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Abstract. In this paper we show that if a smoothly bounded, relatively com-

pact domain in a complex manifold admits a complete Kahler metric with cer-

tain bounds on its Ricci tensor, then the domain must be holomorphically con-

vex. This gives an obstruction for the existence of a complete Kähler-Einstein

metric on such domains.

Introduction

The existence of a complete Kähler-Einstein metric imposes some strong an-

alytic conditions on an open manifold. Mok and Yau obtained a very satisfying

result on the relationship between Kähler-Einstein metrics and holomorphic

convexity for a bounded Riemann domain ¡Q [6]. They proved that the follow-

ing are equivalent:

(1) Q is a domain of holomorphy (holomorphically convex).

(2) Q admits a complete Kähler-Einstein metric of negative Ricci curva-

ture.

(3) ¡Q admits a complete Hermitian metric with Ricci curvature nonposi-

tive and bounded below.

The paper of Mok and Yau completes and extends earlier work of Cheng and
Yau [3].

In this paper we first give two examples which demonstrate that the existence

of a Kähler-Einstein metric on an open manifold does not in general imply holo-

morphic convexity. We then state and prove Theorem 1, which says that for

a smoothly bounded, relatively compact domain in a complex manifold, holo-

morphic convexity is necessary for the existence of a complete Kahler metric
with certain bounds on its Ricci tensor.

Open Kähler-Einstein manifolds

which are not holomorphically convex

First, let X = C2/A, where A is the group generated by (1,0), (0, 1),
and (a, b) over Z. Then X inherits a complete Ricci-flat metric from C2.
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However, if a and b are complex numbers such that 1, a, and b are linearly

independent over Z, then X is not holomorphically convex (see [10]).

One may also construct an example with negative Ricci curvature: let X =

B"/r, where 1" is the unit ball with Poincaré metric in C" and Y is an arith-
metically defined discontinuous group of isometries of B" . Then X inherits
a complete Kähler-Einstein metric of negative Ricci curvature from B" . The

Satake-Baily-Borel compactification of J is a normal analytic space X ob-

tained from X by adjoining a finite number of points (see [1]). If n > 2, then

the normality of X implies that holomorphic functions on X extend to X

and therefore are constant, so X is not holomorphically convex. Because X
is not a bounded Riemann domain, this does not contradict the result of Mok

and Yau.
This second example differs markedly from the domains considered by Cheng,

Mok, and Yau in that the Kähler-Einstein metric on X has finite volume. The
complete Kähler-Einstein metric on a bounded Riemann domain of holomor-

phy has infinite volume; in fact, the coefficient of the volume form grows at

least as fast as d~2(-logd)~2 [3, 6].
We note that Mok and Zhong have generalized the Satake-Baily-Borel re-

sult; they showed that, under a mild topological condition, a complete Kahler

manifold with finite volume, negative Ricci curvature, and bounded sectional

curvatures is biholomorphic to a quasi-projective manifold [7]. See [5, 8, 9, 13,

16].

Notation

Henceforth Q will denote a relatively compact domain in a complex mani-

fold M. We denote the volume form associated to a Hermitian metric g by

Vg . For a volume form V which equals (j)"v(z)dzx A dzx A • • • A dzn A d~z„
in local coordinates, the Ricci form Ric(F) is the globally defined (1, l)-form

idcTlogu.

Preliminary observations

The existence of a complete Kahler metric on il with bounds on its Ricci
form immediately imposes some analytic conditions on Q. A theorem of Oh-

sawa says that a smoothly ( C1 ) bounded domain which carries a complete
Kahler metric must have pseudoconvex boundary [12]. It need not, however,

be holomorphically convex [4]. If Q admits a Hermitian metric g and a vol-

ume form V such that Ric(Fg) < Ric(F) (resp. Ric(l^) > Ric(F)), then Q
carries a strictly plurisubharmonic function log(Fg/F) (resp. log(F/I^)). In
particular, Q may not contain any compact analytic set. For example, if V is

the volume form of a Ricci flat metric on M and Í2 admits a metric of negative
Ricci curvature, then Q must admit a strictly plurisubharmonic function.

Statement of the theorem

Theorem 1. Let M be a complex manifold and il m M a relatively compact

domain with C2 boundary. Suppose that Q admits a complete Kahler metric

g whose Ricci curvature is bounded below and such that

(*) there is a neighborhood T of dQ in M and a volume form Vm on T

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RICCI CURVATURE AND HOLOMORPHIC CONVEXITY IN KAHLER MANIFOLDS 1213

such that, for some positive definite (1, l)-form co defined on T,

Ric(VM)-Ric(Vg)> co

on rnQ.
Then Q ¿s holomorphically convex. If Vm is defined on a neighborhood of Q

and (*) holds on all of ¡Q, then ¡Q is Stein.

This theorem very nearly proves a conjecture of Narasimhan. He conjectured

that if D is a domain with smooth boundary in a projective manifold M, if

C\ (A/) > 0, and if D supports a complete Kahler metric with Ricci curvature
bounded between negative constants, then D is Stein. The above theorem

proves this conjecture if one adds to Narasimhan's conjecture the hypothesis

that locally near dD the complete Kahler metric dominates a multiple of a
Hermitian metric on M.

Technical lemma

We first prove a technical lemma. Let X be a complete Riemannian mani-

fold. Fix p e X, and let Sk = {x e X : d(x, p) >k} , where d(x, p) denotes
the distance from x to p . Let / be a continuous real-valued function on S^ .

Let Yk denote the graph of / over Sk , k > ko. Yk is a closed submanifold
(with boundary) of R x X. Let o : Z+ —> Z+ be strictly increasing, and let

pa{k) denote the point (cr(fc), p) in R x X. Because Yk is closed and Rx X

is complete with respect to the product metric, there is a geodesic segment gk

in R x X from pa^ to ifiqk), Qk) ̂ ^k whose length is the distance from

Pa(k) to r/t-

Lemma 1. One of the following is true.
o

(a) There is some a such that qk may be chosen in the interior Sk of Sk
for all k large enough.

(b) There is a point q e X such that if dix, p) > diq, p), then fix) <

Proof of Lemma 1. Suppose (a) is false. Then there is some k such that qk

must be on dSk for all a(k). Since ¿^ is compact, / achieves its maximum
on dSk at some point which we denote by q . Now

d ÍPa(k), (f(Qk), Qk)) = \l(o(k) - fiqk))2 + d(p, qk)2

= yJ(o(k)-f(qk))2 + k2,

which is minimized when (o(k) - f(qk))2 is minimized. Therefore, one may

choose qk = q for all a such that a(k) > f(q). Suppose there were a point
o

x e Sk such that d(x, p) > k and f(x) > f(q). Since d(pa(k), (f(x), x)) =

y/(a(k)-f(x))2 + d(x,p)2 and d(pa{k), (f(q), q)) = y/ia(k) - f(q))2 + W ,
the inequality

d (Po(k), (fix) ,x))<d (pa(k), (f(q), q))

is equivalent to the inequality

(1) fix)2 - fiq)2 + dix, p)2 -k2< 2cr(k)(f(x) - f(q)).
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Inequality (1) is true for oik) large enough; this contradicts the assumption

that qk must be on dSk for all a. Therefore, fix) < fiq) for all x such

that dix, p) > k , which proves (b).   D

Proof of the theorem

For z e .Q, let diz) denote the distance from z to d£l, measured in a

fixed metric on M, shrinking T if necessary so that d is C2 on T n Q. Be-
cause Í2 carries a complete Kahler metric, it must have pseudoconvex boundary.
Thus iddi-logdiz)) is bounded below near dYl (see, e.g., [14]). For k large

enough,
V

4>(z) = klog-jf- -logd(z)

is strictly plurisubharmonic in mil. We extend 0 to a continuous plurisub-

harmonic function <p which equals </> on T'nQ, V a relatively compact neigh-

borhood of dYl in T. To show that Yl is holomorphically convex, we need

only show that <f> is an exhaustion function, that is, that {z eYl: <f>(z) < a} is

compact for all real a (see [11]). Clearly tp is an exhaustion function if Vg/VM

is bounded away from zero.

To show that this is the case, we cover dii by coordinate balls Ba with

Poincaré metric ga and associated volume form Va. We compare Vg to Va

on B'an£l, where B'a ëi„ and 5fic IJa K ■ In [61» Mok and Yau prove the

following Schwarz lemma for volume forms:

Lemma 2. Let X be a complete Kahler manifold with Ricci curvature bounded

below and let Y be a complex manifold of the same dimension with a volume

form VY suchthat Ric(Ky) is negative definite and (-Ric(Fy))" >cVY, c>0.
Suppose f : X —> Y is a holomorphic map and the Jacobian is nonvanishing at

one point. Then (f*Vy)/Vx is bounded above on X.

We would like to apply this theorem to our situation, with X = Y = B'aC\Çl,

Vx = Vg , Vy = Va , and / = identity. However, we may not apply the lemma

directly because the metric g is not complete on 5^niî. In proving their

Schwarz lemma, Mok and Yau use the completeness of g only to apply Yau's

Maximum Principle (see [15]). Because g is "complete near 9Q", we may

adapt the proof as follows.

Let W = \JaB'a. Define u(x) = minatXeB'a(VaIVg). The function u is

positive and continuous on W. Since Va and VM are continuous on Ba , they

are comparable on B^nii, so it suffices to show that limx_anu(x) is finite.

Apply Lemma 1 with X = (¡Q, g) and / = -u~xl2". If (b) of Lemma 1 is

true, we are done; then limx_an«(x) > (u(q))~2n . We therefore suppose that

(a) is true. From Mok and Yau's proof of the Schwarz lemma for volume forms

we obtain

(2) A(«-¿) < ¿«-*(Ä + nui) + |!+_LM-¿-2| v M|2

for all points at which u is smooth. Here A denotes the Laplacian with respect

to g and R the scalar curvature of g. Suppose u is smooth at an infinite

number of the points qk .  Then using (a) and Yau's proof of his Maximum
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Principle, we obtain a sequence {q'k} c W such that

(3) lim -(u(q'k))-rn = hm. -u(x)~^ ,

(4) lv(«(fli))-*l<p

(5) -A(«(fl¿))-¿<¿.

Multiplying (2) by w~¿ and applying (4) and (5) yields

-¿(«(«¿))_ * < ^(u(q'k)TL«(R(q'k) + n(u(q'k))i)) + ^±1.

Let — C\ be a lower bound for R. Then

(6) -\(u(Q'k)r* < £(»(&)-* - \ + ^Y1-

Equation (3) implies liimc_,0O(.«(í¿)) = limx^dçi u(x). We assume lim m > 0;

if not, we are done. As k —> oo, the left-hand side of (6) approaches 0 and the

right-hand side approaches ^(limw)"» - \ , so limx_,9ii u(x) < c^n'".
If the points qk must be chosen so that u is smooth at only a finite number

of them, we still obtain a sequence {q'k} such that (3) holds, but we have neither

the inequality (2) nor the estimates (4) and (5). Let 5 be the set of points in
dYl which are limit points of the points at which_w is not smooth. Suppose that

limx_9iî u(x) is infinite. If y € dO. \ S, then lim*-^ u(x) is finite; otherwise,

q'k could be chosen in the set on which u is smooth. Now shift the balls Ba

slightly to obtain a new covering {Ba} of dYl so that the function ü, which is

constructed analogously to u, is smooth near all points of S. We obtain {q'k}

as before. Because lim^_y ü(x) is infinite if and only if lim*-^ u(x) is infinite,

we see that ü is smooth at an infinite number of the points q'k . The previous

argument then shows that limx_an u(x) is finite. Therefore, lim^_oiî u(x) is
finite.

Under the additional condition that VM is defined on a neighborhood of Cl

and ( * ) holds on all of Q, the function çl is defined on all of Í2 and is a
continuous strictly plurisubharmonic exhaustion function for k large enough,

so we conclude that Q is Stein.

Remark. Mok and Yau used some similar techniques to show that given certain

conditions on Ricci curvature, an increasing union of Stein subdomains in a

Kahler manifold is Stein [6].

An example of Grauert

This theorem may be applied to an example of Grauert. In [4], he constructs

several examples of domains with pseudoconvex boundary in a complex man-

ifold which are not holomorphically convex. One of these is a pseudoconvex

neighborhood U of the image of the zero section in a particular complex line

bundle F over a complex manifold. In this example the total space F carries

a Kahler metric with vanishing Ricci curvature (see [2]). The image of the zero

section is a compact analytic set in U, so, by our earlier observations, U ad-
mits no Hermitian metric of strictly negative Ricci curvature, in particular, no

Kähler-Einstein metric of negative Ricci curvature.
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Grauert shows that U supports no nonconstant holomorphic functions. By

Theorem 1, U admits no complete Kahler metric whose Ricci curvature is
bounded below and whose Ricci tensor near d U is negative and bounded away

from zero. In fact, in this particular example we may locally compare Vg to the

volume form of a complete metric on a polydisc rather than to Va , showing that
logiVg/Vf) is an exhaustion function. We therefore see that U may support

no complete Kahler metric whose Ricci curvature is negative near dU and
bounded below.

Acknowledgment

I would like to thank R. Narasimhan for originally discussing this problem

with me and for several useful conversations.

References

1. W. L. Baily, Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric

domains, Ann. of Math. (2) 84 (1966), 442-528.

2. E. Calabi, Métriques Kàhlériennes et fibres holomorphes, Ann. Sei. École Norm. Sup. (4) 12

(1979), 269-294.
3. S. Y. Cheng and S.-T. Yau, On the existence of a complete Kahler metric on non-compact

complex manifolds and the regularity of Fefferman 's equation, Comm. Pure Appl. Math. 33

(1980), 507-544.
4. H. Grauert, Bemerkenswerte pseudokonvexe Mannigfaltigkeiten, Math. Z. 81 (1963),

377-391.

5. N. Mok, Compactification of complete Kahler surfaces of finite volume satisfying certain

curvature conditions, Ann. of Math. (2) 129 (1989), 383-425.

6. N. Mok and S.-T. Yau, Completeness of the Kähler-Einstein metric on bounded Riemann

domains and the characterization of domains ofholomorphy by curvature conditions, Proc.

Sympos. Pure Math., vol. 39, part 1, Amer. Math. Soc, Providence, RI, 1983, pp. 41-60.

7. N. Mok and J.-Q. Zhong, Compactifying complete Kähler-Einstein manifolds of finite topo-

logical type and bounded curvature, Ann. of Math. (2) 129 (1989), 427-470.

8. A. Nadel, On complex manifolds which can be compactified by adding finitely many points,

Invent. Math. 101 (1990), 173-189.

9. A. Nadel and H. Tsuji, Compactification of complete Kahler manifolds of negative curvature,

J. Differential Geom. 28 (1988), 503-512.

10. T. Napier, Convexity properties of coverings of smooth projective varieties, Math. Ann. 286

(1989), 433-479.
11. R. Narasimhan, The Levi problem for complex spaces, Math. Ann. 142 (1961), 355-365.

12. T. Ohsawa, On complete Kahler domains with C1 -boundary, Publ. Res. Inst. Math. Sei.

16(1980), 929-940.

13. Y.-T. Siu and S.-T. Yau, Compactification of negatively curved complete Kahler manifolds

of finite volume, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, NJ, 1982,

pp. 363-380.
14. A. Takeuchi, Domaines pseudoconvexes sur les variétés Kàhlériennes, J. Math. Kyoto Univ.

6 (1967), 323-357.

15. S.-T. Yau, Harmonie functions on complete Riemannian manifolds, Comm. Pure Appl.

Math. 28(1975), 201-228.

16. S.-K. Yeung, Compactification of complete Kahler surfaces with negative Ricci curvature,

Invent. Math. 99 (1990), 145-163.

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-

0027
E-mail address : pinneyGms. uky. edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


