classes of RNAs are involved in regulating gene expression and have been shown to transpose to various genomic locations [27]. The tufts observed in electron
333334335336	In <i>A. thaliana</i> , however, sequences in the IGS TRs also align with sRNAs, lncRNAs, and miRNAs. These classes of RNAs are involved in regulating gene expression and have been shown to transpose to various genomic locations [27]. The tufts observed in electron micrographs (Figs 2G–L) of IGS sections might represent the production of RNAs affecting
 333 334 335 336 337 	In <i>A. thaliana</i> , however, sequences in the IGS TRs also align with sRNAs, lncRNAs, and miRNAs. These classes of RNAs are involved in regulating gene expression and have been shown to transpose to various genomic locations [27]. The tufts observed in electron micrographs (Figs 2G–L) of IGS sections might represent the production of RNAs affecting gene expression. Alternatively, these transcripts might represent the start of retrotransposition.
 333 334 335 336 337 338 	In <i>A. thaliana</i> , however, sequences in the IGS TRs also align with sRNAs, lncRNAs, and miRNAs. These classes of RNAs are involved in regulating gene expression and have been shown to transpose to various genomic locations [27]. The tufts observed in electron micrographs (Figs 2G–L) of IGS sections might represent the production of RNAs affecting gene expression. Alternatively, these transcripts might represent the start of retrotransposition. Among some IGS sections in <i>A. thaliana</i> , gypsy-like LTR-retrotransposons and other
 333 334 335 336 337 338 339 	In <i>A. thaliana</i> , however, sequences in the IGS TRs also align with sRNAs, lncRNAs, and miRNAs. These classes of RNAs are involved in regulating gene expression and have been shown to transpose to various genomic locations [27]. The tufts observed in electron micrographs (Figs 2G–L) of IGS sections might represent the production of RNAs affecting gene expression. Alternatively, these transcripts might represent the start of retrotransposition. Among some IGS sections in <i>A. thaliana</i> , gypsy-like LTR-retrotransposons and other retrotransposon sequences have been reported (NCBI accession number AC006837). Similarly,
 333 334 335 336 337 338 339 340 	In <i>A. thaliana</i> , however, sequences in the IGS TRs also align with sRNAs, lncRNAs, and miRNAs. These classes of RNAs are involved in regulating gene expression and have been shown to transpose to various genomic locations [27]. The tufts observed in electron micrographs (Figs 2G–L) of IGS sections might represent the production of RNAs affecting gene expression. Alternatively, these transcripts might represent the start of retrotransposition. Among some IGS sections in <i>A. thaliana</i> , gypsy-like LTR-retrotransposons and other retrotransposon sequences have been reported (NCBI accession number AC006837). Similarly, Alu/SINE, LINE, and LTR retrotransposons have been found in the human IGS, suggesting that
 333 334 335 336 337 338 339 340 341 	In <i>A. thaliana</i> , however, sequences in the IGS TRs also align with sRNAs, lncRNAs, and miRNAs. These classes of RNAs are involved in regulating gene expression and have been shown to transpose to various genomic locations [27]. The tufts observed in electron micrographs (Figs 2G–L) of IGS sections might represent the production of RNAs affecting gene expression. Alternatively, these transcripts might represent the start of retrotransposition. Among some IGS sections in <i>A. thaliana</i> , gypsy-like LTR-retrotransposons and other retrotransposon sequences have been reported (NCBI accession number AC006837). Similarly, Alu/SINE, LINE, and LTR retrotransposons have been found in the human IGS, suggesting that at least some portions of IGSs originated from retrotransposons. Whether these IGS sequences
 333 334 335 336 337 338 339 340 341 342 	In <i>A. thaliana</i> , however, sequences in the IGS TRs also align with sRNAs, lncRNAs, and miRNAs. These classes of RNAs are involved in regulating gene expression and have been shown to transpose to various genomic locations [27]. The tufts observed in electron micrographs (Figs 2G–L) of IGS sections might represent the production of RNAs affecting gene expression. Alternatively, these transcripts might represent the start of retrotransposition. Among some IGS sections in <i>A. thaliana</i> , gypsy-like LTR-retrotransposons and other retrotransposon sequences have been reported (NCBI accession number AC006837). Similarly, Alu/SINE, LINE, and LTR retrotransposons have been found in the human IGS, suggesting that at least some portions of IGSs originated from retrotransposons. Whether these IGS sequences modulate gene expression in <i>A. thaliana</i> or other species is unknown, although their movement

length show that a mutually-tolerable interaction between host and parasite has a lengthy historyamong eukaryotes.

346

347	When analyzed statistically, compared to random sequences of the same base composition,
348	the IGSs all had significantly more DRs than the random sequences (see Supporting Information
349	Table S1, and Figs S1-S3). Somewhat surprising was the finding that the 3' and 5' ETSs had
350	significantly more DRs than the random sequences. Both sections are transcribed but are
351	processed out of the mature rRNAs (Fig 1). The 3' ETS contains sequences responsible for
352	transcription termination signals and the 5' ETS has sequences responsible for the start of
353	transcription. Most of the ETSs were adjacent to TRs, and the 5' ETSs in four species (Vicia
354	sativa, V. faba, Arabidopsis thaliana, and Cyanea nozakii) contained TRs, resulting in a wide
355	range of lengths in the 5' ETSs. Therefore, parts of the primary transcript represent transposon
356	DNA inserted during evolution. When analyzed in the same way, the SSU and LSU sections
357	contained no more DRs than were predicted from the random sequences. The SSU and LSU may
358	also have experienced transposon insertions, but heavy selection to maintain functional
359	ribosomes has caused the extinction of the rDNA repeats and/or organisms with appreciable
360	numbers of the mutant rDNAs.

361

362 **Benefits and Beneficiaries of the IGS**

363 The IGSs of some species contains sequences that are clearly beneficial to that species, although 364 such sequences account for only a small part of the IGS that is dominated by transposon 365 fragments and rapidly-evolving repeats (Fig 3). We now address the question of how such a 366 mishmash of seemingly useless DNA may have originated. An IGS may contain sequences of 367 three types: sequences that benefit (1) themselves as selfish DNA; (2) the cell; and (3) both 368 themselves and the cell. In addition, the tandem rRNA coding units may not be separated by 369 discernible IGSs, as in *Batophora* (Fig 2). Type 2 has been intensively studied in some animals 370 and yeasts, and subrepeats of sequences affecting the transcription and maintenance of 371 downstream rRNA-coding DNA have been identified [5,32,34]. For example, in cultured human 372 cells IGS sequences transcribed in the antisense direction by RNA polymerase II can defend the 373 cell during imposed stressful conditions [35]. The IGS in wild populations of *Tigriopus* 374 copepods is exceptionally short (2.8 kb) and does not contain the subrepeat structure common to 375 other eukaryotes, such as *Drosophila funebris* (Fig 3; [36]), so that possible IGS-mediated 376 defense of rDNA would involve some other mechanism. The rRNA copy number ranged from 377 230 to 21,900 per haploid genome among 434 individual *Vicia faba* seedlings [4]. The 378 individual with 230 may or may not carry an IGS that defends the cell during stress. Yet even if 379 all 21,900 copies in the other individual encode functional (though unused) rRNA, this enormous 380 rDNA copy number would likely be detrimental to the cell (see below) but increase copies of 381 their parasitic sequences: type 1 IGS sequences. 382

When a pathogen sweeps through a population, not all individuals succumb to the infection. In prokaryotes, only ~2% of the genome is comprised of mobile genetic elements and defenses against these invaders [37–39], whereas the eukaryotic genome is comprised mostly of repeated sequences [40]. Conceptually, the genes repairing transposon-induced damage in prokaryotes are strong alleles, whereas those in eukaryotes are weak alleles that allow the parasitic sequences to proliferate. As described for satDNA, a host that survived an rDNA insertion may later evolve a modified version for its own benefit: a type 3 IGS. This derived benefit evidently balances the

390	burden of repairing the additional DNA damage and chromosome-disruptive recombination
391	attending "extra" rDNA copies [34] sporadically distributed among plant and animal species.
392	

393 The source of the IGS repeats

394 Prokaryotic genomes typically contain several rRNA operons, but these copies are not spaced by 395 repeat-containing satellite DNA sequences as found in the IGS of eukaryotes. The history of the 396 IGS may therefore be elucidated by considering the transition from prokaryotes to eukaryotes. 397 The *E. coli* genome contains seven *rrn* operons, and the consequences of altering of this number 398 show that: (i) All seven are required for rapid adaptation to changing environmental conditions; 399 (ii) Too few copies cause R-loop formation, chromosomal breakage, and cell death; and (iii) 400 Additional copies lead to increased recombination and deleterious chromosomal rearrangements 401 [41,42]. Thus, in its natural habitat, preservation of chromosomal integrity determines the 402 optimal copy number of rDNA for this bacterium and, we assume, the same would hold for 403 eukaryotes unless some feature of eukaryotic life drives the rDNA copy number beyond that 404 optimal for perpetuation of the organism. In our opinion, the chromosomal damage and 405 instability created by transposons is strongly suppressed in prokaryotes but weakly suppressed in 406 eukaryotes, leading to the repeats that dominate the IGS.

407

408 **Consequences of the IGS repeats**

The rDNA is thought to be the most unstable genic part of the eukaryotic genome, and this copy number instability may benefit the organism in times of stress and during development, although copy number instability may also lead to medical disorders in humans [32]. When tandem 325bp repeats from the IGS of *Vicia faba* (R3 in Fig 3) were introduced into *E. coli*, recombination

413	occurred frequently among the repeat units [43], suggesting that the IGS is a recombination "hot
414	spot" that may cause copy number instability in eukaryotes. Thus in eukaryotes, but not
415	prokaryotes, copy number instability driven by the IGS may benefit or harm the organism. In
416	either case, the parasitic sequences in the IGS proliferate and spread within the genome.
417	
418	Generating repeats in the IGS and possibly elsewhere
419	The insertion of a linear transposon (e.g., a retrotransposon), creates a double-strand DNA break
420	(DSB) at the target site. We suppose that repair of this DSB resembles the repair of one-ended
421	DSBs by break-induced repair (BIR) and the related synthesis-dependent strand annealing
422	process in yeast [44,45]. BIR involves persistent exposure of ssDNA, secondary (non-B-form)
423	DNA structures, inverted repeat-induced polymerase slippage, error-prone DNA synthesis, short
424	insertions/deletions, and mutagenesis [46]. Simple-sequence satellite DNAs with a local
425	replication advantage may thus expand within the IGS (Fig 4), spread to other genomic locations
426	
427	
428	Fig 4. Proposed mechanism of insertion, duplication, and elimination of retrotransposons
429	in the rDNA IGSs and ETSs.
430	
431	
432	
433	by recombination, and act as selfish mobile elements without a dedicated transposase found in
434	classical autonomous transposons.
435	

436 Could this mechanism for generating the IGS repeats also apply to the rest of the genome? To 437 address this question, we need to consider how the data were analyzed. The numerous DRs of 438 length 2–10 nt depicted in Fig 3 were identified by visual inspection of thousands of bp of IGS 439 sequences available in data bases. A repeat-search algorithm also was used to identify these 440 short IGS repeats. This process identified many more DRs because the distances between the 441 DRs was not considered. However, it was ineffective at searching sections of more than about 30 442 kb, so it would not be appropriate for genome-wide searches. Until appropriate algorithms are 443 available to search entire genomes [47], we cannot answer the question of the extent of DRs in 444 genomes. There is, however, a possible mechanism by which enormous numbers of tandem 445 repeats (satDNA) found in heterochromatic sections of chromosomes might be produced. 446 RAD52 is a protein involved in BIR in the nucleus. In human cells defective for RAD52, BIR 447 was found to re-replicate an affected segment of the genome [48]. The product of such re-448 replication is tandem copies in potentially great numbers found in centromeres, sub-telomeres, or 449 any part of a genome.

450

451 When the total lengths of repeats (DRs + microsatellites) was compared to the total lengths of the 452 IGS + ETS sections, repeats collectively account for 47–67% of the IGS + ETS ("TOTAL" 453 column in Table 1), a range similar to that reported for the fraction of many plant and animal 454 genomes attributed to repetitive DNA sequences [40,47]. Such estimates, however, depend on 455 arbitrary criteria for the definition of a "repeated" DNA sequence. For four land plants, the 456 fraction of the genome classified as repeated sequences increased from about 10% to 55% as the 457 temperature decreased in DNA hybridization kinetics assays, relaxing the criterion required for 458 sequence repetition [49]. In our present analysis, perfect sequence identity was required to

459 classify short sequences as "repeated", so that the 47–67% values in Table 1 would increase if

- 460 the criterion for repetitiveness were relaxed. Thus, in our opinion, the rDNA represents a
- 461 microcosm of the rest of the nuclear genome.
- 462

463 **Future Direction**

464 Several questions remain to be addressed regarding the evolution of the rDNA loci: Why is the

465 density of DRs in the IGS+ETS so similar among eukaryotes?; Do the properties of the IGS and

466 ETS described here extend to other diverse eukaryotes?; Can an algorithm be created to search

467 for DRs at the genome level?; Can the power of yeast genetics be used to elucidate the origin and

468 raison d'être of the IGS+ETS sequences?; Are there species of Bacteria and/or Archaea with

469 eukaryotic-like rDNA repeats, that may indicate transposon-like activities?; Do the rDNA

470 transcribed spacers in Bacteria and Archaea also contain DRs indicative of visitation by

471 transposons?

472

473 Concluding remarks

474 McClintock recognized two kinds of "shock" that genomes may experience [50]. For the first, 475 preprogrammed responses are mobilized to protect the structural integrity of the genome, such as 476 the heat shock response in eukaryotes and the SOS response in bacteria. For the second, 477 unanticipated challenges are met in an unforeseen manner. We are concerned with the second of 478 these, when a retrotransposon integrates at a site within the IGS and ETS parts of nuclear rDNA 479 and creates a double-strand DNA break. In the ensuing havoc, sequences are altered and the 480 break is repaired using some of the components that protect against the first type of genome 481 shock. This defensive action may succeed, but the host cell incurs a metabolic burden by adding

482	somewhat deleterious DNA to the IGS and ETS in the form of transposon and simple-sequence
483	DNA. McClintock [50] wrote that "it is necessary to subject the genome repeatedly to the same
484	challenge in order to observe and appreciate the nature of the changes it induces", a statement of
485	astonishing prescience that provides a simple explanation for the heretofore bewildering nature
486	of the IGS. Whereas McClintock's evidence came from color changes in the seed, the rDNA
487	sequence evidence comes from the most frequently needed part of the genome-a remarkable
488	realization.
489	
490	
491	Materials and Methods
492	
493	Sequences Used
494	All nuclear rDNA sequences were retrieved from NCBI during early 2022. The 12 species
495	examined were: Animalia [Cyanea nozakii (MH813455), Drosophila funebris (L17048), Gallus
496	gallus (MG967540), and Homo sapiens (MF164258), [Archaeplastida [Arabidopsis thaliana
497	(accession number X15550), Oryza sativa (X54194), Pisum sativum (X16614), Vicia sativa
498	(AY234366), and Vicia faba (X16615)], Fungi [Flammulina velutipes (MH468771)],
499	Strameopiles [Fragilariopsis kerguelensis (LR812489), Globisporangium ultimum (AB370108)].
500	
501	Annotation
502	Some of the sequences were partially annotated to indicate the extent of the 3'ETS, 5'ETS, and
503	TR sections within the IGS (G. gallus, H. sapiens, P. sativum, V. faba, and V. sativa). For this
504	study, additional IGS and ETS TRs \geq 20 bp for all species were manually located. Some

505	previously-reported repeats were extended to yield longer head-to-tail TRs. Manual searches for
506	direct repeats (DRs) at both ends of each tandem repeat (TR) section was undertaken. Searches
507	for short DRs (2-10 bp), proposed to be TSDs, were performed manually. For 2 bp DRs, they
508	were counted if they were immediately adjacent to one another (e.g.,ctct) or separated by a
509	single base pair (e.g.,tgxtg). For 3 bp DRs, they were counted if they were adjacent or less
510	than 20 bp apart. For longer DRs, they were counted if they were within 40 bp of one another.
511	Potential DRs farther apart than 40 bp were not considered. All of these sections were then
512	mapped (Fig 1) and tabulated (Table 1).
513	
514	Statistical Analysis
515	A program, provided by Luca Comai (University of California, Davis), was used to locate all
516	DRs regardless of the distance from one to another. Analyses of the IGSs and the coding sections
517	were performed separately (Table S1). It also produced a dot plot of all the DRs in the sequence
518	(Fig S1), regardless of the distances between the DRs. It generated a dot plot of 1000 random
519	sequences with the same G+C percentage (Fig S2). It then compared the numbers of DRs in the
520	real sequence versus the random sequences, and then calculated the p-values of whether the
521	number of DRs in the real sequence differed from the number of DRs in each random sequence
522	(Fig S3). The null hypothesis is that they do not differ.
523	
524	
525	

528 **References**

5	2	n
Э	L	9

530	1. Bendich AJ, McCarthy BJ. Ribosomal RNA homologies among distantly related organisms.
531	Proc. Natl. Acad. Sci. USA. 1970;65:349-356.
532	
533	2. Pace NR. Mapping the tree of life: progress and prospect. Microbiol. Molec. Biol. Rev.
534	2009;73:565-576.
535	
536	3. Rogers SO, Bendich AJ. Ribosomal RNA genes in plants: variability in copy number and in
537	the intergenic spacer. Plant Mol. Biol. 1987;9:509-520.
538	
539	4. Rogers SO, Bendich AJ. Heritability and variability in ribosomal RNA genes of Vicia faba.
540	Genetics 1987;117:285-295.
541	
542	5. Kasselimi E, Pefane D-E, Taraviras S, Lygerou Z. Ribosomal DNA and the nucleolus at the
543	heart of aging. Trends Biochem. Sci. 2022;47:P328-341.
544	doi.org/ <u>10.1016/j.tibs.2021.12.007</u>
545	
546	6. Lutterman T, Rückert C, Wibberg D, Busche T, Schwarzhans J-P, Friehs K, Kalinowski J.
547	Establishment of a near-contiguous genome sequence of the citric acid producing yeast
548	Yarrowia lipolytica DSM 3286 with resolution of rDNA clusters and telomeres. NAR
549	Genom. Bioinform. 2021. doi: 10.1093/nargab/lqab085.
550	

551	7. Beauparlant MA, Drouin G. Multiple independent insertions of 5S rRNA genes in the spliced-
552	leader gene family of trypanosome species. Curr. Genet. 2014;60:17-24.
553	
554	8. Dyomin A, Galkina S, Fillon V, Cauet S, Lopez-Roques C, Rodde N, Kloop C, Vignal A,
555	Sokolovskaya A, Satifitdinova A, Gaginskaya E. Structure of the intergenic spacers in
556	chicken ribosomal RNA. Genet. Sel. Evol. 2019;51:59. doi:org/10.1186/s12711-019-
557	0501-7
558	
559	9. Berger S, Schweiger H-H. Ribosomal DNA in different members of a family of green algae
560	(Chlorophyta, Dasycladaceae): and electron microscopical study. Planta 1975;127:49-62
561	
562	10. Jorgensen RA, Cuellar RE, Thompson WF, Kavanagh TA. Structure and variation in
563	ribosomal RNA genes in pea: characterization of a cloned rDNA repeat and chromosomal
564	rDNA variants. Plant Mol. Biol. 1987;8:3-12.
565	
566	11. Garrido-Ramos MA. Satellite DNA: an evolving topic. Genes 2017;8:230.
567	doi:10.3390/genes8090230
568	
569	12. Fort V, Khlifi G, Hussein SM. Long non-coding RNAs and transposable elements: a
570	functional relationship. Mol. Cell Res. 2021;1868:118837
571	doi.org/10.1016/j.mmamcr.2020.118837
572	

573	13. Richard G-F, Kerrest A, Dujon B. Comparative genomics and molecular dynamics of DNA
574	repeats in eukaryotes. Microbiol. Mol. Biol. Rev. 2008;72:686-727.
575	
576	14. Thakur J, Packiaraj J, Henikoff A. Sequence, chromatin and evolution of satellite DNA. Int.
577	J. Mol. Sci. 2021;22:4309. doi.org/10.3390/jms22094309
578	
579	15. Casacuberta E. Drosophila: retrotransposons making up telomeres. Viruses 2017;9:192. doi:
580	10.3390/v9070192
581	
582	16. Grandi FC, An W. Non-LTR retrotransposons and microsatellites: partners in genomic
583	variation. Mob. Genet. Elements 2013;3:e25674. doi: 10.4161/mge.25674
584	
585	17. Tunjić-Cvitanić M, Pasantes JJ, Garcia-Souto D, Cvitanić T, Plohl M, <u>Šatović-Vukšić</u> , E.
586	Satellitome analysis of the pacific oyster Crassostrea gigas reveals new pattern of
587	satellite DNA organization, highly scattered around the genome. Int. J. Mol. Sci.
588	2021;22:6798. doi.org/10.3390/ijms22136798
589	
590	18. Berger S, Zellmer DM, Kloppstch K, Richter G, Dillard WL, Schweiger HG. Alternating
591	polarity in rRNA genes. Cell Biol. Int. Rep. 1978;2:41-50
592	
593	19. Franke WW, Scheer, Spring H, Trendelenburg MF, Krohne G. Morphology of transcriptional
594	units of rDNA: evidence for transcription in apparent spacer intercepts and cleavages in
595	the elongating nascent RNA. Exper. Cell Res. 1976;100:233-244.

5	Q	6
J)	υ

597	20. Yakura K, Kato A, Tanifuji S. Length heterogeneity in the large spacer of Vicia faba rDNA
598	is due to the differing number of 325 bp repetitive sequence elements. Mol. Gen. Genet.
599	1984;193:400-405.
600	
601	21. Kato A, Yakura K, Tanifuji S. Repeated DNA sequences found in the large spacer of Vicia
602	faba rDNA. Biochem. Biophys. Acta 1985;825:411-415.
603	
604	22. Cullis CA, Davies DR. Ribosomal DNA amounts in Pisum sativum. Genetics 1975;81:485-
605	492.
606	
607	23. Ingle J, Timmis J, Sinclair J. The relationship between satellite DNA, ribosomal RNA gene
608	redundancy, and genome size in plants. Plant Physiol. 1975;55:496-501.
609	
610	24. Pollans NO, Weeden NF, Thompson WF. Distribution, inheritance and lineage relationship
611	of ribosomal DNA spacer length variants in pea. Theor. Appl. Genet. 1986;72:289-295.
612	
613	25. Havlova K, <u>Dvořáčková</u> M, Peiro R, Abia D, <u>Mozgová</u> I, <u>Vansáčová</u> L, Gutierrez C, Fajkus
614	J. Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana. Plant Mol. Biol.
615	2016;92:457-471.
616	
617	26. Agrawal S, Ganley ARD. The conservation landscape of the human ribosomal RNA gene
618	Repeats. PLoS ONE 2018;13(12):e0207531. doi:org/10.1371/journal.pone.0207531

6	1	9
~	-	-

620	27. Meštrović N, Miravinac B, Pavlek M, Vojvoda-Zeljko T, <u>Šatović</u> E, Plohl M. Structural and
621	functional liaisons between transposable elements and satellite DNAs. Chromosome Res.
622	2015;23:583-596.
623	
624	28. Rodgers K, McVey, M. Error-prone repair of DNA double-strand breaks. J. Cell Physiol.
625	2016;21:15-24.
626	
627	29. Deininger P. Alu elements: know the SINEs. Genome Biol. 2011;12:236.
628	doi:org/10.1186/gb-2011-12-12-236
629	
630	30. Rogers SO. Integrated evolution of ribosomal RNAs, introns, and intron nurseries. Genetica
631	2019;147:103-119. doi.org/10.1007/s107009-018-0050-y
632	
633	31. French SL, Osheim, YN, Cioci F, Nomura M, Beyer AL. In exponentially growing
634	Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA
635	polymerase I loading rate rather than the number of active genes. Mol. Cell. Biol.
636	2003;23:1558-1598.
637	
638	32. Hori Y, Engel C, Kobayashi T. (2023) Regulation of ribosomal RNA gene copy number,
639	transcription and nucleolus organization in eukaryotes. Nature Rev. Molec. Cell Biol.
640	2023, doi.org/10.1038/s41580-022-00573-9
641	

642	33. Salim, D, Bradford WD, Freeland A, Cady G, Wang J, Pruitt S, Gerton J. DNA replication
643	stress restricts DNA copy number. PLoS Genet. 2017;13:e1007006.
644	doi.org/10.1371/journalpgen.1007006
645	
646	34. Kobayashi T, Horiuchi T, Tongaonkar P, Vu LNomura M. SIR2 regulates recombination
647	between different rDNA repeats, but not recombination within individual rRNA genes in
648	yeast. Cell 2014;117:441–453.
649	
650	35. Abraham KJ, Khosraviani N, Chan JNY, Gorthi A, Samman A, Zhao DY, et al. Nucleolar
651	RNA polymerase II drives ribosome biogenesis. Nature 2020;585:298-302.
652	
653	36. Burton RS, Metz EC, Flowers JM, Willett CS. Unusual structure of ribosomal DNA in the
654	copepod Tigriopus californicus: intergenic spacer sequences lack internal subrepeats.
655	Gene 2005;344:105-113. doi:10.1016/j.gene.2004.09.001
656	
657	37. Koonin EV, Makarova KS, Wolf YI. Evolutionary Genomics of Defense Systems in Archaea
658	and Bacteria. Annu. Rev. Microbiol. 2017;71:233-261.
659	
660	38. Kirchberger PC, Schmidt M, Ochman H. The Ingenuity of Bacterial Genomes. Annu. Rev.
661	Microbiol. 2020;74:815-834.

663	39. Gao L, Altae-Tran H, Böjning F, Makarova KS, Segel M, Schmid-Burgk JL, Koob J, Wolf
664	YI, Koonin EV, Zhang F. Diverse enzymatic activities mediate antiviral immunity in
665	prokaryotes. Science 2020;369:1077-1084. doi: 10.1126/science.aba0372
666	
667	40. Palazzo AF, Gregory TR. The case for junk DNA. PLoS Genetics 2014.
668	doi.org/10.1371/journal.pgen.1004351
669	
670	41. Condon C, Squires C, Squires CL. Control of rRNA transcription in Escherichia coli.
671	Microb. Rev.1995; 59:623-645.
672	
673	42. Fleurier S, Dapa T, Tenaillon O, Condon C, Matic I. rRNA operon multiplicity as a bacterial
674	genome stability insurance policy. Nucl. Acids Res. 2022. doi.org/10.1093/nar/gkac332
675	
676	43. Rogers, S.O. and A.J. Bendich, 1988. Recombination in <i>E. coli</i> between cloned ribosomal
677	RNA intergenic spacers from Vicia faba: a model for the generation of ribosomal RNA
678	gene heterogeneity in plants. Plant Science 55:27-31.
679	
680	44. Saini N, Gordenin DA. Hypermutation in single-stranded DNA. DNA Repair (Amst) 2020.
681	doi: 10.1016/jdnarep.2020.102868
682	
683	45. Pham N, Yan Z, Yu Y, Afreen MF, Malkova A, Haber JE, Ira G. Mechanisms restraining
684	break-induced replication at two-ended DNA double-strand breaks. EMBO .J
685	2021;e104847. <u>doi.org/10.15252/embj.2020104847</u>

687	46. Osia B, Twarowski J, Jackson T, Lobachev K, Liu L, Malkova A. Migrating bubble synthesis
688	promotes mutagenesis through lesions in its template. Nucl. Acids Res. 2022;50:6870-
689	6889. <u>doi.org/10.1093/nar/gkac520</u>
690	
691	47. de Koning APJ, Gu W, Castoe TA, Batzer MA, Pollack DD. Repetitive elements may
692	comprise over two-thirds of the human genome. PLoS Genet. 2011;7(12):e1002384.
693	doi:10.1371/journal.pgen.1002384
694	
695	48. Bhowmick R, Lerdrup M, Gadi SA, Rossetti GG, Singh MI, Liu Y, Halazonetis TD, Hickson
696	ID. RAD51 protects human cells from transcription-replication conflicts. Molec, Cell
697	2022. https://doi.org/10.1016/j.molcel.2022.07.010
698	
699	49. Bendich AJ, Anderson RS. Characterization of families of repeated DNA sequences from
700	four vascular plants. Biochemistry 1977;16:4655-4663.
701	
702	50. McClintock, B. (1984) The significance of responses of the genome to challenge. Science
703	1984;226:792-801.
704	
705	
706	
707	
708	

709 Glossary

710

711	Direct repeats	(DRs): repeat	sequences (2	-10 bp)	flanking an	unrelated sequence.	DRs usually
	1	\ / I	1	1/	0	1	J

remain as a remnant after a transposon leaves a genomic site.

713

714	External transcribed spacer	(ETS):	the segment	t following the	e large rRNA	A subunit gene (LSU)
-----	-----------------------------	--------	-------------	-----------------	--------------	----------------------

- that is transcribed is the 3' ETS, whereas the transcribed segment preceding the small rRNA
- 716 subunit gene (SSU) is the 5' ETS.

717

718 Intergenic spacer (IGS): the spacer segment between the LSU and SSU, also known as the non-

transcribed spacer, although it may sometimes be transcribed.

720

- 721 LINEs and SINEs: long (autonomous) and short (nonautonomous) interspersed nuclear
- respectively (retrotransposons).

723

724 MITEs: Miniature inverted-repeat transposable elements.

725

726 **Repeat Type:** R1 is the first type of tandem repeat (TR) sequence in the rDNA spacer following

the 3'ETS (see Fig 3). R2 is the second TR type, and so forth. IGSs with only one type of repeat

are simply designated R.

729

730 Satellite DNA (satDNA): tandem repeats of any unit-length sequence. Here, we designate

731 repeats of <20 bp as DRs and those ≥ 20 bp as TRs.

732	
733	Tandem repeats (TRs): typically 10 to >2000 bp that are the defining feature of satellite DNA.
734	
735	Target site duplication (TSD): duplication of a short sequence at a transposon integration site
736	creating one copy of each that flank the transposon.
737	
738	
739	
740	Acknowledgments
741	We thank George Miklos for his critical comments. The statistical program was written and
742	supplied by Luca Comai.
743	
744	Author Contributions
745	Planning and conceptualization, A.J.B.; Bioinformatic analyses, S.O.R.; Writing and editing
746	manuscript, A.J.B. and S.O.R.; Figures, S.O.R.
747	
748	Declaration of Interests
749	The authors declare no competing interest.
750	
751	Funding Information
752	This work was unfunded.
753	
754	Supporting Information

Table S1. Statistical analyses of direct repeats in the intergenic spacers and rRNA genes.

Species	Region ^a	Stats	Repeat Lengths ^b									
-	-		2 bp	3 bp	4 bp	5 bp	6 bp	7 bp	8 bp	9 bp	10 bp	
Oryza sativa	IGS (2139 bp)	DR ^c	202209	60571	18779	6688	2996	1668	1122	836	697	
,	72% CG	p-value ^d	2.4e-01	2.9e-01	4.7e-01	8.3e-03	1.1e-14	1.6e-72	1.0e-286	0.0	0.0	
	SSU (358 bp)	DR	4188	1058	225	62	16	4	0	0	0	
	41% GC	p-value	3.5e-01	3.1e-01	1.9e-01	2.0e-01	3.2e-01	3.9e-01	2.1e-01	3.3e-01	4.2e-01	
Pisum sativum	IGS (2981 bp)	DR	302708	87597	27797	10634	5709	4062	3372	2958	2652	
	46% GC	p-value	7.7e-07	1.9e-33	1.2e-97	0.0	0.0	0.0	0.0	0.0	0.0	
	SSU (1812 bp)	DR	103447	26011	6534	1633	395	93	19	5	1	
	49% GC	p-value	4.9e-01	4.5e-01	4.8e-01	4.8e-01	2.8e-01	2.2e-01	1.5e-01	3.4e-01	3.4e-01	
Arabidopsis	IGS (4705 bp)	DR	757889	216099	69357	28972	16617	11958	9616	7951	6654	
thaliana	49% GC	p-value	2.6e-18	7.6e-70	1.3e-233	0.0	0.0	0.0	0.0	0.0	0.0	
	LSU (485 bp)	DR	7392	1847	435	106	25	3	0	0	0	
	54% GC	p-value	4.6e-01	4.7e-01	1.7e-01	2.4e-01	2.8e-01	1.2e-01	1.5e-01	3.0e-01	3.9e-01	
Vicia sativa	IGS (2976 bp)	DR	295617	86233	28528	10974	5277	3425	2714	2323	2083	
	48% GC	p-value	7.3e-63	2.2e-300	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	SSU/LSU (69 bp)	DR	139	37	9	2	0	0	0	0	0	
	52% GC	p-value	1.9e-01	3.7e-01	3.8e-01	3.8e-01	2.7e-01	3.8e-01	4.4e-01	4.7e-01	4.8e-01	
Vicia faba	IGS (3488 bp)	DR	409776	114244	34193	11304	4702	2651	2014	1740	1591	
	50% GC	p-value	1.2e-243	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	SSU/LSU (747 bp)	DR	19019	5073	1371	381	103	25	4	0	0	
	GC = 57%	p-value	4.3e-01	2.6e-01	1.6e-01	9.2e-02	1.4e-01	3.6e-01	2.9e-01	1.8e-01	3.3e-01	
Flammulina	IGS (5198 bp)	DR	895662	241977	69954	21664	8187	4179	2930	2384	2166	
velutipes	49% GC	p-value	9.e-06	1.3e-18	1.9e-59	1.4e-146	0.0	0.0	0.0	0.0	0.0	
	SSU (1796 bp)	DR	103666	26383	6653	1704	432	109	28	7	0	
	46% GC	p-value	3.5e-01	4.4e-01	3.7e-01	4.9e-01	4.8e-01	5.0e-01	4.7e-01	4.8e-01	1.5e-01	
Fragillariopsis	IGS (4265 bp)	DR	726479	213321	64467	19967	6580	2394	1074	608	439	
kerguelensis	33% GC	p-value	2.3e-01	0.015	1.6e-04	1.1e-07	1.1e-14	1.0e-31	5.3e-81	6.2e-224	0.0	
	SSU (744 bp)	DR	19034	4952	1285	332	85	21	4	2	1	
	44% GC	p-value	3.6e-01	4.1e-01	4.7e-01	4.7e-01	4.4e-01	3.9e-01	2.7e-01	4.2e-01	2.5e-01	
Globisporangium	IGS (2963 bp)	DR	301192	84347	24234	7719	2920	1460	972	740	610	
ultimatum	41% GC	p-value	2.2e-01	5.2e-05	4.9e-11	2.6e-30	1.4e-79	5.1e-264	0.0	0.0	0.0	
	SSU (1789 bp)	DR	104536	26872	6860	1794	493	132	28	8	1	
	45% GC	p-value	4.5e-01	4.6e-01	4.7e-01	2.9e-01	9.0e-02	1.4e-01	4.e-01	4.7e-01	3.0e-01	
Cyanea nozakii	IGS (1890 bp)	DR	119216	32209	9366	3329	1697	1195	993	894	838	
	49% GC	p-value	1.5e-02	9.0e-06	3.5e-16	4.5e-64	2.9e-286	0.0	0.0	0.0	0.0	
	SSU (1815 bp)	DR	105518	26721	6680	1643	402	96	19	4	1	
	46% GC	p-value	4.5e-01	4.4e-01	3.8e-01	1.9e-01	1.7e-01	1.9e-01	1.1e-01	1.9e-01	3.2e-01	

Drosophila	IGS (4810 bp)	DR	1034905	337798	118549	48261	24549	17045	14400	13311	12860
funebris	30% GC	p-value	3.3e-02	4.0e-08	3.5e-24	4.2e-80	0.0	0.0	0.0	0.0	0.0
	SSU (324 bp)	DR	3462	873	240	72	26	8	3	1	0
	39% GC	p-value	2.4e-01	1.9e-01	4.4e-01	2.9e-01	6.2e-02	1.1e-01	1.1e-01	1.7e-01	4.2e-01
Gallus gallus	IGS (17643 bp)	DR	13288318	4254725	1454471	579847	290036	183650	134846	110177	95150
	70% GC	p-value	2.3e-01	5.0e-08	4.5e-37	2.8e-163	0.0	0.0	0.0	0.0	0.0
	SSU (1823 bp)	DR	106389	27012	6905	1800	446	99	20	3	0
	54% GC	p-value	1.9e-01	1.6e-01	9.4e-02	3.9e-02	2.4e-01	2.7e-01	1.4e-01	1.3e-01	1.6e-01
Homo sapiens	IGS (24944 bp)	DR	23478157	7631951	2728308	1275894	673809	413327	258645	180692	126720
	51% GC	p-value	2.6e-26	4.2e-244	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	SSU (1868 bp)	DR	113964	29235	7473	1940	504	133	35	11	3
	56% GC	p-value	1.9e-01	1.3e-01	1.7e-01	1.1e-01	1.7e-01	2.0e-01	2.6e-01	1.5e-01	2.8e-01

^a IGS = intergenic spacer; SSU = small subunit gene (some are partial sequences); LSU = large subunit gene (partial sequences); SSU/LSU = combination of the SSU and LSU genes (partial sequences).

^b Direct repeat lengths being compared.

^c DR = Direct repeats. The number of repeats was determined by creating a matrix with the sequence plotted on the horizontal axis against the same sequence on the vertical axis (see Figs. S1 and S2). Each repeat was then potted against the identical repeat that occurred elsewhere in the sequence. The algorithm then moved to the next nucleotide and performed the same analysis. The total of all such repeats was then recorded, as shown in each column. For example, for *O. sativa* 5-bp repeats, the entire sequence for the IGS is 2139 bp, so the entire matrix created is $2139^2 = 4,575,321$ possible positions (see Fig. S1). A total of 6688 5-bp repeats were identified by the algorithm. ^d The p-values were calculated by comparing the matrix of repeats based on the actual sequence with 1000 random sequences with the same percent GC (see Figs. S2 and S3). Black font indicates p-values where the actual sequences are significantly different at the p < 0.01 level. Red font indicates non-significant differences between the actual sequences at the p < 0.05 level. The IGSs all differ from the random sequences at the p < 0.01

level, except in *O. sativa*, which exhibits differences from random in direct repeats that are 5 bp and longer. Direct repeat totals in the SSU and LSU sequences did not differ from random sequences at the p < 0.01

Fig. S1. Dot plot of the positions of all 5-bp repeats in the Oryza sativa IGS.

756 757

Fig. S2. Dot plot of 5-bp repeats in a random sequence.

Fig. S3. Distribution of 5-bp repeats from 1000 random sequences. Red arrow indicates the actual number of 5-bp repeats in the *Oryza sativa* IGS used in this research.

771 FIGURES

786 Fig 2. Transmission electron micrographs of rRNA transcription. (A-D) are from the green 787 alga Batophora oerstedii, demonstrating rDNA repeats with long IGSs (A) and short IGSs (B 788 and D). (A) and (B) are from the same individual nucleolus. A higher magnification is shown in 789 (C). Micrographs (E) and (F) are from the green alga *Acetabularia exigua* and show gene repeat 790 units that are inverted in head-to-head (or tail-to-tail) copies. Micrographs (G-L) show 791 additional variations in the rDNA section. These include "tufts" (denoted by long single arrows) 792 that indicate transcription within the IGS, as well as extensions of rRNA (G–L). H, K, and J are 793 from the alpine newt Triturus alpestris; (G) and (L) are from the palmate newt Triturus 794 helveticus; and (I) is from the house cricket Acheta domesticus; [18]). Micrographs are from: 795 [9,18,19], with permission.

A

800 Fig 3. Maps of nuclear rDNA IGS plus 3' ETS (red rectangles on left) and 5' ETS (red

801 rectangles on right) segments. (A) Archaeplastida, Fungi, and Stramenopiles. (B) Animalia.

802 Sections with TRs \geq 20 bp are shown by colored rectangles or colored lines. Each of these 803 sections is flanked by short direct repeats (DRs) indicated above each repeat section, but some of 804 the same DRs also are found at the borders of each of the individual TRs within those TR 805 sections (O. sativa R repeats, V. faba R2 and R3 repeats, A. thaliana R1 repeats, D. funebris R1 806 and R2 repeats, and G. gallus R1 repeats). In A. thaliana, for example, the group of three R1 807 repeats is flanked by gaaaa, as is each individual R1 repeat, whereas the group of two R2 repeats 808 is flanked by tcccga. The numbers of short DRs (2-10 bp each) are indicated below each of the 809 sections, including within the TRs and the ETSs. The black triangles within the 5' ETS are the 810 locations of promotor sequences that also have upstream RNA polymerase binding sites 811 approximately 30 bp upstream from the promoter. The gray triangles in some TRs are locations 812 of sequences nearly identical to the promoter that also have upstream binding sites. Thus, they 813 are similar to promoters for RNA pol I (including a "TATA" sequence followed by several G 814 residues and a CGCC upstream binding site). Promoters for RNA pol II or pol III were absent. 815 Alu/SINEs in the human IGS and ETS segments are shown. Microsatellites also are shown for 816 *H. sapiens* because of their lengths, total numbers, and sequence diversity. Large numbers of 817 microsatellites are also present in chicken, but are much less numerous in all the other species. 818

- 819

- vulnerable to damage, use error-prone DNA polymerases, and involve DNA polymerase slippage
 and template switching [28], leading to the formation of tandem repeats, partial inserts,
 elimination of the inserts, isolated DRs, and microsatellites (MSs) [12,15]. All of these have been
- 837 found (indicated by asterisks) in the IGSs of the species examined. This scheme is based on the
- 838 work of Deininger [29].
- 839
- 840

2 Table 1. IGS and ETS repeat characteristics.

Taxon	Species	ties Genome IGS+ETS Number DRs per Percent segment length as repeats ^b							eats ^b	TR type	TR lengths	Mean
		size	length	of DRs	kb of the						(bp)	length
		(Gb)	(kb) ^a		IGS+ETS	3' ETS	IGS	5' ETS	TOTAL			(bp)
Archaeplastida	A. thaliana	0.14	4.7	316	67	42.2	52.5	59.7	55.4	R1	616-621	618
											(547) ^c	
										R2	304-310	307
	O. sativa	0.40	2.0	133	66	58.0	49.1	47.3	46.9	R	255-265	259
											(115)°	
	P. sativum	4.5	2.75	189	68	47.9	50.3	44.5	48.0	R	139-212	175
	V. faba	13.0	3.25	192	57	43.5	59.3	48.5	53.7	R1	28	28
										R2	144-145	144
										R3	319-328	324
										R4	163-166	165
										R5	59-71	65
	V. sativa	1.8	2.75	146	52	46.4	59.2	43.5	49.9	R1	127-207	166
										R2	20-21	20
										R3	62-67	66
Fungi	Fl. velutipes	0.36	4.1	229	55	47.7	50.9	44.4	49.0	R1	12-17	14
										R2	37-50	47
										R3	7-9	8
Stramenopiles	Fr. kerguelensis	0.30	4.0	211	52	53.5	54.9	55.6	54.9	R1	81-83	82
										R2	65-71	68
	G. ultimum	0.42	2.8	166	58	68.2	50.5	49.2	50.8	R1	59-75	69

										R2	38-47	43
										R3	18-24	21
Animalia	C. nozakii	0.15	1.8	122	67	67.7	43.7	49.5	46.6	R1	116 (87)°	116
										R2	61-75 (37) ^c	68
	D. funebris	0.20	4.0	252	63	40.7	58.2	60.2	57.5	R1	238-240	239
										R2	227-237	232
	G. gallus	1.2	15.2	1544	102	59.4	68.2	61.2	67.4	R1	345-448	395
										R2	92-94	93
										R3	78-91	88
	H. sapiens	3.1	31.5	1429	45	59.3	62.7	56.3	62.4	R1	715-800	758
										Alu/SINEs	18-242 ^d	89
										R2	2008-2056	2032

^aAs indicated in the main text, these lengths often vary within and among individuals.

6 ^bRepeats include DRs and microsatellites.

7 °Numbers in parentheses indicate truncated TRs.

8 ^dLength range represents full-length and truncated Alu/SINEs.