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RICCI FLOW FROM SPACES WITH EDGE TYPE CONICAL

SINGULARITIES

LUCAS LAVOYER

Abstract. We study the Ricci flow out of spaces with edge type conical singularities along
a closed, embedded curve. Under the additional assumption that for each point of the curve,
our space is locally modelled on the product of a fixed positively curved cone and a line,
we show existence of a solution to Ricci flow (M, g(t)) for t ∈ (0, T ], which converges back
to the singular space as t ց 0 in the pointed Gromov-Hausdorff topology. We also prove
curvature estimates for the solution and, for edge points, we show that the tangent flow at
these points is a positively curved expanding Ricci soliton solution crossed with a line.

1. Introduction

Given a smooth, closed manifoldM and a Riemannian metric g0,Hamilton [Ham82] showed
there is a family of metrics g(t), t ∈ [0, T ), satisfying the Ricci flow equation:

∂tg(t) = −2Ric(g(t)), (1)

with g(0) = g0. The existence time for this solution is bounded from below by the inverse
of the maximum of the Riemannian curvature at time t = 0 multiplied by a dimensional
constant.

In recent years, the question of starting Ricci flow from non-smooth spaces has been of
great interest. The idea is that the regularising properties of Ricci flow will in some sense
smooth out such spaces. In general, this is not a simple task, but results have been obtained
in some particular cases. In dimension two, substantial advances have already been made
in, for instance, the work of Giesen–Topping [GT11] showing that given any Riemannian
surface, which may be incomplete and of unbounded curvature at spatial infinity, there exists
a solution to Ricci flow that is instantaneously complete for t > 0. Later on, Topping [Top15]
proved the solution is also unique, and, recently, Topping and Yin [TY21] showed there is
a solution to Ricci flow starting from Radon measures in 2D. In 3-D, Simon and Topping
[ST21] used Ricci flow to show that any non-collapsed Ricci limit space is actually a manifold,
solving a conjecture of Anderson–Cheeger–Colding–Tian. In [Leb+15], Lebedeva–Matveev–
Petrunin–Shevchishin apply the results in [Sim09; Sim12; Sim17] by Simon to show that any
polyhedral space in three dimensions with non-negative curvature in the Alexandrov sense
can be approximated by Riemannian manifolds with non-negative sectional curvature. Other
papers where the Ricci flow from non-smooth initial data is studied are [BCW19; Der16;
Hoc16; HT18; Lai19; LT17; SS10; DSS20; Sim02; Xu13; LS21], where the list is definitely
non-exhaustive.

In many cases, the non-smooth spaces considered might have conical points. These points
can be characterised by having a Euclidean cone as their tangent cone. In [GS18], Gianniotis
and Schulze studied the Ricci flow coming out of spaces with isolated conical singularities
modelled on positively curved cones. These spaces are smooth manifolds when we exclude
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the conical points, and can be expected to show up as certain limits of Ricci flows developing
type I singularities, see Section 1 of [GS18]. However, spaces with non-isolated conical points
can also be expected to show up as limits of manifolds; see, for instance, [Che01], Example
0.29.

The aim of this paper is to study the Ricci flow out of certain compact spaces with edge type
conical singularities, generalising the results of Gianniotis–Schulze. These spaces are smooth
manifolds except along a closed, embedded curve, where each point is conical. The precise
meaning of this is given in Definition (1.2). We show short-time existence of a Ricci flow
coming out of these spaces, under the additional assumption that the conical cross-section of
the singular points is positively curved, and prove curvature bounds for the solution.

Main statement. Before stating the main result of the paper, we define what it means
for a space to be a compact space with edge type conical singularities. In order to do so, we
recall the definition of a metric cone over a smooth manifold.

Definition 1.1. Let (X, gX ) be a smooth, closed (n−1)−dimensional Riemannian manifold.
The topological cone over X, C(X), is defined as the set of equivalences in the product
[0,∞]×X :

C(X) = {[0,∞] ×X}/ ∼,
where the equivalence relation is given by (0, x) ∼ (0, y), for every x, y ∈ X. We denote the
vertex of C(X) by o. For R > 0, let

CR(X) := {(r, x) ∈ C(X) | r < R}.

We also equip C(X) with the standard conical metric gc = dr2 + r2gX .

Definition 1.2. The pair (Z, gZ ) is a compact space with edge type conical singularities
modelled on (C(X)× R, G = gc ⊗ gR) along a closed, embedded curve Γ ⊂M if

(1) (Z\Γ, gZ) is a smooth Riemannian manifold, with gZ an incomplete metric.
(2) (Z, dZ) is a compact metric space, where dZ = d(gZ) is the metric induced by gZ .
(3) There exist uniform r0 > 0 and η0 > 0 such that ∀p ∈ Γ, there exists a map

φp : (0, r0]×X × [−η0/2, η0/2] −→ Z

such that φ is a diffeomorphism onto its image,

lim
r→0

φp(r, x, 0) = p ∈ Γ,

and the length of Γ from q− to q+, where lim
r→0

φp(r, x,±η0/2) = q± for any fixed x ∈ X,

is such that l(Γ|[q−,q+]
) = η0.

(4) Finally, for every p ∈ Γ and 0 < r < r0, it holds that

4
∑

j=0

rj
∣

∣(∇G)j(φ∗pgZ −G)
∣

∣

∣

∣

Br(p)
< κ(r), (2)

where κ(r) → 0 as r → 0.

Given the definition above, we see that C(X)×R with the product metric is the Gromov-
Hausdorff tangent cone at any p ∈ Γ. When X is a closed, simply connected manifold with
Rm(gX) ≥ 1, we remark that Deruelle [Der16] showed there is a unique expanding Ricci
soliton asymptotic to C(X). From now on, we will assume the conditions above on X.
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Theorem 1.3. Let (Z, gZ ) be a compact space with edge type conical singularities along a
closed, embedded curve Γ, each modelled on

(

C(Sn−1)× R, G = dr2 + r2g + dl2
)

,

with Rm(g) ≥ 1, but Rm(g) 6≡ 1. Under these assumptions, there exists a Ricci flow solution
(M,g(t))t∈(0,T ], where M is a smooth manifold, and a constant CM satisfying the following.

• (M,dt) → (Z, dZ ) in the Gromov-Hausdorff topology as tց 0,
• there exists a map

Ψ : Z\Γ −→M,

a diffeomorphism onto its image, such that Ψ∗g(t) → gZ in the C∞ topology as tց 0,
uniformly away from Γ,

• |Rm(g(t))|g(t) ≤
CM

t
for t ∈ (0, T ],

• given any sequence tk ց 0 and pk ∈ Im(Ψ)c, with pk → q ∈ Γ under the Gromov-
Hausdorff convergence from above, we have:

(

M,
1

tk
g(tkt), pk

)

t∈(0,tk−1T ]

→ (N × R, g0(t), q̄)t∈(0,∞) ,

where (N × R, g0(t), q̄)t∈(0,∞) is the product Ricci flow induced by (N × R, gN ⊗ gR),

and (N, gN ) is the unique expander with positive curvature operator asymptotic to
(C(Sn−1), gc).

Remark. We remark that the theorem still holds, with only minor modifications to the proof,
if the metric g on the link of the cones, with Rm(g) ≥ 1, varies smoothly along Γ.

Our approach to proving the result above is the following. We start by desingularising
the initial metric. The idea is to approximate, for each point p ∈ Γ on the curve, a small
neighbourhood of p by N × [−η, η], where η > 0 is a small number that will depend on Γ,
and the expander N is glued in at a small scale s > 0. We cover Γ in this way, making
sure our glueing is smooth so that we obtain a smooth Riemannian manifold (Ms, gs) that
approximates our initial space. The expanding soliton (N, gN (t)) used above is known to
be stable due to the work of Deruelle–Lamm [DL17]. We extend their result to N × R

with the product Ricci flow solution. After this, we prove uniform curvature bounds for the
approximations via an iteration argument. The idea is that on a small neighbourhood of
any p ∈ Γ, the approximated solution will stay close to the product Ricci flow on N × R,
in an appropriate sense, assuming bounds on the boundary of this neighbourhood. Since we
do not want to assume any control over time, we use pseudolocality to control the solution
far enough from the curve (where the metric is conical), and an iteration argument with
overlapping neighbourhoods as above to show we do not need any control on the horizontal
ends of this neighbourhood. Then we let sց 0 to obtain a limit solution.

We observe that the condition on the curvature of the model cones is only used when we
apply the existence and stability of such expanding solitons; our solution does not depend on
any curvature bounds for the initial data or the approximating solutions. In particular, this
construction could be carried out in the same way if existence and stability of expanders out
of more general cones were proven.

Outline. We now give an overview of how the paper is organised. In Section 2, we recall
a few properties of expanding Ricci solitons asymptotic to cones and define the model class
we will be working with. In Section 3 we adapt the stability result of Deruelle–Lamm [DL17]
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to extend it to N ×R with the product metric, which can be seen as a nonnegatively curved
expanding soliton. The observation is that the curvature is still decaying with the inverse of
the distance to the spine {qmax} × R, where qmax is the unique critical point of the potential
function fN . Together with the splitting of the heat kernel on a product manifold, this turns
out to be enough to obtain the same stability result.

In Section 4 we localise the stability obtained in Section 3 and prove uniform estimates
for solutions in our model class. In order to do that, we split our space into two regions:
the conical and expanding region. On the conical region, our metric is almost conical and,
therefore, almost flat. This allows Perelman’s pseudolocality to control the flow. We are then
able to obtain uniform control along the curve using an overlap argument, moving from a
local control, i.e., of a small neighbourhood of a (any) point in the approximate curve Γs to
a result controlling a neighbourhood of the whole curve.

The observation is that the estimates on the conical region control our solution far out
in the neighbourhood, but we also initially assume control on the ’horizontal ends’ of such
neighbourhood, which puts us in a position where we can apply the local stability result to
obtain estimates on a smaller neighbourhood of a point in the curve. In order to do so, we
rely on the fact that the heat kernel KL associated to the Lichnerowicz operator (defined in
section 3) splits on a product manifold, so KL = KN

L K
R, where KN

L and KR are the heat
kernels on N and R, respectively. Along with this, the classical decay estimate for the heat
kernel in Euclidean space combined with the results in [DL17] yield the needed estimate:

‖KL(x, t, y, s)‖ ≤ c

(t− s)
n+1
2

exp

{

−
d2g0(s)(x, y)

D(t− s)

}

,

for 0 ≤ s < t and x, y ∈ N×R, where c will depend only on the expander, g0(t) = gN (t)⊗gR(t)
is the product Ricci flow induced by (N ×R, gN ⊗gR), and the norm is also defined in section
3. The exponential decay of the heat kernel in the R−direction implies that the influence of
the ’horizontal ends’ is small at the centre. We do this for enough points pk ∈ Γs so that we
cover Γs. This can then be improved indefinitely by overlapping such regions until we obtain
that the control only depends on estimates in the conical region.

Finally, in Section 5 we construct the approximating solution explicitly and pass to a limit
with s ց 0. This gives us a solution to the Ricci flow that exists for t ∈ (0, T ] and has the
right curvature decay. Furthermore, as tց 0, we show that away from Γ, the Ricci flow g(t)
converges to gZ locally smoothly uniformly after being pulled back by an appropriate map.
The solution also converges back to (Z, dZ) in the Gromov-Hausdorff sense.

1.1. Acknowledgements. The author thanks his supervisor, Felix Schulze, for helpful dis-
cussions and encouragement. The author is supported by the UK Engineering and Physical
Sciences Research Council (Grant number: EP/V520226/1).

2. Preliminaries

We start by briefly recalling the definition of gradient Ricci solitons, first introduced by
Hamilton in [Ham88]. The triple (N, gN , fN ), where (N, gN ) is a Riemannian manifold and
fN is a smooth function on N, is a gradient Ricci soliton if it satisfies

HessgNfN =
1

2
L∇fNgN = Ric(gN ) + λgN ,

for some constant λ, where L denotes the Lie derivative. The soliton is expanding if λ > 0,
steady if λ = 0 or shrinking if λ < 0. In our case, λ > 0 and the soliton is an expanding
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gradient Ricci soliton. We can always normalise the metric so that λ =
1

2
. If the soliton has

bounded curvature, by possibly changing the potential function by a constant if necessary,
we can assume that fN ≥ 0. An expanding Ricci soliton induces a solution to the Ricci flow
given by

gN (t) = t(φtN )∗gN , for t > 0, (3)

where φtN is the family of diffeomorphisms generated by −1

t
∇fN with φ1N = id.

We can now give a precise definition of an expanding Ricci soliton coming out of a cone.

Definition 2.1. Let (X, gX ) be a smooth Riemannian manifold and

(C(X), gc = dr2 + r2gX , o)

be the associated cone with vertex o. We say that the expanding Ricci soliton (N, gN , fN ) is
asymptotic to the cone C(X) if

(1) for some Λ0 > 0, there is F : [Λ0,∞)×X −→ N, a diffeomorphism onto its image,
such that N\Im(F ) is compact and

fN (F (r, x)) =
r2

4
,

for every (r, x) ∈ [Λ0,∞)×X.
(2)

4
∑

j=0

sup
∂B(o,r)

rj|(∇gc)j(F ∗gN − gc)|gc = ke(r),

where ke(r) → 0 when r → ∞.

In [Der16], Deruelle shows that if X is diffeomorphic to the standard sphere S
n−1 and

the metric on the sphere satisfies Rm(g) ≥ 1, but Rm(g) 6≡ 1, then the expanding soliton
smoothing out the cone over X exists and it is unique.

For the expanding soliton, an important observation is that the notion of asymptotic cone
coincides with the notion of rough initial data in the Gromov-Hausdorff sense (see [Der16]
for the details). It is also standard to consider the following natural coordinate at infinity on
the expander:

r := 2
√

f = (F−1)∗r.

We use r to measure the distance from a point on the manifold to the tip of the expander,
i.e., the critical point of fN , which is unique when Rm(gN ) ≥ 0 and the expander is nor-
malised. In fact, since we will be working with the expander at scale s > 0, we also de-
fine the radial coordinate for this case, given by rs = 2

√
sfs, where fs = f ◦ φs. We can

also define Fs : [Λ0
√
s,∞)×X → N by Fs = (φs)

−1 ◦ F ◦ as, where as(r, x) =
(

r√
s
, x

)

for

(r, x) ∈ [0,∞)×X. Hence, rs(Fs(r, x)) = r.
The next lemma shows us that the expander at scale s converges to the cone as s→ 0 and

it is indeed natural to consider Fs. The proof is a straightforward computation (see equation
2.6 on [GS18]).

Lemma 2.2. Under the construction above, F ∗
s gN (s) converges to gc as s → 0, uniformly

away from o in C4
loc.
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We also state a second lemma from [GS18], which will be useful to us later.

Lemma 2.3. (Lemma 2.1, [GS18]). Let (N, gN , fN ) be an asymptotically conical gradient
Ricci expander, and let gN (t), t ≥ 0, be the induced Ricci flow with gN (0) = gN . There exists
γ0 ≥ 1, c,Λ0 > 0 such that

|F ∗gN − gc|gc + r|∇gcF ∗gN |gc <
1

100
,

1

2
≤ |∇gNr|gN ≤ 2

|r∆gN r|gN ≤ 4(n− 1), r2|Rm(gN )|gN ≤ C(gc)

on

{

(x, t) ∈ N × [0,+∞); r(x) ≥
√

γ0t+ Λ2
0

}

.

From now on, (N, gN , fN ) will be a positively curved expanding gradient Ricci soliton,
qmax the unique maximal point of fN , and gN (t) will be its associated Ricci flow. We also
observe that given the Euclidean metric on R, gR, one can construct a static solution to
the Ricci flow which has an expanding structure. Define the potential function on R by

fR(l) :=
l2

4 and let gR(t) = t(φtR)
∗gR, where φ

t
R : R −→ R is a family of diffeomorphisms with

t > 0, φR(·, 1) = idR and

∂tφ
t
R = −1

t
∇fR(φtR).

Integrating this, φt
R
is then given by φtR =

1√
t
idR. Thus, gR(t) ≡ gR for all times and it solves

the Ricci flow equation with Ric(gR(t)) ≡ 0.
Given the construction above, we can consider the expander (N × R, g0, f0), where g0 =

gN ⊗gR, f0(x, l) = fN (x)+fR(l), and the associated Ricci flow given by g0(t) = g0(t)⊗ gR(t).

Finally, let F̃s(r, x, l) = (Fs(r, x), l) for every (r, x, l) ∈ [Λ0
√
s,∞)×X × R.

We now define the model class M(δ,Λ, s) that we will be working with. Metrics in
M(δ,Λ, s) can be seen as the smoothing of an edge type conical singularity with an ex-
pander at scale s cross an interval of the real line. In Section 5, our approximating solution
will be constructed as an element of M(δ,Λ, s) for appropriate values of δ,Λ and s.

Definition 2.4. Given δ, s > 0, Λ ≥ Λ0, we say that the pair (M,g) belongs to M(δ,Λ, s)
if it is a complete Riemannian manifold with bounded curvature satisfying the following.
There exist a closed, embedded curve Γs ⊂ M, with length l(Γs) = L > 0, and a map
Φs : {rs ≤ 1} × [−L/2, L/2] −→ M such that Φs is a diffeomorphism onto its image, and
Φs ({qmax} × [−L/2, L/2]) = Γs, where qmax ∈ N is the unique critical point of the potential
function fN . Furthermore, there exist 0 < η0 < L and functions rs : Im(Φs) −→ [Λ

√
s, 1],

defined by

rs = max
{

(π1 ◦ Φ−1
s )∗rs,Λ

√
s
}

,

where π1 : N × R −→ N is the natural projection, and ls : Im(Φs) −→ R given by

ls = π2 ◦ Φ−1
s ,

where π2 : N × R −→ R is the projection on the second coordinate, such that for all p ∈
Im(Φs), the following holds. If Φs(x, l) = p, then

Φs ({qmax} × [l − η0/2, l + η0/2]) ⊂ Γs
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is isometric to [−η0/2, η0/2] ⊂ R and

4
∑

j=0

rj
∣

∣

∣

(

∇G
)j
(

(Φs ◦ F̃s)
∗g −G

)∣

∣

∣

G
+ rj

∣

∣

∣
(∇G)j(F̃ ∗

s g0(s)−G)
∣

∣

∣

G
< δ (4)

in [Λ
√
s, 1] × X × [−η0/2, η0/2], where G = gc ⊗ gR is the product metric on C(Sn−1) × R

with the same assumptions as in Theorem 1.3, and

|Φ∗
sg − g0(s)|g0(s) < δ (5)

in {rs ≤ 2(Λ + 1)
√
s} × [−η0/2, η0/2].

3. Stability Under Ricci Flow

This section is dedicated to proving stability of (N×R, g0(t)).We generalise, to our partic-
ular case, the weak stability for expanders with positive curvature operator of Deruelle–Lamm
[DL17]. We follow [DL17] as much as we can, pointing out when new ideas are needed. We
observe that, for consistency with the literature, in this section we have g0(t) = gN (t)⊗ gR(t),
gN (t) = (1 + t)(φtN )∗gN and gR(t) = (1 + t)(φtR)

∗gR, where φtN is generated by− 1
1+t∇fN with

φ0N = idN and the definition of φt
R
is analogous.

3.1. The set up. Let g(t) be a solution to Ricci flow on N × R for t ≥ 0 such that

g(0) = g0(0) + h, (6)

where h ∈ S2T ∗M is such that g(0) is a metric. We study the following associated problem
(see section 2 of [DL17] for the details). Let h(t) := g(t)− g0(t) and consider h̄(t) = (1 +

t)(φ̃t)
∗h(ln(1 + t)), where φ̃t = (φtN , φ

t
R
). Then the evolution of h(t) can be written as

(∂t − Lt)h̄ = R0[h̄] +∇g0(t)R1[h̄], (7)

with

R0[h̄] := h̄−1 ∗ h̄ ∗Rm(g0(t)) + (g(t))−1 ∗ (g(t))−1 ∗ ∇g0(t)h̄(t) ∗ ∇g0(t)h̄(t),

∇g0(t)R1[h̄]ij := ∇g0(t)
k

((

(g0(t) + h̄)kl − g0(t)
kl
)

∇g0(t)
l h̄ij

)

,

where Lt is the time dependent Lichnerowicz operator given by

Lth̄ = ∆g0(t)h̄+ 2Rm(g0(t)) ∗ h̄−Ric(g0(t))⊗ h̄− h̄⊗Ric(g0(t)), t ≥ 0.

We can also express the flow (7) globally by:

∂tḡ(t) = −2Ric(ḡ(t)) + LV (ḡ(t),g0(t))(ḡ(t)),

ḡ(t) := g0(t) + h̄(t),

where V (g(t), g0(t)) := divg(t)(g(t) − g0(t))−
1

2
∇g(t)trg(t)(g(t)− g0(t)).

We define function spacesX and Y as in [KL12]. First, for p ∈ (0,∞] and a family of tensors
(h(t))t≥0, we define the average parabolic Lp−norm of h as follows. Let (N × R, g(t))t≥0 be
a Ricci flow. Then

‖− h‖Lp(C(x,0,R)) :=

(

−
ˆ

C(x,0,R)
|h|pg0(s)(y, s)dµg0(s)(y)ds

)
1
p
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and

C(x, 0, R) := {(y, l, s) ∈ N × R× R
∗
+| s ∈ (0, R2], y ∈ BgN (s)(x,R),

l ∈ (−R,R)}.
We then define the function space X as the completion of {h | ‖h‖X < +∞} under its norm,
where

‖h‖X := sup
t≥0

‖h(t)‖L∞(N×R,g0(t))

+ sup
N×R×R∗

+

(

R‖− ∇h‖L2(C(x,l,R)) + ‖−
√
t∇h‖

Ln+4
(

C(x,l,R)\C
(

x,l, R√
2

))

)

,

and, analogously, the space Y as

Y := Y0 +∇Y1 := {(R0(t) +∇g0(t)
i Ri

1(t))t≥0|(R0(t))t≥0 ⊂ S2T ∗(N × R);

(R1(t))t≥0 ⊂ S2T ∗(N × R)⊗ Γ(T (N × R))},
where the norm is given by

‖R0‖Y0 := sup
(x,l,R)∈N×R×R∗

+

(

R2‖− R0‖L1(C(x,l,R))

+R2‖− R0‖
L

n+4
2 (C(x,l,R)\C(x,l,R2 ))

)

,

and

‖R1‖Y1 := sup
(x,l,R)∈N×R×R∗

+

(

R‖−R1‖L2(C(x,l,R))

+ ‖−
√
tR1‖Ln+4(C(x,l,R)\C(x,l,R2 ))

)

.

The following is a minor extension of [DL17, Lemma 3.1]. For completeness, we provide
their proof below, adding the small modifications needed to extend the result to N × R.

Lemma 3.1. Let (Nn, gN , fN ), n ≥ 3, be an expanding gradient Ricci soliton with quadratic
curvature decay. Consider (N × R, g0, f0) as in Section 2. Then, for any γ ∈ (0, 1), the
operator R0[·] +∇R1[·] : BX(0, γ) ⊂ X → Y is analytic and satisfies

‖R0[h] +∇R1[h]‖Y ≤ c(n, γ, g0)‖h‖2X ,
and

‖R0[h
′]−R0[h] +∇(R1[h

′]−R1[h])‖Y ≤ c(‖h′‖X + ‖h‖X)‖h′ − h‖X ,
for any h, h′ ∈ BX(0, γ), where c = c(n, γ, g0).

Proof. Most of the estimates can be directly checked. The only non-trivial estimate is the
zeroth order quadratic term of R0[h], which relies on the decay of curvature tensor of gN .
First, observe that the metric gN (t) also has quadratic curvature decay, and if p ∈ N is such
that ∇g

NfN (p) = 0, then

|Rm(gN (t))|gN (t)(x) ≤
c

1 + t+ d2gN (t)(p, x)
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for t ≥ 0, x ∈ N and c > 0 independent of time. Therefore,

−
ˆ

BgN (t)(x,R)
|Rm(gN (t))|dµgN (t) ≤ c−

ˆ

BgN (t)(x,R)

1

1 + t+ d2gN (t)(p, x)
dµgN (t),

for any non-negative t. If dgN (t)(p, x) ≥ 2R, then dgN (t)(p, y) ≥ R for any y ∈ BgN (t)(x,R)
and

−
ˆ

BgN (t)(x,R)

1

1 + t+ d2gN (t)(p, x)
dµgN (t) ≤

c

1 +R2,

for a positive constant c, uniform in time, space and radius R. If dgN (t)(p, x) ≤ 2R, then the
co-area formula yields

−
ˆ

BgN (t)(x,R)

1

1 + t+ d2gN (t)(p, x)
dµgN (t) ≤ −

ˆ

BgN (t)(x,3R)

1

1 + t+ d2gN (t)(p, x)
dµgN (t)

≤ c(n)

ˆ 3R

0

rn−1

1 + r2
dr ≤ c(n)Rn−2,

if n ≥ 3. In any case,
ˆ R2

0
−
ˆ

BgN (t)(x,R)
|Rm(gN (t))|dµgN (t)dt ≤ c,

which is enough to prove the result in [DL17].
We now show the same bounds for N × R with g0(t) = gN (t) ⊗ gR(t). First, we have

|Rm(g0(t))|g0(t) = |Rm(gN (t))|gN (t), since Rm(g0(t))(∂r , ·, ·, ·) ≡ 0. The integral over a ball
Bg0(s)(x̃, R) in N × R can be estimated by an integral over a cylinder BgN (s)(x, 2R) ×
(−2R, 2R), where we are assuming, without loss of generality, that x̃ = (x, 0). Therefore,
using the result above, we have

ˆ R2

0
−
ˆ

Cg0(t)(x̃,2R)

|Rm(g0(t))|dµg0(t)dt

≤ c(n)

ˆ R2

0
−
ˆ 2R

−2R
−
ˆ

BgN (t)(x,2R)

|Rm(g0(t))|dµgN (t)drdt

= −
ˆ 2R

−2R

ˆ R2

0
−
ˆ

BgN (t)(x,2R)

|Rm(gN (t))|dµgN (t)dtdr

≤ c(n)
1

R

ˆ 2R

−2R
c(n)dr = c(n).

�

3.2. The homogeneous case. When studying equation (7), the first step is to estimate the
solution to the homogeneous linear equation

∂th = Lth, h(0) = h0 ∈ L∞(S2T ∗(N × R)), (8)

for t ≥ 0. In [DL17, Theorem 4.1], the authors show that for a positively curved expander
(N, gN (t)) with quadratic curvature decay, we get ‖h‖X ≤ c‖h0‖L∞(N,gN ). In our case, (N ×
R, g0(t)) only has non-negative curvature operator. Furthermore, the curvature decay does
not hold along the R−direction. However, just like we did for Lemma 3.1, we can still prove
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similar estimates. We state this below and provide details of the parts where our proof is
different from [DL17].

Theorem 3.2. Let (Nn×R, g0(t))t≥0, n ≥ 3, be an expanding gradient Ricci soliton with the
usual product metric. Assume that (Nn, gN (t)) has positive curvature operator and quadratic
curvature decay. Let (h(t))t≥0 be a solution to the homogeneous linear equation (8). Then
h(t) ∈ X for every t ≥ 0 and ‖h‖X ≤ c‖h0‖L∞(N×R,g0).

Proof. Given the norm defined for X, we need an L∞ estimate, an L2 and an Ln+4 estimate.
The L∞ estimate follows directly from the fact that the Ricci curvature is non-negative for
the expander N × R. Similarly, for the Ln+4 estimate to work we only need the extra facts
that the solution is of Type III, i.e.,

|Rm(g0(t))|g0(t) +
√
t|∇g0(t)Rm(g0(t))|g0(t) ≤

c

1 + t
,

and the Ricci flow is non-collapsed. All of these still hold when we take the product of the
expander with R and consider the product metric g0(t) = gN (t)⊗ gR(t).

For the L2 estimate, we need to be more careful. Our goal is to show

R‖− ∇h‖L2(C(x,l,R)) ≤ c‖h0‖L∞(N×R),

for arbitrary (x, l, R) ∈ N × R × R
∗
+. This estimate heavily relies on the quadratic decay of

the curvature. Computing the evolution equation for |h|2, where the norm is always with
respect to g0(t), we get

∂t|h|2 ≤ ∆g0(t)|h|2 − 2|∇g0(t)h|2 + c(n+ 1)|Rm(g0(t))‖h|2.

We multiply this inequality by a smooth cut-off function ψ2 : N ×R× R+ −→ R+ and inte-
grate by parts in space to get

∂t

ˆ

N×R

ψ2|h|2dµg0(t) + 2

ˆ

N×R

ψ2|∇g0(t)h|2dµg0(t)

≤
ˆ

N×R

[〈

−∇g0(t)ψ2,∇g0(t)|h|2
〉

+
(

∂tψ
2 + c(n)ψ2|Rm(g0(t))|

)

|h|2
]

dµg0(t)

≤
ˆ

N×R

[

4ψ|∇g0(t)ψ‖h‖∇g0(t)h|+
(

∂tψ
2 + c(n)ψ2|Rm(g0(t))|

)

|h|2
]

dµg0(t).

Young’s inequality applied to 4ψ|∇g0(t)ψ‖h‖∇g0(t)h| yields

∂t

ˆ

N×R

ψ2|h|2dµg0(t) +
ˆ

N×R

ψ2|∇g0(t)h|2dµg0(t)

≤ c(n + 1)

ˆ

N×R

(

|∇g0(t)ψ|2 + ∂tψ
2 + ψ2|Rm(g0(t))|

)

|h|2dµg0(t).

Let (x̃, R) ∈ N×R×R+ and, without loss of generality, assume x̃ = (x, 0). We now choose
an explicit cut-off function as

ψx̃,R(ỹ, t) := ξ

(

dgN (t)(x, y)

R

)

ξ
(

l
R

)

,

where ỹ = (y, l), ξ : R+ → R+ is a smooth function satisfying ξ|[0,1] = 1, ξ|[2,∞)
= 0

and sup
R+

|ξ′| ≤ c. Therefore, ψx̃,R is a Lipschitz function such that |∇g0(t)ψx̃,R| ≤ c
R and



RICCI FLOW FROM SPACES WITH EDGE TYPE CONICAL SINGULARITIES 11

0 ≤ ∂tψx̃,R ≤ c

R
√
t
by the following distortion estimate: for a type III Ricci flow (M,g(t))

with non-negative Ricci curvature, we have

dg(x, y)− c(A0)
(√

t−
√
s
)

≤ dg0(t)(x, y) ≤ dg0(s)(x, y),

for s ≤ t and for x, y ∈M. For details on this estimate, see [DL17, Lemma A.3].
Now we integrate the estimate above in time from 0 to R2 to obtain

ˆ R

−R

ˆ

BgN (R2)(x,R)
|h|2dµgN (R2)dr +

ˆ R2

0

ˆ R

−R

ˆ

BgN (t)(x,R)
|∇g0(t)h|2dµgN (t)drdt

≤
ˆ 2R

−2R

ˆ

BgN (0)(x,R)
|h(0)|2dµgN (0)dr

+ c(n)

ˆ 2R

−2R

ˆ R2

0

ˆ

BgN (t)(x,2R)

(

1
R2 + 1

R
√
t
+ |Rm(g0(t))|

)

|h(t)|2dµgN (t)drdt.

Recalling that AV R(gN (t)) = AV R(gN ) > 0, we get V olg0(t)(Bg0(t)(x, s)) ≥ AV R(g0)s
n+1

for any s > 0 by the Bishop-Gromov theorem. Furthermore, Bishop-Gromov once again
yields V olg0(t)(Bg0(t)(x, s)) ≤ c(n)sn+1, where we are using that Ric(g0(t)) ≥ 0. Therefore,
applying the L∞ estimate sup

t≥0
‖h(t)‖L∞(N×R,g0(t)) ≤ c‖h0‖L∞(N×R) as in [DL17], we have:

R2 1

R(n+1)+2
‖∇h‖2L2(C(x,0,R))

≤ c‖h(0)‖2L∞(N×R,g0)

(

1 + 1
Rn+1

ˆ R2

0

ˆ 2R

−2R

ˆ

BgN (t)(x,2R)

|Rm(g0(t))|dµgN (t)drdt

)

= c‖h(0)‖2L∞(N×R,g0)

(

1 + 1
R

ˆ R2

0

ˆ 2R

−2R
dr−
ˆ

BgN (t)(x,2R)

|Rm(gN (t))|dµgN (t)dt

)

≤ c‖h(0)‖2L∞(N×R,g0)

(

1 + 1
R

ˆ 2R

−2R
cdr

)

= c‖h(0)‖2L∞(N×R,g0)
,

where c = c(n) and we are using that |Rm(g0(t))|g0(t) = |Rm(gN (t))|gN (t). Furthermore, on
the last line, the estimate on the average integral follows as in the proof of Lemma 3.1. �

3.3. Heat kernel estimates. The next step is to prove heat kernel estimates. Again, many
of the estimates available for the heat kernel acting on functions over (N, gN , fN ) only use
that the solution to the Ricci flow is type III, non-collapsed and has non-negative Ricci/scalar
curvature. Thus, they still hold and will be useful for our set-up. We move on to proving
on-diagonal bounds of the Lichnerowicz heat kernel.

We recall the setup from [DL17]. Let (M,g(t))t∈[0,T ) be a complete Ricci flow with bounded
curvature at all times. The heat equation coupled with Ricci flow is given by

∂tu = ∆g(t)u+R(g(t))u, (9)

∂tg = −2Ric(g(t)),
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on M × (0, T ). We also consider the conjugate heat equation:

∂

∂τ
u = ∆g(τ)u, (10)

∂

∂τ
u = 2Ric(g(τ))

on M × (0, t] where τ(s) := t− s for t > 0 fixed.
Following standard notation, we denote the heat kernel associated to (9) by K(x, t, y, s),

for 0 ≤ s < t < T, and x, y ∈M. It is defined by:

∂tK(·, ·, y, s) = ∆g(t)K(·, ·, y, s) +R(g(t))K(·, ·, y, s),
∂tg = −2Ric(g(t)), (11)

lim
t→s

K(·, t, y, s) = δy,

where (y, s) ∈ M × (0, T ) are fixed. Now, if (x, t) ∈ M × (0, T ) are fixed, then K(x, t, ·, ·) is
the heat kernel associated to the conjugate heat equation:

∂

∂s
K(x, t, ·, ·) = ∆g(τ)K(x, t, ·, ·),

∂

∂s
g = 2Ric(g(τ)), (12)

lim
τ→0

K(x, t, ·, τ) = δx.

We now state some estimates for the heat kernel KL associated to the Lichnerowicz oper-
ator. Recall that KL ∈ Hom(S2T ∗(N ×R), S2T ∗(N ×R)) is C1 with respect to time and C2

with respect to space variables, and it satisfies, by definition,

∂tKL(·, ·, y, s) = LtKL(·, ·, y, s),
∂tg0 = −2Ric(g0(t), (13)

lim
t→s

KL(·, t, y, s) = δy,

for y ∈ N×R and s ∈ [0,∞) fixed. On the other hand, fixing (x, t), KL satisfies the conjugate
backward heat equation:

∂

∂s
KL(x, t, ·, ·) = −LsKL(x, t, ·, ·) +R(g0(s))KL(x, t, ·, ·),

∂

∂s
g = 2Ric(g0(τ)), (14)

lim
τ→0

KL(x, t, ·, τ) = δx.

We first recall the following diagonal bound for the Lichnerowicz heat kernel on an ex-
panding Ricci soliton with positive curvature operator from [DL17, Theorem 4.5]:

‖KL(x, t, y, s)‖Hom(S2T ∗
y (N),S2T ∗

x (N)) ≤
c(n+ 1, V0, A0)

(t− s)
n+1
2

, (15)

for 0 ≤ s < t and x, y ∈ N. Since KL splits as KN
L K

R
L , where K

N
L and KR

L are the respective
Lichnerowicz heat kernels of (N, gN (t)) and (R, gR(t)) (see, for instance, [Gri09]), the bound
above can be trivially extended to N × R. Furthermore, we also obtain the following off-
diagonal bound as a straightforward application of Deruelle–Lamm’s result.
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Theorem 3.3. Let (Nn × R, g0(t))t≥0 be an expanding gradient Ricci soliton such that
(N, gN (t)) is a Ricci soliton with positive curvature operator. Then the heat kernel asso-
ciated to (13) satisfies the following Gaussian estimate:

‖KL(x, t, y, s)‖ ≤ c(n, V0, A0,D)

(t− s)
n+1
2

exp

{

−
d2g0(s)(x, y)

D(t− s)

}

,

for 0 ≤ s < t, x, y ∈ N × R and D > 4, where A0 := supN×R |Rm(g0)|g0 , V0 = AVR(g0) and
the norm is ‖ · ‖ = ‖ · ‖Hom(S2T ∗

y (N×R),S2T ∗
x (N×R)).

Proof. Let ‖ · ‖g0 be the norm on Hom(S2T ∗(N ×R), S2T ∗(N ×R)). Consider points (x, rx)
and (y, ry) in N × R. From Theorem 5.14 in [DL17] we have

‖KN
L (x, t, y, s)‖gN ≤ c(n, V0, A0,D)

(t− s)
n
2

exp

{

−
d2gN (s)(x, y)

D(t− s)

}

.

Therefore,

‖KL((x, rx), t, (y, ry), s)‖g0 ≤ ‖KN
L (x, t, y, s)‖gN ‖KR

gR(rx, t, ry, s)‖gR

≤ c(n, V0, A0,D)

(t− s)
n
2

exp

{

−
d2gN (s)(x, y)

D(t− s)

}

1
√

4π(t− s)
exp

{

−|rx − ry|2
4(t− s)

}

since KR
gR
(rx, t, ry, s) =

1√
4π(t−s)

exp
{

− |rx−ry|2
4(t−s)

}

. Finally,

‖KL((x, rx), t, (y, ry), s)‖g0 ≤ c(n+ 1, V0, A0,D)

(t− s)
n+1
2

exp

{

−
d2g0(s)(x, y)

D(t− s)
,

}

.

�

3.4. The inhomogeneous case. Having obtained bounds for the homogeneous linear equa-
tion and good estimates for the heat kernel on (N ×R, g0(t))t≥0, we can proceed to estimate
the inhomogeneous equation. We state below Theorem 3.4 and Theorem 3.5, and refer the
reader to [DL17] for the details. It is important to note, however, the dependence on the
decay of the heat kernel on R, in the form of Theorem 3.3.

Theorem 3.4. Let R be in Y. Then, any solution to (∂t − Lt)h = R with h(0) = h0 ∈
L∞(N × R, g0) of the form h = KL ∗R, i.e.,

h(x, t) =

ˆ t

0

ˆ

N×R

< KL(x, t, y, s), R(y, s) > dµg0(s)(y)ds,

is in X and satisfies

‖h‖X ≤ c(‖h0‖L∞(N×R,g0) + ‖R‖Y ),
for some positive uniform constant c.

As a corollary of Theorem 3.4 and Lemma 3.1, we obtain the following.

Theorem 3.5. Let (Nn×R, g0(t))t≥0, where g0(t) = gN (t)⊗gR(t) and n ≥ 3, be an expanding
gradient Ricci soliton such that (N, gN (t)) is a Ricci soliton with positive curvature operator
and quadratic curvature decay at infinity, i.e.,

Rm(gN ) > 0, |Rm(gN )|(x) ≤ C

1 + d2gN (p, x)
, ∀x ∈ N,
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for some point p ∈ N and a positive constant C depending on p. Then there exists ε > 0 such
that for any metric g ∈ L∞(N ×R, g0) satisfying ‖g−g0‖L∞(N×R,g0) ≤ ε, there exists a global
solution (N × R, g(t))t≥0 to the DeTurck Ricci flow with initial condition g. Moreover,

(1) the solution is analytic in space and time and, for any α, β ≥ 0 the following holds:

sup
x∈N×R,t>0

|(
√
t∇g0(t))α(t∂t)

β(g(t)− g0(t))|g0(t) ≤ cα,β|g(0) − g0|L∞(N×R,g0),

(2) the solution above is unique in BX(g0, ε).

Remark. We observe that the result above can be directly extended to N×R
k, for any k ∈ Z+,

since the heat kernel in R
k has the same decay estimates.

4. Uniform estimates for the Ricci flow starting from the model class

We now consider a complete Ricci flow (Mn, g(t))t∈[0,T ], with n ≥ 4 and (M,g(0)) ∈
M(δ, s,Λ) for some Λ ≥ Λ0. The constant Λ will separate our manifold into a conical region
and an expanding region. In the conical region, the metric is δ−close to the product metric
on C(X)×R, and in the expanding region it is δ−close to the metric on the expander N ×R

at scale s.

4.1. Conical region estimates. In this section, we show how, if the initial data is in
M(δ,Λ, s), pseudolocality controls the flow in the conical region, since the metric is close to
being flat. To do so, we work with the Ricci-DeTurck flow. Let ĝ(t) be a solution for the
Ricci-DeTurck flow

∂tĝ = −2Ric(ĝ) + LW(ĝ,g̃)ĝ, (16)

where W(ĝ, g̃)k = ĝklĝ
ij(Γ̂l

ij − Γ̃l
ij), and g̃(t) is chosen as follows. For (M, ĝ(0)) ∈ M(δ,Λ, s),

we define

g̃(t) = ξ1(rs)(Φ
−1
s )∗g0(t+ s) + (1− ξ1(rs))ĝ(0), (17)

where ξ : [0, 1] 7→ [0, 1] is a fixed smooth, non-increasing function which is identically 1
in [0, 12 ] and ξ = 0 in [58 , 1]. Given a Ricci flow (M,g(t))t∈[0,T ] with M(δ,Λ, s), consider

ψ :
{

rs ≤ 3
4

}

× [0, T ] →
{

rs ≤ 3
4

}

solving the harmonic map heat flow

∂tψ = ∆g(t),g̃(t)ψ, (18)

ψ|t=0 = id{rs≤ 3
4
}, (19)

ψ{rs= 3
4
}×[0,T ] = id{rs= 3

4
}. (20)

We assume that T is small enough so that g(t) and ψt are smooth for every t ∈ [0, T ] and ψt

is a diffeomorphism. Then it is well known that ĝ(t) = (ψ−1
t )∗g(t) solves (16). Assuming an a

priori bound on the gradient of ψ, the lemma below (see [GS18, Lemma 3.1]) implies that ĝ(t)
is controlled until a definite positive time. The proof follows from Perelman’s pseudolocality,
using the fact that the metric is close to G = gc ⊗ gR in the region defined below. We refer
the reader to [GS18] for the details.

Lemma 4.1. Fix B,α > 0. There exist δ2(α) > 0, γ2(B,α) > 1 and a constant C(G) > 0
such that the following holds. Let (M,g(t))t∈[0,T ] be a complete Ricci flow with bounded
curvature and initial data satisfying (M,g(0)) ∈ M(δ2,Λ, s), for some Λ ≥ Λ0 and s ≤

1
32(Λ+1)2

. Let g̃, ψ and ĝ(t) = (φ−1
t )∗g(t) be as above and define the following conical region:
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Dcone
γ,Λ,s =

{

(p, t) ∈ {rs ≤ 3
4} × [0, (32γ)−1], rs(p) ≥

√

γt+ sΛ2
}

(21)

for some γ ≥ γ2 and suppose |∇ψ|g,g̃ ≤ B in {rs ≤ 3
4} × [0,min{(32γ)−1, T}]. Then the

following estimates are valid in Dcone
γ,Λ+1,s ∩ (M × [0, T ]) :

|ĝ − g̃|g̃ + rs|∇̃ĝ|g̃ < α, (22)

2
∑

j=0

r2+j
s

∣

∣(∇g)jRm(g)
∣

∣

g
≤ C. (23)

4.2. Local stability for the expanding soliton. We now localise our stability result from
section 3. For (N × R, g0(t))t≥0, with g0(0) = g0 = gN ⊗ gR, we define the following regions.
First, the interior region

Dλ0 =
{

(x, l, t) ∈ N × R× [0, T ]; r(x) ≤ 2
√

γt+ (Λ + 1)2, l ∈ [−λ0/2, λ0/2]
}

.

We will also need the annular region

Aλ0 =
{

(x, l, t) ∈ N ×R× [0, T ]; r(x) ∈ [
√

γt+ (Λ + 1)2, 2
√

γt+ (Λ + 1)2],

l ∈ [−λ0/2, λ0/2]
}

,

and the boundary region

Bλ0 =
{

(x, l, t) ∈ N × R× [0, T ]; r(x) ≤ 2
√

γt+ (Λ + 1)2,

l ∈ [−λ0/2,−λ0/4] ∪ [λ0/4, λ0/2]
}

.

Before our main lemma, we state the following technical lemma, which is just an adaptation
of [GS18, Lemma 4.3] to our setting.

Lemma 4.2. Let (N, gN , f) be an asymptotically conical gradient Ricci expander with positive
curvature operator and let (g0(t))t≥0 be the induced Ricci flow on N × R with g0(0) = g0.
There is a C(gN ) > 0 such that for every Λ ≥ Λ0 the following holds. Define Aλ0 and Bλ0

as above, for some γ ≥ 1. Then, if the tensors h1, h2 are supported in Aλ0 and satisfy

|h1|g0(t) + |h2|2g0(t) ≤
D

t+ γ−1(Λ + 1)2
,

we have

‖h1 +∇g0(t)h2‖YT
≤ C(gN )D.

The proof of the next lemma will follow [GS18, Lemma 4.2] and we refer the reader to
their paper for the details of some steps. We will focus on the steps where our proof deviates
from theirs.

Lemma 4.3. Let (N × R, g0, f0) be a gradient Ricci expander, where (N, gN , fN ) is an asymp-
totically conical gradient Ricci expander with positive curvature operator, and let g0(t) =
gN (t)⊗ gR(t), t ≥ 0, be the induced Ricci flow with g0(0) = gN ⊗ gR. There exists δ1(gN ) > 0

with the following property. Let Λ ≥ Λ0, γ ≥ 1, 0 < δ2 < δ1 and r(x) = 2
√

fN(x) for all
x ∈ N. Let g(t), t ∈ [0, T ], be a solution to the Ricci-DeTurck flow

∂tg(t) = −2Ric(g(t)) + LW (g(t),g0(t))
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on Dλ0 and assume that

0 < H := max

{

sup
Dλ0

∩{t=0}
|g − g0|g0 , sup

Aλ0

(|g − g0|g0 + r|∇g0g|g0)
}

≤ δ1.

We also assume that for some constant 0 < M ≤ 1,

sup
Bλ0

(|g − g0|g0 +
√
t|∇g0g|g0) ≤M.

Then, if λ0 ≥ M
δ2

and 0 < H ≤ δ2 ≤ δ1, defining

D
′

λ0
= Dλ0 ∩

({

r(x) ≤ 3
2

√

γt+ (Λ + 1)2,−λ0/4 ≤ l ≤ λ0/4
}

× [0, T ]
)

,

we have

sup
D

′
λ0

∣

∣

∣
(
√
t∇g0)a(t∂t)

b(g − g0)
∣

∣

∣

g0
≤ Ca,b(gN ),

for any non-negative indices a, b. Furthermore, for all k = 0, 1, 2, ..., there exist Ck(gN ) and
0 < δk(gN ) ≤ δ1 such that if H ≤ δk, then

sup
D′

λ0

∣

∣

∣
(
√
t∇g0)a(t∂t)

b(g − g0)
∣

∣

∣

g0
≤ CkH,

provided a+ 2b ≤ 2k.

Proof. We start with an arbitrary λ0 ≥ 1, to be chosen later in the proof. Let ξ1 : R → R

and ξ2 : [0,∞) → R, 0 ≤ ξi ≤ 1, for i = 1, 2, be two smooth cut-off functions such that

ξ1|[−1/4,1/4] ≡ 1, ξ1|[1/2,∞) ≡ ξ1|(−∞,−1/2] ≡ 0,

ξ2|[0,1] ≡ 1, ξ2|[2,∞) ≡ 0,

|ξi′|+ |ξi′′| ≤ Cξ,

for some constant Cξ > 0. Define the following cut-off function in Dλ0 :

χ(x, l, t) = ξ1

(

l
λ0

)

ξ2

(

r(x)
√

γt+ (Λ + 1)2

)

.

Then,

∂tχ = −ξ1
(

l
λ0

)

ξ
′

2

(

r(x)
√

γt+ (Λ + 1)2

)

r(x)γ

2(γt+ (Λ + 1)2)
3
2

,
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and so, |∂tχ| ≤ Cξ
1

γt+ (Λ + 1)2
on Aλ0 and, outside Aλ0 , ∂tχ = 0. In particular, ∂tχ = 0 on

Bλ0\Aλ0 . Similarly,

∇g0(t)χ = ∇g0(t)

(

ξ1

(

l
λ0

)

ξ2

(

r(x)
√

γt+ (Λ + 1)2

))

= ξ
′

1

(

l
λ0

) 1

λ0
ξ2

(

r(x)
√

γt+ (Λ + 1)2

)

eR

+ ξ1

(

l
λ0

)

ξ
′

2

(

r(x)
√

γt+ (Λ + 1)2

)

∇gN (t)r(x)
√

γt+ (Λ + 1)2
,

with ξ
′

2 = 0 outside of Aλ0 (in particular, in Bλ0\Aλ0). Lemma 2.3 implies that |∇g0(t)r|2 ≤ 2
in Aλ0 . Thus,

|∇g0(t)χ|2g0(t) ≤ C(n, ξ)
1

t+ γ−1(Λ + 1)2
+ C(n, ξ)

in Aλ0 since we are assuming λ0 ≥ 1, and

|∇g0(t)χ|2g0(t) ≤
C(n, ξ)

λ20

in Bλ0\Aλ0 , with supp(∇g0(t)χ) = Aλ0 ∪Bλ0 .
Finally, again using Lemma 2.3 to get the bound r∆g0r ≤ 4(n− 1), we have

∆g0(t)χ = ξ1

(

l
λ0

)

[

ξ
′′

2

(

r(x)
√

γt+ (Λ + 1)2

)

1

γt+ (Λ + 1)2
|∇gN (t)r|2

+ ξ
′

2

(

r(x)
√

γt+ (Λ + 1)2

)

1
√

γt+ (Λ + 1)2
∆gN (t)r

]

+ ξ2

(

r(x)
√

γt+ (Λ + 1)2

)

ξ
′′

1

(

l
λ0

) 1

(λ0)2
,

hence, in Aλ0 we have

|∆g0(t)χ| ≤ C(n, ξ)
1

t+ γ−1(Λ + 1)2
+ C(n, ξ)

since λ0 ≥ 1 and ξ
′

2 = 0 in the set {r ≤
√

γt+ (Λ + 1)2}. Finally,

|∆g0(t)χ| ≤
C(n, ξ)

λ20

in Bλ0\Aλ0 , with supp(∆g0(t)χ) = Aλ0 ∪ Bλ0 . Using that r(x) ≥
√

γt+ (Λ + 1)2 in Aλ0 , we
can apply Lemma 2.3 to get

|∇g0(t)g(t)|g0(t) ≤
H

√

t+ γ−1(Λ + 1)2
(24)

in Aλ0 .
We denote h(t) = g(t) − g0(t) to write the evolution equation of h as

(∂t − Lt)h = R0[h] +∇R1[h],
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where, as in Section 3,

Lthij = ∆g0(t)hij + 2Rm(g0(t))ijklhkl −Ric(g0(t))ikhkj −Ric(g0(t))jkhki,

R0[h] = Rm(g0(t)) ∗ h ∗ h+O(h3) ∗Rm(g0(t)) + g−1 ∗ g−1 ∗ ∇g0(t)h ∗ ∇g0(t)h,

∇R1[h] = ∇g0(t)
p

(

((g0(t) + h(t))pq − (g0(t))
pq)∇g0(t)

q h
)

,

with R1[h] = ((g0(t) + h(t))pq − (g0(t))
pq)∇g0(t)

q h and |O(h3)|g0(t) ≤ C|h(t)|3g0(t).
Multiplying h by χ2, we can deduce an evolution equation for the product:

(∂t − Lt)(χ
2h) =

(

2χ∂tχ− 2χ∆g0(t)χ− 2|∇g0(t)χ|2
)

h+ χ2R0[h] (25)

+∇g0(t)(χ2R1[h])− 2χ∇g0(t)χ ∗ ∇g0(t)h− 2χ∇g0(t)χ ∗R1[h].

Working with the same spaces and norms as Gianniotis–Schulze (see [GS18, page 22]), we
define the following two terms:

S1[h] = χ2R0[h] +∇g0(t)(χ2R1[h]),

and

S2[h] =
(

2χ∂tχ− 2χ∆g0(t)χ− 2|∇g0(t)χ|2
)

h− 2χ∇g0(t)χ ∗ ∇g0(t)h

− 2χ∇g0(t)χ ∗R1[h].

We will estimate S1 and S2 separately. It will also be helpful to split our analysis of the
terms involving the cut-off function (supported in Aλ0 ∪Bλ0) into Aλ0 and Bλ0\Aλ0 .

We first estimate S2[h], noting that it is supported on Aλ0 ∪ Bλ0 . In Aλ0 , we can apply
(24) and the estimates above for the cut-off function to get

|S2[h]|g0(t) ≤
CH

t+ γ−1(Λ + 1)2

since |h|g0(t) ≤ H in Aλ0 . Working on Bλ0\Aλ0 , we have

|S2[h]|g0(t) ≤
(

2χ|∂tχ|+ 2χ|∆g0(t)χ|+ 2|∇g0(t)χ|2
)

|h|g0(t) + 2χ|∇g0(t)χ||∇g0(t)h|

+ 2χ|∇g0(t)χ||R1[h]|

≤ C(n, ξ)

λ20
|h|+ C(n, ξ)

λ0
|∇g0(t)h|.

Hence,

|S2[h]|g0(t) ≤
C(n, ξ)

λ0

(

M +
M√
t

)

in Bλ0\Aλ0 . Since λ0 ≥ M
δ2
, we can then apply Lemma 4.2 and compute

‖S2[h]‖YT ′ ≤ C(g0)δ2. (26)

We now turn our attention to S1[h], starting with χ2R0[h]. First,

|χ2(h ∗ h+O(h3)Rm(g0(t)))|g0(t) ≤ Cχ2|h|2g0(t)|Rm(g0(t))|g0(t)
≤ C|χ2h|2g0(t)|Rm(g0(t))|g0(t) + Cχ2(1− χ2)|h|2g0(t)|Rm(g0(t))|g0(t)

≤ C|χ2h|2g0(t)|Rm(g0(t))|g0(t) +
C(g0)χ

2(1− χ2)H

t+ γ−1(Λ + 1)2
,
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where in the last line we used that χ2(1− χ2) is only non-zero in Aλ0 ∩Bλ0 (so |h|g0(t) ≤ H)
and the fact that

|Rm(g0(t))|g0(t) = |Rm(gN (t))|gN (t) ≤
C(gN )

r2
≤ C(gN )

γt+ (Λ + 1)2

in Aλ0 due to Lemma 2.3.

For the term χ2g−1 ∗ g−1 ∗ ∇g0(t)h ∗ ∇g0(t)h we have

χ2g−1 ∗ g−1 ∗ ∇g0(t)h ∗ ∇g0(t)h = χ2(1− χ2)g−1 ∗ g−1 ∗ ∇g0(t)h ∗ ∇g0(t)h

+ g−1 ∗ g−1 ∗ ∇g0(t)(χ2h) ∗ ∇g0(t)(χ2h)

+ g−1 ∗ g−1 ∗ χ2 ∗ ∇g0(t)χ ∗ ∇g0(t)χ ∗ h ∗ h
+ g−1 ∗ g−1 ∗ χ3 ∗ ∇g0(t)χ ∗ ∇g0(t)h ∗ h.

Thus,

|χ2g−1 ∗ g−1∗∇g0(t)h ∗ ∇g0(t)h|g0(t) ≤ C|∇g0(t)(χ2h)|2g0(t)
+ χ2(1− χ2)|∇g0(t)h|2g0(t) + Cχ2|∇g0(t)χ|2g0(t)|h|

2
g0(t)

+Cχ3|∇g0(t)χ|g0(t)|∇g0(t)h|g0(t)|h|g0(t).
Note that the second term is supported on Aλ0 ∩Bλ0 . Working on Aλ0 , the three last terms

are bounded by
CH

t+ γ−1(Λ + 1)2
. On Bλ0\Aλ0 , the two last terms are, again, bounded by

C(n, ξ)

λ20
M2 +

C(n, ξ)

λ0

M2

√
t
.

By our previous choice of λ0, and since M ≤ 1, we get to bound this by C(n, ξ)δ2

(

1 +
1√
t

)

in Bλ0\Aλ0 .
For the last term, χ2R1[h], we consider

χ2R1[h] = χ2
[

((g0(t) + h(t))pq − (g0(t))
pq)∇g0(t)

q h
]

.

Thus,

|χ2R1[h]|g0(t) ≤ C|χ2h|g0(t)|∇g0(t)(χ2h)|g0(t) + C(1− χ2)χ2|h|g0(t)|∇g0(t)h|g0(t)
+ C|h|2g0(t)χ

3|∇g0(t)χ|g0(t)
≤ C|χ2h|g0(t)|∇g0(t)(χ2h)|g0(t) + C(1− χ2)χ2|h|g0(t)|∇g0(t)h|g0(t)
+ C|h|2g0(t)|∇

g0(t)χ|g0(t).

Again, the second term is supported on Aλ0∩Bλ0 , so we can directly bound it by CH√
t+γ−1(Λ+1)2

.

For the third term, it is bounded by CH√
t+γ−1(Λ+1)2

in Aλ0 , and in Bλ0\Aλ0 , we proceed as

above to bound it by Cδ2. Applying Lemma 4.2 and Lemma 3.1 yields

‖S1[h]‖YT ′ ≤ C
(

‖χ2h‖2XT ′ + δ2

)

.

We can now use the estimate above, together with (26) and Theorem 3.4 to get:

‖χ2h‖T ′ ≤ C(‖χ2h‖2T ′ + δ2).
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So for every T ′ ≤ T such that ‖χ2h‖T ′ ≤ 1
2C , we have

‖χ2h‖T ′ ≤ Cδ2.

Therefore, since

lim
T ′→0

(‖χ2h‖T ′ − sup
N×R×[0,T ′]

|χ2h|g0) = 0 and lim
T ′→0

sup
N×R×[0,T ′]|h|g0

≤ H ≤ δ2,

if max{δ2, Cδ2} ≤ 1
2C , we have ‖χ2h‖T ≤ Cδ2.

In order to obtain the decay estimates and finish our proof, we utilise a local argument
and scaling. The idea is to first work on a small enough region, where the decay estimates
will follow directly from parabolicity, making sure this small enough region is contained in
Dλ0 . We then use the rescaling nature of the Ricci flow to make sure that the estimates in
fact work for every point in D′

λ0
. The first step is proved in the following two claims.

Claim. There exist 0 < r0 < 1, ε0 > 0, and constants Ca,b > 0 such that the following
holds. Let x0 ∈ N, t0 ∈ (0, 1], 0 < r < min(

√
t0, r0), and consider g(t) a solution to the

Ricci-DeTurck flow with background metric g0(t) on

C((x0, 0), t0, r) :=
⋃

t∈(t0−r2,t0)

(

BgN (t)(x0, r)× (−r0, r0)
)

× {t},

with |g(t) − g0(t)|g0(t) ≤ ε0. Then

|(r∇g0)a(r2∂t)
b(g − g0)|g0((x0, 0), t0) ≤ Ca,b.

Furthermore, for every k ∈ N there exists 0 < εk ≤ ε0 such that if |g(t) − g0(t)|g0(t) ≤ εk on

C(x0, t0, r), then there exists a constant C
′

a,b > 0 such that

|(r∇g0)a(r2∂t)
b(g − g0)|g0(x0, t0) ≤ C

′

a,b sup
C((x0,0),t0,r)

|g(t)− g0(t)|g0(t),

as long as a+ 2b ≤ k.

For r0 sufficiently small, we can find a coordinate system such that g0(t) is well controlled in
BgN (0)(x0, r)× (−r0, r0) for t ∈ [0, 1]. The estimate then follows directly from local parabolic
estimates. For details, see [Bam14, Proposition 2.5].

Claim. There exists 0 < δ < 1, independent of γ and Λ, such that for any (x, l, t) ∈ D′
λ0
, we

have

C((x, l), t,
√
δt) ⊂ Dλ0 .

Since the metric is not changing in the R−direction, we first choose 0 < r0 < λ0/2. This
guarantees the inclusion in the R−direction. For the details of the inclusion for the ball in
N, see [GS18, Lemma 4.2].

We now move on to the decay estimates for D
′

λ0
. If 0 < t < 1, this follows directly from the

two claims above. Therefore, fix (x0, l0, t0) ∈ D
′

λ0
, with 1 ≤ t0 ≤ T. If we define η := 2

t0
and

the rescaling given by gη(t) := ηφ∗ηg(
t
η ), then g0(t) = gη0 (t) and g

η solves the Ricci-DeTurck

flow on

Dη
λ0

=

{

(x, l, t) ∈ N × R× [0, 1]; x ∈ φη
−1

N

(

{r(x) ≤ 2
√

γ
η t+ (Λ + 1)2}

)

,

l ∈ [−λ0/2, λ0/2]
}

,
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where the R−direction is not changing since rescaling by
1

η
cancels out with φη

−1

R
. Therefore,

the second claim holds for the new δ given by δη. We can then apply the first claim to obtain
the same estimates as before. Rescaling back to the original solution, we get the decay
estimates from the statement. �

4.3. Estimates on the expanding region. Finally, we prove estimates for the expanding
region of our solution to the Ricci flow starting from M(δ,Λ, s). Assuming the bounds on the
conical region and an a priori bound on the horizontal ends of a sub-region of the expanding
region, we control the evolution of our solution in the interior of the sub-region. Overlapping
such sub-regions, we obtain the needed estimates. From now on, we fix p0 = Φs(qmax, 0) ∈ Γs

and λ0 > 0.

Lemma 4.4. For every ε > 0 and every k ∈ N, there exists δ0 = δ0(gN , ε, k) > 0 such that
if (M,g(t))t∈[0,T ] is a complete Ricci flow with bounded curvature, and initial data satisfying

(M,g(0)) ∈ M(δ,Λ, s) for δ ≤ δ0, Λ > 0 and s ≤ 1
32(Λ+1)2

, then the following holds. Let

ĝ(t) = (ψ−1
t )∗g(t) be the Ricci-DeTurck flow in {rs ≤ 3/4} and let g̃(t) be as in (17). Define

the expanding region as:

Dexp
γ,Λ,s =

{

(x, t) ∈M × [0,
1

32γ
] ; rs(x) ≤ 3

2

√

γt+ s(Λ + 1)2
}

,

and assume that estimate (22) holds in Dcone
γ,Λ+1,s∩ (M × [0, T ]) for some γ ≥ 1. Then we have

(t+ s)j/2|(∇g̃)j(ĝ − g̃)|g̃ < ε (27)

in Dexp
γ,Λ,s ∩ (M × [0, T ]), for every 0 ≤ j ≤ k.

Proof. Suppose that (M,g(0)) ∈ M(δ,Λ, s) for δ ≤ min{δ1, δ2}, where δ1, δ2 > 0 are as in
the lemmata above, Λ > 0 and 0 < s < 1

32(Λ+1)2
. Let us start by defining the horizontal ends.

We first choose 0 < η ≤ η0, with η0 as in the definition of the model class. Let Dout
γ,Λ,s,η be

given by

Dout
γ,Λ,s,η =

{

(x, t) ∈M × [0,
1

32γ
] ; rs(x) ≤ 3

2

√

γt+ s(Λ + 1)2,

− η

2
≤ ls(x) ≤ −η

4
or

η

4
≤ ls(x) ≤

η

2

}

.

Since ĝ and g̃ are smooth Riemannian metrics on a compact region, there exists a constant
C <∞, which might initially depend on s > 0, such that

|ĝ − g̃|g̃ +
√
t|∇̃ĝ|g̃ < C (28)

in Dexp
γ,Λ,s ∩ (M × [0, T ]). We define

τ0 = max{τ | |ĝ − g̃|g̃ +
√
t|∇̃ĝ|g̃ ≤ 1 in Dexp

γ,Λ,s ∩ (M × [0, τ ])}.

Since (M,g(0)) ∈ M(δ,Λ, s) we have that τ0 > 0 by continuity. Assume τ0 < min{ 1
32γ , T}.

We then first show that for every 0 ≤ j ≤ k :

(t+ s)j/2|(∇g̃)j(ĝ − g̃)|g̃ < ε (29)



22 LUCAS LAVOYER

in Din
γ,Λ,s,η ∩ (M × [0, τ0]), where

Din
γ,Λ,s,η =

{

(x, t) ∈M × [0, 1
32γ ] ; rs(x) ≤ 3

2

√

γt+ s(Λ + 1)2,

− η
4 ≤ ls(x) ≤ η

4

}

.

If necessary, we rescale the metric so that η ≥ λ0, where λ0 ≥ 1 is as in Lemma 4.3. Note that
Din

γ,Λ,s,η ∪Dout
γ,Λ,s,η = Dexp

γ,Λ,s,η is the expanding region restricted to −η
2 ≤ ls(x) ≤ η

2 ; essentially,

a small neighbourhood of a point in Γs = Φs(qmax, [−L/2, L/2]).
Consider Q = Φs ◦ (φ̃s)−1, where φ̃s : N ×R → N ×R is given by φ̃s(x, l) = (φsN (x), φs

R
(l)).

Observe that g0(t) = t(φ̃t)
∗(gN ⊗ gR) solves the Ricci flow on N × R. Then

Q∗rs = 2
√

sf.

Furthermore, we define h(t) = s−1Q∗ĝ(st) and observe that

s−1Q∗g̃(st) =
1

s

(

Φs ◦ (φ̃s)−1
)∗

(Φ−1
s )∗g0(st)

=
1

s
[(φ̃s)

−1]∗st(φ̃t ◦ φ̃s)∗(gN ⊗ gR)

= t(φ̃t)
∗(gN ⊗ gR) = g0(t),

in

{

r ≤ 1

2
√
s

}

. Since we are assuming that estimate (22) is true on Dcone
γ,Λ+1,s and it holds

that
{

r ≥
√

γt+ (Λ + 1)2
}

= Q−1
(

{
√

γst+ s(Λ + 1)2 ≤ rs ≤ 3/4}
)

, we have

|h(t)− g0(t)|g0(t)+r|∇g0(t)h(t)|g0(t) = |s−1Q∗ĝ(st)− s−1Q∗g̃(st)|g0(t)
+ r|∇g0(t)h(t)|g0(t) ≤ Q∗ (|ĝ − g̃|g̃ + rs|∇g̃ĝ|g̃

)

(st)

< δ,

in
{

r ≥
√

γt+ (Λ + 1)2
}

for any t ∈ [0, 1s max{ 1
32γ , T}]. Furthermore,

|h(0) − g0(0)|g0(0) = Q∗(|g(0) − g̃(0)|) < δ

in {r ≤ 2(Λ + 2)} since (M,g(0)) ∈ M(δ,Λ, s). Finally, on Dout
γ,Λ,s,η ∩ (M × [0, τ0]) we can use

(28) to get

|h(t) − g0(t)|g0(t) +
√
t|∇g0(t)h(t)|g0(t) = |s−1Q∗ĝ(st)− s−1Q∗g̃(st)|g0(t)

+
√
t|∇g0(t)s−1Q∗ĝ(st)|g0(t) (30)

≤ Q∗
(

|ĝ − g̃|g̃ +
√
t|∇g̃ĝ|g̃

)

(st)

≤ 1

in ({r ≤ 3/4} × [−η/2,−η/4]) ∪ ({r ≤ 3/4} × [η/4, η/2]) .
We can now apply Lemma 4.3 withM = 1. Thus, for every ε > 0, there exists δ0(gN , ε, k) >

0 such that if δ ≤ δ0,

sup
D′

η

|(t∂t)a(
√
t∇g0(t))b(h(t) − g0(t))|g0(t) < ε
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for any 0 ≤ a+ b ≤ 2k. The same follows for ĝ(t)− g̃(t), i.e.,

|(t∂t)a(
√
t∇g̃(t))b(ĝ(t)− g̃(t))|g̃(t) < ε

for every (x, t) ∈M × [0, τ0] with rs(x) ≤ 3
2

√

γt+ s(Λ + 1)2 and −η
4 ≤ ls(x) ≤ η

4 .
We now show these estimates hold along the whole curve. As mentioned before, we will

cover the curve with sub-regions as the one above and overlap them so that every point of
Dout is always contained in some interior region Din. Let n0 ∈ N be such that n0 ≥ L

η0
. We

define the regions

Dexp
γ,Λ,s,2i−1 =

{

(x, t) ∈M × [0, τ0]; rs ≤ 3
2

√

γt+ s(Λ + 1)2,

ls(x) ∈
[

(2(i − 1)− n0)
L
2n0

, (2i − n0)
L
2n0

]

}

=: D2i−1,

and

Dexp
γ,Λ,s,2j =

{

(x, t) ∈M × [0, τ0]; rs ≤ 3
2

√

γt+ s(Λ + 1)2,

ls(x) ∈
[

(2j − 1− n0)
L
2n0

, (2j + 1− n0)
L
2n0

]

}

=: D2j ,

for every i, j ∈ {1, 2, ..., n0}. Thus, Dexp
γ,Λ,s ∩ (M × [0, τ0]) ⊂

2n0
⋃

k=1

Dk. Furthermore, for k ∈

{1, ..., 2n0 − 1}, the following inclusions hold:

Dout
k ⊂ Din

k−1 ∪ Din
k+1,

Dout
1 ⊂ Din

2n0
∪ Din

2 , (31)

Dout
2n0

⊂ Din
2n0−1 ∪ Din

1 ,

with Dout
k and Din

k defined as before.
So far, we have obtained estimate (29)

(t+ s)j/2|(∇g̃)j(ĝ − g̃)|g̃ < ε,

for every (x, t) ∈ Din
2i−1, for any i ∈ {0, 1, ..., n0}. However, by the inclusions in (31), any

point (x, t) ∈ Dout
k is such that (x, t) ∈ Din

k−1 ∪ Din
k+1 (analogously if (x, t) ∈ Dout

1 ,Dout
2n0

). In
particular, after applying the same reasoning finitely many times (but at least 2n0 times), we
can make sure any point in Dexp

γ,Λ,s ∩ (M × [0, τ0]) is inside an interior region Din
k . It follows

that assumption (28) can be improved to

(t+ s)j/2|(∇g̃)j(ĝ − g̃)|g̃(x) < ε (32)

for every such (x, t) ∈ Dout
k .

Therefore, at t = τ0, (28) (and, thus, (30)) holds with the LHS less or equal to ε < 1. This
is already a contradiction with the definition of τ0 being the maximal time t ∈ [0, T ] such
that (28) holds with C = 1. Then, it follows that τ0 ≥ min{ 1

32γ , T} and the estimates in the

statement of the lemma hold for t ∈ [0,min{ 1
32γ , T}].

Putting everything together, we conclude that our estimates hold along the whole curve
and depend only on the assumptions for the conical region and for the initial data, i.e., our
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choice of δ > 0. Thus,

(t+ s)j/2|(∇g̃)j(ĝ − g̃)|g̃ < ε

for every (x, t) ∈ Dexp
γ,Λ,s, which finishes the proof of the lemma.

�

4.4. Uniform curvature estimates. We now put the estimates from the previous section
together to prove curvature estimates for a complete Ricci flow starting in the class M(δ,Λ, s).
The proof now is essentially the same as in [GS18], so we refer the reader to it for the details.

Theorem 4.5. Given Λ > 0, there exist δ0(gN ), s0(Λ), t0(gN ), C(gN ) such that for every s ∈
(0, s0] the following holds. If (M,g(t))t∈[0,T ] is a complete Ricci flow with bounded curvature
and initial data satisfying (M,g(0)) ∈ M(δ0,Λ, s), then

max
{rs≤3/4}

|Rm(g(t))|g(t) ≤
C

t
, for t ∈ (0,min{t0, T}],

max
{rs≤3/4}

rj+2
s |(∇g(t))jRm(g(t))|g(t) ≤ C,

for t ∈ (0,min{t0, T}]. Furthermore, for every ε > 0 and integer k ≥ 0, there exist δ1 =
δ1(ε, k, gN ) and γ1 = γ1(ε, k, gN ) such that if s ∈ (0, s0] and γ ≥ γ1, then we have the
following. If (M,g(0)) ∈ M(δ1,Λ, s), then for every t ∈ (0,min{(32γ)−1, T}] there is a map

Θs,t :

{

rs ≤
5

4

√

γt+ s(Λ + 1)2
}

−→ N × R,

a diffeomorphism onto its image, such that

{rs ≤
√
γt} × [−L/2, L/2] ⊂ Im(Θs,t)

⊂ {rs ≤ 3
2

√

γt+ s(Λ + 1)2} × [−L/2, L/2],
and for any non-negative index j ≤ k,

|(
√
t+ s)∇(g0(t+s)))j((Θ−1

s,t )
∗g(t)− g0(t+ s))|g0(t+s) < ε

in Im(Θs,t), where g0(t) = gN (t)⊗ gR(t).

Proof. The curvature estimates follow from Lemma 4.1 and Lemma 4.4, applying a loop
argument to show that the threshold B from Lemma 4.1 can always be avoided (see [GS18]
for the details).

The statement for Θt,s follows by defining Θs,t = Φs ◦ ψt and combining, again, lemmata
4.1 and 4.4. The inclusions for Im(Θt,s) are a direct application of [GS18, Theorem 3.1] and
the fact that

|∇̃ls|g̃(x, t) = |∇g0(t/s)l|g0(t/s)(φs(Φ−1
s (x))) = 1,

and Im(ls) = [−L/2, L/2]. �

If, in addition, we assume a bound |Rm(g(0))| ≤ A outside the conical and expanding
regions, we obtain a global bound for Rm in time as a direct application of Shi’s estimates
and the maximum principle.

Corollary 4.6. Let (M,g) ∈ M(δ0,Λ, s) for s ∈ (0, s0], where δ0(gN ) and s0(Λ) are given
by Theorem 4.5. Suppose that

sup
M\Im(Φs)

|Rm(g)|)g ≤ A.
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Then, there exists T (A, gN ) and C(A, gN ) such that the Ricci flow g(t) with g(0) = g exists
for t ∈ [0, T (A, gN )] and satisfies

max
M×(0,T ]

|Rm(g(t))|g(t) ≤
C(A, gN )

t
.

Moreover, all the conclusions from Theorem 4.5 hold.

5. The Ricci flow out of spaces with edge type conical singularities

In this section, we assume that r0 = 1, which is true module a rescaling argument, Λ1 ≥ Λ0,
and that κ > 0 is such that γZ(r) < κ for r ∈ (0, 1]. We will approximate (Z, gZ) by removing
small conical neighbourhoods of points in Γ and glueing in small neighbourhoods of points
of the spine of N × R at scale s > 0. After making sure we have a smooth Riemannian
manifold, we can flow it by Ricci flow. The estimates from Section 4 will allow us to pass to
a limit solution as sց 0. This limit will be shown to converge back to (Z, gZ) in the pointed
Gromov-Hausdorff topology and, away from the singular curve, in a locally smooth sense.

5.1. The approximating sequence. Let s ∈ (0, 1/2] and {p1, p2, ..., pn0} ⊂ Γ be points on

Γ such that l
(

Γ|[pk,pk+1]

)

=
L

n0
= η, for every k ∈ {1, 2, ..., n0}, where 0 < η ≤ η0 and we

consider pn0+1 = p1. For each pk, we pick qk ∈ Γ to be the middle point between pk and pk+1,
and consider the map φk := φqk from Definition (1.2), i.e., φk : (0, 1] ×X × [−η/2, η/2] −→ Z.
Thus, φk parametrises a neighbourhood of qk ∈ Γ.We then defineMs by an iteration method.

First, let

Zk
s := Z\φk

(

(0, s1/4]×X × [−η/2, η/2]
)

and

Zs := Z\
n0
⋃

k=1

φk

(

(0, s1/4]×X × [−η/2, η/2]
)

.

We will work with a subdivision of IL := [−L/2, L/2] by sub-intervals of length η. We denote
Ikη := [−L/2 + (k − 1)η,−L/2 + kη] for each 1 ≤ k ≤ n0. Then, we define

M1
s :=

Z1
s

⊔
(

{rs ≤ 1} × I1η
)

{φ1(r, ·, l + L/2− η/2) = (Fs(r, ·), l), r ∈ [s1/4, 1], l ∈ I1η}
.

Using M1
s we can define M2

s :

M2
s =

(

M1
s \φ2((0, s1/4]×X × [−η/2, η/2])

)
⊔
(

{rs ≤ 1} × I2η
)

∼2
,

where ∼2 is given by the following identification:

• φ2(r, v, l + L/2− 3η/2) = (Fs(r, v), l), for v ∈ X, l ∈ I2η and r ∈ [s1/4, 1],
• φ2(r, v,−η/2) = φ1(r, v, η/2), for r ∈ (0, 1] and v ∈ X.

Now, assuming Mk−1
s is defined for 1 < k < n0, we define Mk

s as

Mk
s =

(

Mk−1
s \φk((0, s1/4]×X × [−η/2, η/2])

)
⊔
(

{rs ≤ 1} × Ikη
)

∼k
,

where ∼k is given by:

• φk(r, v, l + L/2− (2k − 1)η/2) = (Fs(r, v), l), for v ∈ X, l ∈ Ikη and r ∈ [s1/4, 1],
• φk(r, v,−η/2) = φk−1(r, v, η/2), for r ∈ (0, 1] and v ∈ X.
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Finally, we define Ms as follows.

Ms =

(

Mn0−1
s \φn0((0, s

1/4]×X × [−η/2, η/2])
)
⊔

({rs ≤ 1} × [L/2 − η, L/2])

∼n0

,

where ∼n0 is given by:

• φn0(r, v, l − L/2 + η/2) = (Fs(r, v), l), for v ∈ X, l ∈ [L/2− η, L/2] and r ∈ [s1/4, 1],
• φn0(r, v,−η/2) = φn0−1(r, v, η/2), for r ∈ (0, 1] and v ∈ X,
• φn0(r, v, η/2) = φ1(r, v,−η/2), for r ∈ (0, 1] and v ∈ X.

Remark. We are picking enough points in Γ so that each small neighbourhood of these points
is isometric to part of C(X)×R and they cover the curve. By removing this neighbourhood
and glueing in part of N × R, we smooth out the curve. The equivalence relations above
make sure our final manifold is smooth.

Given the construction above, we can consider the natural embeddings

Φs : {rs ≤ 1} × [−L/2, L/2] −→Ms and Ψs : Zs −→Ms,

under the identification Φs(·,−L/2) = Φs(·, L/2). We also define the functions rs and ls by

rs(x) =











Λ1
√
s, if x ∈ Φs({rs ≤ Λ1

√
s} × [−L/2, L/2]),

(π1 ◦Φ−1
s )∗rs(x), if x ∈ Φs({Λ1

√
s ≤ rs ≤ 1} × [−L/2, L/2]),

1, if x ∈Ms\Im(Φs)

and

ls(x) :=

{

(π2 ◦Φ−1
s )(x) if x ∈ Im(Φs),

L/2, if x ∈Ms\Im(Φs).

This allows us to define Γs := Φs ({qmax} × [−L/2, L/2]). Furthermore, we define our parametri-

sation of the conical region, φ : [s1/4, 1]×X × [−L/2, L/2] →Ms, as follows. If l ∈ [−L/2 +
(k−1)η,−L/2+kη], let φ(·, ·, l) = φk(r, v, l + L/2− (2k − 1)η/2). In particular, we have that

rs =
(

(Ψs ◦ φ)−1
)∗
r and ls =

(

(Ψs ◦ φ)−1
)∗
l in Im(Φs) ∩ Im(Ψs).

To define the metric on Ms, we consider the following regions on our manifold:

U2i−1 :=

{

x ∈M ; rs(x) < 1 and ls(x) ∈
[

2(i− 1)− n0
2n0

L,
2i− n0
2n0

L

)}

and

U2j :=

{

x ∈M ; rs(x) < 1 and ls(x) ∈
[

2j − 1− n0
2n0

L,
2j + 1− n0

2n0
L

)}

,

for i, j ∈ {1, 2, ..., n0}, where on U2n0 , we are identifying
[

n0 − 1

2n0
L,
n0 + 1

2n0
L

)

∼=
[

n0 − 1

2n0
L,L/2

)

∪
[−L

2
,
1− n0
2n0

L

)

.

We consider {fk}2n0
k=1 a differentiable partition of unit subordinated to {Uk}2n0

k=1. Let also Φs,k

be the restriction of Φs to Φ−1
s (Uk) and let g0,k(s) be the metric induced by g0(s) on Φ−1

s (Uk).
We then define

gs = ξ3

(

rs
s1/4

)

(

2n0
∑

k=1

fk(Φ
−1
s,k)

∗g0,k(s)

)

+
(

1− ξ3

(

rs
s1/4

))

(Ψ−1
s )∗gZ ,
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where ξ3 is a smooth, positive and non-increasing function equal to 1 in (−∞, 1] and 0 in
[2,+∞). Therefore,

gs =

{

(Ψ−1
s )∗gZ in {rs ≥ 2s1/4},

∑2n0
k=1 fk(Φ

−1
s,k)

∗g0,k(s) in {rs ≤ s1/4}.
Let A <∞ be such that max

rs=1
|Rm(gs)|gs ≤ A, which exists because of the definition of gs.

We then consider δ0 = δ0(gN ) > 0 as in Theorem 4.5. Choosing κ small and Λ1 large, we get
(Ms, gs) ∈ M(δ0,Λ1, s), where η0 = η0(gZ).

5.2. The limit solution. We now consider Ricci flows gs(t) on Ms, with gs(0) = gs and
t ∈ [0, T ], where T > 0 is given by Corollary (4.6). It follows from the same corollary that

max
Ms

|Rm(gs(t))|gs(t) ≤
CM

t
(33)

for t ∈ (0, T ], and

max
Ms

2
∑

j=0

rj+2
s |(∇gs(t))jRm(gs(t))|gs(t) ≤ CM , (34)

for t ∈ [0, T ]. In particular, the second estimate yields V olgs(t)(Bgs(t)(x, t)) ≥ v0, for t ∈ [0, T ]
and some x ∈ {rs = 1}.

Using Hamilton’s compactness theorem for Ricci flows, we consider a sequence sl ց 0 and,
up to a subsequence, there exists a smooth, compact Ricci flow (M,g(t))t∈(0,T ] such that

(Msl , gsl(t))t∈(0,T ] → (M,g(t))t∈(0,T ],

where the convergence is given by the existence of diffeomorphisms Hl :Msl →M such that

H∗
l gsl(t) → g(t) (35)

uniformly locally inM×(0, T ] in the C∞−topology. By defining Ψ̃sl = H−1
sl

◦Ψsl : Zsl →M,
we can show that there is a map Ψ : Z\Γ → M, diffeomorphism onto its image, such that

Ψ̃sl → Ψ in C∞ uniformly away from Γ. This follows directly from the curvature bounds for
gs(t) and Arzela-Ascoli (for an example of such construction, see [GS18]).

5.3. Properties of the limit solution. From (33), it follows that g(t) satisfies

|Rm(g(t))|g(t) ≤
CM

t
(36)

on M × (0, T ]. Moreover, given the smooth convergence of Ψ̃sl to Ψ, as well as their re-
spective inverses, the identity H∗

sl
rsl = (Ψ−1

sl
◦ Hsl)

∗(φ−1)∗r in Im(H−1
sl

◦ Ψsl) implies that

H∗
sl
rsl → (Ψ−1)∗((φ−1)∗r), locally uniformly on Im(Ψ) in the C∞ sense. We then define the

following function on M :

rM =











(Ψ−1)∗((φ−1)∗r) in Im(Ψ ◦ φ),
0 in (Im(Ψ))c,

1 otherwise.

The convergence for H∗
sl
rsl and estimate (34) yield

2
∑

j=0

rj+2
M |(∇g(t))jRm(g(t))|g(t) ≤ CM (37)
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on M × (0, T ]. It is also straightforward to see that Ψ∗g(t) → gZ as t→ 0 in C∞
loc, away from

the singular curve Γ.

5.4. Improvement of expanding estimates for small scales. We show that if s > 0
gets even smaller, the closeness of our solution to the expander improves.

Lemma 5.1. For every ε > 0 and k ∈ Z+, there exist η1(ε, k) > 0, s2(ε, k) > 0 small
and γ3(ε, k), Λ2(ε, k) large such that the following holds. For each s ∈ (0, s2], γ ≥ γ3 and
t ∈ (0, η1(32γ)

−1], there is a map

Θs,t :

{

rs ≤
5

4

√

γt+ s(Λ2 + 1)2
}

−→ N × R,

diffeomorphism onto its image, such that ∀ 0 ≤ j ≤ k,

(t+ s)j/2
∣

∣

∣
(∇g0(t+s))j

[

(Θ−1
s,t )

∗gs(t)− g0(t+ s)
]

∣

∣

∣

g0(t+s)
< ε

in Im(Θs,t) and
{

rs ≤
√
γt
}

× [−L/2, L/2] ⊂ Im(Θs,t)

⊂
{

rs ≤ 3
2

√

γt+ s(Λ2 + 1)2
}

× [−L/2, L/2].

Proof. The proof follows [GS18, Lemma 5.1]. The idea is to show that the rescaled solution

1
η1
gs satisfies (Ms,

1

η1
gs) ∈ M(δ1,Λ2, s/η1) for any s ∈ (0, s2], with map Φs/η1 , and functions

rs/η1 = max
{

Λ2

√

s
η1
,min

{

1, rs√
η1

}}

and ls/η1 = π2 ◦ Φ−1
s/η1

. We only observe that

ls/η1 = π2 ◦ φ̃−1
1/η1

◦ Φ−1
s = π2 ◦ φ̃η1 ◦ Φ−1

s =
1√
η1
ls,

where we used that φ̃t ◦ φ̃t−1 = idN×R and φRt = 1√
t
idR. Thus, ls/η1 ∈

[

−L
2
√
η1
, L
2
√
η1

]

and is

equivalent to ls ∈
[−L

2 ,
L
2

]

. This guarantees the extra direction creates no problem for us, and
the rest of the proof follows the analogous result in [GS18]. �

5.5. Distance control for high curvature region. In this subsection, we prove curvature
bounds for points away from {rM = 0}. Furthermore, for points of high curvature, we show
that the distance from {rM = 0} must be bounded on each time slice.

Lemma 5.2. There exists c0 > 0 with the following property: for small ζ > 0 there exists
Cζ > 0 such that if t ∈ (0, c0ζ], then

dg(t)
(

{rM =
√
γt}, {rM = 0}

)

≤ Cζ

√
t,

|Rm(g(t)|g(t) ≤
ζ

t
in {rM >

√
γt},

where Cζ = c(gN )
√

CM
ζ and γ = CMζ

−1.

Proof. Fix ε = 10−2. By (37), with k = 0 in Lemma 5.1, there are Λ2 and η1 such that if

γ = CM
ζ and ζ is small enough, then for small enough sl > 0 and each t ∈ (0, η1

32γ ], there is a

map Qsl,t :

{

rsl ≤
5

4

√

γt+ sl(Λ2 + 1)2
}

−→ N ×R satisfying

|(Q−1
sl,t

)∗gsl(t)− g0(t+ sl)|g0(t+sl) <
1

100
,
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in Im(Qsl,t) ⊂
{

rs ≤ 3
2

√

γt+ sl(Λ2 + 1)2
}

× [−L/2, L/2] and

|Rm(g(t))|g(t) ≤
CM

r2M
<
CM

γt
=
ζ

t

in {rM >
√
γt}, for t ∈ (0, η1(32γ)

−1].

The distance from
{

rsl =
√

γt+ sl(Λ2 + 1)2
}

to {rsl = Λ2
√
sl} is bounded as follows.

Just for simplicity, let {rsl = Λ2
√
sl} =: U0

sl,Λ2
and

{

rsl =
√

γt+ sl(Λ2 + 1)2
}

:= U t
sl,Λ2+1.

The second part of Theorem 4.5 and Lemma 5.1 together yield

dgsl(t)
(

U t
sl,Λ2+1, U

0
sl,Λ2

)

≤ d(Q−1
sl,t

)∗gsl(t)

(

Qsl,t

(

U t
sl,Λ2+1

)

, Qsl,t

(

U0
sl,Λ2

))

≤
√
1.01dg0(t+sl)

(

π1
(

Qsl,t

(

U t
sl,Λ2+1

))

× IL, π1
(

Qsl,t

(

U0
sl,Λ2

))

× IL
)

,

where IL = [−L/2, L/2]. Working on (N, gN (t+ sl)), [GS18, Lemma 5.3] yields

dgsl (t)
(

U t
sl,Λ2+1, U

0
sl,Λ2

)

≤
√
1.01diamgN (t+sl)

({

rs ≤
3

4

√

γt+ sl(Λ2 + 1)2
})

≤ Cζ

√
t+ sl.

Since H∗
l rsl = H∗

l (Ψ
−1
sl

)∗(φ−1)∗r in the region above, H∗
l gsl(t) → g(t) and Ψ−1

sl
◦Hl → Ψ−1

give

dg(t)
({

rM =
√
γt
}

, {rM = 0}
)

≤ Cζ

√
t,

by definition of rM . �

5.6. Gromov-Hausdorff convergence to the initial data. In this section, we prove that
(M,dg(t)) → (Z, dZ ) in the Gromov-Hausdorff sense as tց 0. We show that for every ε > 0,
Ψ : (Z\Γ, dZ) → (M,g(t)) is an ε−isometry for small enough t > 0. The result follows from
the two lemmata below.

Lemma 5.3. For every ε > 0, there exist δ1 > 0 and t1 > 0 such that for all t ∈ (0, t1], the
map Ψ : {r ≥ δ1} −→ {rM ≥ δ1} satisfies

sup
{

|dg(t)(Ψ(z1),Ψ(z2))− dZ(z1, z2)|, z1, z2 ∈ {r ≥ δ1}
}

< 3ε. (38)

Proof. Let δ1 > 0 be such that diamZ({r = δ1}) < ε+L. Since Ψ∗g(t) → gZ locally uniformly
away from Γ as t ց 0, it follows that diamg(t)({rM = δ1}) < ε+ L for small t > 0. Let dZ,δ1
be the intrinsic metric on {r ≥ δ1} induced by gZ , and similarly dg(t),δ1 the intrinsic metric
on {rM ≥ δ1} induced by g(t). We claim that

|dZ,δ1(z1, z2)− dZ(z1, z2)| < ε, (39)

and

|dg(t),δ1(Ψ(z1),Ψ(z2))− dg(t)(Ψ(z1),Ψ(z2))| < ε, (40)

for all z1, z2 ∈ {r ≥ δ1}.
We start by showing (39). It is clear that dZ(z1, z2) ≤ dZ,δ1(z1, z2). Let us assume that

dZ(z1, z2) < dZ,δ1(z1, z2). Then there exists a path connecting z1 to z2, starting from z1 and
escaping {r ≥ δ1}. Let q1 ∈ {r = δ1} be the first point this path touches {r = δ1} and
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q2 ∈ {r = δ1} be the point where the path leaves {r ≤ δ1}. We can choose δ1 > 0 small
enough so that dZ,δ1(q1, q2) ≤ dZ(q1, q2) + ε, since q1, q2 ∈ {r = δ1}. Therefore,

dZ(z1, z2) < dZ,δ1(z1, z2) ≤ dZ(z1, q1) + dZ(z2, q2) + dZ,δ1(q1, q2)

≤ dZ(z1, q1) + dZ(z2, q2) + dZ(q1, q2) + ε

= dZ(z1, z2) + ε,

which suffices to prove the first estimate. Similarly, we can prove (40).
By the uniform convergence of Ψ∗g(t) to gZ away from Γ as t → 0, we also have that

|dZ,δ1(z1, z2)− dg(t),δ1(Ψ(z1),Ψ(z2))| < ε, for all z1, z2 ∈ {r ≥ δ1}. Putting everything to-
gether and using the triangle inequality, we prove the lemma. Possibly after making δ1 > 0
smaller, we can also get diam({r ≤ δ1}) < L+ ε.

�

Lemma 5.4. For every ε > 0, there exists small enough t2 > 0 such that the following holds.
For any x ∈ {rM = 0}, we have

dg(t) (x, Im(Ψ)) < ε,

for all t ∈ (0, t2].

Proof. Take x ∈ {rM = 0} = Im(Ψ)c. Then, of course, x ∈ {rM ≤ δ2} for any δ2 > 0. If δ2
is small enough, and for large enough l, we consider ql ∈Msl such that Hl(x) = ql. Identify-

ing these points allows us to consider the distance dgsl(t)

(

ql,
{

rsl =
√

γt+ sl(Λ2 + 1)2
})

as

dH∗
l gsl(t)

(

x,
{

H∗
l (Ψ

−1
sl

)∗(φ−1)∗r =
√

γt+ sl(Λ2 + 1)2
})

.

As in Lemma 5.2, taking the limit we have

dg(t)(x, {rM = δ2}) < ε,

for small enough t and δ2, that will depend on c0 > 0 from Lemma 5.2. Therefore, for any
x ∈ Im(Ψ)c, there exists y ∈ {rM = δ2} ⊂ Im(Ψ) such that dg(t)(x, y) < ε.

�

5.7. Tangent flow at an edge point. Let tk ց 0 be a sequence of times going to 0. From
the convergence in (35), it follows that there exist a sequence slk ց 0 such that for any j ≤ k,

(tk)
j/2|(∇g)j(g −H∗

lk
gslk )|g(tk) <

1

k

and
slk
tk

→ 0. Let γk = γ3(1/k, k), Λk = Λ2(1/k, k) and ηk = η1(1/k, k) be as given by Lemma

5.1 and set τk =
ηk

32γk
. Passing to a subsequence if necessary, we may assume that tk < τk

and slk < s2(1/k, k). Lemma 5.1 implies that there exist

Θk :

{

rslk ≤
√

γktk + slk(Λk + 1)2
}

−→ N × R,

diffeomorphism onto their image, such that for j ≤ k,

(tk + slk)
j/2|(∇g0(tk+slk ))j((Θ−1

k )∗gslk (tk)− g0(tk + slk))|g0(tk+slk )
<

1

k

in Im(Θk). Set Rk = (Θk ◦Hslk
)−1 so that

(tk)
j/2|(∇g0(tk+slk ))j(R∗

kg(tk)− g0(tk + slk))|g0(tk+slk )
<
C

k
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in Im(Θk) for large k. Using the explicit form of g0(tk + sk), we get:
∣

∣

∣

∣

(∇gN⊗gR)j
(

(

Rk ◦ φ̃−1
tk+slk

)∗
1
tk
g(tk)−

(

1 +
slk
tk

)

gN ⊗ gR

)∣

∣

∣

∣

gN⊗gR

<
C

k

in φ̃tk+slk
(Im(Θk)). Set hk = (Rk ◦ φ̃−1

tk+slk
)∗ 1

tk
g(tk). Thus,

∣

∣

∣

∣

(∇gN⊗gR)j
(

hk −
(

1 +
slk
tk

)

gN ⊗ gR

)
∣

∣

∣

∣

gN⊗gR

<
C

k
(41)

in Im(φ̃tk+slk
◦R−1

k ) = φ̃tk+slk
(Im(Θk)).

By Lemma 5.1, we have
{

rslk
≤ 1

2

√

γktk + slk(Λk + 1)2
}

× IL ⊂ {rslk ≤
√
γktk} × IL ⊂ Im(Θk),

where in the first inclusion we assumed that γ3(1/k, k) ≥ (Λ2(1/k, k) + 1)2 without loss of
generality. It follows that

φ̃tk+slk
(Im(Θk)) ⊃ φ̃tk+slk

({

rslk
≤ 1

2

√

γktk + slk(Λk + 1)2
}

× IL

)

= φNtk+slk

({

rslk
≤ 1

2

√

γktk + slk(Λk + 1)2
})

×
[

− L
2
√

tk+slk
, L
2
√

tk+slk

]

(42)

⊃ {r ≤
√

γk/8} × IL,

for large k. The last inclusion follows from [GS18, Lemma 5.3]. Now let qk ∈M be such that

(qmax, 0) = φ̃tk+slk
◦R−1

k (qk) ∈ N × R satisfies

|Rm(gN )|gN (qmax) = max
N

|Rm(gN )|gN .

Lemma 5.2 for ζ = 1
2 maxN |Rm(gN )|gN yields Ĉ, γ̂ > 1 such that

qk ∈ {rM =
√

γ̂tk},
and

dg(tk)

(

{rM =
√

γ̂tk}, {rM = 0}
)

≤ Ĉ
√
tk.

Given any pk /∈ Im(Ψ), we know that rM (pk) = 0, hence

dg(tk)(pk, qk) ≤ Ĉ
√
tk.

Therefore,

dgN⊗gR

(

(qmax, 0), φ̃tk+slk
◦R−1

k (pk)
)

≤ 2Ĉ,

for large k. Putting this together with (41), (42) and letting γk → +∞, we get the conver-
gence of

(

M, tk
−1g(tk), pk

)

to (N × R, gN ⊗ gR, (q̄, l̄)) in the smooth pointed Cheeger-Gromov
topology. This is enough to conclude that

(M, 1
tk
g(tkt), pk)t∈(0,t−1

k T ] → (N × R, h(t), (q̄, l̄))t∈(0,∞)

in the smooth pointed Cheeger-Gromov topology, where (N,h(t)) is a complete Ricci flow
with bounded curvature and h(1) = gN ⊗ gR. The forward and backward uniqueness of Ricci
flows gives h(t) = g0(t) for all t ∈ (0,∞), and this finishes the proof of Theorem 1.3.
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