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RICCI OPERATORS AND STRUCTURAL JACOBI OPERATORS
ON REAL HYPERSURFACES IN A COMPLEX SPACE FORM

Jong Taek Cho

Abstract. We give a classification of real hypersurfaces in a non-flat complex
space form, whose almost contact structure operator, induced from the complex
structure of the complex space form, commutes with the Ricci operator and at
the same time commutes with the structural Jacobi operator. In particular, we
classify real hypersurfaces in 2-dimensional complex projective and hyperbolic
spaces satisfying the first commutativity condition.

1. INTRODUCTION

Let M be an oriented real hypersurface in a non-flat complex space form M̃n(c),
c �= 0. Let (g̃, J) be a Hermitian structure of M̃n(c) and N be a unit normal vector
field on M in M̃n(c). A real hypersurface M is called a Hopf hypersurface if the
Reeb vector field ξ = −JN is a principal vector field (with respect to N ), that
is, Aξ = α1ξ, where A denotes the shape operator. Hopf hypersurfaces in PnC

are realized as tubes over certain Kähler submanifolds with constant rank of the
focal maps ϕr : N1M → PnC, which are defined by ϕr(N ) = F (rN ), where
F : NM → PnC is the normal exponential map and NM (N1M , respectively)
denotes the normal bundle (the unit normal bundle, respectively) of M (cf. [3]). R.
Takagi [17], [18] classified homogeneous real hypersurfaces of PnC as six model
spaces. By making use of those model spaces and the tube construction in [3], M.
Kimura [8] proved the following

Theorem 1. Let M be a Hopf hypersurface of PnC. Then M has constant
principal curvatures if and only if M is locally congruent to one of the following
ones:
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(A1) a geodesic hypersphere of radius r, where 0 < r < π/2,
(A2) a tube of radius r over a totally geodesic P kC, where 0 < r < π/2 and

1 ≤ k ≤ n − 2,
(B) a tube of radius r over a complex quadric Q n−1, where 0 < r < π/4,
(C) a tube of radius r over P1C × P(n−1)/2C, where 0 < r < π/4 and n(≥ 5)

is odd,
(D) a tube of radius r over a complex Grassmann G 2,5C, where 0 < r < π/4

and n = 9,

(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5), where
0 < r < π/4 and n = 15.

On the other hand, real hypersurfaces of a complex hyperbolic space HnC have
also been studied by S. Montiel [13], S. Montiel and A. Romero [14], J. Berndt
[2] and so on. J. Berndt [2] classified Hopf hypersurfaces with constant principal
curvatures of HnC. Namely, he proved the following

Theorem 2. Let M be a Hopf hypersurface of HnC. Then M has constant
principal curvatures if and only if M is locally congruent to one of the following
ones:

(A0) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane

Hn−1C,
(A2) a tube over a totally geodesic HkC, where 1 ≤ k ≤ n − 2,
(B) a tube over a totally real hyperbolic space H nR.

A real hypersurface of type (A1), (A2) in Theorem 1 and of type (A0), (A1),
(A2) in Theorem 2 is simply called a real hyperspace of type (A). There are many
characterizations of real hypersurfaces of type (A) (cf. [15]). In particular, M.
Okumura ([16]) (resp. Montiel and A. Romero ([14])) proved that φA = Aφ if and
only if M is locally congruent to one of type (A) in PnC (resp. HnC). Actually,
he obtained the result by showing the commutativity of φ and A is equivalent to the
parallelism of the second fundamental form of the hypersurface of the sphere S2n+1

which is a S1-bundle on M via the restriction of the Hopf fibration π : S2n+1 →
PnC. It is easily seen that the condition φA = Aφ implies that φS = Sφ in a real
hypersurface of PnC or HnC, where S denotes the Ricci operator. Motivated by
the Okumura’s work one may try to find a geometric property for the hypersurface
π−1M in S2n+1 when M satisfies φS = Sφ using the lifts by the Hopf fibration or
the corresponding principal S1-bundle over HnC. (See Proposition 1 in Section 2).
In this context, it is interesting to ask that φ commute only with S (that is, φS = Sφ



Ricci Operators and Structural Jacobi Operators 1327

and φA �= Aφ). This problem was studied by M. Kimura ([9]), U-H. Ki and Y. J.
Suh ([7]). (We may also refer to [15]). Indeed, in the range of Hopf hypersurfaces
of PnC, n ≥ 3, all types (A) ∼ (E) with some restrictions to the radii and a
non-homogeneous real hypersurface satisfy φS = Sφ. Among Hopf hypersurfaces
of HnC, n ≥ 3, only the type (A) satisfy the commutation condition. However,
we do not know so far a non-Hopf hypersurface in a non-flat complex space form
which satisfies φS = Sφ. In these situations, we may raise the following question:

Is a real hypersurface in PnC or HnC which satisfies φS = Sφ always
a Hopf hypersurface? In particular, classify such a real hypersurface
in P2C or H2C.

The structural Jacobi operator Rξ = R(·, ξ)ξ, which is a self-adjoint operator
along the Reeb flow ξ, has a fundamental role in (almost) contact geometry. Re-
cently, it is investigated actively for real hypersurfaces in a non-flat complex space
form (cf. [4, 5, 6]).

Concerning the above question, we consider an additional condition, namely that
the induced complex operator φ commutes also with the structural Jacobi operator
Rξ = R(·, ξ)ξ. Here, it is notable that the condition φS = Sφ already implies
φRξ = Rξφ when n = 2. Then we prove the following two theorems.

Theorem 3. Let M be a real hypersurface of PnC. If M satisfies φS = Sφ

and φRξ = Rξφ at the same time, then M is locally congruent to one of the
following:

(1) a geodesic hypersphere of radius r, where 0 < r < π/2,
(2) a tube of radius r over a totally geodesic P kC, where 0 < r < π/2 and

1 ≤ k ≤ n − 2,
(3) a non-homogeneous real hypersurface in PnC which lies on a tube of radius

π/4 over a (n/2)-dimensional (n: even) Kähler submanifold Ñ with the rank
of each shape operator is not greater than 2 and with non-zero principal
curvatures �= ±1, where the rank of the corresponding focal map ϕ π/4 is
constant.

Theorem 4. Let M be a real hypersurface of HnC. If M satisfies φS = Sφ

and φRξ = Rξφ at the same time, then M is locally congruent of the following:
(1) a horosphere,
(2) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane

Hn−1C,
(3) a tube over a totally geodesic HkC, where 1 ≤ k ≤ n − 2.

In the process of proving the above theorems, we find the following interesting
results:
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• A real hypersurface of M̃n(c) (c �= 0) satisfies φ · R = 0 if and only if M

is locally congruent to homogeneous real hypersurface of type (A), where ·
means that the (1, 1)-tensor field φ operates on the tensor R as a derivation.
(Corollary 3.)
This is a development of the result of Y. Maeda (Theorem 5.4 in [11]). In
reality, he proved the above fact under the assumption that ξ is a principal
curvature vector field and n ≥ 3.

• A three-dimensional real hypersurface of M̃2(c) (c �= 0) is η-Einstein or
satisfies φS = Sφ if and only if it is locally congruent to type (A1), a non-
homogeneous real hypersurface in P2C which lies on a tube of radius π/4
over a complex curve Σ1 with non-zero principal curvature �= ±1, where the
rank of the corresponding focal map ϕπ/4 is constant; (A0) or (A1) in H2C.
(Corollary 4).
This fact gives an answer to the question mentioned above for the three-
dimensional case and an answer to the open problems (Question 9.5 and
Question 9.10) in [15].

2. PRELIMINARIES

All manifolds are assumed to be connected and of class C∞ and the real hyper-
surfaces are supposed to be oriented. At first, we review the fundamental facts on
a real hypersurface of a n-dimensional complex space form M̃n(c) with constant
holomorphic sectional curvature c. Let M be an orientable real hypersurface of
M̃n(c) and let N be a unit normal vector on M . We denote by g̃ and J a Kähler
metric tensor and its Hermitian structure tensor, respectively. For any vector field
X tangent to M , we put

(1) JX = φX + η(X)N, JN = −ξ,

where φ is a (1,1)-type tensor field, η is a 1-form and ξ is a unit vector field on M ,
which is called Reeb vector field. The induced Riemannian metric on M is denoted
by g. Then by properties of (g̃, J) we see that the structure (φ, ξ, η, g) is an almost
contact metric structure on M , that is, from (1) it follows that

φ2X = −X + η(X)ξ, η(ξ) = 1

g(φX, φY ) = g(X, Y ) − η(X)η(Y )
(2)

for any vector fields X and Y tangent to M . From (2), we have

φξ = 0, η ◦ φ = 0, η(X) = g(X, ξ)

The Gauss and Weingarten formula for M are given as
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∇̃XY = ∇XY + g(AX, Y )N,

∇̃XN = −AX

for any tangent vector fields X , Y , where ∇̃ and ∇ denote the Levi-Civita connec-
tions of (M̃n(c), g̃) and (M, g), respectively, A is the shape operator. From (1) and
∇̃J = 0, we then obtain

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ,

∇Xξ = φAX.
(3)

Then we have the following Gauss equation:

R(X, Y )Z = (c/4){g(Y,Z)X − g(X, Z)Y

+ g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ}
+ g(AY, Z)AX − g(AX, Z)AY.

(4)

From (4) together with (2) the Ricci operator S is given by

(5) SX = (c/4){(2n + 1)X − 3η(X)ξ}+ HAX − A2X,

where H =trace A. Also, from (4) the structural Jacobi operator Rξ = R(·, ξ)ξ,
which is self-adjoint, is given by

(6) RξX = (c/4){X − η(X)ξ}+ g(Aξ, ξ)AX − η(AX)Aξ.

Recall ([16]) that the commutativity between φ and the shape operator A for
a real hypersurface M of PnC interpreted in terms of the parallelism of the shape
operator of the hypersurface of the sphere S2n+1 which is a S1-bundle on M by
the restriction of the principal fiber bundle, so-called the Hopf fibration

π : S2n+1 → PnC.

Analogously, the anti-de Sitter H2n+1
1 is considered as a principal fiber bundle

over HnC with the structure group S1 and the projection π. We adapt the the
terminology according to those of [16], and we review the contents in brief. We let
again M̃ represent PnC or HnC and M̂ represent S2n+1 or H2n+1

1 , respectively,
with the canonical projection π : M̂ → M̃ . Then M̄ = π−1M is an S1-invariant
hypersurface in M̂ , and the horizontal lift N̄ = NL of a unit normal vector field
N is a unit normal for M̄ . Since π is a Riemannain submersion, there are vertical
vector field V̄ and a Riemannian metric ḡ of M̄ such that V̄ is a unit Killing vector
field for ḡ. The induced connection ∇̄ and the shape operator Ā for M̄ satisfy

∇̃X̄ Ȳ = ∇̄X̄ Ȳ + ḡ(ĀX̄, Ȳ )N̄, ∇̃X̄N̄ = −ĀX̄,
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and the well-known form of the Gauss equation is derived by

R̄(X̄, Ȳ )Z̄ = ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ + ḡ(ĀȲ , Z̄)ĀX̄ − ḡ(ĀX̄, Z̄)ĀȲ .

Then the Ricci tensor S̄ is given by

(7) S̄X = (2n − 1)X̄ + H̄ĀX̄ − Ā2X̄,

where H̄ =trace Ā. Since ξL = W̄ = −JLN̄ , we see that the Jacobi operator
R̄W = R̄(·, W̄)W̄ is given by

(8) R̄W̄ X̄ = X̄ − ḡ(X̄, W̄)W̄ + ḡ(ĀW̄ , W̄ )ĀX̄ − ḡ(ĀX̄, W̄ )ĀW̄ .

Moreover, we have (cf. [16])

ḡ(XL, Y L) = g(X, Y )L, ∇̄V̄ X̄ = −JLXL,(9)

ḡ(ĀXL, Y L) = g(AX, Y )L, H̄ = HL.(10)

Together with (9) and (10), we further find that

ḡ(S̄XL, Y L) = g(SX, Y )L, ḡ(R̄W̄ XL, Y L) = g(RξX, Y )L.

Thus, differentiate the above equations covariantly in the direction V̄ and make use
of (9) and (10) again to have

Proposition 1. Let M2n−1 be a real hypersurface in a complex space form
M̃n(c), c �= 0. If the Ricci operator S̄ (the Jacobi operator R̄W , respectively) of
M̄(= π−1M) is parallel, then φ and S (φ and R ξ, respectively) commutes.

The converse problem of the above proposition seems to be closely related
with the classification of real hypersurfaces satisfying each commutativity condition.
Now we return to a real hypersurface M in a non-flat complex space form M̃n(c).
Consider the vector field U = ∇ξξ and denote αm = η(Amξ). Then from (2) and
(3) we easily observe that

g(U, ξ) = 0, g(U, Aξ) = 0,

‖U‖2 = g(U, U) = α2 − α2
1.

From (2) and (3) we see at once that ξ is a principal curvature vector field if and
only if ‖U‖2 = α2 − α2

1 = 0.
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3. PROOFS OF THEOREMS 3 AND 4

Let M be a real hypersurface of a complex space form M̃n(c), c �= 0. Suppose
that

(11) φS = Sφ

and

(12) φRξ = Rξφ.

We first prove that ξ is principal. From (5) and (11), we have

(13) (A2φ − φA2) = H(Aφ− φA).

Also, from (6) and (12), it is obtained that

(14) α1(Aφ − φA)X = −g(U, X)Aξ− η(AX)U.

We get at once a relation:

(15) α1(Aφ2 − φ2A) = α1

(
(Aφ − φA)φ + φ(Aφ − φA)

)
.

But, from (14) it follows that

(16) α1

(
φ(Aφ − φA)X + (Aφ − φA)φX

)
= −η(AX)φU − g(U, φX)Aξ.

From (15) and (16) it follows that

α1(Aφ2 − φ2A) = −η(AX)φU − g(U, φX)Aξ.

Use (13) to obtain

(17) α1H(Aφ − φA)X = −η(AX)φU − g(U, φX)Aξ.

On the other hand, from (14) we get

(18) α1H(Aφ− φA)X = −Hg(U, X)Aξ− Hη(AX)U.

The above two equations (17) and (18) yield that

−η(AX)φU − (
g(U, φX)− Hg(U, X)

)
Aξ + Hη(AX)U = 0.

We put X = ξ, then we get

−α1φU + Hα1U = 0.

From this we can see that α1 = 0 or ‖U‖ = 0. But, from (14) we can easily see
that ξ is principal where α1 = 0. We eventually have shown that ξ is principal on
all M . Namely, we have
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Lemma 2. Let M be a real hypersurface of M̃n(c), c �= 0. If M satisfies
φS = Sφ and φRξ = Rξφ at the same time, then M is a Hopf hypersurface.

Then, due to the results in [11, 12] and [7], we already know that α 1 is constant
along M . From (14) we have

α1(φA − Aφ) = 0.

Now we divide our arguments into two cases: (i) n ≥ 3 and (ii) n = 2. First,
we treat the case (i). For M̃n(c) = PnC we consider the above equation together
with the classification theorem for Hopf hypersurfaces in PnC satisfying φS = Sφ

([9]). Then, we can find other than real hypersurfaces of type (A) in PnC a non-
homogeneous real hypersurface in PnC which lies on a tube of radius π/4 over a
(n/2)-dimensional (n: even) Kähler submanifold Ñ with the rank of each shape
operator is not greater than 2 and with non-zero principal curvatures �= ±1, where
the rank of the corresponding focal map ϕπ/4 is constant, holds our conditions. In
case that M̃n(c) = HnC, since α1 can not be zero (cf. [2]), we have φA = Aφ,
and hence by the result of S. Montiel and A. Romero [14], we see that M is locally
congruent to a real hypersurface of type (A) in HnC.

Next, we look at the case n = 2. It is well-known that the curvature tensor R

of a three-dimensional Riemannian manifold is written as :

R(X, Y )Z ={g(Y, Z)SX − g(X, Z)SY + g(SY, Z)X − g(SX, Z)Y }
− (r/2){g(Y,Z)X − g(X, Z)Y },

where r denotes the scalar curvature. We easily see that φS = Sφ implies Sξ = σξ
and further implies that the relation φRξ = Rξφ in a 3-dimensional real hypersurface
M . By Lemma 2 we may write Aξ = α1ξ and may put

AV = βV, AφV = γφV

for a unit vector V orthogonal to ξ. From (5) it follows that

Sξ = pξ, SV = qV, SφV = dφV,

where we have put p = c/2+Hα1−α2
1, q = 5c/4+Hβ−β2, d = 5c/4+Hγ−γ2.

The assumption φS = Sφ gives q = d. So, together with the above relations we
easily get

α1(β − γ) = 0,

where we have used H = α1 + β + γ . So, we see that α1 = 0 or M is totally
η-umbilical, that is A = aI + bη ⊗ ξ for smooth functions a, b on M . It is known
that these two functions a and b are already constant. As mentioned in the argument
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of (i), there can not occur α1 = 0 in the case HnC. Hence, with the classification
of totally η-umbilical hypersurfaces (cf. [3, 13, 18]) we can see that M is locally
congruent to type (A1) or a non-homogeneous real hypersurface in P2C which lies
on a tube of radius π/4 over a complex curve Σ1 with non-zero principal curvatures
�= ±1, where the rank of the corresponding focal map ϕπ/4 is constant; (A0) or
(A1) in H2C.

Summing up all the arguments so far, we have completed Theorems 3 and 4.

4. COROLLARIES AND REMARKS

The condition φ ·R = 0 means φ operates R as a derivation. Namely,

(19) (φ ·R)(X, Y )Z = φR(X, Y )Z −R(φX, Y )Z −R(X, φY )Z −R(X, Y )φZ

for any vector fields X, Y, Z on M . For an adapted orthonormal basis {eI} =
{ei, φei, e2n−1 = ξ}i=1,2,··· ,n−1 if we put Y = Z = eI , and summing for I , then
we can deduce that φS = Sφ. Also, if we put Y = Z = ξ, then we get also easily
φRξ = Rξφ. But, we note that under the condition φ · R = 0 and n ≥ 3 the case
Aξ = 0 only contributes to a real hypersurface of type (A) in PnC, n ≥ 3 (see,
Lemmas 5.2 and 5.3 in [11]). Next, in order to treat the case n = 2 and α1 = 0 we
derive the following relation which express the equation (19) with φ, A and g :

g(AY, Z)(Aφ− φA)X + g((Aφ− φA)Y, Z)AX

− g((Aφ− φA)X, Z)AY − g(AX, Z)(Aφ− φA)Y = 0
(20)

for any tangent vector fields X, Y, Z on M . Since Aξ = 0 we may assume that
AV = λV and AφV = (1/λ)φV , V ⊥ ξ, ‖V ‖ = 1 (cf. Lemma 2.2 in [11]). If
we put X = V and Y = Z = φV in (20), then we get λ = 1/λ, which says that
Aφ = φA. Thus we have

Corollary 3. Let M be a real hypersurface of M̃n(c), c �= 0. Then M
satisfies φ · R = 0 if and only if M is locally congruent to one of homogeneous
real hypersurface of type (A).

Remark 1. The above corollary is a development of the result of Y. Maeda
([11]). Actually, he determined a Hopf hypersurface in PnC, n ≥ 3 which satisfies
φ ·R = 0.

We can easily show that in 3-dimensional M the η-Einstein condition (i.e.,
S = λI +µη⊗ ξ) is equivalent to the condition φS = Sφ, where λ, µ are functions
in M . Thus we have
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Corollary 4. Let M be a three-dimensional real hypersurface of M̃2(c), c �= 0.
Then M is η-Einstein or satisfies φS = Sφ if and only if M is locally congruent
to type (A1) or a non-homogeneous real hypersurface in P 2C which lies on a tube
of radius π/4 over a complex curve Σ1 with non-zero principal curvatures �= ±1,
where the rank of the corresponding focal map ϕ π/4 is constant; (A0) or (A1) in
H2C.

Remark 2. Corollary 4 gives the answers to Question 9.5 and Question 9.10
in [15].

Remark 3. Ruled real hypersufaces in PnC and HnC given in [10] and [1],
respectively. Let γ : I → M̃n(c) be a regular curve in M̃n(c) (PnC or HnC).
For each t ∈ I , let M

(t)
n−1(c) be a totally geodesic complex hypersurfaces which is

orthogonal to holomorphic plane Span{γ̇, Jγ̇}. Then we have a ruled real hyper-
surface M =

⋃
t∈I M

(t)
n−1(c). Ruled real hypersurfaces are non-Hopf, but fail to

satisfy φS = Sφ. In fact, the shape operator A of M is written as :

Aξ = α1ξ + νV (ν �= 0),

AV = νξ,

AX = 0 for any X ⊥ ξ, V,

where V is a unit vector field orthogonal to ξ, α1, ν are differentiable functions on
M . From (5), we have

Sξ = fξ,

SV = gV,

SX =
c

4
(2n + 1)X for any X ⊥ ξ, V,

where f = c
2 (n − 1) − ν2 and g = c

4 (2n + 1) − ν2. From φSV = SφV , we get
ν = 0, impossible.
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