
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-31, KO. 9. SEPTEMBER 1986 83 1 

Riccati  Equations in Optimal Filtering of 
Nonstabilizable  Systems  Having Singular 

State Transition Matrices 

Abstract-Until recently,  it  was  believed  that  a  necessary  and  sufficient 
condition  for convergence of the Ricmti  difference equation of optimal 
filtering  was  that  the  system be both detectable  and  stabilizable.  Recently, 
it has been shown that  the  stabilizability condition can be removed  but 
convergence has  only established  under  restrictive  assumptions  including 
the  requirement  that  the state transition  matrix  be  nonsingular. The 
present  paper  generalizes  these  results  in  several  directions.  First, 
properties of the  algebraic  Riccati  equation  are  established for the  case of 
singular  state  transition  matrix. Second, several  assumptions  previously 
imposed in establishing  convergence of the  Riccati  difference  equation for 
systems  with  unreachable modes on the  unit  circle  are  relaxed  including 
replacing  observability  by  detectability,  weakening  the conditions on the 
initial covariance, and allowing the  state  transition  matrix to be  singular. 
Third,  results on the  convergence  and  properties of the  Riccati equations 
are  expressed as  both necessary and sufficient conditions, whereas 
previous  results  were only sufficient.  These  extensions mean  that  the 
results  have  wider  applicability,  including  fixed-lag smoothing problems 
and  filtering for systems  with  time delays.  The implications of the  results 
in  the  dual  problem of optimal control are also studied. 

I .  INTRODUCTION 

0 VER the past two decades there has been a great deal of work 
on the dual problems of optimal control and optimal filtering. 

Surprisingly, however, the question of optimal filtering of 
nonstabilizable systems has not been satisfactorily resolved. 

Kalman and Bucy [1]-[3], the originators of the problem, 
established convergence and properties of the solutions of the 
matrix Riccati equation under the assumption of controllability 
and observability. Later, these conditions were weakened by 
Wonham [4] ~ Caines and Mayne [5], and Anderson and Moore [6] 
to detectability and stabilizability. However, this excludes a wide 
class of important problems as,  for example, the optimal filtering 
problem of unstable systems without process noise. Results for 
continuous-time nonstabilizable systems have been presented in 
[7]-[lo]. However, these results are incomplete. For example, 
they do not allow for deterministic disturbances such as sinusoids 
which give rise to uncontrollable modes on the imaginary axis 
(unit circle in discrete time). 

In a recent paper Chan, Goodwin, and  Sin [l  11 have presented 
results in this direction for discrete-time systems. 

The present paper generalizes the results of [ l l ]  in three 
directions. One is to establish results on the algebraic Riccati 
equation (ARE) under weaker assumptions including both  neces- 
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sary and sufficient conditions. Another is to relax the assumptions 
of the main theorems of [ 111 on the convergence of the Riccati 
difference equation (RDE): in particular, the requirements on the 
initial condition of the RDE are relaxed, and observability is 
replaced by the weaker requirement of detectability. Finally, all 
these results are now established for the case of singular state 
transition matrices. This was explicitly excluded in [ l l ] .  These 
extensions mean  that the results have wider applicability, includ- 
ing fixed-lag smoothing problems and systems with  time delays, 
which give rise to singular state transition matrices. 

To handle systems having singular state transition matrices we 
shall use a different proof technique to that employed in [ 1 11. We 
shall use a generalized eigenvector approach introduced by 
Pappas, Laub and Sandell [12] and Emami-Naeini and Franklin 
[ 131, [ 141 and used  in [ 151, [ 161 in the numerical solution of ARE 
for the restrictive detectable and stabilizable case. Another 
important contribution of the current paper is to remove the 
stabilizability requirement from that approach. 

The organization of the paper is as follows. In Section II the 
statement of  the problem is given. In Section III the solutions of 
the algebraic Riccati equation are analyzed from an algebraic 
point of view using the eigenvectors of an associated generalized 
eigenvalue problem. We also investigate the necessary and 
sufficient conditions for existence and uniqueness of strong 
solutions to the ARE, i.e., real symmetric nonnegative definite 
solutions which give rise to a filter with roots on or inside the unit 
circle. In Section IV we present new results concerning the 
convergence of the solution of the Riccati difference equation to 
the strong solution of the algebraic Riccati equation. In Section V 
we discuss some consequences of our results for the dual optimal 
control problem. 

11. PROBLEM STATEMENT 

Consider the following discrete-time linear system of dimen- 

x(?+ l ) = A x ( t ) + q ( f )  (2 .1)  
sion n, having m outputs: 

y ( r ) = C x ( t ) + u z ( r ) ;  r r O  (2.2) 
where A and C are constant matrices of appropriate dimensions 
and { u l ( t ) ) ,  { ~ ( t ) )  arc uncorrelated zero  mean  “white” se- 
quences having covariance matrices Q and R,  respectively, with 
Q 2 0 and R > 0. We also assume that the initial state x(0) is a 
random variable uncorrelated with { q ( f ) }  and {vz(t)), having 
mean X,, and covariance matrix Eo. Note that the case when { u l ( t ) }  
and { u2( t )  1 are correlated can be handled by identical means using 
a preliminary transformation (see [l  I], [lS]). 

It is  well known that the best linear estimate 2(t) of x(t) given 
data up to time t - 1 satisfies 

f ( t +  l ) = A ( t ) 2 ( t ) + K ( t ) y ( r )  

n(0) = 3 0  
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where 

A ( t )  P A - K ( f ) C  (2 .5 )  

K ( f )  4 AC(f )CT(CC(f )CT+R)- l  (2.6) 

and C(f) satisfies the following matrix Riccati difference 
equation: 

E ( t +  1 )=AC( t )A7-AB( t )~ ' [CC( i )CT+Z] - 'C~( f )AT+DDT 

(2.7) 

C(0) = C o r  0 (2.8) 

where 
(-'=R-I/ZC 

with D and R being matrices such that 

Q=DDT; R=(R"2)(R112)T (2.10) 

and R nonsingular. The factorizations above exist due to the 
fact that Q z 0, R > 0 and can be easily obtained using standard 
results. 

In the sequel we shall be interested in the question of the 
convergence of the filter,  Le., existence of a limiting solution C of 
the RDE. If this solution exists, then it satisfies the following 
algebraic Riccati equation: 

X-AXAT+ACCT(~'CCT+Z)-lCCAT-DDT=O (2.11) 

and the dynamics of the asymptotic filter will be characterized by 
the following steady-state transition matrix: 

A = A  -ACCT(CZCT+I)- 'C. (2.12) 

In the next section we will study the solutions of (2.11). Since 
C(t) is real symmetric nonnegative definite, we shall restrict 
attention to the solutions of the ARE which retain these properties. 
We shall also isolate those solutions which  give rise to a filter 
having roots inside or on the unit circle. Following the notation 
first introduced in [l 11, we call these solutions the slrong 
solutions. If the asymptotic filter is exponentially stable, then we 
shall call C the stabilizing solution. 

III. SOLUTION OF THE ALGEBRAIC R~CCATI EQUATION 

To construct the solutions of the ARE we shall use the 
generalized eigenproblem approach introduced in [ 121 and [ 131. 
The key idea of this approach is to construct the solutions of the 
ARE from a computationally stable basis for the eigenspace of the 
following symplectic matrix pencil (see Appendix A for definition 
and propeflies of symplectic pencils). 

P(X) = M -  XL (3.1) 

L L 

To simplify the analysis, a basis consisting of the generalized 
eigenvectors of P(X) was adopted. 

Note that when A is nonsingular, the generalized eigenvalue 
pioblem for (3.1) rguces  to the standard eigenvalue problem for 
M - XI where M = L-IM is the well-known Hamiltonian 
matrix [ 171. 

In the sequel we assume that the pencil (3.1) is regular, i.e., 
det (M - XL) is not identically zero  for all X. 

We now summarize the key properties of the solutions of the 
ARE. Parts A)-E) are well-known results [12], whereas parts F)- 
I) are extensions of similar results of [ 1 1, Lemma 3.11 to the case 
where A is singular. 

Throughout the paper,  the notation x-*. will be used to denote the 

Lemma 3.1: Let each generalized principal vector zi of the 
transpose of the complex conjugate of x. 

pencil (M - U) be decomposed into two n-vectors 

and let 

be a selection of n such vectors such that if a generalized principal 
vector of rank k is a column of U, then the generalized principal 
vectors of rank inferior to k are also columns of U. Then we have 
the following results. 

A) For each solution C of the ARE there exists a choice of U 
such that X-l  exists and C = YX- ' .  

B) For any choice of U such that X -  exists, then C = Y X -  is 
a solution of the ARE provided (I + CE CT) is nonsingular. 

C) Let J be the n X n Jordan canonical form corresponding to a 
choice of U. If C = Y X -  I is a solution of the ARE, then J is also 
the Jordan canonical form of A and X is the corresponding 
matrix of generalized eigenvectors of A r. 

D) If A is nonsingular, all the eigenvalues of the pencil M - 
XL are nonzero. When A is singular, then M - XL has at least 
one eigenvalue equal to zero. 

E) If X, # 0 is an eigenvalue of M - XL with multiplicity p i ,  
then l/hP is also an eigenvalue of M - hL with the same 
multiplicity. When X = 0 is an eigenvalue of M - XL with 
multiplicity I ,  then there are only 2n  - I finite eigenvalues. The 
other I eigenvalues are "infinite" eigenvalues (or reciprocals of 
0). 

F) X is an unreachable mode of (A,  D) having multiplicity p 
such that 

( A T - h I ) x i = x i - I  i = O ,  1, .-., p - 1  (3.4) 

DTxi=0  x-I=O (3.5) 

if and only if X is an eigenvalue of multiplicity p of the pencil M 
- XL such that 

( M - X L )  [;] = L  [ x ; ' ]  , x - t = o .  i = O ,   1 ,  - - a ,  p-1 (3.6) 

G) X # 0 is an unobservable mode of (C, A )  having 
multiplicity p such that 

(A-hI)yi=y;- ,  i=o, 1 ,  " ' , p - l  (3.7) 

cy ;  = 0 y - , = o  (3 3) 

if and only if X -  is an eigenvalue of multiplicity p of the pencil M 
- AL such that 

H) The pencil M - AL has an eigenvalue X of multiplicity 2p 

1) there is an unreachable mode /3 of multiplicity p of (A,  0) 
on the unit circle if and only if: 

such that 1 / 3 1  = 1 and 

(A'-~Z)xi=X;-I i=o, 1 ,  . - * ,  p -  1 (3.10) 

DTx;=O X-l=O (3.11) 

or 

A )  such that I y 1 = 1 and 
2) there is an unobservable mode y of multiplicity p of (C, 

(A-yZ)yi=yi-I i=O, 1, - * - , p - l  (3.12) 
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cyi=o y- ,=o.  (3.13) 

I) The matrix (X*Y)  is Hermitian if and  only if  
1) for an eigenvalue CY; of multiplicity pi of the pencil P(A) 

such that ai = 0, then the associated pi generalized principal 
vectors are used  in the construction of U, and 

2) for each pair of eigenvalues /3,, y j  of multiplicity pi of the 
pencil P(A)  such that /3, # 0, l f l j l  # 1 ,  and y, = (1//3,)*, pi of the 
total of 2pj principal vectors associated with  and y j  are used  in 
the construction of U, and 

3) for each eigenvalue & of multiplicity 2pk of the pencil 
P(X) such that 1 = 1, exactly P k  of the total of 2pk associated 
principal vectors are used in the construction of U. 

If X is nonsingular, (1)-(3) are necessary and sufficient 
conditions for the solution C = Y X - ’  to be a Hermitian solution 
of the ARE. 

Proof: For parts A)-E), see [ 121. Parts F)-I) can be easily 
proved by extending the proof of similar results in [7], [a], [l 11, 
and [17] for the case of a generalized eigenproblem. See [26] for 
further details. vvo 

The next theorem gives conditions under which X*Y is 
nonnegative definite. Parts A) and B) are extensions of results in 
[17] for the case of a symplectic pencil and a general A matrix. 

Theorem 3.1: L e t  

(3.14) 

where J is the (n x n) Jordan canonical form corresponding to a 
choice of n eigenvalues Ai, i = 1 ,  2, - . * ,  n and [ X T ,  Y T ]  is the 
matrix of the associated principal vectors of the pencil M - XL. 

A)  If [Ail I 1 ,  i = 1,  2, e . . ,  n, then X*Y is Hermitian 
nonnegative definite. 

B) Provided (C,  A )  is detectable and I Ail 5 1 ,  i = 1,2, . e ,  n, 
then X is nonsingular. 
C) Provided X is nonsingular and X*Y is Hermitian nonnega- 

tive definite, then (Ai l  5 1 ,  i = 1 ,  2,  - . e ,  n if (A ,  D) has no 
unreachable mode outside the unit circle. 

Proof: 
A) To prove the nonnegative definitiveness of X* Y we initially 

Using (3.2) we can rewrite (3.14) as 
restrict the analysis to the case where ]Ail < 1 ,  i = 1 ,  e - . ,  n. 

A ~ X = X J + C ~ C Y J  (3.15) 

- DDTX+  Y= A YJ. (3.16) 

Premultiplying (3.15) and (3.16) by, respectively, (YJ)* and 
X*, we obtain 

( YJ)*A “x= J*( Y*X) J +  ( YJ)*CTC(  YJ)  (3.17) 

-X*DD’X+X*Y=X*AYJ.  (3.18) 

Adding (3.17) to the conjugate transpose of (3.18) gives 

X*Y-  J*(X*Y)J=X*DDTX+(  YJ)*CTC(  YJ)  (3.19) 

and the result follows immediately from the discrete lemma of 
Lyapunov since J is stable and the RHS of (3.19) is nonnegative 
definite. 

Let 
We shall now analyze the case where \Ail I 1 ,  i = 1,  - .  e ,  n. 

[ ; I  g [ “ ‘ X ’ ]  Yo  Yl 

where 

[:I’ [?] 

are the matrices of generalized principal vectors of M - AL 
associated, respectively, with the eigenvalues on and inside the 
unit circle. From Lemma 3.1 parts F), G), and H) we  know that 
X ,  = 0 or Yo = 0. We shall assume Yo = 0. The case X ,  = 0 
can be handled by similar means. Thus, we have 

where the second equality is obtained using Lemmas A2 and A3 
together with the fact that X :  Yo = 0. Finally, the result follows 
immediately because the first part of this proof implies X ;  Yl 1 0 
and Hermitian. 

B) This can be easily proved by extending the proof of the “ i f ’  
part of [17, Theorem 61 to the case of a generalized eigenproblem 
to cope with singular state transition matrices. See [26] for  further 
details. 

C) The proof will be carried out by contradiction. Suppose that 
there exists an eigenvalue X of J such that I X I > 1 and let z be the 
associated eigenvector. Premultiplying (3.19) by z* and post- 
multiplying by z,  we have 

(1  - lAl’>z*(X*Y)z= llDTXzl12+  \ICYJZI\’. (3.20) 

Since (XI > 1 and X*Y 2 0, then the LHS of (3.20) is 
nonpositive while the RHS is nonnegative. Thus, this implies the 
following: 

DTXz = 0 (3.21) 

CYJz=O. (3.22) 

Postmultiplying (3.15) by z and using (3.22) we obtain 

AT(Xz)=XJz=X(Xz) .  (3.23) 

Since X is nonsingular, Xz # 0, then (3.21) and (3.23) imply 
that A is  an unreachable mode of (A ,  0) which is a contradiction 
because by assumption the modes of ( A ,  0) outside the unit circle 
are reachable. Hence, I Ail I 1 ,  i = 1 ,  2, . * ,  n. v v v  

The previous theorem gives a sufficient condition for the 
solution C = Y X -  of the ARE to be nonnegative definite, since 
provided X is nonsingular, C = Y X -  = (X*)- ’ (X*Y)X-I .  

Theorem 3.1 together with Lemma 3.1 allows us to establish 
the existence and uniqueness of the strong solution of the ARE 
subject only to a detectability assumption. This represents a 
weakening of the assumptions of previous work dealing with 
singular state transition matrix [12]-[16] which assumed both 
detectability and stabilizability . 

We consider in the following the existence conditions and 
properties of the strong solution of the ARE. The theorem 
discussed below is  an extension of the results of [ 111 to the case of 
singular transition matrices and strengthens the results to include 
both necessary and sufficient conditions. 

Theorem 3.2: 
A) The strong solution of the ARE exists and  is unique if and 

only if (C, A )  is detectable. 
B) The strong solution is the only nonnegative definite 

solution of the ARE if and only if (C, A )  is detectable and ( A ,  0) 
has no unreachable mode outside the unit circle. 

C) The strong solution coincides with the stabilizing solution 
if and only if (C, A )  is detectable and (A,  0) has no unreachable 
modes on the unit circle. 

D) The stabilizing solution is positive definite if and only  if 
(C, A )  is detectable and (A,  0) has no unreachable mode inside, 
or on the unit circle. 

Proof: Part A): The proof of the “ i f ’  part parallels the 
proof of a similar result in Ill]  once Lemma 3.1 and Theorem 3.1 
are established. 

To prove the  converse, let C be the stron solution of the ARE. 
From Lemma 3.1 A) there exists a choice [ a y] of principal vectors 
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of M - hL such that X-l  exists and C = Y X - ’ .  As C is a strong 
solution, from Lemma 3.1  C) and I) it follows that  the choice of 
principal vectors is unique. 

The proof of the detectability of (C, A )  will be made by 
contradiction. Assume that (C, A )  has an unobservable mode X, of 
multiplicity p i  such that (X,( >- 1.  From Lemma 3.1 G )  it follows 
that pi = l / X i  is an eigenvalue of M - XL with  multiplicity p1 
and the associated principal vectors z,, i = 0, . a ,  p I  - 1 have 

’ the form z1 = [ $1 where w, is an n-vector. Since Io,! 5 1, then 
the uniqueness of the choice of [$] implies that z, ,  i = 0, pi  - 1 
must be used  in the construction of  [$] and so X is singular, 
contradicting the fact that X-’ exists. Hence, (C,  A )  is detectable. 

Sufficiency: From part A) the strong solution E, exists and  is 
unique. Let P be another nonnegative definite solution of the 
ARE. From Lemma 3.1 A) it follows that there exists a choice of 
principal vectors of M - hL such that P = Y X -  I .  Therefore, 
Theorem 3.1  C) and Lemma 3.1 C) imply that P is also a strong 
solution. Since the strong solution is unique, it follows that P = 
E,. 

Necessity: This can be proved in an identical manner as used 

Part B): 

for the ‘‘only if” part of [17, Theorem 71. 
Part C): 

The “if” part of the proof follows immediately from part A) of 
this theorem and part H) of Lemma 3.1. 

To prove the converse, let C, be the stabilizing solution of the 
ARE. UsingLemma3.1  part1)thisimplies ( X i (  # 1, i = 1, . . a ,  

2n where Xi are the eigenvalues of M - XL. Otherwise, by 
Lemma 3.1 parts I) and C), the eigenvalues hj with I X, I = 1 were 
also eigenvalues of the steady-state transition matrix ii of the 
filter, which is a contradiction. The nonexistence of unreachable 
modes of (A, 0) on the unit circle follows from Lemma 3.1 H) 
and the detectability of (C,  A )  follows from part A) of this 
theorem. 

Part D): 
For the “if  ’ part, the existence of a unique stabilizing solution 

Zs follows immediately from the detectability of (C, A )  and from 
the fact that (A,  D) has no unreachable modes  on the unit circle. 
Using the ARE we have 

Z , - A , C , A ~ = K K ~ + D D ~  (3.28) 

be carried out by contradiction using a discrete-time version of [7, 
Theorem 91. V V V  

Part D) of the above theorem represents an improvement over 
previous results since only the reachability of the modes of (A, 0) 
inside or on the unit circle is required instead  of the complete 
reachability of (A, D) as in  141. Also it is worth noting that 
Theorem 3.2 provides a theoretical foundation for the numerical 
solution given in [24] for the ARE’S of nonstabilizin! systems (in 
the filtering context) which were explicitly excluded In [ 121-1 161. 

Iv. CONVERGEKCE OF  THE RICCATI DIFFERENCE EQUATION 

In this section we present new results on the convergence of the 
solution of the RDE to the strong solution of the ARE for 
nonstabilizing systems (in the filtering context). They include both 
necessary and sufficient conditions and can handle systems with 
singular state transition matrices. 

Theorem 4.1: Subject to Co > 0, then the detectability of (C, 
A )  and the nonexistence of unreachable modes of (A, 0) on the 
unit circle are necessary and sufficient conditions for 

I--  
lim C ( t )  = C, (exponentially  fast), 

where X(t)  is the solution of the RDE with initial condition Eo and 
C, is the unique stabilizing solution of the ARE. 

Proof: The “ i f ’  part parallels the proof of Theorem 4.2 of 
[ 111 once the properties of the strong solution of the ARE are 
established as in Section III. 

The “only if” part follows from Theorem 3.2 part C). V V V 
Theorem 4.2: Subject to (CO - E,) >- 0, then lim,+= C(r) = 

C, if and  only if (C,  A )  is detectable, where C(t) is the solution of 
the RDE with initial condition Co and E, is the unique strong 
solution of the ARE. 

Proof: (The proof in the initial version of this paper was 
extremely long. We give here a new and much shorter proof based 
on an idea suggested to us by D. J .  Clements.) 

We first recall a device in [ 191 and inspired by Nishimura [20]. 
Let C(r + 1) = f ( C ( t ) ,  Q) represent thcmapping (2.7) for fut@ 
A and C ,  and with Q k DDT and let Z( t  + 1) = f(Z(f), Q )  
represent +e same mapping (Le., same A and 0 for different 
C(t) and Q. Then (see [19] or [21]), 

where Z(t+l)?C(t+l) if C ( t ) ? C ( t )  and QrQ. (4.1) 

K=AZsCT(CC,(?r+f)-l (3.29) Now assume that (C,  A)  is detectable and consider the family of 
RDE’s 

and A, is the steady-state filter transition matrix corresponding to 
E,, i.e., (3.30) Cck)(t+ l )=AC(k)( t )AT 

A , = A - K C .  (3.31) -AC(k)(t)CT[CC(k)(t)(?T+f]-LCC(k)(t)AT+gk (4.2a) 

C‘k’(0)=C~>Cr k=l, 2, (4.2b) Since ~ X i ( A s ) ~  < 1, it follows from (3.28) 

0) 

x,= A,k(FFT)(Af)k (3.32) Q k = D D r + - f  k=l, 2, ... . 1 
k (4.2~) 

Then, with C, the unique strong solution of (2.11) and C(t)  the 
k=O 

where solution of (2.7), we have 
F F ~ = K K ~ + D D ~ .  (3.33) 

C , ~ C ( t ) ~ C c k + I ) ( t ) l C ( * ) ( t )  t r O ,  k = l ,  2, * a -  (4.3) 
To prove that Er > 0, initially note that if X is an unreachable where all three inequalities follow from the device (4. l). 

This implies that the modes of (A,, F )  inside or on the unit circle fixed x E 8,, 
mode of (As, F ) ,  then X is also an mreachable mode of (A, 0 .  Since Q~ > 0, tabng limits as + 03, (4.3) implies that for any 

are reachable. Otherwise, (A,  D )  has an unreachable mode inside 
or on the unit circle, which is a contradiction. Since the modes of 
A, are inside the unit circle, it follows that (A,,  F )  is completely 

xTC,xs  lirn sup X ~ C ( ~ ) X ~ X ~ C ( ~ - ’ ? U I X ~ X ( ~ ~ X  (4.4) 
t - m  

reachable and thus C, > 0. 

immediately from  part A) of this theorem, whereas the proof that 
themodesof(A,D)inside,orontheunitcirclearereachablecan Cck)=AC(k)AT-AC(k)~r(CC(k)(?T+I) - I (?C(k)AT+Qt.  (4.5) 

For the “only i f ’  part the detectability of (C, A )  fo~lows where satisfies the ARE 
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Since QP > 0 for all k,  (A,  Q Y )  is stabilizable, and since (c, 
A )  is detectable, it follows by Theorem 3.2 that 

IX,.(A - A C ( k ) C T ( C X ( k ) C T + I ) - ' ~ ~ l <  1 

i = l ,  a * - ,  n; k = l ,  2, . (4.6) 

We now take the limits in (4.4) for k + 03. Since U P )  is 
monotonically nonincreasing (in the sense that X(&+ 5 E(&)) and 
bounded below by X,, it converges to a constant (see [22, 
Theorem 1 ,  p. 1691). Its limit satisfies the ARE. In addition, 
since X ( k )  is  an analytic function of A ,  and Qkr [27l it follows 
by (4.6) that 

I X i ( A - A C C T ( C C C T + I ) - ' ~ ~ 1 ~ l  i = l ,  , n. (4.7) 

Therefore, = C, by the uniqueness of the strong solution. 
Hence, 

xTX,x~l im sup xTX(t)xSxTX,x VX. (4.8) 

The same argument holds if l i m l + m  sup is replaced by lim,+, 
inf in (4.4) up to (4.8). Therefore, limt-m x'C(t)xexists for all x 

lim xTC(t)x=x*Cd: v x .  (4.9) 

It follows easily that lim,+- X(t) = X, (Take unit vectors for x,  
then sums of two unit vectors.) This concludes the sufficiency 
part. Necessity follows from Theorem 3.2 A). v v v  

Combining the results of Theorems 4.1 and 4.2 also yields the 
following new result. 

Corollary 4. I: Subject to either CO > 0 or Eo 2 X,, then the 
detectability of (C,  A )  and the nonexistence of unreachable modes 
of (A,  0) on the unit circle are necessary and sufficient conditions 
for 

lim C ( t )  = X, 

where C( t )  is the solution of the RDE with initial condition Eo and 
C, is the unique stabilizing solution of the ARE. 

Pro08 The result for Co > 0 is established in Theorem 4.1. 
For Co 2 C,, C ( t )  converges to the unique strong solution of the 
ARE by Theorem 4.2. Since (A,  0) has no unreachable modes on 
the unit circle, that solution is stabilizing by Theorem 3.2. The 
converse follows from Theorem 3.2 C). v v v  

Theorem 4.2 represents an improvement over [ 11 ,  Theorem 
4.31, which required the observability of (C, A )  and Co > X,. The 
requirement on the initial condition of the RDE was relaxed to Go 
2 C, and observability was replaced by detectability. Also notice 
that Corollary 4.1 relaxes the assumptions of Theorem 4.1 
because if (A,  0) has unreachable modes inside the unit circle, 
then C, is singular by Theorem 3.2. In that case, Co need not be 
positive definite. 

I- m 

I-- 

r-m 
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V. OP~MAL CONTROL INTERPRETATIONS 

Although our results were originally motivated by filtering 
applications, they imply a number of new results for the dual 
optimal control problem, and these have some interesting conse- 
quences. 

We consider the following system: 

x( t+  l)=Fx(t)+Gu(t), x(to)=& (5.1) 

with the cost function 

N- 1 

J(x0, N)=xT(N)Xfx(N)  + x [x ' ( t )Qx( t )  + ~ ~ ( t ) R ~ ( t ) 3  
'=lo 

(5 4 
where X f  2 0, Q 2 0 and R > 0. 

Factorizing Q A H T H  and defining 

corresponds to replacing xT(t)Qx(f) by yT(t)y( t )  in (5.2). 

yields the optimal control law 
Minimizing J(xo, N )  with respect to #(to), . * e ,  u(N - 1) 

u ( t ) =  - K ( t ) x ( t )  (5.41 

K ( t ) = ( G T E ( t +  l )G+R)- 'GTX( t+   l )F  (5.5) 

where C ( t )  obeys a reversed-time RDE 

X(t)=FTC(t+ l)F-FTC(t+ 1)G 

. [ G T X ( t +  l )G+I ] - lGTX( t+   l )F+HTH (5.6) 

X( N) = C, 

where R has been factorized as in (2.10) and where G B 
G(R-1'2)T; compare to (2.9). 

The resulting closed-loop system is 

The optimal cost is 

The RDE (5.6) is identical to (2.7) provided the following 
duality transformations are made: 

A ++ F T ,  C c* G T ,  D ++ HT, Co ++ C f .  (5.10) 

The corresponding ARE is 

C = F r X F - F T X ~ ; [ G T E G + I ] - ' G X F + H T H .  (5.11) 

Therefore, all the results of Theorems 3.2,  4.1,  4.2, and 
Corollary 4.1 can be rewritten for this optimal control problem 
provided the following duality changes arc madc: 

(C ,  A )  detectable+(F, G) stabilizable  (5.12a) 

(A,  D) stabiIizable+(H, F )  detectable (5.12b) 

( A ,  D)  has an unreachable +(H, F) has an unobservable 
mode  on  the  unit circle mode on the  unit circle 3 

(5.12c) 

X o > O  + C f > O  (5.12d) 

CorX,  + C,rC, (5.12e) 

t-03 -+ t - + - w .  (5.120 

The filtering interpretations of the results are straightforward 
since the RDE can be iterated simultaneously with the filter state 
transition equation, but the optimal control interpretations are a 
little more subtle since the RDE (5.6) is solved backwards in time, 
while the control gain sequence is applied forward in time [see 
(5 4 1 .  

For the infinite-time optimal control problem, one may wonder 
whether it makes any sense to apply a penalty on the final state 
(i.e., Ef 2 0) since this state is reached only after an infinite time 
period. For this reason, most authors assume Cf = 0 for the 
infinite-time optimal control problem; see, e.g., [23]. Yet our 
Theorems 4.1 and 4.2 tell  us that the asymptotic value of X(t), and 
hence the asymptotic cost lim J&,-m (x,,, N ) ,  may depend on 
E,. In fact, we show below that in some cases it is important to 
penalize the final cost in infinite-time optimal control problems. 
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We illustrate this by two situations which show that our 
convergence results for the RDE provide interesting insights into 
the infinite-time regulator problem. 

Application 1: Stabilization of an unstable undetectable sys- 
tem. Suppose, to simplify understanding, that the system (5.1) has 
all its poles strictly outside the unit circle (i.e., lXj(F)l > 1, i = 
1, * * , n) and that it is stabilizable but completely undetectable, 
Le., H = 0 in (5.3) or, correspondingly Q = 0 in (5.2). The 
optimal control problem corresponds to minimizing 

N- 1 

J(xo, N)=xT(N)Cfx(N)+ U ‘ ( t ) R U ( t ) .  (5.13) 
t =  to 

Suppose we want to solve the infinite-time optimal control 
problem 

lim min J(x0, N). (5.14) 

With C, =. 0 and F unstable, the states of the system will grow 
unbounded smce the optimal control is clearly u*(t) = 0, t 2 to. 
However, Theorem 4.1 shows that by taking C, > 0, we have 

to--m u( . )  

lim C ( t ) = C ,  (5.15) 
r--m 

where C, is the strong and in this case the stabilizing solution of 
the ARE (5.1 1). 

Hence, the corresponding closed-loop state transition matrix is 
stable, and the optimal cost is x;C,xo. The intuitive interpretation 
is that, because there is a penalty on the final state, then even 
though this final state is reached infinitely far into the future and 
although there is no penalty along the way, the controller cannot 
allow the states to blow up. Hence, the optimal steady state 
controller is to apply 

u ( t ) =  -K,x(t) ,  tzto (5.16) 

where 

Ks=(GTC,G+R)-lGCSF. (5.17) 

In fact, this strategy has the following interesting property. 
Lemma 5. I: Consider the system (5.1) with x0 # 0 and (F, G) 

stabilizable, and assume that F has no eigenvalues on the unit 
circle. If the objective is to obtain x(N)  = 0 via the infinite-time 
regulator problem: limto-.-a minu(., J(x0, N), where 

N- 1 

J(x0, N)= uT(t)Ru(t)  (5.19) 
2=10 

for some R > 0, then the optimal control is given by (5.16), 
(5.17), where E, is the solution of the ARE (5.11). 

Proof: If we solve the optimal control problem (5.13), (5.14) 
with Cf 2 E,, we  know by the preceding discussion that (5.16), 
(5.17) is the optimal solution. Since C, is stabilizing by Theorem 
3.2, x(t) + 0. Therefore, 

to--- U(.) 
lim minJ(xo, N)= lim 

to+ - m 

where u*(t) is given by (5.16). v v v  
Note that if our objective is to achieve lim x(t) = 0 while 

minimizing the control energy, then the solution of any other 
optimal control problem (such as taking Q > 0) would be 
suboptimal. 

The result of Lemma 5.1 was obtained in a different formula- 
tion in an excellent paper of Willems and Callier [25] (see 
Theorem 2), which was brought to our attention by  a reviewer. 

That paper examines the relationship between four different 
infinite horizon LQ-optimal control problems for continuous-time 
systems. It assumes throughout that (H ,  F )  has no unobservable 
modes on thejw-axis. We now conclude with  a simple application 
where (H,  F )  has an unobservable mode on the unit circle, a case 
not covered by  1251. 

Application 2: Consider a very simple scalar control problem 

x ( t +  l)=x(t)+u(t), x(to)= 1. (5.20) 

Suppose we  want to minimize limto.+ - J(x0, N), where 

J(X0, N ) = x Z ( N ) +  U 2 ( t ) .  
N- I 

(5.21) 
‘=Io 

This is an optimal control problem where (F, G )  is stabilizable, 
but (H,  F )  has an unobservable mode on the unit circle. It appears 
from (5.20), (5.21) that it should not be possible to obtain 

(5.22) 

since applying no control yields x(N)  = 1 and applying any 
control will contribute a positive quantity to the cost function. Yet 
the optimal cost is x,TC(to)xo and 

ro- - m 
lim E(t , )=C,=O (5.23) 

in accordance with Theorems 4.2 and 3.2. This appears paradoxi- 
cal. 

However, an examination of the solution to the finite-time 
optimal control problem shows that these conclusions are indeed 
correct. The finite time optimal control problem gives 

u*(t)= - K ( t ) x ( t ) =  --=comtant 1 
N+ 1 (5 .24)  

1 
N - t +  1 

X(t)=-- - K ( t )  

N - t +  1 1 
x(t)=- ; x ( N ) = -  

N +  1 N +  1 

(5.25) 

(5.26) 

N+ 1 N + 1 N+1 
(5.27) 

where N = N - to. 
The above equations give_ a complete explanation of the 

unexpected results (5.23). If Ni is the optimization interval, then 
the cost increases only from l/(Nl + 1) to 1/(N2 + 1) if one 
takes no action until IiJl steps from the final time (& < Nl). This 
example suggests that,  for optimal control problems in which F 
has no repeated roots on the unit circle, and the criterion function 
penalizes only the control energy and the final state, little 
additional cost is incurred by indefmitely delaying the initiation of 
control action. The authors hasten to add, that despite appear- 
ances, they have not included this example simply to provide a 
rationalization for procrastination. 

VI. CONCLUSIONS 

This paper has analyzed the solutions of the discrete Riccati 
equation for systems which are not necessarily stabiLizable. The 
generalizations relative to previous results are in three directions: 
a) the results on the algebraic Riccati equation have been 
established under weaker conditions and include both necessary 
and sufficient conditions, whereas previously only sufficient 
conditions were given; b) the convergence of the Riccati 
difference equation has been studied under weaker conditions, 
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including replacing observability by dectability , weakening the 
conditions on  the  initial covariance; and c) all these results have 
been established for the case of singular state transition matrices. 
The implications of the results in the dual problem of optimal 
control have also been studied leading to some interesting 
conclusions. 

APPENDIX A 

PROPERTIES OF SYMPLECTIC PENCILS 

We give a review of certain definitions and properties of 
symplectic pencils used  in the paper. 

Definition AI-Symplectic Pencil fl5j: Let M and L be 2n  
real square matrices. The pencil of matrices P(X) = M - XL is 
called symplectic if MSMT = LSL where 

r 
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Lemma A3: Let z?+, and 2j+r = [:::I, r = 0,  1,  -.., 
p ;  - 1 be, respectively, the left and right 2n-principal vectors of 
the symplectic pencil M - AL. associated, respectively, with 
(XT)-’andXi. Letu; = (UT, v T ) , j  = 0, 1 ,  ***,qbeasequence  
of vectors decomposed into two n-vectors. If z?+,Lu, = 0 for r = 
0, 1 ,  * * * , p i  - 1 a n d j  = 0, 1 ,  e . . ,  q. then 

and I,  is the identity matrix of dimension n. 
Definition A2-Eigenvalue and Generalized Right Princi- 

pal Vectors: The eigenvalues of a pencil M - U are the roots of 
det (M - XL) and the generalized right eigenvector associated 
with X is the nonzero vector x satisfying (M - XL)x = 0. If Xi is 
a root of multiplicity p i ,  the generalized right principal vectors 
xi+,, r = 0 ,  1 ,  . - - , p i  - 1 with rank 1, 2, - . e ,  pi  associated with 
Xi are the nonzero vectors satisfying 

(M-X;L)x;=O (‘4.2) 

( M - X ; L ) ~ ; + , = L X ~ + , - ~ ,   r = l ,  2, - a * ,  pi-1. ( A . 3 )  

Remark: In the text when there is no possibility of confusion, 
the terms “right” and “generalized” are dropped. 

Definition A3-Generalized Left Principal Vectors: The 
nonzero row vectors zj+,, s = 0, 1 ,  . - a ,  p, - 1 are the 
generalized left principal vectors with rank 1, 2, * * ,  p j  of the 
pencil M - U associated with a generalized eigenvalue Xj of 
multiplicity pj if  

zj(M- XjL) = 0 (-4.4) 

z~+,(M-X,L)=Z,+,-~L,  ~ = l ,  2, * * . ,  pj-1.  (A.5) 

Lemma AI: If X! # 0 is an eigenvalue of multiplicity pj  of the 
symplectic pencil M - XL and the 2n-row vectors z?++,, s = 0, 1, 
* . e ,  pi - 1 are the corresponding generalized left principal 
vectors, then X,:’ is also an eigenvalue of the same multiplicity 
and the associated generalized right principal vectors are given by 

where S is as in (A. 1) and Qgz) is a polynomial vector in X, of the 
form 

(A. 7)  

Proof: By direct substitution. See [26] for  further de- 
tails. vvo 

Lemma A2: Let zj+5, s = 0,  1,  . ,p i  - 1 and x;+,, r = 0,  
1, * a ,  p i  - 1 be, respectively, the generalized left and right 
principal vectors of M - XL. Then, without loss of generality, 
they can be chosen such that 

Proof: It is similar to the proof of the orthogonality between 
generalized left and right eigenvectors of a matrix. See [26] for 
further details. v v v  

Proof: The proof can be carried out easily using Lemmas A1 
and A2 together with the fact that Sz = - Izn. See [26] for further 
details. v v v  
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