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RICCATI TECHNIQUES AND VARIATIONAL PRINCIPLES
IN OSCILLATION THEORY FOR LINEAR SYSTEMS

G. J. BUTLER, L. H. ERBE AND A. B. MINGARELLI

ABSTRACT. We consider the seond order differential system (1) Y" + Q(i)Y =
0, where Q, Y are nxn matrices with Q = Q(t) a continuous symmetric matrix-
valued function, t € [a,+00). We obtain a number of sufficient conditions in
order that all prepared solutions Y(t) of (1) are oscillatory. Two approaches
are considered, one based on Riccati techniques and the other on variational
techniques, and involve assumptions on the behavior of the eigenvalues of Q{t)
(or of its integral). These results extend some well-known averaging techniques
for scalar equations to system (1).

1. Introduction.  Consider the second order differential system

(1.1) Y" + Q(t)Y = 0,        fe[a,+oo),

where Y(t), Q(t) are nxn real continuous matrix functions with Q(t) symmetric.
The vector system associated with (1.1) is

(1.2) y" + Q(t)y = 0
where y = col(yi,..., yn) is an n-vector. Equation (1.2) is said to be disconjugate
on an interval J C [a, +00) if every nontrivial solution of (1.2) vanishes at most once
in J and (1.2) is said to be oscillatory if for each i0 > a there exists ¿i > io such
that (1.2) is not disconjugate on [írj,íi]. A solution Y(t) of the matrix equation
(1.1) is said to be nontrivial if detY(i) ^ 0 for at least one t E [a, +00) and a
nontrivial solution Y(t) is said to be prepared or self-conjugate in case

(1.3) Y*(t)Y'(t) - Y*'(t)Y(t) = 0,        ie[o,+oo),

(where for any matrix A, the transpose of A is denoted by A*). Note that for any
solution Y(t) of (1.1) the expression on the left of (1.3) is constant. Equation (1.1)
is said to be oscillatory on [a, +00) in case the determinant of every nontrivial pre-
pared solution vanishes on [b, +00) for each b> a. This is equivalent to oscillation
of equation (1.2) since any solution of (1.2) is of the form y(t) = Y(t)a for some
constant vector a and some nontrivial prepared solution Y(t) of (1.1).

The oscillation theory for the corresponding scalar equation

(1.4) y" + q(t)y = 0, ie[a,+oo),
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where q(t) is a real-valued continuous fonction has a very extensive literature and
there are a number of survey papers which have been written, [27, 30, 23]—see
also the book of Swanson [24]. The corresponding theory for (1.1) and (1.2) is less
developed although there have been quite a number of papers devoted to attempts
at paralleling the scalar theory. Many recent results [13, 7, 8, 26, 11, 2, 25], have
concentrated on showing that (1.1) is oscillatory if a corresponding scalar equation
obtained by applying a positive linear functional is oscillatory. That is, if we denote
by S the linear space of all n x n real symmetric matrices, then a linear functional
<p: S —► (—oo,+oo) is said to be positive if <p(A) > 0 for A E S and A > 0 (i.e.,
A symmetric and positive semidefinite). The basic result obtained (cf. [11, 13]) is
that (1.1) (or (1.2)) is oscillatory on [a, +oo) in case there exists a positive linear
functional p with <p(I) = I (I = identity matrix) such that the scalar equation

(1.5) u" + ip(Q(t))u = 0
is oscillatory.

Several other recent oscillation criteria for (1.1) have been given which involve
the eigenvalues of Q(t) (or of its integral). For any real symmetric matix A, we will
assume its eigenvalues A;t(A), 1 < k < n, are ordered so that

(1.6) Xi(A)>X2(A)>--->Xn(A),
and as usual,

n

(1.7) trA = ^A,(A).
i=l

For the scalar equation (1.4) the well-known Fite-Wintner Theorem [9, 30] states
that (1.4) is oscillatory if

/»OO

(1.8) /       q(t)dt = +oo
Ja

and hence it is clear that (1.1) is oscillatory if
/.OO

(1.9) /     tr Q(t)dt = +00.
Ja

Mingarelli in [18, 19] showed that the positive linear functional trA can be
replaced by the convex function Ai(A), provided a certain growth condition on
/ tr Q(s)ds is assumed. This answered, in part, a conjecure [13] which was also
considered in the thesis of Akiyama [1]. Additional results which extend and im-
prove some of these criteria were also obtained in [4, 5, 14, 17].

Finally, it has recently been shown by Byers, Harris and Kwong [6] that

(1.10) lim Ai í /  Q(s)ds) = +oo

without any additional conditions, is an oscillation criterion for (1.1). This gives,
therefore, the desired systems analogue of the Fite-Wintner condition.

It is the aim of this paper to apply two of the fundamental approaches used in
studying the scalar equation (1.4)—namely the Riccati integral equation approach
and the variational approach—to obtain a number of oscillation tests for (1.1). We
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refer to the recent work of Kwong and Zettl [15] and the references therein where
these two approaches are considered for the scalar equation.

In §§2 and 3 we present several oscillation criteria which may be regarded as
generalizations to systems of various well-known scalar tests, other then the Fite-
Wintner criterion. In §2 the proofs are based on the Riccati equation technique,
whereas in §3 we discuss oscillation criteria which are proved using variational
techniques. In §4 we present several examples showing that certain subsidiary
hypotheses for these theorems are necessary. The proofs of the results are given in
§§5 and 6.

In a strictly formal sense, any oscillation or nonoscillation theorem for (1.1)
should be accessible by either the Riccati or variational method. In practice, by
considering these two different approaches, one seems to gain greater insight into
the way in which conditions imposed on the coefficient matrix Q or its integral
contribute to the oscillatory nature of the equation. This is one of the purposes of
this present paper. Our other purpose is to illustrate the extent to which scalar
oscillation criteria can be generalized to systems, utilizing the behavior of the largest
eigenvalue and thereby achieving sharper results than can be obtained by the use
only of positive linear functionals such as the trace.

We recall here some notation and definitions which will be useful in the sequel.
For any subset E of the real line R, ß(E) denotes the Lebesgue measure of E. If
f(t) denotes a continuous real-valued function and if f m satisfy -co <l,m< +co,
then we say limapproxinft_>00 f(t) = I in case p{t : f(t) < /i} < +co for all /i < /
and p{t: f(t) < l2} = +oo for all l2 > I. Similarly, limapproxsup^oo f(t) = m in
case p{t: f(t) > mx} = +oo for all mx < m and p{t: f(t) > m2} < +oo for all
m2 > m. Finally, lim approx^^ f(t) = A in case

limapproxsup/(i) = limapproxinf f(t) = A.
t—*oo t—>oo

2. Riccati techniques. We recall [12] that the scalar equation (1.4) is nonoscil-
latory on [a, +oo) if and only if the Riccati integral equation

(2.1) r(t) = r(t0)+ [ q(s)ds+ [ r2(s)ds
Jt0 Jto

has a continuous solution on [¿o,oo) for some io > a; likewise the matrix equation
(1.1) is nonoscillatory on [a, +oo) if and only if the corresponding matix equation

(2.2) Z(t) = Z(to) + / Q(s) ds+ [ Z2(s) ds
Jto Jto

has a continuous symmetric solution on [io,oo) for some io > a.
If (1.4) has a solution y — y(t) with y(t) ^ 0 for t > to, then r = —y'/y is a

solution of (2.1) on [io,oo); similarly, if Y = Y(t) is a nontrivial prepared solution
of (1.1) with det Y(t) ^ 0 for t > t0 then Z = -Y'Y"1 is a symmetric solution of
(2.2) on [i0,oo).

Hartman [11] has shown that if (1.4) is nonoscillatory on [o,+oo) then a neces-
sary and sufficient condition that

(2.3) H (-\   dt <oo
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holds for a solution u ^ 0 of (1.4) is that

(2.4) liminf— /     /   q(s) ds dt >-oc.
T—oo  T Ja    Ja

One can therefore consider the cases where (2.4) does or does not hold when
studying the oscillatory behavior of (1.4).

As an extension of the Fite-Wintner criterion (1.8), Olech, Opial, and Wazewski
in [21] showed that (1.4) is oscillatory in case

fT(2.5) limapprox/    q(s)ds = +oc
T—>oo       Ja

or in case

(2.6) limapproxinf /    q(s)ds < limapprox sup /    q(s)ds.
T-»oo Ja T->oo Ja

Wintner in [291 showed that
fT    ct

(2.7) lim  - /     /   q(s) ds dt =+00

implies oscillation of (1.4) and Hartman [12] showed that

(2.8) -oo < liminf— /     /   q(s) dsdt < lim sup — /     /   q(s)dsdt
T^oo   T Ja    Ja T — oo    i   Ja    Ja

is also sufficient for oscillation of (1.4). These results were further generalized by
Willett [27, 28] via more general averaging techniques.

Analogous to (2.4), we consider the (extended real-valued) function L which is
defined on the class ofnxn continuous real symmetric matrices defined on [a, oo)
by

(2.9) L(Q) = liminf i /    [trQ(s)dsdt.
r^oo 1 Ja   Ja

We now state the main results of this section.

THEOREM 2.1. Assume L(Q) > —oo. Then equation (1.1) is oscillatory in
case any of the following conditions hold:

(A) limsup— /    Ai ( /   Q(s)ds) dt =
T-»oo    I   Ja \Ja /

(B) lim sup-^ j     A, (f Q(s)dsj dt — -(-oo,

r-T

(C) limapprox sup Ai ( /    Q(s)ds\   - +00,
T—>oo

r-T

(D) limapproxinf Ax [ /    Q(s)ds] =-00.
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THEOREM 2.2.   Assume L(Q) = -co.  Then (I.I) is oscillatory if

(2.10) limapprox sup An I  /    Q(s)ds j > —oo.
T^oo yJa J

THEOREM  2.3.   Assume that Ai(/ Q(s)ds) > 0 for sufficiently large t, and
that

(2.11) liminf
Í—+oo

\i(tiQ(s)ds)
Xn(faQ(s)ds)

>0.

oc

Then (1.1) is oscillatory if

(A*) lim  i j   Xi (j   Q(s)ds) dt =+oo.

Since tr Q is a positive linear functional, systems analogues for each of the above
scalar criteria (1.8), (2.5)-(2.8) may be obtained if q(i) is replaced by tr Q(t) (see
the discussion of this technique in the introduction). The intention behind Theo-
rems 2.1 and 2.3 is to show that the corresponding (and in general, much weaker)
assumptions concerning the behavior of Ai(/a Q(s)ds) will provide oscillation cri-
teria for the system (1.1). We observe then, that Theorems 2.1(A) and 2.3 are
generalizations of the results (2.8) of Hartman and a partial generalization of the
result (2.7) of Wintner, respectively, and Theorems 2.1(C), (D) are partial gener-
alizations of the oscillation criteria results (2.5), (2.6) of Olech et al. The scalar
version of Theorem 2.1(B), namely that condition (2.4) and

(2.12) lim sup - /    (/   <7(s)fié¡]   dt
T-.00   T Ja    \Ja J

imply oscillation, although a fairly simple result, does not appear to be explicitly
stated in the literature. The scalar analogue of Theorem 2.2 also does not appear
to be stated explicitly elsewhere, although it is related to results of Kwong and
Zettl [15].

As was mentioned in §1, the systems analogue of the Fite-Wintner theorem has
been recently obtained [6]. That a complete analogue of the corresponding scalar
oscillation theorem employing only the behavior of Ai is not always available for
systems will be shown for the Wintner criterion (2.7) in §4.

3. Variational techniques. In this section, we turn our attention to the use
of variational principles for obtaining oscillation criteria for (1.1). We assume that
Q(t) is symmetric and locally integrable on [a, oo). For any subinterval [a,ß] of
[a, oo), define Ax(a,ß) to be

{17: [a,ß] - R"|r/(a) = n(ß) =0,nE AC[a,ß], n' E L2(a,ß)}.

The basic result we need here [12] is that (1.1) is oscillatory if and only if there is
a sequence of intervals [an, bn], with lim^—cx, an = oo, and a sequence of functions
<p„ E Ai(a„,bn), such that

(3.1) f "{\<p'n(t)\2 - rn(t)Q(t)<Pn(t)}dt < o.
Jan
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The idea then is to utilize conditions on the behavior of Q or its integral in order
to construct sequences fulfilling (3.1).

To illustrate this technique, we present three oscillation criteria and a comparison
theorem for oscillation. Theorem 3.1 is a generalization of a result of Moore [20] in
the scalar case and Theorem 3.3 is a generalization of a result of Olech et al. [21]
in the scalar case (see (2.8) and also Theorem 2.1(c) in §2). The comparison result,
Theorem 3.4, is an extension to systems of the "telescoping" principle of Kwong
and Zettl [16]. Theorem 3.2 has no scalar analogue.

THEOREM 3.1.   Suppose that

(3.2) lim sup Ai ( /  <2(s)ris) = oo.
t—oo \Ja J

Then (1.1) is oscillatory if either
(A) Xi(Q(t)) is bounded above on [a,oo),

or
(B) Xn(Q(t)) if bounded below on [a, oo).

THEOREM 3.2.   Let the entries of Q(t) be qij(t); i,j — l,...,n. Assume that
each q%3(t) is bounded on [a,oo) and qa = 0, i = I,...,n.

Then (1.1) is oscillatory if there exist i,j such that

(3.3) lim sup /   qij(s)ds = oo.
t—»oo    Ja

THEOREM 3.3. Suppose that for each positive integer m > a, there exists a
positive number em, and for each positive integer k, there exists a unit vector xmk E
R™ such that the set

Smk = 11 > m : x*mk ( /   Q(s) ds j xmk > k \

has measure at least em.  Then (1.1) is oscillatory.

In order to state the next result, we need to introduce classes of "telescop-
ing" transformations discussed for the scalar case in [16]. For any (extended)
real numbers a, ß with a < ß < oo and any natural number n, let D@(n) de-
note the set of piecewise continuous nxn matrix-valued functions on [a, ß) and
let S = U¿=i(aíi ß%) t>e a denumerable (finite or infinite) union of subintervals of
[a, ß) such that
(3.4) a < at < ßt < al+i < ß     for each i.
If Q E D^(n), then Ts(Q) is defined to be a piecewise continuous nxn matrix-
valued function Q, defined on some interval [a, A), which is obtained by "collapsing"
each interval (a¿,/3¿) to a point. Here,

N

A = Y>t - &_,),      if lim ßi = ß (ßo = a),
í—• t—»N
¿=1
N

= Y(at-ßl-i) + ß-l,      if lim A = / < ß.*—' i—*N
i=l

We refer to [16] for further details.
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THEOREM 3.4. Let S = U£Li(a«)Ä) ¿>e a denumerable union of subintervals
of [a, oo) satisfying (3.4) (with ai = a, ßjsi = oo). Assume that

(3.5) /     Q(t) dt is nonnegative definite for each i,
Jai

and suppose that

(3.6) Y" + Q(t)Y = 0,        tE[a,A),
is oscillatory, where Q = Ts(Q).  Then (1.1) is oscillatory.

4. Examples and counterexamples.
EXAMPLE 1. We wish to indicate here that in Theorem 2.1, parts (A), (B),

one cannot replace the average of Ai(/ Q(s)ds) or (Ai(/ Q(s)ds)2 by these ex-
pressions alone, and that one cannot replace "lim approx sup" by "lim sup" in
parts (C), (D). It suffices to consider a scalar counterexample. We choose v E
Cx[a,oo) n L2[a,oo) and define q(t) = v' — v2. Then y = exp(—/ v(s)ds) is a
nonoscillatory solution of y" + qy = 0 and we have

(4.1) /  q(s) ds = v(t) - v(a) - I  v2(s)ds.
J a J a

It is clear that we can choose v such that lim supt_>00 v(t) takes on any value M with
—oo < M < +00, liminfí_00 v(t) takes on any value m, —oo < m < M < +oo,
and such that liminf^—oo(l/T) f   v(s) ds > —oo.

EXAMPLE 2. The condition

(4.2) lim - j   \i ( j   Q(o)da\ ds = oo

is not by itself an oscillation criteria for (1.1) when n > 1. To see this, consider the
case where Q(t) is a 2 x 2 diagonal matrix for all t, say Q(t) — didLg{qi(t),q2(t)}.

Then (1.1) uncouples as two scalar equations

(4.3)* y'i+qi(t)Vi = 0;        i = 1,2.

If we take a — 0 and denote /0 ql(s) ds by Pi(t), we will obtain the required coun-
terexample if we can find qi(i),q2(t) so that (4.3)! and (4.3)2 are both nonoscilla-
tory, with

(4.4) p2(t) > 0,        t > 0,

1   /■'(4.5) lim-/   (pi(t))+dt = oo,    where (pi(t))+ = max(0,pi(i)).
t->°° t Jo

For then, on choosing

(t\ _ / *'    te suPPort (Pi(*))+i / t. _ í O,    í G support (pi(t)) + ,
\ 0,    otherwise, \ 1,    otherwise,

and defining x(t) = (ci(t),c2(t))*, we have

\i([ Q(t)ds) > x*(t) (Í Q(s)ds) x(t)

= C2(t)pi(t) + c2(t)p2(t) > (pi(t)) + .
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Thus (4.2) holds, but clearly (1.1) is nonoscillatory. The choice of q2(t) is straight-
forward, e.g. take q2(t) = 1/4(1 + f)2. To construct a suitable qi(t), we first give
an inductive definition of a suitable Riccati scalar variable zi(t). Define zi on [0,1]
by zi(0) = 0, zi(t) = 1, | < t < 1, so that zx is continuously differentiable and
monotone nondecreasing on [0,1]. Define ai to be f0 z\(s) ds, &i to be 4ai and £i
to be 1/861. Then a, > §, 61 > 2 and 2e, < ± < §. Let sm = ¿ZT=i lli- Extend
zi to [§1,52] by taking zi(t) = bi on [1 +ei,s2] and making zi continuously differ-
entiable and monotone nondecreasing on [0, s2]. Inductively, suppose that a¿,6¿,£¿
have been defined for 1 < i < m, with f>¿ = 4o¿, e¿ = l/86¿ < l/2(i + l), and 21 has
been defined as a continuously differentiable, monotone nondecreasing function on
[0,sm+i] such that Zi(t) = 6¿ on [st + £¿,s¿+1] and f0' z2(s)ds = a¿, 1 < i < m.
Then

% + Ï£m 3
Brn+i >am+ zl(s) ds = am+ b2mem > ^a2~m-

By the inductive hypothesis, we see that am+x > (3/2)mai > ^(3/2)m. If bm+i =
4am+i, em+i = l/8ftm+1, then em+i < (3/2)-m/16 < l/2(m + 2) (since (3/2)m =
(1 + l/2)m > 1 + m/2 > 2(m + 2)/16), and we extend zi to [sm+i,sm+2] so
that zi(t) = bm+i on [sm+i + em+i,sm+2] and is continuously differentiable and
monotone nondecreasing on [0, sm+2]. With this inductive definition of Zi on [0,00),
note that if t E [sm + em,sm + 2em], we have

/"* 1
(4.6) zi(t)-      z2(s)ds>brn-arn-2ernb2rn>-bm.

Define qi(t) to be z[(t) — z2(t). Then for t E [sk + £>, s/t + 2ek], we have

(4.7) Pi(t)= /   qi(s)ds>-bk.
Jo ¿

Thus if sm < t < sm+i, we have

1   /"' 1   m   1
(4-8) -J   (pi(s))+ds>-J2-bk-ek =

Since sm ~ logm, for sm < t < sm+i we have m ~ e* so that

(4.9) ^V(s))+ds.¿_.

Thus (4.5) holds, yet (4.3) 1 is nonoscillatory, and so the example is complete.
EXAMPLE  3.   Akiyama [1] conjectured that a condition weaker than (1.10),

namely

(4.10) lim   /   Xi(Q(s))ds = oo
t^ooj0

might suffice for oscillation of (1.1).
The previous example may be used to provide a counterexample to this conjec-

ture. For if we define qi(t),q2(t),Zi(t), etc. as in that example, then

(4.11) /  Xi(Q(s))ds> [ (qi(s))+ds=  f (z'x(s)-z2(s))+ds.
Jo Jo Jo

m
Ï6i
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Now on [sm, sm + em], we have zi(s) < bm, and so

271

rsm+£m —& mrsm+Em r

/ (z[(s)-z2(s))+ds>
J Sm J 3¡

= zi(sm + em) - zi(sm) - I
J s

z'i(s) — z2(s)) ds

Sm+£

zx(s)ds

>bm- bm-i - bmem > 4(aTO - ar
1,

4 h    -5h8m ~ 24 m'

and so
fSm+l c       '"
/ A^QO^ds^-^-oo

Jo Z4 fc=i
as m —> oo.

5. Proofs for §2. The proofs of Theorem 2.1 and Theorem 2.2 will make use
of the following lemma which is the systems analogue of the result of Hartman
mentioned in §2 (cf. (2.3), (2.4)).

LEMMA 5.1. Assume equation (1.1) is nonoscillatory on [a, +00). Then a
necessary and sufficient condition that

(5.1) r>Jt
lim   /    Z2(s)ds

T->oo  '

exists for any solution Z = — Y'Y   * of (2.2) where Y(t) is a prepared solution of
(1.1), is that

T   rt
(5.2) L(Q) = liminf ̂  [    f tr Q(s) dsdt > -00.

T—00   T Ja    Ja

PROOF.    Suppose first that the limit in (5.1) exists for some solution Z =
-Y'Y'1 of (2.2), where detF(í) ¿ 0, t > a, so that we have from (2.2)

/OO ftZ2(s)ds= /   tr Q(s)ds-C,

where C = - tr Z(a) - tr /a°° Z2(s) ds. Since

(5.4) ^ /    (trZ(t) - Í    trZ2(s)dsj   dt

<
T f    I (tr Z (t))2+( fC°trZ2(s) ds)   \ dt

and since trZ(i)2 < ntr Z2(t), we have (1/T) /J tr Z2(t) -^0asT-*co. Similarly,

(1/T) /0T(/t°° tr Z2(s) ds)2 dt -» 0 as T -> 00 so that (5.3) and (5.4) imply

(5.5) -/    \ f trQ(s)ds-C     dt -> 0     as T -» 00.
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Now

ï la     [la  tr g(S) dS ~ C    dt   -\ïla     ̂ a   ̂  ̂  ^ ~ ̂
by the Cauchy-Schwarz inequality and therefore it follows that

r-T r   rt

v 1/2

dt |

(5.6) lim
T—oo 1tS   /trQ(

±   Ja     LJa
s)ds dt = C     exists,

so that (5.2) holds.
Conversely, suppose (5.2) holds and let Z = — Y'Y-1, where Y(t) is a prepared

solution of (1.1) with detF(i) ^ 0, t > a. From (2.2) we have
-T ,      cT    rt

(5.7)
^ j   Z(t)dt + ^j   J Z2(s)dsdt

= -^(T-a)Z(a)-±j   j Q(s)dsdt

so that from (5.2) we have

(5.8)       -- /    tr Z(s)ds+ - /     /   tr Z2(s) dsdt < M,     for some M > 0.
-*   Ja -*   Ja     Ja

Since tr Z2(t) > 0, it follows that Iimt_oo / tr Z2(s) ds exists, finite or infinite.
Suppose that f tr Z2(s) ds —► +00 as t —► +00. Then

t   rt

TJa    Ja
tr Z2(s) ds dt —► 00     as T —> +00.

From (5.8), it follows that (1/T) fa tr Z(s) ds —► 00 as T —► 00, and so for large T
we have, again using (5.8),

(5.9) i í    i trZ2(s)dsdt<^ Í   tr Z(s) ds + M < - j    tr Z(s)ds.
*   Ja    Ja -'   Ja -*   Ja

Now by the Cauchy-Schwarz inequality we have
1/2       ,      _T N 1/2

<
1   f-J    tr Z(s)ds

so that (5.9) gives

I j\trZ(s))2 ds\       <Uj\rZ2(s)ds

(5.10) W    \ trZ2(s)dsdt\   <y!   trZ2(s)ds-

rT   rtIf we set H(T) = /a fa,tr Z2(s) dsdt, we have from (5.10) that

(5.11) H2(t)<4ntH'(t),        t>Tx,

and so
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Now an integration of (5.12) over [Ti,oo) gives

< +00,(5-13) ^ = ^%^H(fx)

a contradiction. Thus lim^oo / tr Z2(s) ds exists as a finite limit.
We see that this implies the existence of limt^^ fa Z2(s) ds, as follows: let

the (operator) norm of a matrix A be denoted by |A|. For a < s < t, define
A(s,t) by A(s,t) = f Z2(o)do. Then A(s,t) is a nonnegative definite matrix and
|A(s, £)|a = Ai(A(s,t)) < tr A(s, i) = / trZ2(o)do. This last integral converges to
zero as s, t —* oo and so we have |A(s, i)| —► 0 as s, t —► oo, i.e. fs Z2(o) do —> 0 as
s, t —► oo, yielding the existence of lim^oo / Z2(s)ds as asserted. This completes
the proof of the lemma.

PROOF OF THEOREM 2.1. (A) Assume L(Q) > -oo and that

r/X/' Q(s)ds I dt = +oo.lim sup
T->oo    i

Suppose there exists a prepared solution Y(t) of (1.1) which is not oscillatory.
Without loss of generality, we may suppose that det Y(t) ^ 0, t > a, so that from
(2.2) we have (with Z = -Y'Y'1)

(5.14) \i(Z(t) - Z(a)) = Xi (Í Q(s)ds+ j Z2(s)ds\.

By the convexity of Ai and the fact that J* Z2(s)ds > 0 (i.e., nonnegative
definite for t > a), we have from (5.14) that \i(Z(t) + Ai(—Z(a)) > Xi(f Q(s)ds)
and hence

(5.15) i j   Xi (Z(s)) ds + 7^\X(-Z(a)) > i J   Xx (J Q(s) ds^j dt

so that from hypothesis (A), there exists a sequence Tn —► oo with

1    fTn
(5.16) — /      Xi(Z(s))ds->+oo     asT„^oo.

-*n J a

Since Xi(Z(s))2 < Xi(Z2(s)) we have, by the Cauchy-Schwarz inequality

(5.17)
rfLn Ja

Xi(Z(s))ds <[^r [ n(Xi(Z(s)))2ds
\ ^n Ja i

-\T^Ja

1/2

X  1/2

^ Xi(Z2(s))ds) +00

as T„   —»   +oo.     But from Lemma 5.1,   since L(Q)   >   -co it follows that
fa   Xi(Z2(s)) ds < Ja°° tr Z2(s) ds < +co, so this contradiction proves part (A).

(B) Assume L(Q) > — oo and that

lim sup rfMi: Q(s) ds dt — +oo.
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As in part (A) above, we may assume Z(t) = -Y'Y"1 is a solution of (2.2) for
t > a and so by Lemma 5.1, we obtain

(5.18)
/

Z(t)+ /     Z'(s)ds + C -Í
•! a

Q(s)ds,

where C = -Z(a) - /a°° Z2(s) ds. Hence, we have

Ai (j Q(s)dsX\    = (xx

<Xi

(5.19) < tr { Z

Z2(s)ds + C

Z2(s)ds + C

Z(t)+ j    Z2(s)ds + C  J

,cx

Z2(s)\   + 2trC2 <4trZ2(t)

+ 4tr(f    Z2(s)ds)   +2trC2,

(since tr(A + B)2 < 2(tr A2 + trB2). Therefore, we get

(5.20) r¡: hi: Q(s)ds
i2

dt < ^J   tr^°° Z2(S)dS^j    dt

4[^)dt+^trC2.
If we set B(t) = /t°° Z2(s)ds, then trß(i) -► 0 and B(t) > 0 so that Ai(5(i)) -► 0
and hence Ai(ß2(i)) -+ 0. Therefore, trß2(i) -► 0 as t -+ oo. Thus, the first and
second integral on the right side of (5.20) tend to 0 as T —» +co and the last term is
bounded. However, condition (B) implies that the left side of (5.20) is not bounded
and this contradiction completes the proof of part (B).

(C) Assume L(Q) > — oo and limapproxsupT_^00 Ai(/o Q(s)ds) = +co. As in
part (B), we obtain equation (5.18) so that

(5.21) Xx(Z(t))+ f    Xi(Z2(s))ds>Xi(ÍQ(s)ds]+Xn(-C).

Since ¡t°° Xi(Z2(s))ds -► 0 as t -► oo, it follows that ¡t°°[Xi(Z(s))]2 ds — 0 as
t —> oo and Ai(/t°° Z2(s) ds) —► 0 as t —* oo. Now for any k > 1,

filt: Xi(      Q(s) ds) > k i - +co

so that if k > |An(-C)| + 1, then from (5.21)

(5.22) fiit: Xi(Z(t)) + Xi ( j     Z2(s) ds J > 11 = +oo.

Since Ai(/t°° Z2(s) ds) < ¿ if t > To, say, we see that

(5.23) fi{t: Xi(Z(t)) > i} = +oo.
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That is, fEk(Xi(Z(t)))2 dt = +00, where Ek = {t: Xi(Z(t)) > §}. This contradic-
tion proves part (C).

(D) Assume L(Q) > -00 and lim approx infT _><,<, Ai(/a Q(s)ds) = -00.  The
proof is similar to part (C). Since for any M > 0,

(5.24) fiit: A, if Q(s)ds) < -Ail =+00

and since

Xi(Z(t))<Xi (z(t)+ f°° Z2(s)ds) <Xi (Í Q(s)ds) +Xi(-C)

it follows that if M > 1 + \Xi(-C)\, we have fi{t: Xi(Z(t)) < -1} = +00 so that
f^°(Xi(Z(t)))2 dt = +00, a contradiction. This completes the proof of Theorem 2.1.

PROOF OF THEOREM 2.2. Assume L(Q) = -00 and

lim approxsup Xn (  /   Qds I = m > —00.
t—oo \Ja )

If the equation is nonoscillatory, then without loss of generality there is a solution
Y of (1.1) for which detF(i) ^ 0 on [a, 00). Then with Z = -Y'Y'1, t > a, we
get

(5.26) Z(t) = Z(a) + Í Z2(s) ds + Í Q(s) ds.
J a J a

By Lemma 5.1, since L(Q) = —00, it follows that tr/a Z2(s)ds —* +00 as t —»
+00 and hence Ai(/a Z2(s)ds) —► +00 as t —► +00. Since Ai (- / Q(s)ds) =
—Xn(fa Q(s)ds) we have from (5.26)

Xi (z(t) - f Q(s)ds)  < Xi(Z(t)) + Xi (- j Q(s)ds)
(5.27) \ Ja / \   Ja J

= Xi(Z(t))-Xn(j Q(s)ds).

Now for any e > 0, fi{t : Xn(fa Q(s) ds) > m - e} = +00. From (5.26) we have

- tr Í Z2(s) ds = - tr (z(i) - /" Q(s) ds - Z(o)]

= - tr (z(t) - /" Q(s) ds J - - tr Z(a)

(5.28) < Ai (z(t) - Í Q(s)ds) - -trZ(a)

<Xi(Z(t)) + Xi (- Í Q(s)ds) --trZ(a)

= Xi(Z(t)) - An (f Q(s) ds\ - i tr Z(a)
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and since (1/n) tr/J Z2(s) ds > (l/n) fa XX(Z2(s)) ds we have from (5.28)

(5.29) ̂ trZ(a) + ^ÍXi(Z2(s))ds<Xi(Z(t))-Xn(ÍQ(s)ds),        t > a.

Hence, we have that for any e > 0

(5.30) filt: -trZ(a) + - Í Xi(Z2(s))ds < Xi(Z(t)) - m + e\ =+oc

and since fa Xi(Z2(s))ds > Xi(fa Z2(s))ds) —► oo as t —► +co, we see that if E is
defined by

E=it: y Í Xi(Z2(s))ds < Xi(Z(t))\ n [a + I,oo)

then fi(E) =+oo. But now with P(t) = J* A, (Z2(s)) ds, we have P'(t) = Xx(Z2(t))
> Xx(Z(t))2 and so P'(t) > P2(t)/4n2, t E E, and now ¡EP'(t)/P2(t)dt >
p(E)/4n2 = +00, a contradiction since the integral on the left is < l/P(a + 1).
This completes the proof of Theorem 2.2.

Before proving Theorem 2.3, we require a lemma.

LEMMA 5.2. Letp(t) be locally bounded, nonnegative and measurable on [a, oo)
with p(t) not almost everywhere zero. Let q(t) be nonnegative and locally integrable
such that

(5.31) /   p(s)ds>q(t)l    /   p2(o)dods,      for almost all t > a.
Ja Ja   Ja

Then for all sufficiently large 5 > a, t~1^2q(t) E L2[a,oo).

PROOF. LetP(£) = / / p2(o)dods. Then P is continuously differentiable and
P(t) > 0 for t > a*, say. We have P'(t) = f p2(s) ds and by the Cauchy-Schwarz
inequality

(5.32) P'(t)>(t-a)-1(fp(s)ds)   >(t-a)~1q2(t)P2(t).

Since /~ P'(t)/P2(t) dt < oo for a > a*, the result follows.
PROOF OF THEOREM 2.3. The argument is similar to that given in the proof

of Theorem 3.1 of [4], so we content ourselves here with giving a sketch of the proof.
If (1.1) is nonoscillatory, we may, without loss of generality, find a prepared solution
Y with detF(i) ^ 0 on [a, oo). If Z = -Y'Y"1, then Z is symmetric and we have

(5.33) Z(t)= f Z2(s)ds= i Q(s)ds-rC,        t > a,
J a J a

for some constant matrix C.
It is known that for any continuous nxn symmetric matrix-valued function, a

continuously varying orthonormal system may be selected [22]. Consequently, we
may choose a locally integrable vector function x(t) with ||x(£)|| = 1 such that

(5.34) x*{t)(f Q(s)ds) x(t) = Xx ( Í Q(s)ds)
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(possible discontinuities in x(t) arise because of the coalescence of eigenvalues).
Let the eigenvalues of Z(t) be pi(i) > • ■ ■ > fin(t)- By the preceding remark, we

may select a system of orthonormal locally integrable eigenvectors e¿(í) such that

(5.35) Z(t)a(t) = fil(t)el(t);        e*(t)e3(t) = 6l3.

Let U(t) be the orthogonal matrix whose rows are the e¿(£), and let Ci(s,t) be the
projection of x(t) onto e¿(s). Let the components of U~1(t)c(a,t) be t>¿(í), and let
the components of (U~1(s) — U~1(t))c(a,t) be wz(s,t), i = 1,...,n. Then if we
denote the left-hand side of (5.33) by $(£), we have (see [4])

(5.36) Xi(f Q(s)ds)-rx*(t)Cx(t)=x*(t)^(t)x(t)

n rt    n

= ^(it(t)v2(t)- /   J2fi2(s)(vi(t)+wl(s,t))2ds.
i=l Ja 1=1

The arguments given in [4] show that hypothesis (2.7) allows us to find a unit vector
x(t), functions fitj(t); i = 1,... ,n, j = 1,... , m, and 6 > 0 such that

lXi(ja Q(s)d8^-2\\C\\<x*(tMt)x(t)
(5.37) . t

^^[ßvW-ö      ßi] (s) ds

Hypothesis (A) and (5.37) imply that there exists ti > a such that

(5.38) í J2 lßi3(s) - 6 Í ßK^doj ds>0,        t>h.

If fiij = 0 a.e. for t > a, let qij(t) — 0; otherwise define q~ij(t) by
rt rt      rS

(5.39) /   \ßij(s)\ds = (jij(t)       /   Ip^^q'ctct's.
Ja Ja   Ja

By Lemma 5.2, each qij has the property that t~l/2q~ij(t) E L2[a, oo) if a~ > ¿i
is sufficiently large, and so q(t) = ^Zi%jqi3(t) E L2[a~, oo), if o is sufficiently large.
However, (5.38) implies that

(q(t) - 6)^2        /   ßi3(o)dods > 0,        t>ä,
i,j Ja Jo-

and so q(t) > 6 for t > a, contradicting the square-integrability of t~ll2q(t). This
proves the theorem.

6. Proofs for §3.
PROOF OF THEOREM 3.1. Choose any sequence ak> a with lim^oo ak — oo.

We have

Xi(f  Q(s)ds) >Xi (f Q(s)ds) -Xi ([akQ(s)ds\
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rtand so, by (3.2), limsupj^^ Xi(fa  Q(s) ds) = oo. Therefore we may choose bk >
ük + 2 and xk E R" with ||a;fc|| = 1, so that

(6.1) xlUkQ(s)ds\xk>k,        fc = l,2,....

Suppose that condition (A) holds. Then there exists M such that Xi(Q(t)) < M,
t > a. Define <pk E Ai(ak,bk) as follows:

(t - ük)Xk, ük < t < ük + 1,

(6.2) <Pk(t)=\xk, ak + l<t<bk-l,
(-t + bk)xk,        bk-l<t<bk.

We have fbak \ip'k(t)\2 dt = 2, and
(6.3)

f ' vl(t)Q(t)Mt) dt=  f xlQ(t)xk dt- f '     [1 - (i - ak)2]x*kQ(t)xk
Jak Ja>k Jak

- fk  [l-(bk- t)2]xlQ(t)xk dt>k- \m.
Jbk-1 3

dt

Thus

f k{\<p'k(t)\2 - vt(t)Q(t)<pk(t)}dt <2 + ^M-k<0
Jak á

for k sufficiently large. It follows that (1.1) is oscillatory.
If condition (B) holds, we have Xn(Q(t)) > —M, t > a, and we define <pk E

Ai(ak - 1A + 1) by
' (t + l-ak)xk, ak-l<t<ak,

(6.4) <pk(t) = <  xk, ak <t < bk,
l (-t + bk + l)xk,        bk < t <bk + l.

Again fah_x \(p'k(t)\2dt — 2, and we have

(6.5)

f     <pl(t)Q(t)Mt)dt= [ '    <pl(t)Q(t)pk(t)dt
Jak — 1 J Q-k — 1

+ ( "     <pi(t)Q(t)Mt) dt+ f ' <p*k(t)Q(t)<pk(t) dt
Jbk Jak

çbk çak

=   /     x*kQ(t)xkdt+ (t + l-ak)2x*kQ(t)xkdt
J a^ J ak — 1

rbk + l
+ /        (bk + l-t)2x*kQ(t)xkdt

Jbk

{rak rbk + l )

/       (t + l- ak)2 dt+ (bk + l- t)2 \ dt
Jak-1 Jbk J

= k- -M3
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■'bl-

and so

MWI2 - <Pl(t)Q(t)<pk(t)}dt < 2 + \m - k < 0
lbk á

for k sufficiently large, and again we conclude that (1.1) is oscillatory.
PROOF OF THEOREM 3.2. Applying the techniques of the previous theorem

to the scalar equation

(6.6) y"(t)+qi3(t)y(t) = 0

there exist intervals [am,bm] with limm_00am = oo and a scalar function <pm E
Ai(am,bm) (with n — 1) such that

rbm

(6-7) /     {ym(t)\2-ql3(t)\oom(t)\2}dt<0.
Jam

Define ipm E Ai(am,bm) by

rpm(t) = col(0,..., <pm(t), 0,..., fm(t), • • •, 0)

where the only nonzero entries are the ¿th and jth. Then
rbm fbm

/       {Wrn(t)\2-rm{t)Q(Wm(t)}dt = 2 {\<p'm(t)\2-qij(t)\<Pm(t)\2}dt<0
Jam Jam

implying oscillation for (1.1). A similar argument was used in [9].
PROOF OF THEOREM 3.3. Let m > a + 1 be a positive integer. Without loss

of generality, we may assume that 0 < em < 1. Let

(6.8) max       \\Q(t)\\ = am
m—£m/2<t<m

and choose the positive integer k = km so that

(6.9) k>2+±ame2m.

Let xmk be the unit vector given by the hypothesis of the theorem. Since fi(Smk) >
em, we may find a finite collection of closed intervals Ij = [a.,-,6,-], 1 < j < r, where
m < ai < bi < ■ ■ ■ < ar < br, such that

(J Ij C Smk     and     fi    |J I3 \ = J26J ^ 2£m'
3 = 1 \] = 1      J        3 = 1

where Sj = bj — Oj. Since fmQ(s)ds is a continuous function of t, we may, by
maximizing the lengths of the intervals, assume that

(6.10) x*mk (j ' Q(s) ds\ xmk = k,        1 < j < r,

(6.11) x*mk Í j 3 Q(s) ds) xmk = k,        l<j<r-l.

Furthermore, by discarding intervals if necessary, and shrinking the final interval,
we may suppose that

(6.12) ¿Zè3 = \£m-
3 = 1 ¿
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Let oo and 60 be defined to be m, ë0 to be 0, and let Aj = J2i=o fa, j = 0,l,...,r.
We define tpm E Ai(m — |em, br) as follows:

(6.13) Pm(t) = Pm(t)Xmk,

where

!t + \em — m, m - \em <t<m,
±em-Aj, bj<t<a3 + i;        0 < j < r - 1,
|e:m - Aj-i +a3 -t, a3 < t < bj+i;        0 < j < r.

We have

(6.15) [ \<Pm(t)\2 dt = \em + Ar = em
Jm-em/2 ¿

and
rbr

/ ipm(t)Q(t)<pm(t)dt
Jm-em/2

(6-16) /   rbr r-1      a] + 1      r-1      b\

= \        +E/    +£/  ]<p'm(t)Q(t)<pm(t)dt.
\Jm-Em/2      3=oJbJ j=lJai   )

By (6.10) and (6.11),
rm r-Tfl / -i \   2

/ <Pm(t)Q(t)<pm(t) dt >-am \t+-em-m\   dt
Jm-em/2 Jm-em/2 \        ¿ /(6 17)      Jm-em/2 Jm-em/2

l_ 3

/ai i rai
íP*m(t)Q(t)íPrn(t) dt = -£m   /        X*mkQ(t)xmkdt

2

by (6.10).
For 1 < i < r — 1,

/<*i + i /l \   raj+i<pm(t)Q(t)<pm(t) dt = í -em - A3] I        xmkQ(t)xmk dt

= (-em-A3)        xmkQ(t)xmk dt -        xmkQ(t)xmkdt = 0

by (6.10) and (6.11).
Noting that for 1 < j < r, pm(t) > 0, and p'm(t) = -1 on [a¡,bj], we have, on

integrating by parts,

(6.20) / ' <p*m(t)Q{t)<pm(t)dt = f ' p2m(t)xmkQ(t)xmkdt
Ja, Ja,

= p2m(b3) f ' xmkQ(t)xmk dt+ /    2Pm(t) I j   xmkQ(s)xmk ds J dt.
Ja, Ja, \Ja, J
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By (6.10) and (6.11),
rb, f   rbj /-a A

(6 21) /     x*mkQit)xmkdt= 1/     -/      \xmkQ(t)xmkdt

> 0     (with equality if 1 < j < r — I).

Since t E [aj, b3] => t E Smk, using (6.10) we find that for t E [aj,bj],

(6.22) /   xmkQ(s)xmk ds= I /   - /     ) xmkQ(s)xmk ds > 0.
Ja, \Jm      Jm   J

From (6.20)-(6.22), we have

(6.23) /    pm(t)Q(t)pm(t)dt>0,       j = l,...,r.
J a3

From (6.15)-(6.19) and (6.23), we see that

(6.24) ['        {\¿m(t)\2-<pm(t)Q(t)pm(t)}dt<em + ^amem-\emk<0,
Jm-em/2 ¿4 I

by (6.9). Since m — \em > m — \ and m is an arbitrary positive integer exceeding
a, the theorem follows.

PROOF OF THEOREM 3.4.  Since (3.6) is oscillatory, there exist subintervals
[àm, bm] of [o, A) with limTO^oo am = A, and <pm E (am, bm) such that

(6.25) [m{\<p'm(t)\2-em(t)Q(t)pm(t)}dt<0,
Jam

m = 1,2,....

Choose am,bm > a so that if Qm is the restriction of Q to [am,bm) and Qm is
the restriction of Q to [äm,bm), and if Sm = S n[am,bm), then Qm = TSm(Qm).
Then limm_00 am = oo. Let ipm by defined on [am,bm) so that ^>m is continuous
and ipm = TSm(<Pm). Extend ipm to [am,bm] by defining tpm(bm) = 0. Then
tpm 6 Ai(am,èm) and ipm is constant on each component interval of [am, bm)\Sm.
We have

/•i>m

(6.26) /     {\<p'm(t)\2 - pm(t)Q(t)<pm(t)}dt
J am

= [ m{Wm(t)\2-èm(t)Q(t)ï>m(t)}dt-Y, f ' <P*m(t)Q(t)<pm(t)dt
Jam J Qti

where the summation is over indices i for which (at,ßi) C [am:bm). By (6.25)
and the nonnegative definiteness condition (3.5), the right-hand side of (6.26) is
negative. Thus (1.1) is oscillatory.
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