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RICCI FLOW AND CURVATURE ON THE VARIETY OF FLAGS

ON THE TWO DIMENSIONAL PROJECTIVE SPACE OVER

THE COMPLEXES, QUATERNIONS AND OCTONIONS

MAN-WAI CHEUNG AND NOLAN R. WALLACH

(Communicated by Lei Ni)

Abstract. For homogeneous metrics on the spaces over the complexes, qua-
ternions and octonions, it is shown that the Ricci flow can move a metric of
strictly positive sectional curvature to one with some negative sectional curva-
ture and one of positive definite Ricci tensor to one with indefinite signature.
A variant of the method of Böhm and Wilking is given, proving that one can
flow a metric of positive sectional curvature to one with Ricci curvature of
indefinite signature in the quaternionic and octonian cases. A proof is given

that this cannot occur in the complex case.

1. Introduction

Ricci flow has been an important tool in the study of the geometry and topology
of a space. Hamilton, in a groundbreaking paper [6], proved that a compact 3-
manifold with positive Ricci curvature is deformed to a space of constant positive
sectional curvature. This implies that if a simply connected compact 3-manifold
has a metric with positive Ricci curvature, it is diffeomorphic to the sphere S3.
Furthermore, the nonnegativity of the curvature operator is preserved under Ricci
flow in all dimensions (see [5]). Hamilton conjectured that compact manifolds in
all dimensions with positive curvature forms must be diffeomorphic to space forms.
This is confirmed by Böhm and Wilking in [3].

However, it is not true in general that Ricci flow preserves positivity. Ni [8] has
shown that for some noncompact Riemannian manifolds with bounded nonnegative
sectional curvature, Ricci flow does not preserve the nonnegativity. Two years later,
Knopf [7] also showed that nonnegativity of Ricci curvature is not preserved for
certain complex surfaces under the Kähler-Ricci flow. Later, Böhm and Wilking [2]
showed that on Sp(3)/Sp(1)×Sp(1)×Sp(1) (which will be called the 12 dimensional
example in this paper), Ricci flow deforms a metric of positive sectional curvature to
metrics with mixed Ricci curvature. In their paper, there is a remark asserting that
their method fails for SU(3)/T 2 (the 6 dimensional case). This is the beginning of
our investigation.

In this note, we will show that a metric of the homogeneous Riemannian manifold
SU(3)/T 2 with strictly positive sectional curvature is deformed to a metric with
some negative sectional curvature by the Ricci flow. We also develop a variant of
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the method of [2], giving a proof of their result and showing that the same is true
for F4/Spin(8) (the 24 dimensional example). Our technique allows us to show that
for the 6 dimensional example a homogeneous metric of positive sectional curvature
never leaves the metrics of positive Ricci curvature under the flow. We show that if
we initiate the Ricci flow at a metric on the boundary of the metrics with positive
sectional, then the derivative of the flow of sectional curvature at any plane of zero
curvature is negative for the all of the examples in [10]. We also show that for all
the examples in [10] (dimensions 6, 12, 24) the Ricci flow can cause the Ricci tensor
to go from positive definite to signature (d, 2d) (d = 2, 4, 8). In the second-to-last
section we give a simple variant of Valiev’s necessary and sufficient condition for
a homogeneous metric on one of these spaces to have strictly positive sectional
curvature. In the last section we give our proof of the result in [2] and the assertion
that no such example exists for the 6 dimensional case.

2. Setup

In this section, we will set up the notation for the main calculations and establish
the Ricci flow equations in terms of the metric parameters. Set G = SU(3), Sp(3)
or compact F4 and let K be respectively a maximal torus, T 2, of SU(3), Sp(1)×
Sp(1)×Sp(1) in Sp(3) or Spin(8) in compact F4. Let g be the Lie algebra of G and
let k be the Lie algebra of a K. Let p be the Ad(K)–invariant complement to k in g.
Then p can be decomposed into a direct sum of three irreducible inequivalent K-
invariant subspaces p = V1 ⊕ V2 ⊕ V3. Consider the Ad(G)-invariant inner product
〈X,Y 〉0 = −1/2 Re tr(X,Y ) on g for the first two examples and in the case of
G = F4 the unique Ad(G)-invariant inner product that agrees with our choice for
the imbedded Sp(3) that is compatible with the decompositions. The dimensions
of the real vector spaces Vi are the same in each case and are respectively d = 2, 4,
or 8. In each case we may identify the spaces Vi with the fields over R: C, H
(the quaternions), O (the octonions) such that the inner product is Re(zw). If
z ∈ V1, w ∈ V2, then [z, w] ∈ V3, and under our identification it corresponds to zw
in V3. Similarly with sign changes as in the cross-product [Vi, Vj ] ⊆ Vk if i, j, k are
distinct. Schur’s Lemma implies that any K-invariant inner product on p is given
by

(1) x1 〈. . . , . . . 〉0 |V1
+ x2 〈. . . , . . . 〉0 |V2

+ x3 〈. . . , . . . 〉0 |V3
,

where x1, x2, x3 are positive constants. Let g be the Riemannian structure on M
corresponding to (x1, x2, x3). We will write g ←→ (x1, x2, x3). In [1] it was proved
that if x1 = x2 = 1, then for all examples above the sectional curvature is strictly
positive if 0 < x3 < 1 or 1 < x3 < 4

3 . We note

Lemma 1. If x1 = x2, then the sectional curvature is strictly positive if 0 < x3

x1
< 1

or 1 < x3

x1
< 4

3 and there is some strictly negative curvature if x3

x1
> 4

3 .

Proof. We need only prove the assertion about negative curvature. We may assume
that x1 = x2 = 1. We consider the embedding of SU(3) into G so that T 2 imbeds in
K and the imbedding of the complement to Lie(T 2) in Lie(SU(3), q, imbeds in p

as C imbeds in H or O. We note that if u, v ∈ q, then the formula in Lemma 7.3 of
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[10] reduces the calculation to the case of SU(3). We compute a specific curvature

u =

⎡
⎣ 0 u1 u2

−u1 0 u3

−u2 −u3 0

⎤
⎦ , v =

⎡
⎣ 0 v1 v2

−v1 0 v3
−v2 −v3 0

⎤
⎦

with u1 = 1, v1 = −1, u2 = v2 = 1/
√
1 + x2, u3 = v3 = x/

√
1 + x2 with x ∈ R.

Then with x1 = x2 = 1, x3 = 1 + t,

g(R(u, v)v, u) =
2

1 + x2
(1− 3t+ (1 + t)2x2).

So if t = 1
3 + s with s > 0 and

0 < x <

√
3s

(1 + ( 43 + s)2)
,

then the curvature corresponding to the two plane spanR(u, v) is negative. This
shows that there is negative Gaussian curvature for any t > 1

3 , so our condition is
necessary and sufficient. �

We also note that Schur’s lemma implies that the Ricci curvature of g, denoted
Ric(g), is given by

(2) Ric(g) = x1r1 〈. . . , . . . 〉0 |V1
+ x2r2 〈. . . , . . . 〉0 |V2

+ x3r3 〈. . . , . . . 〉0 |V3
.

Using the (first) Lemma 7.1 in [10] it is easily seen that ri is given by

(3) ri =
x2
i d− x2

jd− x2
kd+ (10d− 8)xjxk

2x1x2x3
,

where {i, j, k} = {1, 2, 3}.
We note that the Ricci flow preserves left invariant metrics on the spaces G/K

and hence can be considered to be the ordinary differential equation

(4)
dxi

dt
= −2rixi.

In particular, we see that the set of metrics with xi = xj for some i, j is preserved
by the Ricci flow. Also, permutation of the indices of the xi preserves the solutions.

3. The sectional curvature

In this section we will prove that the Ricci flow deforms some metric g with
strictly positive curvature into a metric with some negative sectional curvature. To
start with, we investigate the metric g0 ←→ (1, 1, 43 ) which, in light of Lemma 1, is of

nonnegative sectional curvature and g ←→ (1, 1, u), u > 4
3 , has some strictly nega-

tive curvature. Using the symmetric invariance of the system (2.4) we note that if we
start with g0 ←→ (1, 1, 43 ) under the Ricci flow the metric gt ←→ (x1(t), x2(t), x3(t))
satisfies x1(t) = x2(t). Our strategy to prove that some curvature turns negative is
to show that

(5)
d

dt t=0

x3(t)

x1(t)
> 0.
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This will show that there exists ε > 0 such that 1
x3(−ε)g−ε ←→ (1, 1, u) with

1 < u < 4
3 and 1

x3(ε)
gε ←→ (1, 1, v) with v > 4

3 . So Lemma 1 implies our assertion.

We now carry out the calculation

d

dt

x3(t)

x1(t)
=

x′
3(t)x1(t)− x3(t)x

′
1(t)

x1(t)2
,

so (2.4) implies that

(6)
d

dt

x3(t)

x1(t)
= −2

x3(t)

x1(t)
(r3 − r1) .

In the three cases (d = 2, 4, 8) we have −2(r3 − r1)|t=0 = −2 + 4d
3 > 0.

We have proved

Theorem 2. On the three examples of [10] the Ricci flow deforms certain positively
curved metrics into metrics with mixed sectional curvatures.

We note that this result for the 12 dimensional example follows from [2]. Böhm
has pointed out (in the 6 dimensional case) that if we continue the Ricci flow, then
entropy considerations would imply that the metric would approach the Kähler
metric in the set of homogeneous ones with x1 = x2. This metric doesn’t have
nonnegative sectional curvature.

4. Change in Ricci curvature

We first indicate why the method of the last section doesn’t work for Ricci
curvature. We consider the case when x1 = x2 and calculate

(7) 2(r1 − r3) =
−2(1− x3

x1
)((4d− 4)− dx3

x1
)

x1x3
.

We therefore see (in light of (6)) that if 0 < x3(t)
x1(t)

< 1, then d
dt

x3(t)
x1(t)

< 0. So if we

started the Ricci flow with a (positive curvature) initial condition x1 = x2,
x3

x1
< 1,

then x3

x1
is decreasing. If initially 1 < x3

x1
< 4(d−1)

d , then under the flow we would

have d
dt

x3(t)
x1(t)

> 0. If 4(d−1)
d < x3

x1
, then d

dt
x3(t)
x1(t)

< 0. Thus x3

x1
= 1 is a repelling (i.e.

unstable) fixed point and x3

x1
= 4(d−1)

d is an attractor. The upshot is that if the

initial condition is x1 = x2 and the sectional curvature is positive, then x3

x1
< 4(d−1)

d

for the entire Ricci flow. On the other hand, the Ricci tensor for x1 = x2 is given
by

(10d− 8− dx3

x1
)

2
(〈. . . , . . . 〉0 |V1

+ 〈. . . , . . . 〉0 |V2
)+

(8d− 8)− d
(

x3

x1

)2

2
〈. . . , . . . 〉0 |V3

.

Thus if we begin the Ricci flow with a metric of positive curvature and x1 = x2,

then x3

x1
< 4(d−1)

d , which implies that

(10d− 8− dx3

x1
)

2
>

3d− 2

d
> 0

and

(8)
(8d− 8)− d

(
x3

x1

)2

2
>

4(d− 1)(3d− 2)

d
> 0.
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This indicates how delicate the methods of [2] must be.
We observe that if the initial condition satisfies x2 > x1 > x3, then the flow

will stay among the homogeneous metrics satisfying this condition. Since Ricci
curvature is invariant under constant scalar multiples of the metric, we may assume
that our initial metric corresponds to x1 = 1, x2 = 1 + r, x3 = s and s < 1 (notice
that Lemma 1 implies that if s < 1 is fixed and r is sufficiently small, then the
metric has positive sectional curvature). We also note that (3) implies that if
x1 = 1, x2 = 1 + r, x3 = s, then the coefficients of the Ricci curvature are given by

r1x1 =
−2rd− dr2 + (10d− 8)s+ (10d− 8)rs− ds2

2(1 + r)s
,

r2x2 =
dr + dr2 + (10d− 8)s− ds2

2s
,

and

r3x3 =
(8d− 8) + (8d− 8)r − dr2 + ds2

2(1 + r)
.

Thus if s < 1 and 0 < r < 1, then r2x2 and r3x3 are strictly positive. If we solve the
quadratic equation for r1x1 = 0, then we have for the cases d = 2, 4, 8, respectively,

r =
√
1 + 8s2 − (1− 3s),

r =
√
1 + 15s2 − (1− 4s)

and

r =

√
1 +

77

4
s2 − (1− 9

2
s).

We note that if we substitute these values of r into the above coefficients of the
Ricci tensor, then we find that if s < 1, then r2x2 > 0 and r3x3 > 0. So if we
show that we can take our initial condition such that dr1

dt < 0, then we will have
shown that the Ricci flow transitions from positive definite to signature (d, 2d) (d
negatives). We therefore study

−2
∑

rixi
∂r1
∂xi

at these values. We find that if d = 2, then this expression is negative for 0 <

s < 1 −
√

5
8 (≈ 0.20943058 . . . ); for d = 4 the expression is negative for 0 < s <

30+5
√
21−3

√
5(21+4

√
21)

30 (≈ 0.361437 . . . ); and for d = 8 the expression is negative
for

0 < s <
693 + 11

√
2737− 7

√
22(511 + 9

√
2737)

616

(≈ 0.389089 . . . ). This proves

Theorem 3. For all the examples in [10] (i.e. the manifold of flags in the two
dimensional projective space over C, H or O) the Ricci flow of a metric with positive
definite Ricci tensor can flow to one with signature (d, 2d).
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5. Sectional curvature and Ricci curvature, I

In this section we will give a necessary and sufficient condition for the metric
corresponding to (x1, x2, x3) to have positive curvature for the three types of exam-
ples that we have been studying. We compare this condition to what is necessary
for positive Ricci curvature, and one, therefore, gets a better understanding of the
result in [2].

We first observe that the permutation action of the symmetric group permutes
the (x1, x2, x3) that correspond to strictly positive curvature among themselves.
We have also completely described the (x1, x2, x3) with some pair xi = xj with
i �= j. Thus we are left with the cases where∏

i<j

(xi − xj) �= 0.

Using the action of the symmetric group just described we may assume that x2 >
x1 > x3 > 0 (we choose this order to be consistent with the results of [2]). Since
multiplication by a positive scalar doesn’t change the sign of curvature, we may
assume that x1 = 1, x2 = 1 + r and x3 = s with r > 0 and s < 1. The following
result follows directly from Theorem 3 a) in [9].

Proposition 4. With the notation above a necessary and sufficient condition that

the sectional curvature be positive is r < s−2+2
√
1−s+s2

3 .

Remark. We note that if 0 < s < 1, then

s2

4
<

s− 2 + 2
√
1− s+ s2

3
<

s2

3
,

and the expression estimated is monotone increasing. This can be seen in Figure 1.
The axes are horizontal, s, and vertical, r; the set of points under each curve

represent the r values for each s value such that (1, 1 + r, s) with r > 0 and

Figure 1. Comparison between the condition for positive sec-
tional sectional curvature and the condition for positive Ricci cur-
vature for the dim = 6, 12, 24 case.
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0 < s < 1, respectively, satisfy the necessary condition above (lowest curve), and
the necessary and sufficient condition for positive Ricci curvature for the 6 (second
curve), 12 (third curve) and 24 (top curve) dimensional examples. We note that to
get the full set of metrics with strictly positive curvature satisfying the inequalities
x3 ≤ x1 ≤ x2, one must allow the points (s, 0), 0 < s < 1, and (1, r) with 0 < r < 1

3
(that is, added to the original set given in [1]).

In the argument in [2] Böhm and Wilking start their Ricci flow at a metric
corresponding to (x1, x2, x3) such that (x1, x2, x3)/x1 = (1, 1+r, s) (in our notation)
and r > 0, 0 < s < 1 (the reason for our strange condition). In light of the above,
(r, s) must be below the bottom curve in Figure 1. In the Ricci flow (normalized or
not) the set x2 > x1 > x3 is preserved. If (x1(t), x2(t), x3(t)) is a point in the flow
and (x1(t), x2(t), x3(t))/x1(t) = (1, 1+r(t), s(t)), then the curve (s(t), r(t)) starts at
t = 0 under the lowest curve (so as to have positive curvature) and must eventually
cross the second highest curve in order to have some negative Ricci curvature.

6. Sectional curvature and Ricci curvature, II

We have seen that if x1 = 1, x2 = 1 + r, x3 = s with 0 < s < 1 and r > 0, then
the sectional curvature is strictly positive if and only if

r <
s− 2 + 2

√
1− s+ s2

3
.

We note that if 0 < s < 1, then

s2

4
<

s− 2 + 2
√
1− s+ s2

3
<

s2

3
.

We now consider what happens when we start with a metric in the indicated range
and apply the Ricci flow. Note that we have 1 + r = x2

x1
and s = x3

x1
. This implies

that under the Ricci flow we have

r′ =
−2(x′

2x1 − x′
1x2)

x2
1

= 2(1 + r)(r1 − r2) = g(d, r, s)

and

s′ =
−2(x′

3x1 − x′
1x3)

x2
1

= h(d, r, s),

with

g(d, r, s) =

⎧⎪⎨
⎪⎩

−4 r
s (2 + r − 3s), d = 2,

−8 r
s (2 + r − 4s), d = 4,

−8 r
s (4 + 2r − 9s), d = 8

and

h(d, r, s) =

⎧⎪⎨
⎪⎩

4 1−s
1+r (−2− 3r + s), d = 2,

8 1−s
1+r (−3− 4r + s), d = 4,

8 1−s
1+r (−7− 9r + 2s), d = 8.

We note that this implies for d = 2, 4, 8 that if (say) 0 < s < 1
2 , then g(d, r, s) < 0

for all r > 0, and that if 0 < s < 1 and r > 0, then h(d, r, s) < 0. We can thus
think of r as a function of s in this range and have

r′(s) =
r′(t)

s′(t)
=

r

s
f(d, r, s)
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with

f(d, r, s) =
g(d, r, s)

h(d, r, s)
=

1 + r

1− s

⎧⎪⎨
⎪⎩

2+r−3s
2+3r−s , d = 2,
2+r−4s
3+4r−s , d = 4,
4+2r−9s
7+9r−2s , d = 8.

We note that if (say) 0 < s < 1
2 , then f(d, r, s) > 0 for all r > 0.

We will use the following simple calculus result.

Lemma 5. Suppose that we have a solution to the Ricci flow with initial condition
so > 0, r(so) > 0 and r(s) is defined for 0 < s1 ≤ s ≤ so.

1. If f(d, r(s), s) ≥ C > 0 in this range, then we have

r(s) ≤ sC
r(so)

sCo
, s1 ≤ s ≤ so.

2. If 0 < f(d, r(s), s) ≤ C in this range, we have

r(s) ≥ sC
r(so)

sCo
, s1 ≤ s ≤ so.

Proof. We note that
r′(s)

r(s)
=

1

s
f(d, r(s), s).

So in case 1 we have s1 < s,
r′(s)

r(s)
≥ C

s
;

thus if s1 ≤ s ≤ so, then ∫ so

s

r′(u)

r(u)
du ≥ C

∫ so

s

du

u
.

Thus log r(so)− log r(s) ≥ C(log(so)− log(s)). Hence

log r(s) ≤ C log s− C log(so) + log r(so).

Exponentiating both sides of the equation yields the result. Case 2 is proved in the
same way. �

We also observe

Lemma 6. If d = 2, then r2, r3 > 0 if 0 < s < 1 and 0 < r < 2(1 +
√
2).

Proof. r2 = 2r+r2+6s−s2

(1+r)s > 0 if r > 0 and 0 < s < 6, and r3 = 4+4r−r2+s2

(1+r)s > 0 if

0 < s < 1 and 0 < r < 2(1 +
√
2). �

Lemma 7. If d = 2, 0 < s < 1 and r(s) > s, then r′(s) > 0. Suppose that
0 < so < 1, so < r(so) ≤ 2so and 0 < s1 < so is such that r(s) is defined and
r(s) > s for s1 ≤ s ≤ so. Then r(s) < 2s.

Proof. We note that if 0 < s < 1 and r > s, then f(2, r, s) ≥ 1. Thus Lemma 5
with C = 1 implies that in the indicated range

r(s) ≤ s
r(so)

so
≤ 2s. �

This implies
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Theorem 8. If go is a homogeneous Riemannian structure on the 6 dimensional
example with strictly positive sectional curvature, then under the Ricci flow it retains
strictly positive Ricci curvature.

Proof. We note that the discussion in the previous section implies that if there
were such a go, then it would, up to permutation of indices and normalization,
correspond to 1, 1 + r, s with r > 0 (constrained as above) and 0 < s < 1. The
condition for some negative Ricci curvature for metrics in this range is

r >
√
1 + 8s2 − (1− 3s) > 3s.

An initial condition with strictly positive sectional curvature must satisfy

r <
s− 2 + 2

√
1− s+ s2

3
<

s2

3
.

The previous lemma implies that r(s) can never pass 2s. �

We will now study the 12 and 24 dimensional examples using the above paramet-
rization of solutions to the Ricci flow. We first note that the result of Sesum (cf.
[4], Theorem 6.4) implies that if 0 < so < 1 and 0 < ro < 1, then the solution
to the Ricci flow equation with initial condition r(so) = ro has the property that
it is defined for all 0 < s ≤ so. The proof of the next result was inspired by the
argument of [2] for the 12 dimensional case.

Theorem 9. There exist homogeneous metrics of strictly positive sectional curva-
ture on the 12 and 24 dimensional examples that deform under the Ricci flow to
metrics with some negative Ricci curvature.

Proof. If 0 < s < 1
2 , then f(d, r, s) > 0 for r > 0. This implies that we can choose

an initial condition with 0 < r(so) <
so−2+2

√
1−so+s2o

3 and so so small that if ε > 0,
then

f(d, r, s) <

{
2
3 + ε, d = 4,
4
7 + ε, d = 8

for all 0 < s < so and all 0 < r < r(so). We also note that if (say) 0 < s < 1/2,
then h(d, r, s) < −8 if d = 4 or 8. This implies that

s′(t) < −8s(t).

Hence

lim
t→+∞

s(t) = 0.

Fix an initial condition such that ε can be chosen to be (say) 1
6 . Then in both cases

we have f(d, r, s) < 5
6 . We can apply Lemma 5 and find that

r(s) ≥ s
5
6
ro

s
5
6
o

for 0 < s < so. As in the proof of Theorem 8 the condition for some negative Ricci
curvature is

r >
√
1 + 15s2 − (1− 4s), d = 4

and

r >

√
1 +

77

4
s2 − (1− 9

2
s), d = 8,
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and we note that if 0 < s < 1, then

0 <
√
1 + 15s2 − (1− 4s) < 7s

and

0 <

√
1 +

77

4
s2 − (1− 9

2
s) < 8s.

Thus if s is sufficiently small, the metric corresponding to 1, 1 + r(s), s has Ricci
curvature of signature (d, 2d) (here negatives come first) since r(s) can be made to
be larger than any fixed multiple of s for sufficiently small values of s. �
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