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Riccati Observers for

the Non-stationary PnP Problem
Tarek Hamel and Claude Samson

Abstract—This paper revisits the problem of estimating the
pose (position and orientation) of a body in 3D space with
respect to (w.r.t.) an inertial frame by using i) the knowledge of
source points positions in the inertial frame, ii) the measurements
of the body angular velocity expressed in the body’s frame
iii) the measurements of the body translational velocity, either
in the body frame or in the inertial frame, and iv) source
points bearing measurements performed in the body frame. An
important difference with the much studied static Perspective-
n-Point (PnP) problem addressed with iterative algorithms is
that body motion is not only allowed but also used as a
source of information that improves the estimation possibilities.
With respect to the probabilistic framework commonly used
in other studies that develop Extended Kalman filter (EKF)
solutions, the deterministic approach here adopted is better
suited to point out the observability conditions, that involve the
number and disposition of the source points in combination
with body motion characteristics, under which the proposed
observers ensure robust estimation of the body pose. These
observers are here named Riccati observers because of the
instrumental role played by the Continuous Riccati equation
(CRE) in the design of the observers and in the Lyapunov stability
and convergence analysis that we develop independently of the
well-known complementary (either deterministic or probabilistic)
optimality properties associated with Kalman filtering. The set
of these observers also encompasses Extended Kalman filter
solutions. Another contribution of the present study is to show
the importance of using body motion to improve the observers
performance and, when this is possible, of measuring the body
translational velocity in the inertial frame rather than in the
body frame to allow for the body pose estimation from a single
source point taken as the origin of the inertial frame. This
latter possibility finds a natural extension in the Simultaneous
Localization and Mapping (SLAM) problem in Robotics.

Index Terms—Observers for nonlinear systems, observability,

Perspective-n-Point problem, Riccati equation

I. INTRODUCTION

Body pose estimation from source points bearing mea-

surements is well exemplified by the problem of estimating

the pose of a monocular perspective camera from projected

positions of observed source points measured in the camera

images. When the attitude (orientation) of the camera is

measured or estimated by other means, the problem reduces to

the one of estimating the position of the camera. By contrast

with the complete pose estimation problem, this simpler sub-

problem can be exactly linearised and yield observers that

are globally exponentially stable under adequate observability

conditions, see for instance [1]. Attitude estimation introduces
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another level of complexity in relation to the structure of

the compact Lie group of rotations SO(3) involved in the

larger group SE(3) of 3D rigid transformations. In particular

exact linearisation of motion equations on these groups is not

possible and, even more annoying, globally convex penalty

functions needed to the existence of gradient-based observers

achieving global asymptotic stability of zero estimation errors

do not exist. The design methodology here adopted relies on

approximate linearisation in the spirit of Extended Kalman

filtering (EKF), except that it is derived in a deterministic

framework that allows for a clear exposition of observability

conditions under which the proposed iterative observers are

endowed with robust stability and convergence properties.

For this reason, and also because of the instrumental role

played by the Continuous Riccati Equation (CRE) in both

the observers equations and the definition of the associated

Lyapunov cost functions used for stability and convergence

analysis, we propose the generic name of Riccati observers

to refer to the class of observers here studied and whose

expressions encompass EKF solutions. This point of view does

not hinder a complementary probabilistic modelling of mea-

surement perturbations that may be useful to efficiently tune

the observers parameters by application of Kalman filtering

rules.

Following the excellent survey [2], the perspective pose

estimation problem with three source points (i.e. the minimal

number needed to solve the problem in the static case when

the camera and the source points are motionless) was first

solved via algebraic calculations (the direct solution method)

by a German mathematician in 1841 [3]. His solution consists

in first determining the distances from the optic centre to

the source points so as to obtain an estimation of the optic

centre position expressed in the camera frame and, in a second

stage, in determining the camera attitude. It was subsequently,

and until recently, refined by photogrammetrists and com-

puter vision specialists [4], [5], with complementary analyses

concerning the number of poses satisfying the perspective

projection equations associated with the problem and the

numerical stability of the proposed solutions (study of singular

solutions). This latter problem points out in particular the

existence of the so-called danger cylinder and the numerical

instability of the solutions when the camera optic centre is

located on this cylinder (whose equation is simply obtained

by zeroing the determinant of the Jacobian matrix associated

with the equations [2], [6]). The extension of these analyses

to four and five source points has also given rise to several

publications [4], [7].

Iterative algorithms based on gradient search [8], [9] are

often motivated by the observation of more than four source



points with bearing measurement errors and possible outliers

(resulting from incorrect point correspondences), with the aim

of determining a pose estimate that minimizes a quadratic

average error index, itself derived from the perspective pro-

jection equations. These methods are local by nature and are

not directly concerned with the number of solutions to the

perspective projection equations, provided that this number is

finite to ensure that the error index function admits isolated

(local) minima. However, the domain of convergence to a

”good” solution, as well as the rate of convergence to such a

solution, are related to the same regularity conditions as those

associated with the stability of algebraic resolution methods.

In particular, the convexity of the index function in the

vicinity of the body position, which is needed to ensure robust

convergence of any gradient-based algorithm to this point,

requires that the rank of the Jacobian matrix associated with

the perspective projection equations is equal to three. With

three source points, this condition is thus again not satisfied

when the optic centre is located on the danger cylinder. The

analysis developed in the present paper also accounts for this

type of problem via a different approach.

The approach taken in this paper may be viewed as a

prolongation of the iterative approach to the more general

and comparatively little studied non-stationary case involving

possible body motion and on-line body pose estimation from

body velocities and bearing measurements acquired over time.

Related works in this direction, sharing features with the

observer design methodology proposed herein, can be found in

[10], [11] and references therein. Measuring body velocities is

useful for many robotic applications involving state estimation

and control. For this reason most robotic devices and/or their

environment are equipped with sensors providing velocity

information: on-board inertial measurement unit (IMU), global

positioning system (GPS), proprioceptive tachometers, etc.

While angular velocity is typically measured in the body-

fixed frame with gyrometers, translational body velocity can be

measured either in the body-fixed frame (via tachometers for

mobile robots or pitotubes for aerial vehicles) or in an inertial

frame (by using a GPS or a radar mounted in the inertial

frame, for instance). The fact that these two possibilities are

not equivalent in terms of pose observability justifies the

comparative study carried out in the paper.

We use the Automatic Control notion of uniform observ-

ability [12] to characterize the aforementioned regularity con-

ditions and show that the explicit use of measured velocity

in complementation to bearing measurements can weaken the

conditions under which effective and robust pose estimation

can be achieved. The relation between uniform observability

and well-posedness of the Riccati equation involved in Kalman

filtering is also recalled. In this respect and in the same way

as the existence of solutions to the perspective projection

equations does not systematically imply that the solution is

numerically stable, weak observability is not sufficient to

derive fast converging and robust observers. This explains the

accent put in the paper on the stronger property of uniform

observability.

The paper is organized as follows. Notation used throughout

the paper and recalls of basic definitions related to the CRE

and conditions under which a matrix-solution to a CRE

associated with a time-varying linear system and its inverse

are uniformly bounded are given in Section II. In Section III a

generic dynamic system verifying a set of structural properties,

complemented with a pre-observer system involving a CRE,

is defined prior to stating conditions, reported in a theorem,

under which local exponential stability of zero estimation

errors is achieved for this dual system. This theorem directly

applies to a number of systems evolving on SE(3) with

associated Riccati (EKF-like) state observers. Its application to

the estimation of a body pose from velocity and source points

bearing measurements is detailed in Section IV by considering

two minimal parametrizations of SE(3). By virtue of the

theorem stated in the previous section, the Riccati observers

so obtained share, despite their differences, the same local sta-

bility and convergence properties. Observers are first derived

in the case where the body translational velocity is measured

in the body frame (Subsection IV-B), then in the case where

this velocity is measured in the inertial frame w.r.t. which the

source points positions are known (Subsection IV-C). Non-

uniform observability –translated in terms of source points

numbers, singular geometric localizations, and body motion–

that jeopardizes the performance of the observers is analysed

in details in both cases. This analysis provides an alternate

means to recover static singular configurations well-known in

photogrammetry such as the danger cylinder, in the case of

three source points, and horopter curves, in the case of four

and more source points. It also points out how body motion

can be useful to overcome these singularities and, perhaps

more importantly, it shows that the measurement of the body

translational velocity in the inertial frame combined with

bearing measurement of a single source point is generically

sufficient to estimate the body pose. Simulations illustrating

some aspects of this analysis are reported in Section V. A short

comparative analysis of stereo vs. monocular vision in terms

of observability is carried out in Section VI and concluding

remarks, further pointing out the connection between the

single source point case and the Simultaneous Localization and

Mapping (SLAM) problem in Robotics, are offered in Section

VII. Finally, an extension of the approach to the case when

the translational and angular body velocities are corrupted by

constant additive biases, or when these velocities are constant

but not measured directly, is sketched out in the Appendix.

II. NOTATION AND DEFINITIONS

• |x| is the Euclidean norm of the vector x ∈ R
n, and

|A| with A a real matrix denotes the usual corresponding

matrix norm.

• x⊤ is the transpose of the vector x, and A⊤ is the

transpose of the matrix A.

• Bn
r = {x ∈ R

n : |x| ≤ r} is the closed ball in R
n of

radius r.

• Spn = {x ∈ R
n+1 : |x| = 1} is the n-dimensional sphere

of radius equal to one.

• Sn
+ is the set of symmetric non-negative semidefinite

matrices of dimension (n× n).
• 0m×n is the null matrix with m lines and n columns.
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• 0n and In are respectively the null matrix and the identity

matrix of dimension n× n.

• S(x) is the skew-symmetric matrix associated with the

cross-product in R
3, i.e. S(x)y = x× y, ∀x ∈ R

3, ∀y ∈
R

3.

• Πx := I3 − xx⊤ with x ∈ Sp2 is the orthogonal

projection operator in R
3 onto the two-dimensional vector

subspace orthogonal to x.

• With f denoting a vector-valued function depending on

the two variables x and y, and on the time variable t, we

write f = O(|x|k1 |y|k2) with k1 ≥ 0 and k2 ≥ 0 if ∀t :
|f(x, y, t)|/(|x|k1 |y|k2) ≤ γ < ∞ in the neighbourhood

of (x = 0, y = 0). If f depends only on x and t then we

write f(x, t) = O(|x|k) if ∀t : |f(x, t)|/|x|k ≤ γ < ∞
in the neighbourhood of x = 0.

Given continuous n × n-dimensional matrix-valued func-

tions A(t) and V (t), with V (t) non-negative semidefinite for

all t ∈ R
+, the controllability Grammian associated with

the pair (A, V ) is the non-negative semidefinite matrix-valued

function defined by

WA
V (t, t+ δ) :=

1

δ

∫ t+δ

t

Φ(t, s)V (s)Φ⊤(t, s)ds (1)

with Φ(t, s) the transition matrix associated with A(t), i.e.

such that d
dtΦ(t, s) = A(t)Φ(t, s) with Φ(t, t) = In.

Given a continuous n× n-dimensional matrix-valued func-

tion A(t), a continuous m × n-dimensional matrix-valued

function C(t), and a continuous m ×m-dimensional matrix-

valued function Q(t), with Q(t) non-negative semidefinite for

all t ∈ R
+, the Riccati observability Grammian associated

with the triplet (A,C,Q) is the non-negative semidefinite

matrix-valued function defined by

WA,C
Q (t, t+ δ) :=

1

δ

∫ t+δ

t

Φ⊤(s, t)C⊤(s)Q(s)C(s)Φ(s, t)ds

(2)

If A(t) and C(t) are bounded and if there exists δ > 0 and

ǫ > 0 such that WA,C
In

(t, t + δ) > ǫIn for all t ≥ 0, then

we say that the pair (A,C) is uniformly observable. This is a

short way of stating that the state of the Linear Time Varying

(LTV) system
ẋ = A(t)x+B(t)u
y = C(t)x

characterized by the pair (A,C) is uniformly observable. This

property implies in particular that x(t) can be calculated from

the knowledge of u(.) and y(.) on the time interval [t, t+ δ]
(see [12]).

Given A(t), C(t), Q(t) and V (t) as specified previously,

the Continuous Riccati Equation (CRE) associated with the

set (A,C,Q, V ) is

Ṗ = A(t)P + PA⊤(t)− PC⊤(t)Q(t)C(t)P + V (t)

with P (0) a symmetric positive definite matrix. Provided that

the matrices A(t), C(t), Q(t) and V (t) are bounded, the

existence of δ > 0 and ǫ > 0 such that WA
V (t, t + δ) > ǫIn

and WA,C
Q (t, t + δ) > ǫIn for all t ≥ 0 then ensures i)

that the solution P (t) to the CRE exists on R
+ and ii)

the existence of positive numbers pm and pM such that

pmIn ≤ P (t) ≤ pMIn (see [1], for instance). In view of the

previous definitions, the above mentioned properties of WA
V

and WA,C
Q are automatically granted when V (t) and Q(t) are

larger than some positive definite matrix and the pair (A,C)
is uniformly observable.

III. A FRAMEWORK FOR DESIGN AND ANALYSIS OF A

CLASS OF OBSERVERS

Consider:

• a control system living in Bn
r × R

n and whose state x =
(x⊤

1 , x
⊤
2 )

⊤, with x1 ∈ Bn
r and x2 ∈ R

n, evolves according to

an equation of the form:

ẋ = A(x1, t)x+
( u1

u2(t)

)

+O(|x1|2) +O(|x1||u1|) (3)

with dim(u1) = dim(u2) = n, A(x1, t) a continuous matrix-

valued function uniformly bounded w.r.t t (and thus bounded),

uniformly continuous w.r.t. the variable x1 in Bn
r , and such that

A(x1, t) =

[

A1,1(t) 0n
A2,1(x1, t) A2,2(t)

]

It is also assumed that u2(t) is bounded and that the solutions

to this system (thus including the initial condition x(0))
belong to a compact set D independently of the control u1

applied to the system.

• an ”output” function y : R
n × R

n × R
+ → R

m

such that ∀(x, x̂2, t) ∈ (Bn
r × R

n)× R
n × R

+:

y(x, x̂2, t) = C1(x1, x̂2, t)x1 + C2(x1, x̂2, t)x2

+O(|x1|2) +O(|x1||x2 − x̂2|) (4)

with C = [C1, C2] denoting a continuous matrix-valued

function uniformly bounded w.r.t. the time variable t and

uniformly continuous w.r.t. (x1, x̂2) in a set containing D.

• a second system interconnected with the first one and

whose state (x̂2, P ) ∈ (Rn × S2n
+ ) evolves according to

˙̂x2 = A2,2(t)x̂2 + u2(t)
+K2(P, x1, x̂2, t)

(

y(x1, x̂2, t)− C2(x1, x̂2, t)x̂2

)

(5)
Ṗ = A(x1, t)P + PA⊤(x1, t)

−PC⊤(x1, x̂2, t)Q(t)C(x1, x̂2, t)P + V (t)
(6)

with P (0) a symmetric positive definite matrix, Q and V
bounded continuous symmetric positive semidefinite matrix-

valued functions, and the ”gain” K given by

K(P, x1, x̂2, t) = k(t)PC⊤(x1, x̂2, t)Q(t)

K =

[

K1

K2

]

(7)

with 0.5 ≤ k(t) ≤ kmax < ∞.

Remarks:

• In this section (3) is an abstract system, but in the forth-

coming developments x1 will denote a 3-dimensional

vector of coordinates characterizing the orientation error

between the body orientation and the estimated orien-

tation, and x2 will denote a 3-dimensional vector of

3



coordinates characterizing the body position. Accordingly

the estimated value x̂1 of x1 will be set equal to zero, u1

will be a difference between the (known) body’s angular

velocity vector and the (calculated) angular velocity vec-

tor associated with the estimated orientation, and u2 will

be the (known) body translational velocity vector. The

chosen output y(.) will be a vector-valued function of the

bearing measurements, of the estimated body orientation,

and of the source points positions.

• One recognizes a CRE in (6) and may interpret (5) as an

observer of the state x2 when x1 is known.

• By setting x̂ = (x̂⊤
1 , x̂

⊤
2 )

⊤ with x̂1(t) = 0 (∀t ≥ 0), (5)

is equivalent to

˙̂x = A(x1, t)x̂+
( u1

u2(t)

)

+K(P, x1, x̂2, t)
(

y(x1, x̂2, t)− C(x1, x̂2, t)x̂
)

(8)

with

u1 = −K1(P, x1, x̂2, t)
(

y(x1, x̂2, t)− C(x1, x̂2, t)x̂
)

This writing shows the formal kinship between (5)-(6)

and a standard Riccati observer –formally defined as a

deterministic generalization of a Kalman filter with k(t)
not necessarily equal to one and matrices Q−1(t) and

V (t) not necessarily equal to noise covariance matrices–

applied to a LTV system. In Section IV pose observers

are derived with x1 representing the vector part of a Ro-

drigues unit quaternion, and the kinship of these observers

with so-called Multiplicative Extended Kalman Filters

(MEKF) [13] will then appear clearly to the informed

reader.

We consider two cases:

case 1: A(t) does not have to be skew-symmetric, and V (t)
and P (0) are chosen larger than some positive definite matrix.

case 2: A(t) is skew-symmetric (i.e. A2,1 = 0n,

A1,1(t) and A2,2(t) are skew-symmetric) and the

constant matrix P (t) = P (0) =

[

k1In 0n
0n k2In

]

,

with k1 > 0 and k2 > 0, is the chosen solution to

the CRE (6) used in (5), obtained by implicitly setting

V (t) = P (0)C⊤(x1(t), x̂2(t), t)Q(t)C(x1(t), x̂2(t), t)P (0)
(≥ 0).

This latter choice of P (t) is of interest to reduce the number

of calculations. However, it may not yield the best observer’s

performance.

Theorem 3.1: Set

u1 = −K1(P, x1, x̂2, t)
(

y(x1, x̂2, t)− C2(x1, x̂2, t)x̂2

)

(9)

Define A⋆(t) := A(0, t), C⋆(t) := C(0, x2(t), t), x̃2 := x2 −
x̂2. If there exist δ > 0 and ǫ > 0 such that WA⋆

V (t, t +

δ) > ǫI2n and WA⋆,C⋆

Q (t, t + δ) > ǫI2n for all t > 0, then

(x1, x̃2) = (0, 0) is (locally) exponentially stable.

Corollary 3.2: If Q(t) and V (t) are larger than some

positive matrix and the pair (A⋆, C⋆) is uniformly observable,

then (x1, x̃2) = (0, 0) is (locally) exponentially stable.

Proof [Theorem 3.1]

Define x̂ = (x̂⊤
1 , x̂

⊤
2 )

⊤ with x̂1(t) = 0 (∀t ≥ 0) so that

(8) holds true with u1 given by (9). Define x̃ := x − x̂ (=
(x⊤

1 , x̃
⊤
2 )

⊤). Assume for the time being that P (t), P−1(t) and

C(x1(t), x̂2(t), t) are uniformly bounded along the solutions

to the systems (3) and (5)-(6) w.r.t. initial conditions taken in a

small neighborhood of x̃ = 0. Using (4) and subtracting both

members of (8) from the members of equality (3) yields

˙̃x = (A(x1, t)−K(P, x1, x̂2, t)C(x1, x̂2, t))x̃+O(|x̃|2) (10)

This relation shows that x̃ = 0 is an equilibrium. One must

now show that this equilibrium is attractive. Let us address

the aforementioned two cases.

case 1: Define the positive function L(x̃, t) := x̃⊤P−1(t)x̃.

From this relation and the definition of K, and using the fact

that d
dtP

−1 = −P−1ṖP−1, it comes that

L̇ = −x̃⊤((2k−1)C⊤QC+P−1V P−1
)

x̃+2x̃⊤P−1O(|x̃|2)
Therefore, using the assumed boundedness of P−1

L̇ = −x̃⊤((2k − 1)C⊤QC + P−1V P−1
)

x̃+O(|x̃|3)

with O(|x̃|3) = O(|L|3/2). Since V (t) is larger than some

positive definite matrix there exists kL > 0 such that

x̃⊤P−1V P−1x̃ ≥ kLL. This yields

L̇ ≤ −kLL+O(|L|3/2) (11)

and, subsequently, the (local) exponential stability of L = 0.

From the definition of L this in turn implies that x̃ = 0 is

locally exponentially stable.

There remains to prove that if |x̃(0)| is small enough then

P (t), P−1(t) and C(x1(t), x̂2(t), t) are uniformly bounded.

We already know that the boundedness of these matrices is

granted when x̃(0) = 0, as a consequence of the assumptions

made on WA⋆

V and WA⋆,C⋆

Q .

Let pM (t) (resp. pm(t)) denote the largest (resp. smallest)

eigenvalue of P (t). Since the matrices A(x1(t), t) and V (t)
are bounded, pM (t) cannot grow faster than exponentially with

t, whereas pm(t) is always positive but may tend to zero (see

Appendix of [1]). These properties of the CRE hold indepen-

dently of |x̃(0)| and Q(t). Combining this maximum increase

rate of pM (t) with the boundedness of C⋆(t) and the existence

of γc > 0 such that |C(x1, x̂2, t) − C⋆(t)| < γc|x̃| (by the

assumed property of uniform continuity of C(x1, x̂2, t)) one

deduces, by inspection of the equation of evolution of the

error x̃ and the definition of the gain K(P, x1, x̂2, t), the

existence of three positive exponentially increasing functions

β1(t), β2(t) and β1(t) such that, given any t0 > δ

d

dt
|x̃| ≤ β1(t0)|x̃|+ β2(t0)|x̃|2 + β3(t0)|x̃|3 ; t ∈ [0, t0]

This relation in turn implies that given any ǫ1 > 0,

there exists a positive number α(ǫ1, t0) such that

|x̃(0)| < α(ǫ1, t0) implies that |x̃(t)| ≤ ǫ1 for t ∈ [0, t0].
Therefore, choosing ǫ1 small enough and using again

the uniform continuity of the matrix-valued functions A
and C, ensures that |WA

V (t, t + δ) − WA⋆

V (t, t + δ)| and
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|WA,C
Q (t, t+ δ)−WA⋆,C⋆

Q (t, t+ δ)| are smaller than ǫ/2 for

t ∈ [0, t0−δ]. This in turn implies that WA
V (t, t+δ) > ǫ/2 and

WA,C
Q (t, t + δ) > ǫ/2 for t ∈ [0, t0 − δ] and, subsequently,

that pM (t) (resp. pm(t)) is in fact upper-bounded (resp.

lower-bounded) on [0, t0] by a number pM,ǫ (resp. pm,ǫ) that

depends on ǫ, but not on t0. A lower bound of the gain kL in

(11), valid on the time interval [0, t0] when |x̃(0)| < α(ǫ1, t0),
is then equal to

pm,ǫ

p2

M,ǫ

vm with vm denoting the (positive)

ultimate lower bound of the eigenvalues of V (t). From

(11) we then deduce that L(t) ≤ L(0)exp(−0.5
pm,ǫ

p2

M,ǫ

vmt)

on the time interval [0, t0] provided that α(ǫ1, t0) is

chosen small enough. Since L(0) ≤ |x̃(0)|2/pm,ǫ and

L(t) ≥ |x̃(t)|2/pM,ǫ on this time interval it also comes that

|x̃(t0)| ≤
√

pM,ǫ

pm,ǫ
exp(−0.5

pm,ǫ

p2

M,ǫ

vmt0)|x̃(0)|. Therefore, there

exists a value of t0 such that |x̃(t0)| ≤ |x̃(0)|, provided that

α(ǫ1, t0) (the considered upper bound of |x̃(0)|) is chosen

small enough. From there it only remains to repeat the same

arguments with x̃(t0) taken as the new initial condition

to establish that the previous bounds on |x̃(t)| (and thus

|C(x1(t), x̂2(t), t)) and on P (t) continue to hold on the time

interval [t0, 2t0], provided that |x̃(0)| is chosen small enough.

Repeating this procedure for all time intervals [jt0, (j + 1)t0]
(j ∈ N) establishes the announced boundedness results on

[0,+∞).

case 2: Note that in this case WA⋆,C⋆

Q (t, t+δ) = WA⋆

V (t, t+δ).
Also, by assumption

A(x1(t), t) =

[

−S1(t) 0n
0n −S2(t)

]

with S1(t) and S2(t) denoting skew-symmetric matrices. De-

fine the rotation matrices R1(t) and R2(t) in SO(n) solutions

to Ṙi = RiSi (i = 1, 2) with R1(0) = R2(0) = In. Then

Φ(t, s) =

[

R⊤
1 (t)R1(s) 0n

0n R⊤
2 (t)R2(s)

]

Define x̄(t) :=

[

R1(t)x̃1(t)/
√
k1

R2(t)x̃2(t)/
√
k2

]

. From (10) and the fact

that KC = kPC⊤QC one gets

˙̄x = −k

[ √
k1In 0n
0n

√
k2In

]

B(t)

[ √
k1In 0n
0n

√
k2In

]

x̄

+O(|x̄|2)
(12)

with

B(t) := R̄(t)C⊤(x1(t), x̂2(t), t)Q(t)C(x1(t), x̂2(t), t)R̄
⊤(t)

R̄(t) =

[

R1(t) 0n
0n R2(t)

]

Using the uniform continuity property of C and the bound-

edness of Q(t), relation (12) also holds when replacing B(t)
by B⋆(t) with

B⋆(t) := R̄(t)C⋆⊤(t)Q(t)C⋆(t)R̄⊤(t)

By a slight generalization of Lemma 5 in [14] one deduces

that x̄ = 0, and thus x̃ = 0, are locally exponentially

stable provided that there exist δ > 0 and ǭ > 0 such that

1
δ

∫ t+δ

t
B⋆(s)ds > ǭI2n×2n (∀t ≥ 0). This last inequality is

clearly satisfied with ǭ = ǫ since

1

δ

∫ t+δ

t

B⋆(s)ds = R̄⊤(t)WA⋆,C⋆

Q (t, t+ δ)R̄(t)

△

IV. APPLICATION TO POSE ESTIMATION FROM BEARING

MEASUREMENTS

A. Problem statement

Let us start with some notation:

• F is an inertial frame.

• B is a frame attached to a possibly moving body whose

pose is estimated. Its origin is the point C. This point may,

for instance, be the optic centre of a camera.

• R(t) is the rotation matrix characterizing the orientation at

time t of B w.r.t. F .

• ω(t) is the vector of coordinates at time t of the

instantaneous angular velocity of B expressed in the basis of

B, i.e. Ṙ(t) = R(t)S(ω(t))
• p(t) (resp. p̄(t)) is the vector of coordinates at time t of

the position of C w.r.t. F expressed in the basis of F (resp.

B). Therefore p̄ = R⊤p.

• v(t) (resp. v̄(t)) is the vector of coordinates at time t of

the velocity of C w.r.t. F expressed in the basis of F (resp.

B). Therefore: ṗ = v, v̄ = R⊤v, and ˙̄p = −S(ω)p̄ + v̄.

We assume that the motion of B keeps the distance |p(t)|
between the origins of F and B bounded.

• zi (i = 1, . . . , l) is the vector of coordinates of the position

of ith source point Pi w.r.t. F expressed in the basis of this

frame.

• di(t) := R⊤(t)(p(t) − zi)/|p(t) − zi| (i = 1, . . . , l) is the

unitary vector of coordinates characterizing the direction (or

bearing) of ~PiC expressed in the basis of B.

• p̂(t) (resp. ˆ̄p(t)) is an estimate at time t of p(t) (resp. p̄(t)).
• R̂(t) is an estimate at time t of R(t). This is also a

rotation matrix and the corresponding angular velocity

vector expressed in the basis of B is denoted as ω̂(t), i.e.
˙̂
R = R̂S(ω̂). Given an initial condition R̂(0) and ω̂(t),
R̂(t) can be calculated by numerical integration of the latter

equality. This calculation may also be performed by using a

unitary quaternion associated with R̂(t).

The problem at hand is to produce an on-line estimation

of p(t) and R(t) given the measurement of the angular

velocity ω(t), the knowledge of the l source point positions

zi, their directions di(t), and either the inertial velocity

vector v(t) or the mobile velocity vector v̄(t). We will see

that it is important to distinguish between these two velocity

measurement cases in relation to observability conditions

under which the estimated pose (p̂(t), R̂(t)) can robustly

converge to the actual body pose (p(t), R(t)). We will first

address the ”mobile velocity measurement case” and then

the more involved, but also more versatile, ”inertial velocity

measurement case”.
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Prior to deriving specific pose observers it is useful to

recall a few facts about minimal parametrizations of the

group of rotations, first order approximations of nonlinear

functions and also kinematic relations repeatedly called for

in the forthcoming developments.

Facts:

• There are infinitely many (local) minimal paramerizations

of the three-dimensional Lie group SO(3) of rotation

matrices. Common ones are the vector part of a Hamilton

or of a Rodrigues unit quaternion, Euler angles, Cardan

(or Tait-Bryan) angles, etc. Theorem 3.1 can be adapted to

any of these parametrizations to derive as many different

pose observers endowed with similar local properties.

We will favour here the vector part of a Rodrigues unit

quaternion due to its simplicity of use and the fact that

it provides a regular representation of rotation matrices

for rotation angles up to π (excluded), by contrast with

Euler angles that have representation singularities at π/2.

The choice of quaternions lends itself to several possible

parametrizations. We will consider two of them in this

work.

The first one involves the unit quaternion Λ = (λ0, λ),
with λ ∈ B3

1 (resp. λ0 ∈ B1
1) denoting the vector (resp.

scalar) part of the quaternion, associated with the ”error”

rotation matrix R̃ := RR̂⊤. Rodrigues formula relating

Λ to R̃ is

R̃ = I3 + 2S(λ)
(

λ0I3 + S(λ)
)

Define ω̃ := ω − ω̂, we have the following kinematic

relations

˙̃R = R̃S(R̂ω̃) ;

{

λ̇0 = −0.5(R̂ω̃)⊤λ
λ̇ = 0.5R̂ω̃λ0 + 0.5S(R̂ω̃)λ

so that, using the fact that λ0 = 1− |λ|2
{

R̃ = I3 + 2S(λ) +O(|λ|2)
2λ̇ = R̂ω̃ +O(|λ||ω̃|) (13)

A second possible parametrization involves the unit

quaternion Λ̄ = (λ̄0, λ̄) associated with the ”error”

rotation matrix
¯̃R := R̂⊤R. Rodigues formula relating

Λ̄ to
¯̃R is

¯̃R = I3 + 2S(λ̄)
(

λ̄0I3 + S(λ̄)
)

Define ¯̃ω := ω − ¯̃R⊤ω̂, we have the following kinematic

relations

˙̃̄
R = ¯̃RS(¯̃ω) ;

{

˙̄λ0 = −0.5¯̃ω⊤λ̄
˙̄λ = 0.5¯̃ωλ̄0 + 0.5S(¯̃ω)λ̄

so that, using the the fact that λ̄0 = 1− |λ̄|2
{

¯̃R = I3 + 2S(λ̄) +O(|λ̄|2)
2 ˙̄λ = ω̃ − S(ω)(2λ̄) +O(|λ̄||ω̃|) +O(|ω||λ̄|2)

(14)

Since |ω(t)| is bounded by assumption, one can also write

2 ˙̄λ = ω̃ − S(ω)(2λ̄) +O(|λ̄||ω̃|) +O(|λ̄|2)

• It is common knowledge that first order approximations

of a nonlinear system ẋ = f(x, t) about a current state-

estimate x̂ can be used to derive state observers for

this system. The classically invoked linear approximation

ẋ = δ
δxf(x̂, t)(x − x̂) is only one among infinitely

many first order approximations. For instance any system

ẋ = δ
δxf(x̂, t)(x−x̂)+O(|x−x̂|2) is also a first order ap-

proximation about x̂ in the sense that the error committed

in the right-hand side of the equality is still a O(|x−x̂|2).
This remark serves to point out that the observers derived

further in the paper exploit first order approximations that

are not necessarily linear approximations, and that several

other variants of these observers can be obtained by just

considering different first order approximations.

To complement these facts we recall that there are infinitely

many ways to minimally parametrize the pose of a body

in 3D-space and that each of these parametrizations yields

specific linear and first-order approximations. The observer

design methodology here considered can be adapted to any

such parametrization and it can potentially produce infinitely

many different observers having in common the same lo-

cal stability and convergence properties. Let us for instance

mention the four parametrizations (λ, p), (λ̄, p), (λ, p̄) and

(λ̄, p̄) for which Theorem 3.1 applies to derive and analyse

different pose Riccati observers endowed with similar local

properties. In what follows this possibility is illustrated by

considering two of these parametrizations, namely (λ̄, p̄) in

the case of mobile velocity measurements and (λ, p) in the

case of inertial velocity measurements, and by simulating the

observers associated with them.

B. Mobile velocity measurement

From now on R(t) is taken as a function of time so that

R̂ = R̃⊤R = R ¯̃R can be seen either as a function of t and λ,

or a function of t and λ̄.

1) Observer based on the parametrization (λ̄, p̄): One has

{

2 ˙̄λ = −S(ω)(2λ̄) + ω̃ +O(|λ̄||ω̃|) +O(|ω||λ̄|2)
˙̄p = −S(ω)p̄+ v̄

Setting x1 = 2λ̄, x2 = p̄ and using the assumed boundedness

of |ω(t)|, one obtains the system equation (3) with

A1,1(t) = A2,2(t) = −S(ω(t)), A2,1 = 03, u1 = ω̃, u2 = v̄

Concerning the output function y, one has for i = 1, . . . , l

|p− zi|di = p̄−R⊤zi
= p̄− ¯̃R⊤R̂⊤zi
= p̄− R̂⊤zi − ( ¯̃R⊤ − I3)R̂

⊤zi
= p̄− R̂⊤zi + S(2λ̄)R̂⊤zi +O(|zi||λ̄|2)
= p̄− R̂⊤zi − S(R̂⊤zi)(2λ̄) +O(|zi||λ̄|2)

so that, by setting again yi(λ̄, p̄, t) := Πdi(t)R̂
⊤zi and using

the identity Πdi
di = 0, one obtains

yi(λ̄, p̄, t) = −Πdi(t)S(R̂
⊤zi)(2λ̄) + Πdi(t)p̄+O(|λ|2)
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Therefore, defining y := (y⊤1 , . . . , y
⊤
l )

⊤ one obtains the output

equation (4) with

C1(x1, x̂2, t) =







−Πd1(t)S(R̂
⊤z1)

...

−Πdl(t)S(R̂
⊤zl)







C2(x1, t) =







Πd1(t)

...

Πdl(t)







The corresponding Riccati observer giving the expressions

of ω̂ and ˙̄̂p (that are used to compute R̂(t) and ˆ̄p(t) via

numerical integration) is then given by (5)-(7) and (9).

Remark: The observer derived previously uses outputs yi =
Πdi

R̂⊤zi. But other outputs may also be used. For instance,

defining d̂i := R̂⊤(p̂ − zi)/|p̂ − zi| and using the fact that

Πd̂i
di = O(|λ|) + O(|p̃|) provided that |p(t) − zi| > µ > 0

for all t, one can set yi := |p̂ − zi|Πd̂i
di + Πd̂i

R⊤zi so that

yi = C1(2λ)+C2p+O(|λ|2+|p̃|2) with C1 = |p̂−zi|S(d̂i)R̂⊤

(using the fact that Πx/|x|S(x) = S(x)) and C2 = Πd̂i
R̂⊤.

Similarly, defining ˆ̄di = (ˆ̄p − R̂⊤zi)/| ˆ̄p − R̂⊤zi|
and using the fact that Π ˆ̄di

di = O(|λ̄|) + O(| ¯̃p|)
provided that |p(t) − zi| > µ > 0 for all t, one

can set yi := | ˆ̄p − R̂⊤zi|Π ˆ̄di
di + Π ˆ̄di

R̂⊤zi so that

yi = C1(2λ̄)+C2p̄+O(|λ̄|2+ | ¯̃p|2) with C1 = −Π ˆ̄di
S(R̂⊤zi)

and C2 = Π ˆ̄di
.

As already mentioned all previously evoked

parametrizations yield Riccati observers sharing the same

local properties. Determination and comparison of the

associated domains of attraction in order to eventually

work out to some type of efficiency ranking between these

parametrizations are legitimate (but difficult) questions. They

are not within the scope of the present work but they may

motivate future studies. Note however that these issues are

not necessarily critical in practice due to the existence,

in a certain number of cases, of complementary algebraic

solutions that can provide good initial estimates of the body

pose [2].

2) Observability issues: Once the general expression of the

observer is obtained it matters to determine conditions whose

satisfaction ensures that the observer is exponentially stable,

i.e. that zero estimation errors are uniformly exponentially sta-

ble. As pointed out in Theorem 3.1 and Corollary 3.2 uniform

observability of the associated pair (A⋆(t), C⋆(t)) suffices,

provided that the matrix Q(t) entering the CRE is chosen

larger than some positive matrix, and that the matrix V (t) is

either larger than some positive matrix or such that WA⋆

V (t, t+
δ) > ǫI6. With Φ⋆(t, s) denoting the transition matrix associ-

ated with A⋆(t), the strict positivity of the observability Gram-

mian W ⋆(t, t+ δ) :=
∫ t+δ

t
Φ⋆⊤(s, t)C⋆⊤(s)C⋆(s)Φ⋆(s, t)ds

for some δ > 0 and all t ≥ 0 is thus the central property

in this respect. When it is only semi-definite positive the

condition number of the matrix P (t) solution to the CRE

generally diverges when the origin of the system ẋ = A⋆(t)x

is not exponentially stable (as in the pose estimation case

here considered) and the estimation errors do not uniformly

exponentially converge to zero. We show next that the non-

satisfaction of this property depends essentially upon the

number of source points and, in the specific case of three

source points, upon the body position relatively to the so-

called ”danger cylinder” well known of persons familiarized

with the Perspective-n-Point (PnP) problem [2], [6].

One can verify that all observers considered so far share the

same observability Grammian W ⋆(t, t + δ), modulo pre and

post multiplication by regular matrices B(t) and B(t)⊤ whose

singular values are bounded from below and above by positive

numbers and thus do not affect the uniform observability cri-

terion. This was expected since all these observers address the

same estimation problem. Let us then consider, for example,

the observer associated with the parametrization (λ̄, p̄) and

examine the observability Grammian according to the number

and disposition of the source points and the position/motion

of the point C relatively to the source points. In the case of

the parametrization (λ̄, p̄) one has

A⋆(t) =

[

−S(ω(t)) 03
03 −S(ω(t))

]

C⋆(t) =







−Πd1(t)S(R
⊤(t)z1) Πd1(t)

...
...

−Πdl(t)S(R
⊤(t)zl) Πdl(t)







and thus

Φ⋆(s, t) =

[

R(s)⊤R(t) 03
03 R(s)⊤R(t)

]

Define

R̊(t) :=

[

R(t) 03
03 R(t)

]

∆(s, t) := Φ⋆⊤(s, t)C⋆⊤(s)C⋆(s)Φ⋆(s, t) =

R̊⊤(t)
∑l

i=1

[

S(zi)
I3

]

ΠdF
i
(s)

[

S⊤(zi) I3
]

R̊(t)

(15)

with dFi (t) := (p(t) − zi)/|p(t) − zi| denoting the direction

of the ith source point expressed in the basis of the inertial

frame. The observability Grammian is thus never positive on

any time interval if and only if there exists a non-zero vector

w ∈ R
6 such that

ΠdF
i
(t)

[

S⊤(zi) I3
]

w = 0 , ∀i ∈ {1, . . . , l}, ∀t ≥ 0
(16)

This equality characterizes body position trajectories along

which the body pose is not uniformly observable on any time

interval.

Aligned source points

Let us first consider the case of two source points, i.e. i = 1, 2.

To satisfy the equality (16) it sufices that
[

S⊤(z1) I3
S⊤(z2) I3

]

w = 0 (17)

One easily verifies that any vectors w = α

[

z2 − z1
z1 × z2

]

,

α ∈ R − {0}, is a solution to this equation. Moreover there
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is no other solution because the kernel of the matrix that w
multiplies is one-dimensional.

By a simple extension of the previous proof, one shows

that if all source points are aligned (independently of their

number) then the observability Grammian is never positive

whatever the position and motion of C.

Three non-aligned source points

In this case the satisfaction of (16) is equivalent to showing

the existence of (w, ẘ(t)), with ẘ(t) ∈ R
3 such that, for all

t ≥ 0
[

M1 M2(t)
]

[

w
ẘ(t)

]

= 0 (18)

with

M1 :=





S⊤(z1) I3
S⊤(z2) I3
S⊤(z3) I3





M2(t) :=





p(t)− z1 03×1 03×1

03×1 p(t)− z2 03×1

03×1 03×1 p(t)− z3





We already know that, if such a solution exists, ẘ(t)
cannot be identically equal to zero because the sub-matrix

M1 is of full rank equal to six. Now, forming the time

derivative of both members of the equality (18) yields
d
dt (p(t) − zi) = −(p(t) − zi)(

d
dt ẘi(t)/ẘi(t)), i = 1, 2, 3,

with ẘi denoting the ith component of ẘ. If the point

C moves, i.e. v(t) 6= 0, the simultaneous satisfaction of

these three equalities has implications namely i) the point

C must move along a straight line, and ii) this line has to

pass through one of the source points. Let us assume, for

instance that this point is P3 and that the direction of motion

of C is given by a constant unit vector denoted as µ, i.e.

p(t) = z3 + a(t)µ with a(t) ∈ R. Then the three equalities

are satisfied with ẘi(t) = d
dt ẘi(t) = 0 for i = 1, 2, which

in turn implies, in view of (18), that (17) is satisfied and

thus that w = α

[

z2 − z1
z1 × z2

]

. The third equation of (18) then

yields α(z3 × z2 + z1 × z3 + z1 × z2) + a(t)ẘ3(t)µ = 0.

This tells us that µ is orthogonal to the plane containing the

three source points. Repeating the same argument for P1 and

P2 one deduces that any motion of C along a straight line

orthogonal to the source points plane and passing through a

source point forbids uniform observability of the body pose.

Let us now examine the static case when C is motionless.

The (9 × 9) matrix in the left-hand side of the equality (18)

is then constant and one looks for p that renders this matrix

singular. Via classical lines and columns manipulations one

easily verifies that this matrix is singular if and only if the the

following (6× 6) matrix

D(p) :=

[

S⊤(z2 − z1) z1 − z2 p− z2 03×1

S⊤(z3 − z1) z1 − z3 03×1 p− z3

]

is itself singular, i.e. if and only if det(D(p)) = 0. We claim

that this latter equation is nothing else than the equation of

the so-called danger cylinder [2], [6], i.e. the circular cylinder

generated by the circle passing through the three source

points and whose axis is orthogonal to the plane containing

the source points. Indeed, via a change of coordinates and

scaling one can arbitrarily set z1 = [0, 0, 0]⊤, z2 = [1, 0, 0]⊤

and z3 = [a, b, 0]⊤ (b 6= 0), and then easily verify that

det(D(p)) = p21 + p22 − p1 + (a(1−a)
b − b)p2, with pi denoting

the ith component of p.

To summarize, we have shown that the body pose is not

uniformly observable when C is motionless on the danger

cylinder, or when C moves along one of the three straight

lines belonging to this cylinder and passing through a source

point. If C moves on the danger cylinder, but not along

one of these three lines, then the body pose is uniformly

observable under weak complementary conditions such as
∫ t+δ

t
|Πηv(s)|ds > ǫ > 0, ∀t ≥ 0, with η denoting a unit

vector orthogonal to the source points plane. If C is fixed, but

not on the danger cylinder, or moves without approaching the

danger cylinder, or crosses this cylinder with a non-vanishing

transversal velocity, uniform observability is also granted.

Therefore, without minimizing the existence and practical

significance of the particular trajectories of C for which the

body pose is not observable, one may assert that uniform

observability, and thus uniform exponential stability of the

observers derived previously, are ”generically” granted in the

case of three non-aligned source points.

Four and more non-aligned source points

In the case of four source points (16) is equivalent to the

existence of (w, ẘ(t)), with w ∈ R
6 − {0} and ẘ(t) ∈ R

4,

such that for all t ≥ 0

[

M1 M2(t)
]

[

w
ẘ(t)

]

= 0 (19)

with

M1 :=









S⊤(z1) I3
S⊤(z2) I3
S⊤(z3) I3
S⊤(z4) I3









M2(t) :=









p(t)− z1 03×1 03×1 03×1

03×1 p(t)− z2 03×1 03×1

03×1 03×1 p(t)− z3 03×1

03×1 03×1 03×1 p(t)− z4









By differentiating this equation w.r.t time and using the fact

the sub-matrix M1 is of full rank equal to six, one shows

that this equation has no solution when C moves, i.e. when

v(t) 6= 0 on some time interval.

If the point C is motionless one may arbitrarily choose it as

the origin of the inertial frame, i.e. set p = [0, 0, 0]⊤. Relation

(16) is then equivalent to requiring that all zi (i ∈ {1, . . . , l})

are solutions to the equation

Π z
|z|

[

S(z) I3
]

w = 0 (20)

or, equivalently, are solutions to

z × w1 +Π z
|z|
w2 = 0

for some w = (w⊤
1 , w

⊤
2 )

⊤. If w1 = [0, 0, 0]⊤ and w2 is

8



Fig. 1. Horopter curve at the intersection of a circular cylinder and an elliptic
cone

different from zero, then this equation reduces to Π z
|z|
w2 = 0.

This implies that z = µw2 (µ ∈ R
∗). This is the equation of a

straight line passing through the point C and one recovers the

already established fact that the body pose is not uniformly

observable when all source points are on a straight line con-

taining the point C. If w2 = [0, 0, 0]⊤ and w1 is different from

zero, then the equation reduces to z×w1 = 0 so that z = µw1

(µ ∈ R
∗). This is also the equation of a straight line passing

through the point C and the same conclusion follows. A more

interesting case is when neither w1 nor w2 are equal to zero.

We show in the Appendix that in this case (20) is the equation

of a family of horopter curves well known in photogrammetry

[15], [16]. We further show that every horopter i) lies on a

cylinder, the so-called ”dangerous cylinder of space resection”,

ii) lies also on an elliptic cone whose apex, the point with zero

coordinates, is on the curve. The horopter curve is thus the

intersection of these two surfaces (see Figure 1) and it passes

through the cone’s apex, the point C in the present case. This

property does not seem to have been pointed out previously.

Due to the specific role and location of the cone’s apex on

the curve we will be refer to it as the horopter’s origin. One

can show that the horopter is uniquely determined by four

given reference points. Therefore, if four source points are

located on a horopter curve (which is then uniquely defined),

and if C is the origin of the curve, then the body pose is

not uniformly observable. Moreover, for a specific value of

one of the horopter’s parameters, the curve degenerates into a

circle, perpendicular to the cylinder’s axis, complemented with

a straight line, parallel to the cylinder’s axis, that intersects

the circle at the point opposite to the horopter’s origin w.r.t.

the circle’s centre. An ever more degenerate case is when the

circle shrinks to a point on the straight line, in which case the

horopter is a straight line that passes through the origin. One

deduces (this can also be verified directly from (20)) that the

body pose is also not uniformly observable when all source

points lie on a degenerate horopter. Such is the case when all

source points are aligned without the point C being necessarily

aligned with the source points (a case addressed previously), or

when they are located on a circle containing also the point C,

or when the source points are distributed on the circle and the

straight line of a degenerate horopter whose origin is the point

C. In all other cases the body pose is uniformly observable.

The same results holds for more than four source points.

C. Inertial velocity measurement

Alike the mobile velocity measurement case one can

derive different Riccati observers by considering various

parametrizations of the body pose and, in particular, by

considering again the four parametrizations (λ, p), (λ̄, p),
(λ, p̄) and (λ̄, p̄). We will limit the exposition of this case to

the sole parametrization (λ, p).

1) Observer based on the parametrization (λ, p): In this

case ṗ = v(t) with v(t) being measured. Setting x1 = 2λ,

x2 = p and using the second equation of (13) one obtains the

system equation (3) with

A = 06, u1 = R̂ω̃, u2 = v

Concerning the output function y, one has for i = 1, . . . , l

|p− zi|di = R⊤(p− zi)

= R̂⊤R̃⊤(p− zi)

= R̂⊤(p− zi) + R̂⊤(R̃⊤ − I3)(p− zi)

= R̂⊤(p− zi)− R̂⊤S(2λ)(p− zi)
+O(|p− zi||λ|2)

= R̂⊤(p− zi) + R̂⊤S(p̂− zi)(2λ)
+O(|p− zi||λ|2) +O(|λ||p̃|)

so that, by setting yi(λ, p, t) := Πdi(t)R̂
⊤zi, using the identity

Πdi
di = 0 and the assumed boundedness of |p(t) − zi|, one

obtains

yi(λ, p, t) = Πdi(t)R̂
⊤S(p̂− zi)(2λ) + Πdi(t)R̂

⊤p
+O(|λ|2) +O(|λ||p̃|)

Therefore, by defining y := (y⊤1 , . . . , y
⊤
l )

⊤, one obtains the

output equation (4) with

C1(x1, x̂2, t) =







Πd1(t)R̂
⊤S(x̂2 − z1)

...

Πdl(t)R̂
⊤S(x̂2 − zl)







C2(x1, t) =







Πd1(t)R̂
⊤

...

Πdl(t)R̂
⊤







The corresponding Riccati observer giving the expressions

of ω̂ and ˙̂p (that are used to compute R̂(t) and p̂(t) via

numerical integration) is then given by (5)-(7) and (9).
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2) Observability issues: From the expressions of A and C
one deduces that A⋆ = A = 06, so that Φ⋆(s, t) = I6, and

C⋆(t) =







Πd1(t)R
⊤(t)S(p(t)− z1) Πd1(t)R

⊤(t)
...

...

Πdl(t)R
⊤(t)S(p(t)− zl) Πdl(t)R

⊤(t)







Therefore, in this case

∆(s, t) := Φ⋆⊤(s, t)C⋆⊤(s)C⋆(s)Φ⋆(s, t) =
∑l

i=1

[

S⊤(p(s)− zi)
I3

]

ΠdF
i
(s)

[

S(p(s)− zi) I3
]

(21)

and the observability Grammian is never positive if there exists

w ∈ R
6 − {0} such that

ΠdF
i
(t)

[

S(p(t)− zi) I3
]

w = 0, ∀i ∈ {1, . . . , l}, ∀t ≥ 0
(22)

This relation is to be compared with the condition of non-

uniform observability (16) associated with mobile velocity

measurements. When the body position is constant, i.e. when

v(t) ≡ 0, these two relations are equivalent. To verify this one

can use the change of coordinates w =

[

w̄1

w̄2 − p× w̄1

]

.

Then (22) is the same as (16) with w replaced by w̄.

This equivalence was expected since, in the zero velocity

case, the observers derived by assuming either mobile or

inertial velocity measurements coincide. However, there is

an important difference in the case of body motion. Indeed,

we have previously established that, in the mobile velocity

measurement case, at least three source points are required

to grant uniform observability of the body pose, whether the

point C moves or is motionless. We show next that, when

the inertial translational velocity of the body is measured and

a single source point is used, the body pose is not uniformly

observable only for very specific motions of the point C.

In other words, body motion is better exploited for pose

estimation in the sense that this estimation can be effectively

performed with less information about the environment.

Since the motionless case has been treated previously, only

persistent C translational motion is now considered.

Single source point

To simplify, one may arbitrarily assume that the source

point P coincides with the origin of the inertial frame, i.e.

z = [0, 0, 0]⊤. Defining d(t) := p(t)/|p(t)|, the non-uniform

observability condition (22) is then

Πd(t)

[

S(p(t)) I3
]

w = 0 , ∀t ≥ 0

or, equivalently, using the fact that Πd(t)S(p(t)) = S(p(t))

p(t)× w1 +Πd(t)w2 = 0 , ∀t ≥ 0 (23)

with w = (w⊤
1 , w

⊤
2 )

⊤. This equation indicates that p(t)
must satisfy for all t the horopter equation (20) introduced

previously, with the source point being now the origin of the

horopter curve. The next proposition follows immediately:

Proposition 4.1: The body pose is not uniformly observable

in the following situations

1) C moves along a horopter curve whose origin is the

source point,

2) C moves along a straight line, or on a circle passing

through the source point (the degenerate horopter’s

case).

Two and more source points

Since a non-degenerate horopter curve has a unique origin

(that cannot coincide with two different source points), C
motion along such a curve does not make the body pose

non-observable uniformly. C motion on a circle passing

through two source points does not forbid uniform stability

either. Therefore non-observability occurs only when all

source points and C are aligned. One can then show that,

independently of the location of the source points, a sufficient

condition for uniform observability is the existence of δ > 0

and ǫ > 0 such that ∀t ≥ 0 :
∫ t+δ

t
v(s)v(s)⊤ds > ǫ. Note

that this latter condition is not sufficient in the single source

point case because the inequality can be satisfied by motions

along a non-degenerate horopter.

V. SIMULATIONS

A. Three source points and mobile velocity measurements

This simulation illustrates that motion of C on the dan-

ger cylinder, by contrast with the motionless case, allows

for uniform observability and effective pose estimation. All

distances are expressed in meters, and we call the inertial

plane {O; e1, e2} the horizontal plane. The considered three

source points are on this plane with coordinates respectively

equal to (0, 0, 0), (5, 0, 0) and (2.5, 2.5, 0). The circle passing

through them is centred at (2.5, 0, 0) and has a radius equal to

2.5. The point C moves on a circle parallel to it, ten meters

above it and with a 1m/s translational velocity. Its coordinates

are p(t) = (2.5 + 2.5 cos(0.4t), 2.5 sin(0.4t), 10)⊤ so that

v(t) = (− sin(0.4t), cos(0.4t), 0). The body’s angular velocity

is ω = (0.1 sin(t), 0.4 cos(2t), 0.6t)⊤rad/s. For the Riccati

pose observer we choose the parametrization (λ̄, p̄) and use,

to simplify, a diagonal matrix Q = diag{q1I3, . . . , qlI3}. The

observer equations are then
[

ω̂
˙̄̂p

]

=

[

ω
−S(ω)ˆ̄p+ v̄

]

−kP

[

∑l
i=1 qiS(R̂

⊤zi)Πdi
(ˆ̄p− R̂⊤zi)

∑l
i=1 qiΠdi

(ˆ̄p− R̂⊤zi)

]

˙̂
R = R̂S(ω̂)

Ṗ = AP + PA⊤ − PC⊤QCP + V
(24)

with k(t) ≥ 0.5 and

A =

[

−S(ω) 03×3

03×3 −S(ω)

]

C =







−Πd1
S(R̂⊤z1) Πd1

...
...

−Πdl
S(R̂⊤zl) Πdl







with l = 3. For the reported simulation results we have taken

k = 1 (as for a Kalman filter), qi = 10 (i = 1, 2, 3), V =
diag{0.1I3, I3} and P (0) = diag{I3, 100I3}. Initial state

values are p(0) = (2.5, 0, 10)⊤ and R(0) = I3, whereas initial
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estimates are p̂(0) = (−2, 4, 3)⊤ and Λ̄(0) = (
√
2
2 ,

√
2
2 , 0, 0)⊤.

This corresponds to an initial orientation angle error of 90
degrees.

Figures 2 (a) and (b) show the exponential convergence of

the estimations errors to zero when the measurements of v̄(t),
ω(t) and of the source points bearings are free of noise.
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Fig. 2. Orientation error with noise-free measurements

Figures 3 (a) and (b) show the time-evolution of the same

estimation errors and illustrate the performance of the same

observer in the case of noisy measurements. These results

have been obtained by replacing v̄(t) = R⊤(t)v(t) and

ω(t) respectively by R⊤(t)v(t) + bv(t) and ω(t) + bω(t)
with bv and bω denoting vectors of uncorrelated zero-mean

Gaussian noises with standard deviations equal to 0.1 (for the

components of bv) and 0.01 (for the components of bω). As for

the bearing measurements we have simulated noisy position

measurements of the source points seen in the images of a

calibrated camera by replacing di (i = 1, 2, 3) by

dmes
i =

sign(di,3)
denom (di,1/di,3 + ni,1, di,2/di,3 + ni,2, 1)

⊤

denom =
√

(di,1/di,3 + ni,1)2 + (di,2/di,3 + ni,2)2 + 1

with ni,1 and ni,2 denoting uncorrelated zero-mean uniformly

distributed noises with maximum deviation equal to 0.005.

For a CCD camera with an aperture of 90 degrees and

producing images with (1000× 1000) pixels this corresponds

approximately to a maximum localisation error of 2.5 pixels,

or 50cm in any direction at a distance of 10 meters. By

comparison, the ultimate maximum estimation error of about

10cm observed in Figure 3 (a) illustrates the filtering property

of the observer.
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Fig. 3. Orientation error with noisy measurements

B. One source point and inertial velocity measurements

These simulations illustrate the possibility of estimating the

body pose with bearing measurements of a single source point

when the point C moves and its velocity is measured in the

inertial frame. For the Riccati pose observer we choose the

parametrization (λ, p) and use again, to simplify, a diagonal

matrix Q = diag{q1I3, . . . , qlI3}. In the case of l source

points, the observer equations are

[

ω̂
˙̂p

]

=

[

ω
v

]

−k

[

R̂⊤ 03
03 I3

]

P

[

∑l
i=1 qiR̂S⊤(ξi)Πdi

ξi
∑l

i=1 qiR̂Πdi
ξi

]

˙̂
R = R̂S(ω̂)

Ṗ = −PC⊤QCP + V
(25)
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with ξi := R̂⊤(p̂− zi), k(t) ≥ 0.5, and

C =







Πd1
S(ξ1)R̂

⊤ Πd1
R̂⊤

...
...

Πdl
S(ξl)R̂

⊤ Πdl
R̂⊤







In the present case, l = 1. The single source point used for

pose estimation is the first of the three source points used

in the previous simulations, i.e. z1 = [0, 0, 0]⊤. The point

C again moves on a cylinder passing through the source

point, along a horizontal circular trajectory this time located

5 meters above the source point, and with a translational

velocity 2.5 times larger than in the previous simulations,

i.e. p(t) = [2.5 + 2.5 cos(t), 2.5 sin(t), 5]⊤. The reason for

these modifications (smaller distance to the source point, larger

velocity) is to amplify the excitation properties associated with

the motion of C in terms of observability, and subsequently

increase the rate of convergence of the estimation errors to zero

[1]. Initial pose estimates are p̂(0) = [3, 2, 7]⊤ and Λ(0) =
[
√
3/2, 0.5, 0, 0]⊤. This corresponds to an initial rotation angle

error of 60 degrees. The initial value of the Riccati matrix is

P (0) = diag{I3, 10I3}. The other parameters entering the

Riccati equation (k, V and Q) and the measurement noises

are the same as in the previous simulations.

Figures 4 (a) and (b) show the exponential convergence of

the estimations errors to zero when the measurements of v(t),
ω(t) and of the source point bearing are free of noise.
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Fig. 4. Position error with noise-free measurements

Figures 5 (a) and (b) show the time-evolution of the same

estimation errors and illustrate the performance of the observer

in the case of noisy measurements.

VI. STEREO VISION VS. MONOCULAR VISION

A stereo vision system consists in the rigid pairing of two

(usually identical) cameras whose optic axes are parallel and

orthogonal to the line joining the cameras’ optic centres. Let

the mid-point between the optic centres be the origin C of the

mobile frame rigidly linked to the cameras, and a (resp. −a)

the known vector of coordinates of one of the optic centres

(resp. of the other optic centre) expressed in the mobile frame

basis. Define also pzi := R⊤(p− zi), i.e. the opposite of the

vector of coordinates of the ith source point expressed in the
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mobile frame basis, and denote the bearing of the ith source

point measured from the image of the first (resp. second) cam-

era by di,1 (resp. di,2), i.e. di,1 =
pzi

+a

|pzi
+a| and di,2 =

pzi
−a

|pzi
−a| .

Then di,1 × di,2 =
2a×pzi

|pzi
+a||pzi

−a| , a × di,1 =
a×pzi

|pzi
+a| and

a × di,2 =
a×pzi

|pzi
−a| . Therefore |pzi − a| = 2

|a×di,1|
|di,1×di,2| and

|pzi + a| = 2
|a×di,2|

|di,1×di,2| . Since pzi = di,1|pzi + a| − a (resp.

pzi = di,2|pzi−a|+a) one deduces that pzi = 2
di,1|a×di,2|
|di,1×di,2| −a
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(resp. pzi = 2
di,2|a×di,2|
|di,1×di,2| + a) and thus also

pzi =
di,1|a× di,2|+ di,2|a× di,2|

|di,1 × di,2|
(26)

This latter relation establishes the known fact that a stereo

vision system allows for the measurement of the observed

source point position expressed in the cameras’ frame, whereas

a monocular vision system only allows for the source point

bearing measurement. From there Riccati observers can be

derived in the same way as for a single camera either by using

source point(s) bearings measured in the images of the two

cameras, without computing the pzi (i = 1, . . . , l) explicitly,

or by using the pzi given by (26). In both cases one can verify

that the non-uniform observability conditions (16) and (22)

become

[

S⊤(zi) I3
]

w = 0 , ∀i ∈ {1, . . . , l}, ∀t ≥ 0 (27)

for some w 6= 0, when the body translational velocity is

measured in the mobile frame, and

[

S(p(t)− zi) I3
]

w = 0, ∀i ∈ {1, . . . , l}, ∀t ≥ 0 (28)

for some w 6= 0, when this velocity is measured in the inertial

frame. These conditions are thus simply obtained by replacing

the projection operators ΠdF
i

by the identity matrix I3.

The first of these conditions tells us that, when the velocity

of C is measured in the mobile frame, the body pose is not

observable in the case of one and two source points, and that

it is uniformly observable in the case of three or more non-

aligned source points. These results are thus essentially the

same as when using a monocular vision system, except for

the non-existence of a danger cylinder in the three source

points case and of specific singular body motions that do not

grant uniform observability when three or more source points

are used. However, a more significant difference, when using

three or more non-aligned source points whose positions are

known in advance, results from the possibility of estimating

the body attitude independently of the body position in this

case. Indeed, almost global convergence to zero of the pose

estimation error can then be proved despite the approximations

made when deriving the equations of the Riccati observer

(see, for instance, [17] where the identity matrix is implicitly

used as a solution to the CRE associated with the attitude

observer). A complementary interest of using a stereo camera

is that the measurement/estimation of three (or more) source

points positions expressed in the camera’s frame can be

performed during an initialization phase when the camera is

kept motionless. By interpreting the camera’s initial frame as

the inertial frame w.r.t which the camera’s pose is subsequently

estimated, one is brought back to the previously evoked case

where the position of at least three source points positions are

known in advance, so that almost global convergence to zero

of the pose estimation error, independently of the frame w.r.t.

which the camera’s translational velocity is measured, can be

achieved in this case. From this result one readily infers that

almost global convergence and exponential stability of stereo

vision-based EKF-SLAM [18] algorithms, consisting of online

body pose estimation complemented with online estimation of

extra landmarks positions, can also been proved provided that

the source points used for the initialization phase are always

seen by the camera.

The second condition tells us that, in the case of persistent

translational body motion, when the velocity is measured

in the inertial frame and when a single source is used,

the body pose is not uniformly observable when C moves

along a straight line, but also that the satisfaction of ∀t ≥
0 :

∫ t+δ

t
v(s)v(s)⊤ds > ǫI3 for some δ and ǫ positive

is sufficient to ensure uniform observability of the body

pose. Conditions for uniform observability are thus again only

slightly weaker than when using a monocular vision system.

VII. CONCLUDING REMARKS

In this paper, original Riccati body pose observers using

measured body velocities and source points bearing measure-

ments in the body frame are derived and analysed. Rigorous

local exponential stability of these EKF-like observers, under

specified uniform observability conditions, is proved. Situa-

tions for which these conditions are not met are characterized

in details in terms of the number and location of the source

points, and also in terms of the body position and motion

relatively to the source points. Differences resulting from

measuring the body translational velocity in an inertial frame

rather than in the body frame are pointed out. Concerning this

latter issue, the present study points out the importance of

measuring the body translational motion in an inertial frame,

especially when bearing measurements are obtained with a

monocular camera attached to the body. Indeed, when this

velocity is measured in the mobile frame, body motion only

marginally modifies the observability conditions under which

pose estimation can be performed efficiently. Basically, at least

three source points whose positions are measured in the inertial

frame are necessary in this case. By contrast, a single source

point is generically sufficient when the body keeps moving

and its velocity is measured in an inertial frame. Moreover,

no measurement of the source point position is needed when

the source point coincides with the origin of the chosen inertial

frame w.r.t. which the body position is estimated. This latter

fact enlightens the kinship between the localization problem in

monocular vision-based SLAM [19] and the pose estimation

problem addressed in the present paper: unless three landmarks

positions are known initially, the localization problem is well-

posed in terms of ”consistence” (i.e. robust convergence of the

pose estimation errors to zero) only when the body velocity is

measured w.r.t. the chosen inertial frame. This is coherent with

the fact that pose estimation w.r.t. an inertial frame is possible

only when measurements made w.r.t. the inertial frame are

available (the body velocity, in the present case). Using a

stereoscopic camera alleviates this constraint by implementing

an initial phase during which the camera is motionless and

three (or more) source points positions are estimated in the

camera’s frame. This frame then becomes the inertial frame

w.r.t. which the pose estimation is subsequently carried out.

Connections with the SLAM problem will be further discussed

in forthcoming studies.
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APPENDIX

A. Horopter’s equations

We derive the horopter’s equations from (20) when w1 and

w2 are different from zero, and we show that the horopter may

also be defined as the intersection of a circular cylinder with

a cone asymptotically tangent to the cylinder.

Let ei (i = 1, 2, 3) denote the canonical basis of R
3, i.e.

e1 = (1, 0, 0)⊤, e2 = (0, 1, 0)⊤ and e3 = (0, 0, 1)⊤. Since w1

and w2 are different from zero, one can arbitrarily set w1 = e1
and w2 = −(ke1 + ae2), with a ∈ R and k ∈ R being then

the curve’s parameters. Equation (20) then becomes

z × e1 −Π z
|z|
(ke1 + a2) = 0

or, equivalently

|z|2(z × e1)− (|z|2I3 − zz⊤)((ke1 + a2) = 0

Let zi (i = 1, 2, 3) denote the coordinates of the vector z.

Using these coordinates in the previous equality yields

−k|z|2 + z1(kz1 + az2) = 0
|z|2(z3 − a) + z2(kz1 + az2) = 0
−|z|2z2 + z3(kz1 + az2) = 0

therefore

kz1 + az2
|z|2 =

k

z1
= −z3 − a

z2
=

z2
z3

(29)

so that, in view of the last equalities, z22 = z3(a − z3) and

z1 = kz3/z2. Assume for the time being that a > 0, then

the positivity of z22 implies that z3 ∈ [0, a] (≥ 0) and that

z2 = ±
√

z3(a− z3). Therefore z1 = ±k
√
z3/

√
a− z3. It

just remains to verify that these equalities are compatible with

the first equality of (29), i.e. −k|z|2 + z1(kz1 + az2) = 0 or,

equivalently, k(z22 + z23) = az1z2. In view of the expression

of z2 in terms of z3 one has k(z22 +z23) = akz3 and, using the

expression of z1 and z2 in terms of z3 one has az1z2 = akz3.

The expected equality thus holds true. The equations of the

two curves obtained so far are

z1 = k
√
z3/

√
a− z3, z2 =

√

z3(a− z3), z3 ∈ [0, a) (30)

and

z1 = −k
√
z3/

√
a− z3, z2 = −

√

z3(a− z3), z3 ∈ [0, a)

The first set of equations are the common equations of the

horopter, and the second set provides the same geometrical

curve rotated by an angle π. With a < 0 one also verifies

that the same curves are again obtained modulo a symmetry

w.r.t. the origin. Therefore all solutions to (20) yield the same

geometrical horopter curve whose generic equations are given

by (30).

The equality z22 + z23 − az3 = 0 is satisfied by every point

on the horopter. This is also the equation of a circular cylinder

of diameter equal to a and whose axis direction is given by

e1 . Therefore the horopter lies on the surface of this cylinder.

Another equality obtained previously is k(z22 + z23)−az1z2 =
0. This is the equation of an elliptic cone whose apex is

the horopter’s origin, whose central axis direction is given

by the vector [a,
√
a2 + k2 − k, 0]⊤ and whose geometric

characteristic numbers are d = (
√
a2 + k2 − k)/(2k), e =

(
√
a2 + k2 − k)/(

√
a2 + k2 + k), and f = 1 (see figure 6).

Therefore, the horopter curve lies also on the surface of this

e

f
d

P

Fig. 6. Cone characteristic numbers

cone. The horopter curve is thus the intersection of a circular

cylinder and an elliptic cone. Moreover, when z3 tends to a,

the coordinate z1 tends to infinity. The horopter curve is thus

unbounded and this implies that the cone is asymptotically

tangent to the cylinder.

When the parameter k tends to zero the horopter degenerates

into a circle of diameter a and a straight line perpendicular

to the circle and intersecting it at the point opposite to the

horopter’s origin w.r.t. the circle’s centre. When a tends to zero

the horopter further degenerates into a straight line containing

the origin.

B. Extension to the estimation of velocity biases

Velocity measurements are often corrupted by biases that

are constant or slowly varying. In this case it is useful to

complement the observer with an estimation of these biases.

Note that these biases may also be interpreted as unknown

constant body velocities. This latter remark is of practical

importance since it alleviates the necessity of measuring body

velocities when these velocities are constant or slowly varying,

except of course in the case of a single source point and when

the body translational velocity is constant in the inertial frame

since the body pose is then not observable by application of

Proposition 4.1. An extension of the observer (25) is proposed

next and its performance, when using a single source point and

noisy measurements, is illustrated by simulation. The other

Riccati observers considered in the present paper can easily

be modified in the same manner.

Let ωb denote the bias on the body’s angular velocity so

that d
dtR(t) = R(t)(ω(t) + ωb), with ω(t) the measured part

of the angular velocity. Let similarly vb denote a bias on the

body’s translational velocity so that ṗ(t) = v(t) + vb, with

v(t) the measured part of the translational velocity. Via a

straightforward extension of Theorem 3.1 involving different

dimensions for x1 and x2 so as incorporate vb and ωb into the

system’s state vector, setting d
dt R̂ = R̂S(ω̂ + ω̂b) and using

the approximation

2λ̇ = R̂(ω̃ + ω̃b)λ0 + 0.5S(R̂(ω̃ + ω̃b))2λ

= R̂(ω̃ + ω̃b) +O(|ω̃||λ|) +O(|ω̃b||λ|)
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one obtains the following equations of an extension of the

Riccati observer (25)








ω̂
˙̂p
˙̂ωb

˙̂vb









=









ω
v + v̂b
03×1

03×1









−k

[

R̂⊤ 03×9

09×3 I9

]

P





∑l
i=1 qiR̂S⊤(ξi)Πdi

ξi
∑l

i=1 qiR̂Πdi
ξi

06×1





Ṗ = AP +A⊤P − PC⊤QCP + V

(31)

with ξi := R̂⊤(p̂− zi), k(t) ≥ 0.5,

A =









06
R̂ 03
03 I3

06 06









and

C =







Πd1
S(ξ1)R̂

⊤ Πd1
R̂⊤ 03 03

...
...

...
...

Πdl
S(ξl)R̂

⊤ Πdl
R̂⊤ 03 03







For the simulation results reported next the same source

point, translational and angular body motions, and measure-

ment noises as for the case of unbiased velocities are used.

State initial conditions, complemented with zero bias esti-

mates, are also the same. The biases on the translational

and angular velocities are vb = [0.1,−0.05, 0.2]⊤ and ωb =
[0.01, 0.004,−0.02]⊤ respectively. Figures (7) (a) and (b)

show the time-evolution of the position and attitude estimation

errors, whereas Figures (7) (c) and (d) show the time-evolution

of the velocity biases estimation errors. The convergence of all

estimation errors to small values illustrates the performance of

the observer.
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Fig. 7. Position error
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