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RICCI AND SCALAR CURVATURES OF SUBMANIFOLDS

OF A CONFORMAL SASAKIAN SPACE FORM

Esmaeil Abedi, Reyhane Bahrami Ziabari, and Mukut Mani Tripathi

Abstract. We introduce a conformal Sasakian manifold and we find the
inequality involving Ricci curvature and the squared mean curvature for
semi-invariant, almost semi-invariant, θ-slant, invariant and anti-invariant
submanifolds tangent to the Reeb vector field and the equality cases are also
discussed. Also the inequality involving scalar curvature and the squared
mean curvature of some submanifolds of a conformal Sasakian space form are
obtained.

1. Introduction

According to B.-Y. Chen [5], to establish simple relationship between the main
intrinsic invariants and the main extrinsic invariants of a Riemannian submanifold
is one of the fundamental problems in the submanifold theory. For a submanifold
of a Riemannian manifold, the main intrinsic invariants include Ricci, scalar and
k-Ricci curvature, while the most important extrinsic invariants are the shape
operator and the squared mean curvature. In [6], B.Y.Chen found a relationship
between the sectional curvature function and the shape operator for submanifolds
in real space forms. In [7], he also gave a sharp inequality for a submanifold in a
real space form involving the Ricci curvature and the squared mean curvature as
follow

Theorem 1.1. Let M be an m-dimensional submanifold of a real space form
Rn(c). Then the following statements are true.

(a) For a unit vector X ∈ TpM , we have

(1.1) ‖H‖2 ≥ 4
m2 {Ric(X)− (m− 1)c} .

(b) If H(p) = 0, then a unit vector X ∈ TpM satisfies the equality case of (1.1)
if and only if X belongs to the relative null space Np.
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(c) The equality case of (1.1) holds for all unit vectors X ∈ TpM if and only if
either p is a totally geodesic point or m = 2 and p is a totally umbilical point.

Following B.-Y. Chen, many researchers, established same kind of inequalities
for different kind of submanifolds in various ambient spaces, for example see [9],
[10], [11], [12], [13].

On the other hand, I. Vaisman [16] introduced the conformal changes of almost
metric structures as follows. Let M be a (2n+1)-dimensional differentiable manifold
endowed with an almost contact metric structure (ϕ, ξ, η, g). A conformal change
of the metric g leads to a metric which is no more compatible with the almost
contact structure (ϕ, ξ, η). This can be corrected by a convenient change of ξ and
η which implies rather strong restrictions. Using this definition, we introduce a
new type of almost contact metric structure (ϕ, ξ, η, g) on a (2n+ 1)-dimensional
manifold M which is said to be a conformal Sasakian structure if the structure
(ϕ, ξ, η, g) is conformal related to a Sasakian structure (ϕ̃, ξ̃, η̃, g̃).

Motivated by these circumstances, in this paper we study the submanifolds
tangent to the structure vector field (Reeb vector field) ξ in a conformal Sasakian
manifold of a conformally Sasakian space form. and establish a basic inequality
between the main intrinsic invariants including scalar curvature and Ricci curvature,
and their main extrinsic invariants, namely squared mean curvature of these
submanifolds.

The paper is organized as follows. In Section 2, we review the notion of Ricci
curvature, Sasakian space form and a brief account of submanifolds. In Section 3,
we give some basic results about conformal Sasakian manifolds. In Section 4, we
establish the inequality involving Ricci curvature and the squared mean curvature
for certain submanifolds of a conformal Sasakian space form, while Section 5 is
devoted to establish the inequality involving scalar curvature and the squared mean
curvature. The equality cases are also discussed.

2. Preliminaries

2.1. Ricci curvature. Let (M, g) be an m-dimensional Riemannian manifold and
∇ the Riemannian connection. The curvature tensor is a (1, 3)-tensor defined by
[14]

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z ,

on vector fields X, Y , Z ∈ TM . Using the metric g we can change this to a
(0, 4)-tensor as follows

R(X,Y, Z,W ) = g
(
R(X,Y )Z,W

)
.

Let p ∈M , the (0, 2)-tensor of Ricci is defined by

(2.1) Ric(X,Y ) = tr
(
Z 7→ R(Z,X)Y

)
,

for X, Y , Z ∈ TM . The Ricci curvature of X ∈ TM is given by

(2.2) Ric(X) = Ric(X,X) .
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The sectional curvature of a plane section spanned by the linearly independent
vectors {X,Y }, denoted by K(X,Y ), is given by

K(X,Y ) = R(X,Y, Y,X)
g(X,X)g(Y, Y )− g(X,Y )2 .

If {e1, . . . , em} be any orthonormal basis for TpM , then

Ric(X,Y ) =
m∑
i=1

g
(
R(ei, X)Y, ei

)
.

IfX ∈ TpM is a unit vector and we complete it to an orthonormal basis {X, e2, . . . , em}
for TpM , then

Ric(X,X) =
m∑
i=2

K(X, ei) .

The sectional curvature of a plane section spanned by orthonormal unit vectors ei
and ej at p ∈M , denoted Kij , is [10]

Kij = R(ei, ej , ej , ei) .

For a fixed i ∈ {1, . . . ,m}, the Ricci curvature of ei, denoted Ric(ei), is given by

(2.3) Ric(ei) =
m∑
i6=j

Kij ,

Moreover, the scalar curvature is the trace of Ric and denoted by τ . τ depends
only on p ∈M and is therefore a function, τ : M → R and defined as follow

(2.4) τ(p) =
∑

1≤i<j≤m
Kij = 1

2

m∑
i=1

Ric(ei) .

From (2.3) and (2.4), we have

(2.5) Ric(e1) = τ(p)−
∑

2≤i<j≤m
Kij = τ(p)− 1

2
∑

2≤i 6=j≤m
Kij .

Let L be a k-plane section of TpM and X a unit vector in L. We choose an
orthonormal basis {e1, . . . , ek} of L such that e1 = X. The k-Ricci curvature
RicL(X) is defined by [7]

RicL(X) = K12 +K13 + · · ·+K1k .

Thus for each fixed ei, i ∈ {1, . . . , k} we get

RicL(ei) =
k∑
i6=j

Kij .
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2.2. Sasakian space form. Let (M̃, g) be an odd-dimensional Riemannian mani-
fold. Then M̃ is said to be an almost contact metric manifold [2] if there exist on
M̃ a tensor ϕ of type (1, 1), a vector field ξ (structure vector field), and a 1-form η
satisfying

ϕ2X = −X + η(X)ξ , g(X, ξ) = η(X),
g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )(2.6)

for any X, Y ∈ TM̃ . The 2-form Φ is called the fundamental 2-form in M̃ and the
manifold is said to be a contact metric manifold if Φ = dη.

The almost contact structure of M̃ is said to be normal if [ϕ,ϕ] + 2dη ⊗ ξ = 0,
where [ϕ,ϕ] is the Nijenhuis torsion of ϕ. A Sasakian manifold is a normal contact
metric manifold. It is easy to show that an almost contact metric manifold is a
Sasakian manifold if and only if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X ,

for any X, Y ∈ TM̃ .
A plane section π in TpM̃ is called a ϕ-section if it is spanned by X and ϕX,

where X is a unit tangent vector orthogonal to ξ. The sectional curvature of a
ϕ-section is called a ϕ-sectional curvature. A Sasakian manifold with constant
ϕ-sectional curvature c is said to be a Sasakian space form and is denoted by M̃(c).

The curvature tensor of M̃(c) of a Sasakian space form M̃(c) is given by [2]

R(X,Y )Z = c+ 3
4 {g(Y,Z)X − g(X,Z)Y }

− c− 1
4
{
η(Z) (η(Y )X − η(X)Y ) +

(
g(Y, Z)η(X)− g(X,Z)η(Y )

)
ξ

− g(ϕY,Z)ϕX + g(ϕX,Z)ϕY + 2g(ϕX, Y )ϕZ
}

for any tangent vector fields X, Y , Z on M̃(c).

2.3. Submanifolds. Let (M, g) be a submanifold of a Riemannian manifold (M̃, g̃)
where g is the induced metric on M . Then, the Gauss and Weingarten formulas
are given respectively by [10]

∇̃XY = ∇XY + h(X,Y ) and ∇̃XV = −AVX +∇⊥XV ,

for any X, Y ∈ TM and V ∈ T⊥M , where ∇̃, ∇ and ∇⊥ are respectively the
Riemannian, induced Riemannian and induced normal connections in M̃ , M and
the normal bundle T⊥M of M , respectively, and h is the second fundamental form
of M related to the shape operator A by g(AVX,Y ) = g(h(X,Y ), V ).

The equation of Gauss is given by

R(X,Y, Z,W ) = R̃(X,Y, Z,W ) + g̃
(
h(X,W ), h(Y, Z)

)
− g̃(h(X,Z), h(Y,W )) ,(2.7)
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for all X, Y , Z, W ∈ TM , where R̃ and R are the curvature tensors of M̃ and M ,
respectively.

The mean curvature vector H is given by H = trace(h)
m , where m = dimM . The

submanifold M is totally geodesic in M̃ if h = 0, minimal if H = 0, and totally
umbilical if h(X,Y ) = g(X,Y )H for all X, Y ∈ TM .

The relative null space of M at p is defined by [7]
Np = {X ∈ TpM : h(X,Y ) = 0, for all Y ∈ TpM} ,

which is also known as the kernel of the second fundamental form at p [8].
For any X ∈ TM , we write ϕX = PX + FX, where PX (resp. FX) is

the tangential component (resp. normal component) of ϕX. Similarly, for any
V ∈ T⊥M , we have ϕV = tV + fV , where tV (resp. fV ) is the tangential
component (resp. normal component) of ϕV .

The submanifold M is said to be invariant (anti-invariant) if ϕX ∈ TM , for any
X ∈ TM( ϕX ∈ T⊥M , for any X ∈ TM).

Theorem 2.1 ([10]). Let (M, g) be an m-dimensional submanifold of a Riemannian
manifold M̃ . Then the following statements are true:

(i) For any unit vector X ∈ TpM we have

(2.8) Ric(X) ≤ m2

4 ‖H‖
2 + R̃ic(TpM)(X) ,

where R̃ic(TpM)(X) is the m-Ricci curvature of TpM at X ∈ TpM with
respect to the ambient manifold M̃ .

(ii) The equality case of (2.8) is satisfied by a unit vector X ∈ TpM if and
only if

h(X,X) = m

2 H(p), h(X,Y ) = 0,

for all Y ∈ TpM such that g(X,Y ) = 0.
(iii) The equality case of (2.8) holds for all unit vectors X ∈ TpM if and only

if either (1) p is a totally geodesic point or (2) m = 2 and p is a totally
umbilical point.

2.4. Almost semi-invariant submanifold. We recall the definition of an almost
semi-invariant submanifold as follows (cf. [11], [15]).

A submanifold M of an almost contact metric manifold M̃ with ξ ∈ TM is said
to be an almost semi-invariant submanifold of M̃ if there are k distinct functions
λ1, . . . , λk defined on M with values in the open interval (0, 1) such that TM is
decomposed as P -invariant mutually orthogonal differentiable distributions given
by

TM = D1 ⊕D0 ⊕Dλ1 ⊕ · · · ⊕ Dλk ⊕ {ξ} ,
where D1

p = ker(F |{ξ}⊥)p, D0
p = ker

(
P |{ξ}⊥

)
p

and

Dλip = ker
(
P 2|{ξ}⊥ + λ2

i (p)I
)
p
, i ∈ {1, . . . , k} .
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If in addition, each λi is constant, then M is called an almost semi-invariant
submanifold.

An almost semi-invariant submanifold becomes
(a) A semi-invariant submanifold [1] if k = 0.
(b) An invariant submanifold [1] if k = 0 and D0 = 0.
(c) An anti-invariant submanifold [1] if k = 0 and D1 = 0.
(d) A θ-slant submanifold [4] if D1 = 0 = D0, k = 1 and λ1 is constant. In this

case, we have TM = Dλ1 ⊕ {ξ} and the slant angle θ is given by λ1 = cos θ. A
slant submanifold which is not invariant nor anti-invariant is called a proper θ-slant
submanifold.

If M is an almost semi-invariant submanifold of an almost contact metric
manifold M̃ , then for X ∈ TM we may write [11]

X = U1X + U0X + Uλ1X + · · ·+ UλkX + η(X)ξ,

where U1, U0, Uλ1 , . . . , Uλk are orthogonal projection operators of TM on D1, D0,
Dλ1 , . . . ,Dλk respectively. Then, it follows that

(2.9) ‖X‖2 = ‖U1X‖2 + ‖U0X‖2 + ‖Uλ1X‖2 + · · ·+ ‖UλkX‖2 + η(X)2.

We also have

P 2X = −U1X − λ2
1(Uλ1X)− · · · − λ2

1(UλkX) ,

which implies that

(2.10) ‖PX‖2 = g̃(PX,PX) = −g̃(P 2X,X) =
∑

λ∈{1,λ1,...,λk}

λ2‖UλX‖2 .

In particular, if M is a m-dimensional θ-slant submanifold, then λ2
1 = cos2 θ

and we have

(2.11) ‖PX‖2 = cos2 θ‖Uλ1X‖2 = cos2 θ
(
‖X‖2 − η(X)2) .

3. Conformal Sasakian manifolds

A (2n+1)-dimensional Riemannian manifold M endowed with the almost contact
metric structure (ϕ, η, ξ, g) is called a conformal Sasakian manifold if for a C∞

function f : M → R, there are

g̃ = exp(f)g, ξ̃ =
(

exp (−f)
) 1

2 ξ, η̃ =
(

exp (f)
) 1

2 η, ϕ̃ = ϕ ,

such that (M, ϕ̃, η̃, ξ̃, g̃) is a Sasakian manifold.

Example 3.1. Let R2n+1 be the (2n+ 1)-dimensional Euclidean space endowed
with the almost contact metric structure (ϕ, ξ, η, g) defined by

ϕ
( n∑
i=1

(
Xi

∂

∂xi
+ Yi

∂

∂yi

)
+ Z

∂

∂z

)
=

n∑
i=1

(
Yi

∂

∂xi
−Xi

) ∂

∂yi
+

n∑
i=1

Yiy
i ∂

∂z
,
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g = exp(−f)
{
η ⊗ η + 1

4

n∑
i=1

(dxi)2 + (dyi)2
}
,

η =
(

exp(−f)
) 1

2
{1

2

(
dz −

n∑
i=1

yidxi
)}

,

ξ =
(

exp(f)
) 1

2
{

2 ∂
∂z

}
,

where

f =
n∑
i=1

(xi)2 + (yi)2 + z2 .

It is easy to show that (R2n+1, ϕ, ξ, η, g) is not a Sasakian manifold, but R2n+1

with the structure (ϕ̃, ξ̃, η̃, g̃) given by

ϕ̃ = ϕ ,

g̃ = η ⊗ η + 1
4

n∑
i=1

{
(dxi)2 + (dyi)2} ,

η̃ = 1
2

(
dz −

n∑
i=1

yidxi
)
,

ξ̃ = 2 ∂
∂z

,

is a Sasakian space form with the ϕ̃-sectional curvature equal to −3.

Let ∇̃ and ∇ are the Riemannian connections on M with respect to the metrics g̃
and g, respectively. Using Koszul formula, we derive the following relation between
the connections ∇̃ and ∇

(3.1) ∇̃XY = ∇XY + 1
2
{
ω(X)Y + ω(Y )X − g(X,Y )ω]

}
, ∀X, Y ∈ TM ,

where ω(X) = X(f) and g(ω], X) = ω(X).
By using (3.1), we get the relation between the curvature tensors of (M,ϕ, η, ξ, g)

and (M, ϕ̃, η̃, ξ̃, g̃) as follow

exp(−f)R̃(X,Y, Z,W ) = R(X,Y, Z,W ) + 1
2
{
B(X,Z)g(Y,W )

−B(Y,Z)g(X,W ) +B(Y,W )g(X,Z)

−B(X,W )g(Y,Z)
}

+ 1
4‖ω

]‖2{g(X,Z)g(Y,W )

− g(Y,Z)g(X,W )
}
,(3.2)

for all X, Y , Z, W ∈ TM , such that B = ∇ω − 1
2ω ⊗ ω and R and R̃ are the

curvature tensors of (M,ϕ, η, ξ, g) and (M, ϕ̃, η̃, ξ̃, g̃), respectively.
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From (3.1) it follows that

∇Xξ = −
(

exp(f)
) 1

2ϕX + 1
2{η(X)ω] − ω(ξ)X} ,

(∇Xϕ)Y =
(

exp(f)
) 1

2 {g(X,Y )ξ − η(Y )X}

− 1
2
{
ω(ϕY )X − ω(Y )ϕX + g(X,Y )ϕω] − g(X,ϕY )ω]

}
.

Now, let (M, g) be an m-dimensional submanifold of a (2n + 1)-dimensional
conformal Sasakian manifold (M, g), where g is the induced metric on M . Let
{e1, . . . , em} and {em+1, . . . , e2n+1} be the orthonormal bases of the tangent space
TpM and the normal space T⊥p M , respectively. We put

hrij = g(h(ei, ej), er) , i, j ∈ {1, . . . ,m}, r ∈ {m+ 1, . . . , 2n+ 1} ,

‖h‖2 =
m∑

i,j=1
g
(
h(ei, ej), h(ei, ej)

)
.

Let Kij and Kij denote the sectional curvature of the plane section spanned by
ei and ej at p in the submanifold M and in the ambient manifold M , respectively.
Thus, Kij and Kij are the intrinsic and extrinsic sectional curvature of the equation
(2.7),we have [10]

(3.3) Kij = Kij +
2n+1∑
r=m+1

(
hriih

r
jj − (hrij)2) .

From (3.3) it follows that

(3.4) 2τ(p) = 2τ(TpM) +m2‖H‖2 − ‖h‖2 ,

where

τ(TpM) =
∑

1≤i<j≤m
Kij ,

denote the scalar curvature of the m-plane section TpM in the ambient manifold
M . Thus, τ(p) and τ(TpM) are the intrinsic and extrinsic scalar curvature of the
submanifold at p, respectively.

A (2n + 1)-dimensional conformal Sasakian manifold with constant sectional
curvature c, denoted M(c), is called a conformal Sasakian space form, and from
(3.2), we get its curvature tensor as follow

R(X,Y, Z,W ) = exp(f)
{c+ 3

4
(
g(Y,Z)g(X,W )− g(X,Z)g(Y,W )

)
+ c− 1

4
(
η(X)η(Z)g(Y,W )− η(Y )η(Z)g(X,W )
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+ g(X,Z)g(ξ,W )η(Y )− g(Y, Z)g(ξ,W )η(X)
+ g(ϕY,Z)g(ϕX,W )− g(ϕX,Z)g(ϕY,W ))

− 2g(ϕX, Y )g(ϕZ,W )
)}
− 1

2
{
B(X,Z)g(Y,W )

−B(Y, Z)g(X,W ) +B(Y,W )g(X,Z)−B(X,W )g(Y,Z)
}

− 1
4‖ω

]‖2{g(X,Z)g(Y,W )− g(Y, Z)g(X,W )
}
,(3.5)

for all X,Y, Z,W tangent to M(c).

Theorem 3.2. Let M be a submanifold of a conformal Sasakian space form M(c)
such that ω], ξ ∈ TM . If p ∈ M is a totally umbilical point, then p is a totally
geodesic point and hence ϕ(TpM) ⊆ TpM .

Proof. For a conformal Sasakian space form we have

(3.6) ∇Xξ = −
(

exp(f)
) 1

2ϕX − 1
2
{
ω(ξ)X − η(X)ω]

}
.

By the Gauss formula for the submanifold M of a conformal Sasakian space form
M(c) such that ω], ξ ∈ TM , and comparing the tangential and the normal part of
(3.6), we get

∇Xξ = −
(

exp(f)
) 1

2PX − 1
2
(
ω(ξ)X − η(X)ω]

)
(3.7)

h(X, ξ) = −
(

exp(f)
) 1

2FX .

Now, let p ∈M be a totally umbilical point. Then, we get

H = g(ξ, ξ)H = h(ξ, ξ) = −
(

exp(f)
) 1

2Fξ = 0 ,
which shows that h(X,Y ) = 0 for all X, Y ∈ TpM , that p is a totally geodesic
point. Since p is a totally geodesic point, therefore we have

h(X, ξ) = −
(

exp(f)
) 1

2FX = 0 ,
for all X ∈ TpM , which shows that ϕ(TpM) ⊆ TpM . �

Corollary 3.3. A totally umbilical submanifold M of a conformal Sasakian space
form M(c) such that ω], ξ ∈ TM , is a totally geodesic invariant submanifold.

4. Ricci curvature

Theorem 4.1. Let M be an m-dimensional (m ≥ 2) submanifold of a conformal
Sasakian space form M(c), tangent to the structure vector field ξ. Then,

Ric(X) ≤ 1
4
{
m2‖H‖2 + exp(f)

{
(m− 1)(c+ 3) + (c− 1)(3‖PX‖2

+ (2−m)η(X)2 − 1)
}

+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (m− 1)‖ω]‖2}
,(4.1)
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for any unit vector X ∈ TpM .

Proof. From (3.3), we get

m2‖H‖2

4 = τ(p)− τ(TpM) + 1
4

2n+1∑
r=m+1

(hr11 − hr22 − · · · − hrmm)2

+
2n+1∑
r=m+1

m∑
j=2

(hr1j)2 −
∑

2≤i<j≤m
(Kij −Kij) .(4.2)

From (2.5), (4.2) yields to

m2‖H‖2

4 = Ric(e1)− Ric(e1) + 1
4

2n+1∑
r=m+1

(hr11 − hr22 − · · · − hrmm)2

+
2n+1∑
r=m+1

m∑
j=2

(hr1j)2 .(4.3)

In view of (3.5), we have

Ric(e1) = 1
4
{

exp(f)
{

(m− 1)(c+ 3) + (c− 1)(3‖PX‖2

+ (2−m)(η(X))2 − 1)
}
− 2
{

(2−m)((∇Xω)X

− 1
2ω(X)2)− trB

}
+ (m− 1)‖ω]‖2} ,(4.4)

Now by substituting (4.4) in (4.3), we obtain
m2‖H‖2

4 = Ric(e1)− 1
4
{

exp(f)
{

(m− 1)(c+ 3) + (c− 1)(3‖PX‖2

+ (2−m)η(X)2 − 1)
}

+ 2
{

(2−m)
(
(∇Xω)X − 1

2ω(X)2)
− trB

}
− (m− 1)‖ω]‖2}+ 1

4

2n+1∑
r=m+1

(hr11 − hr22 − · · · − hrmm)2

+
2n+1∑
r=m+1

m∑
j=2

(hr1j)2 .(4.5)

Since, we can choose e1 = X as any unit vector in TpM . Therefore the above
equation implies (4.1). �

Theorem 4.2. Let M be an m-dimensional (m ≥ 2) submanifold of a conformal
Sasakian space form M(c), tangent to the structure vector field ξ. Then,

(i) A unit vector X ∈ TpM satisfies the equality case of (4.1) if and only if
either m = 2 or ω] be orthogonal to X and

(4.6)
h(X,X) = m

2 H(p) ,

h(X,Y ) = 0 , ∀Y ∈ {X}⊥.
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(ii) If M is minimal at p, then a unit vector X ∈ TpM satisfies the equality
case of (4.1) if and only if X lies in the relative null space of M and either
m = 2 or ω] be orthogonal to X.

Proof. Assuming X = e1, from (4.5) the equality case of (4.1) is valid if and only
if the following relations be satisfied.

(a) hr1j = 0, ∀j = 2, . . . ,m, r = m+ 1, . . . , 2n+ 1,(4.7)

(b) hr11 =
m∑
i=2

hrii, ∀r = m+ 1, . . . , 2n+ 1,(4.8)

(c) (2−m)ω(X)2 = 0 .(4.9)
Satisfying (a), (b) and (c) is equivalent to statement (i).

For proving the statement (ii) we note that minimality at p means H(p) = 0.
So, in view of (4.7), (4.8) and (4.9), we conclude that X lies in the relative null
space of M and either m = 2 or ω] be orthogonal to X. �

Corollary 4.3. Let M be an m-dimensional (m ≥ 2) submanifold of a conformal
Sasakian space form M(c). For a unit vector X ∈ TpM , any three of the following
four statements imply the remaining one.

(i) ω(X) = 0 ( means df in the direction of X is zero).

(ii) The mean curvature vector H(p) vanishes.

(iii) The unit vector X belongs to the relative null space Np.
(iv) The unit vector X satisfies the following equality case

4 Ric(X) = m2‖H‖2 + exp(f)
{

(m− 1)(c+ 3) + (c− 1)(3‖PX‖2

+ (2−m)η(X)2 − 1)
}

+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (m− 1)‖ω]‖2}
.

Theorem 4.4. Let M be an m-dimensional (m ≥ 2) submanifold of a conformal
Sasakian space form M(c), tangent to the structure vector field ξ.Then, the equality
case of (4.1) holds for all unit vectors X ∈ TpM if and only if either p is a totally
geodesic point and ω] ∈ T⊥p M or m = 2 and p is a totally geodesic point and in
this case if ω] ∈ TpM then ϕ(TpM) ⊆ TpM .

Proof. Assume that the equality case of (4.1) is satisfied for all unit vectors
X ∈ TpM , in view of (4.7), (4.8) and (4.9), we have

hrij = 0 , i 6= j, r = m+ 2, . . . , 2n+ 1 ,(4.10)

2hrii = hr11 + hr22 + · · ·+ hrmm, i = 1, . . . ,m, r = m+ 2, . . . , 2n+ 1,(4.11)

(2−m)ω(ei)2 = 0, i = 1, . . . ,m.(4.12)

From (4.12), we have either m = 2 or ω] be in T⊥p M .
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Assume that m 6= 2, so ω] be in T⊥p M and from (4.11), we get
2hr11 = 2hr22 = · · · = 2hrmm = hr11 + hr22 + · · ·+ hrmm,

which yields to
(m− 2)(hr11 + hr22 + · · ·+ hrmm) = 0.

Thus, hr11 +hr22 + · · ·+hrmm = 0. Then, in view of (4.10) and (4.11), we get hrij = 0
for any i, j = 1, . . . ,m and r = m+ 2, . . . , 2n+ 1, that is, p is a totally geodesic
point.

Now, assume that m = 2 and ω] ∈ TPM , then from (4.11), we have
2hr11 = 2hr22 = (hr11 + hr22) ,

which shows that p is a totally umbilical point. Now Theorem 3.2 implies that p
is a totally geodesic point and ϕ(TpM) ⊆ TpM . The proof of the converse part is
straightforward. �

Corollary 4.5. Every m-dimensional (m > 2) totally geodesic submanifold M of
a conformal Sasakian space form M(c), tangent to the structure vector field ξ such
that ω] ∈ T⊥p M , satisfies

4 Ric(X) = m2‖H‖2 + exp(f)
{

(m− 1)(c+ 3) + (c− 1)
(
3‖PX‖2

+ (2−m)η(X)2 − 1
)}

+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (m− 1)‖ω]‖2
.

Now, we need the following lemma

Lemma 4.6. Let M be an m-dimensional invariant submanifold of a Conformal
Sasakian manifold M , tangent to the structure vector field ξ. Then M is minimal
if and only if ω] is tangent to M .

Proof. From (3.1) and Gauss formula, we have

h(X,ϕY ) = ϕh(X,Y )− (∇Xϕ)Y + (exp(f)) 1
2
(
g(X,Y )ξ − η(Y )X

)
− 1

2{ω(ϕY )X − ω(Y )ϕX − g(X,ϕY )ω] + g(X,Y )ϕω]} .

Now by comparing the tangential part and the normal part, we get

h(X,ϕY ) = ϕh(X,Y )− 1
2{g(X,Y )ϕω]⊥ − g(X,ϕY )ω]⊥} .

We note that ω] is tangent to M , so we obtain
h(X,ϕY ) = ϕh(X,Y ) .

Let {ei, ϕei}, i = 1, . . . , m2 be an othonormal basis on M . Then,

H = 1
m

m
2∑
i=1

h(ei, ei) + h(ϕei, ϕei) = 0 .

This completes the proof. �

As a result of Lemma 4.6 and Theorem 4.4, we have
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Corollary 4.7. Every 2-dimensional totally geodesic invariant submanifold M of
a conformal Sasakian space form M(c), tangent to the structure vector field ξ, such
that ω] ∈ TM , satisfies

4 Ric(X) = exp(f)
{

(m− 1)(c+ 3) + (c− 1)
(
3‖PX‖2 + (2−m)η(X)2 − 1

)}
+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (m− 1)‖ω]‖2
.

Theorem 4.8. Let M be an m-submanifold of a conformal Sasakian space form
M(c), tangent to the structure vector field ξ. Then,

(i) For each unit vector X ∈ {ξ}⊥p , we have

Ric(X) ≤ 1
4
{
m2‖H‖+ exp(f)

{
(m− 1)(c+ 3) + (c− 1)

(
3‖PX‖2 − 1

)}
+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (m− 1)‖ω]‖2}
.(4.13)

(ii) The equality case of (4.13) holds for all X ∈ {ξ}⊥p if and only if either
p is a totally geodesic point and ω] ∈ T⊥p M or m = 2 and p is a totally
geodesic point and in this case if ω] ∈ TpM then ϕ(TpM) ⊆ TpM .

Proof. Put η(X) = 0 in (4.1) to get (4.13). Rest of the proof is straightforward. �

Theorem 4.9. Let M be an m-dimensional (m ≥ 2) semi-invariant submanifold
of a conformal Sasakian space form M(c) such that TpM = Dp ⊕D⊥p ⊕ 〈ξ〉 then,

(i) For each unit vector X ∈ Dp, we have

Ric(X) ≤ 1
4
{
m2‖H‖2 + exp(f)

(
(m− 1)(c+ 3) + 2(c− 1)

)
+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (m− 1)‖ω]‖2}
.

(ii) For each unit vector X ∈ D⊥p , we have

Ric(X) ≤ 1
4
{
m2‖H‖2 + exp(f)

(
(m− 1)(c+ 3)− (c− 1)

)
+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (n− 1)‖ω]‖2}
.

Proof. If M is a semi-invariant submanifold, then ϕ(Dp) ⊆ Dp and ϕ(D⊥p ) ⊆ T⊥p M .
If X ∈ Dp, then η(X) = 0 and ‖PX‖2 = 1. Now by using the inequality (4.1) we
prove (i). For proving (ii), we note that in this case P = 0, rest of the proof is
similar to (i). �

Theorem 4.10. Let M be an m-dimensional (m ≥ 2) submanifold of a conformally
Sasakian space form M(c), tangent to the structure vector field ξ. Then,
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(i) If M is an almost semi-invariant submanifold, then for each unit vector
X ∈ TpM we have

Ric(X) ≤ 1
4

{
m2‖H‖2 + exp(f)

{
(m− 1)(c+ 3)

+ (c− 1)
(

3
∑

λ∈{1,λ1,...,λk}

λ2‖UλpX‖2 + (2−m)(η(X)2 − 1
)}

+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (m− 1)‖ω]‖2}
,(4.14)

where U1
p , U

λ1
p , . . . , Uλkp are orthogonal projection operators of TpM on

D1
p,Dλ1

p , . . . ,Dλkp , respectively.
(ii) If M is a θ-slant submanifold, then for each unit vector X ∈ TpM we have

Ric(X) ≤ 1
4
{
m2‖H‖2 + exp(f)

{
(m− 1)(c+ 3)

+ (c− 1)
(
3 cos2 θ(1− η(X)2)+ (2−m)η(X)2 − 1

}
+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (m− 1)‖ω]‖2}
.(4.15)

(iii) If M is an anti-invariant submanifold, then for each unit vector X ∈ TpM
we have

Ric(X) ≤ 1
4
{
m2‖H‖2 + exp(f)

{
(m− 1)(c+ 3)

+ (c− 1)
(
(2−m)η(X)2 − 1

)}
+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (m− 1)‖ω]‖2}
.(4.16)

Proof. Using (2.10) in (4.1) we get (4.14). Next, using (2.11) in (4.1) we get (4.15).
For the inequality (4.16), we note that TpM = D0

p + {ξ}, so θ = π
2 , therefore we

put θ = π
2 in (4.15)and then we find (4.16). �

Theorem 4.11. Let M be an m-dimensional (m ≥ 2) almost semi-invariant
submanifold of a conformal Sasakian space form M(c), tangent to the structure
vector field ξ, then for a unit vector X ∈ {ξ}⊥p we have

Ric(X) ≤ 1
4
{
m2‖H‖2 + exp(f)

{
(m− 1)(c+ 3)(4.17)

+ (c− 1)
(

3
∑

λ∈{1,λ1,...,λk}

λ2‖UλpX‖2 − 1
)}

+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (m− 1)‖ω]‖2} ,(4.18)

where U1
p , U

λ1
p , . . . , Uλkp are orthogonal projection operators of TpM on D1

p, Dλ1
p ,

. . . ,Dλkp , respectively.
Proof. Put (2.10) in (4.13) and note that in this case η(X) = 0 to get (4.18). �

Theorem 4.12. Let M be an m-dimensional (m ≥ 2) submanifold of a conformal
Sasakian space form M(c), tangent to the structure vector field ξ, and let X ∈ {ξ}⊥p
is a unit vector. Then, the following statements are true
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(i) If M is a proper θ-slant submanifold, then

Ric(X) < 1
4
{
m2‖H‖+ exp(f)

{
(m− 1)(c+ 3) + (c− 1)(3cos2θ − 1)

}
+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (m− 1)‖ω]‖2} .(4.19)

(ii) If M is anti-invariant, then

Ric(X) < 1
4
{
m2‖H‖+ exp(f)

{
(m− 1)(c+ 3)− (c− 1)

}
+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (m− 1)‖ω]‖2}
.(4.20)

(iii) If M is invariant, then

Ric(X) ≤ 1
4{m

2‖H‖+ exp(f)
{

(m− 1)(c+ 3) + 2(c− 1)
}

+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (m− 1)‖ω]‖2}
.(4.21)

Proof. Put (2.11) in (4.13) and note that in this case η(X) = 0 to get

Ric(X) ≤ 1
4
{
m2‖H‖+ exp(f)

(
(m− 1)(c+ 3) + (c− 1)(3 cos2 θ − 1)

)
+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (m− 1)‖ω]‖2}
.(4.22)

By putting θ = π/2 in (4.22), we obtain

Ric(X) ≤ 1
4
{
m2‖H‖+ exp(f)

(
(m− 1)(c+ 3)− (c− 1)

)
+ 2
(

trB + (m− 2)(∇Xω)X
)

+ (m− 1)‖ω]‖2}
.(4.23)

By putting θ = 0 (4.22), we get (4.21). If possible, let equality case of (4.22) or
(4.23) is satisfied by a unit vector X ∈ {ξ}⊥p , then it follows that h(X, ξ) = 0,
which in view of h(X, ξ) = −(exp(f)) 1

2FX, is a contradiction. Thus, (4.19) and
(4.20) are proved. �

5. Scalar curvature

We recall the following theorem and proposition from [12].

Theorem 5.1. For an m-dimensional submanifold M in an n-dimensional Rie-
mannian manifold, at each point p ∈M , we have

(5.1) τ(p) ≤ m(m− 1)
2 ‖H‖2 + τ̃(TpM) ,

with equality if and only if p is a totally umbilical point.

Proposition 5.2. For an m-dimensional submanifold M of a Riemannian manifold
at each point p ∈M , we have

(5.2) τ(p) ≤ 1
2m

2‖H‖2 + τ̃(TpM) ,

with equality if and only if p is a totally geodesic point.
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Theorem 5.3. Let M be an m-dimensional submanifold of a conformal Sasakian
space form M(c), tangent to the structure vector field ξ, then at each point p ∈M ,
we have

τ(p) ≤ 1
8
{

4m(m− 1)‖H‖2 + exp(f){m(m− 1)(c+ 3)

− (c− 1)
(
2m− 2− 3‖P‖2)}+ 4(m− 1) trB

+m(m− 1)‖ω]‖2} ,(5.3)
where

‖P‖2 =
m∑

i,j=1
g(Pei, ej)2

and the equality case of (5.3) is satisfied if and only if p is a totally umbilical point.

Proof. From (2.4), we obtain

τ̃(TpM) = 1
8 exp(f)

{
m(m− 1)(c+ 3) + (c− 1)

(
2m− 2− 3‖P‖2)

− 4(m− 1) trB −m(m− 1)‖ω]‖2} .(5.4)
Now, by substituting (5.4) in (5.1) we get (5.3). Rest of the proof is straightforward.

�

Theorem 5.4. Let M be an m-dimensional submanifold of a conformal Sasakian
space form M(c), tangent to the structure vector field ξ, then at each point p ∈M ,
we have

τ(p) ≤ 1
8
{

4m2‖H‖2 + exp(f)
{
m(m− 1)(c+ 3)

− (c− 1)
(
2m− 2− 3‖P‖2)}+ 4(m− 1) trB

+m(m− 1)‖ω]‖2},(5.5)
with equality if and only if p is a totally geodesic point.

Proof. By substituting (5.4) in (5.2) we get (5.5). Rest of the proof is straightfor-
ward. �

Theorem 5.5. Let M be an m-dimensional submanifold of a conformal Sasakian
space form M(c), such that ω] and ξ are tangent to M . Then, the following
statements are true

(i) If M is anti-invariant, then

τ(p) ≤ 1
8
{

4m(m− 1)‖H‖2 + exp(f)
(
m(m− 1)(c+ 3)− 2(m− 1)(c− 1)

)
+ 4(m− 1) trB +m(m− 1)‖ω]‖2}.(5.6)

(ii) If M is invariant, then

τ(p) ≤ 1
8
{

exp(f)
(
m(m− 1)(c+ 3)− (c− 1(2m− 2− 3‖P‖2)

)
+ 4(m− 1) trB +m(m− 1)‖ω]‖2}.(5.7)
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Proof. By putting P = 0 in (5.3), we get (5.6). For proving (ii), Let M is invariant
and ω] ∈ TM so from Lemma 4.6, it follows that M is minimal at p. The rest of
the prove is straightforward. �
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