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Abstract. We prove that a real hypersurface in a non-flat complex space form does
not admit a Ricci soliton whose potential vector field is the Reeb vector field. Moreover, we
classify a real hypersurface admitting so-called “η-Ricci soliton” in a non-flat complex space
form.

1. Introduction. A Ricci soliton is a natural generalization of an Einstein metric and
is defined on a Riemannian manifold (M, g) by

(1)
1

2
LV g + Ric −λg = 0

where V is a vector field (the potential vector field) and λ a constant on M . Obviously, a
trivial Ricci soliton is an Einstein metric with V zero or Killing. Compact Ricci solitons are
the fixed points of the Ricci flow: (∂/∂t)g = −2 Ric projected from the space of metrics
onto its quotient modulo diffeomorphisms and scalings, and often arise as blow-up limits for
the Ricci flow on compact manifolds. The Ricci soliton is said to be shrinking, steady and
expanding according as λ > 0, λ = 0 and λ < 0, respectively. Hamilton [4] and Ivey [5]
proved that a Ricci soliton on a compact manifold has constant curvature in dimension 2 and
3, respectively. If the vector field V is the gradient of a potential function f , then g is called
a gradient Ricci soliton. Due to Perelman’s result [16, Remark 3.2], we find that in a compact
Ricci soltion, the potential vector field is written as the sum of a gradient and a Killing vector
field. We refer to [3] for details about Ricci solitons or gradient Ricci solitons.

In [6], it was proved that there are no real hypersurfaces with parallel Ricci tensor in a
non-flat complex space form M̃n(c) with c �= 0 when n ≥ 3. Furthermore, Kim [8] proved
that this is also true when n = 2. These results imply, in particular, that there do not exist
Einstein real hypersurfaces in a non-flat complex space form.

In this situation, we study on Ricci solitons of real hypersurfaces in a non-flat complex
space form. Then we prove that a real hypersurface M in a non-flat complex space form M̃n(c)

with c �= 0 does not admit a Ricci soliton whose soliton vector field is the Reeb vector field ξ

(Corollary 7). In this context, we define so called “η-Ricci soliton” (η, g), which satisfies

1

2
Lξg + Ric −λg − µη ⊗ η = 0

2000 Mathematics Subject Classification. Primary 53B20; Secondary 53C15, 53C25.
The first author financially supported by Chonnam National University, 2007.



206 J. CHO AND M. KIMURA

for constants λ,µ. Then we first prove that a real hypersurface M which admits an η-Ricci
soliton in a non-flat complex space form M̃n(c) is a Hopf-hypersurface. Moreover, we classify
those η-Ricci soliton real hypersurfaces in a non-flat complex space form (Theorem 6).

2. Real hypersurfaces in Kähler manifolds. In this paper, all manifolds are assumed
to be connected and of class C∞ and the real hypersurfaces are supposed to be oriented.

First, we give a brief review of several fundamental notions and formulas which we will
need later on.

Let M̃n be a complex n-dimensional Kähler manifold and M a real hypersurface of M̃n.
We denote by g̃ and J a Kähler metric tensor and its Hermitian structure tensor, respectively.
For any vector field X tangent to M , we put

(2) JX = φX + η(X)N , JN = −ξ ,

where φ is a (1,1)-type tensor field, η is a 1-form and ξ is a unit vector field on M . The
induced Riemannian metric on M is denoted by g . Then by properties of (g̃, J ), we see that
the structure (φ, ξ, η, g) is an almost contact metric structure on M , that is, from (2) we can
deduce:

(3) φ2 = −I + η ⊗ ξ , η(ξ) = 1 ,

(4) g(φX, φY ) = g(X, Y ) − η(X)η(Y )

for all vector fields on M .
In the relation between the ambient space and its real hypersurface, the Gauss and Wein-

garten formula for M are given as

∇̃XY = ∇XY + g(AX, Y )N ,

∇̃XN = −AX

for any tangent vector fields X, Y , where ∇̃ and ∇ denote the Levi-Civita connection of
(Mn(c), g̃) and (M, g), respectively and A is the shape operator field. From (2) and ∇̃J = 0,
we obtain

(5) (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ ,

(6) ∇Xξ = φAX .

We define a vector field U on M by U = ∇ξ ξ . Then, from (6), we easily observe that

(7) g(U, ξ) = 0 , g(U,Aξ) = 0 , ‖U‖2 = g(U,U) = α2 − α2
1 ,

where α1 = g(Aξ, ξ) and α2 = g(A2ξ, ξ). From (4), we have the following lemma immedi-
ately.

LEMMA 1. Aξ = α1ξ if and only if ‖U‖2 = 0 .
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Now we suppose that the ambient space M̃ = M̃n(c) is a complex space form. Then we
have the following Gauss and Codazzi equations:

R(X, Y )Z = c

4
{g(Y,Z)X − g(X,Z)Y

+ g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ}
+ g(AY,Z)AX − g(AX,Z)AY ,

(8)

(9) (∇XA)Y − (∇Y A)X = c

4
{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}

for any tangent vector fields X,Y,Z on M . From (8), we get for the Ricci tensor S of type
(1,1):

(10) SX = c

4
{(2n + 1)X − 3η(X)ξ} + hAX − A2X ,

where h (= trace of A) denotes the mean curvature. Then we have the relation Ric(X, Y ) =
g(SX, Y ).

We prepare some more results which are needed later to prove ours. Let M be a Hopf
hypersurface, which means that the Reeb vector field ξ is a principal curvature vector field
(Aξ = α1ξ ), in a non-flat complex space form M̃n(c), (c �= 0). Then we already know that
α1 is a constant (cf. [7], [10], [11]). Differentiating Aξ = α1ξ covariantly, we get

(∇XA)ξ = α1φAX − AφAX

by using (6). Use the Codazzi equation (9) to obtain again

(∇ξA)X = c

4
φX + α1φAX − AφAX

for any vector field X on M . Since ∇ξA is self-adjoint, by taking the anti-symmetric part of
the above equation, we have the relation:

2AφAX − c

2
φX = α1(φA + Aφ)X .

Here we assume that AX = fX, X ⊥ ξ , ‖X‖ = 1. Then it follows that

(2f − α1)AφX =
(

f α1 + c

2

)
φX .

The case 2f = α1 yields f 2 = −c/4, which determines the horosphere in HnC (cf. [1]). In
fact the shape operator of the horosphere is written as A = I + η ⊗ ξ . Hence, we have the
following lemma.

LEMMA 2. For a Hopf hypersurface M in a non-flat complex space form M̃n(c), φX

is a principal direction if X(⊥ ξ) is a principal direction.

Takagi [17], [18] classified the homogeneous real hypersurfaces of PnC into six types
A1, A2, B, C, D, E. Cecil and Ryan [2] extensively studied a Hopf hypersurface which is real-
ized as tubes over certain submanifolds in PnC by using its focal map. By making use of those
results and the mentioned work of R. Takagi, M. Kimura [9] proved the local classification
theorem for Hopf hypersurfaces of PnC whose all principal curvatures are constant.
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As mentioned in Introduction, a real hypersurface M in a non-flat complex space form
M̃n(c) does not admit Einstein metric. In this context, M. Kon [10] studied and classified
pseudo-Einstein (or η-Einstein) real hypersurfaces in a complex space form. The term means
that there are constants λ and µ such that

S = λI + µη ⊗ ξ ,

where I denotes the identity transformation. Later, Cecil and Ryan [2], Montiel [12] devel-
oped the results for PnC, HnC, respectively. In reality, they classified those real hypersurfaces
in PnC or HnC for n ≥ 3 and for smooth functions λ and µ.

THEOREM 3 ([2], [10] ). Let M2n−1 (n ≥ 3) be a real hypersurface of PnC with
Fubini-study metric of constant holomorphic sectional curvature 4. Then M is pseudo-
Einstein if and only if M is locally congruent to one of the following:

(A1) a geodesic hypersphere of radius r , where 0 < r < π/2,
(A2) a tube of radius r over a totally geodesic PlC (1 ≤ l ≤ n − 2), where 0 < r <

π/2 and cot2 r = k/(n − k − 1),
(B) a tube of radius r over a complex quadric Qn−1 and PnR, where 0 < r < π/4

and cot2 2r = n − 2.

For the case HnC, Berndt [1] proved the classification theorem for Hopf hypersurfaces
whose all principal curvatures are constant.

THEOREM 4 (Montiel [12]). Let M2n−1 (n ≥ 3) be a real hypersurface of HnC with
Bergman metric of constant holomorphic sectional curvature −4. Then M is pseudo-Einstein
if and only if M is locally congruent to one of the following:

(A0) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane Hn−1C,
(A2) a tube over a totally geodesic HlC (1 ≤ l ≤ n − 2).

A real hypersurface of type A1, A2 (without extra restriction cot2 r = k/(n − k − 1)) in
Theorem 3 and of type A0, A1, A2 in Theorem 4 are simply called a real hypersurface of type
A. There are many characterizations of real hypersurfaces of type A (cf. [14]). In particular,
Okumura ([15]) (resp. Montiel and Romero ([13])) proved that φA = Aφ if and only if M is
locally congruent to one of type A in PnC (resp. HnC).

3. Real hypersurfaces with Ricci solitons in a complex space form. In view of
those results of Einstein or pseudo-Einstein (or η-Einstein) real hypersurfaces in a complex
space form, we introduce η-Ricci soliton on real hypersurfaces in a Kähler manifold:

DEFINITION 1. Let M be a real hypersurface in a Kähler manifold M̃n. If M satisfies

(11)
1

2
Lξg + Ric −λg − µη ⊗ η = 0

for constants λ,µ, then we say that M admits an η-Ricci soliton (with the soliton vector field
ξ). When µ = 0, it includes a Ricci soliton with the soliton vector field ξ .
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By using (6), we find that

(Lξg)(X, Y ) = g((φA − Aφ)X, Y ) .

Suppose that M admits an η-Ricci soliton. Then from (11), by using the relation above and
(10), we have

(12)

(
A2 − hA − 1

2
(φA − Aφ) − c

4
(2n + 1) + λ

)
X = −

(
µ + 3

4
c

)
η(X)ξ .

First, we prove that ξ is a principal curvature vector. If we put X = ξ in (12), then we
get

(13) A2ξ − hAξ − 1

2
U +

(
λ + µ + c

2
(1 − n)

)
ξ = 0

from (6). Take the ξ -component of (13) to get

(14) α2 − α1h = −
(

λ + µ + c

2
(1 − n)

)
,

and then (13) gives

(15) A2ξ = hAξ + 1

2
U + (α2 − α1h)ξ .

If we take an inner product (15) with U , then we get

(16) g(Aξ,AU) = 1

2
‖U‖2 ,

where we have used the equalities g(ξ, U) = g(Aξ,U) = 0.
We put

(17) Q := A2 − hA − 1

2
(φA − Aφ) −

(
c

4
(2n + 1) − λ

)
I ,

where I denotes the identity transformation. Then we see that Q is a symmetric operator, and
(12) is rewritten as

QX = −
(

µ + 3

4
c

)
η(X)ξ .

Now, we compute AQ − QA. Then from (17), we have

(18)
1

2
(φA2 + A2φ)X − AφAX = −

(
µ + 3

4
c

)
(η(X)Aξ − η(AX)ξ) .

Putting X = ξ , then it follows that

1

2
φA2ξ − AU = −

(
µ + 3

4
c

)
(Aξ − α1ξ) .

Applying φ and using (3), then we get

(19) A2ξ = α2ξ − 2φAU +
(

2µ + 3

2
c

)
U .
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From (15) and (19), we obtain

hAξ − α1hξ −
(

2µ + 3

2
c − 1

2

)
U + 2φAU = 0 ,

or

(20) 2AU +
(

2µ + 3

2
c − 1

2

)
φU − hU = 0

by applying φ. Taking an inner product U with (20) and using (4) we get

(21) 2g(AU,U) = h‖U‖2 .

Take an inner product Aξ with (20) to get

(22) g(AU,Aξ) = 1

2

(
2µ + 3

2
c − 1

2

)
‖U‖2 .

Hence, together with (16), we obtain(
2µ + 3

2
c − 3

2

)
‖U‖2 = 0 ,

which together with Lemma 1 yields that Aξ = α1ξ if (2µ + 3c/2 − 3/2) �= 0.
Now we consider the case 2µ + 3c/2 − 3/2 = 0: then (20) gives

(23) 2AU = −φU + hU .

This time we put X = U in (12), then we get

(24) A2U − hAU − 1

2
(φAU − AφU) +

(
α1h − α2 − 3

4

)
U = 0 ,

where we have used (14) and µ + 3c/4 = 3/4. The inner product of (24) and U is the sum of
the left hand sides of

g(A2U,U) = g(AU,AU) = g
(

− 1

2
φU + h

2
U,−1

2
φU + h

2
U

)

= 1

4
‖U‖2 + h2

4
‖U‖2 , (use (23))

g(−hAU,U) = −h2

2
‖U‖2 , (use (21))

g(AU, φU) = g
(

− 1

2
φU + h

2
U,φU

)
= −1

2
‖U‖2

and (α1h − α2 − 3/4)‖U‖2, which is equal to

1

4
‖U‖2 + h2

4
‖U‖2 − h2

2
‖U‖2 − 1

2
‖U‖2 + (α1h − α2 − 3/4)‖U‖2 ,

where α2 = ‖U‖2 + α2
1 by (7). Since −4 times the coefficient is

h2 − 4α1h + 4(α2
1 + ‖U‖2 + 1) = (h − 2α1)

2 + 4(‖U‖2 + 1) > 0

is not zero, we have ‖U‖2 = 0 by (24). Thus, we have the following proposition.
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PROPOSITION 5. If M admits an η-Ricci soliton, then ξ is a principal curvature vector.

We assume that X is principal direction orthogonal to ξ in (12). Then since ξ is a prin-
cipal curvature vector field, we can see that φA = Aφ and M is pseudo-Einstein by Lemma
2. Due to the classification theorems of real hypersurfaces in PnC or HnC which satisfy
φA = Aφ ([13], [15]) or which admit pseudo-Einstein structure (Theorems 3 and 4) we have
the following theorem.

THEOREM 6. Let M be a real hypersurface in a non-flat complex space forms M̃n(c)

with c �= 0. If M admits an η-Ricci soliton, then M is a Hopf hypersurface and is locally
congruent to one of the following real hypersurfaces: (i) a geodesic hypersphere in PnC or
HnC, a horosphere in HnC, (ii) a homogeneous tube over totally geodesic complex hyperbolic
hyperplane Hn−1C in HnC, (iii) a homogeneous tube of radius r over a totally geodesic
PlC (1 ≤ l ≤ n − 2), where 0 < r < π/2 and cot2 r = k/(n − k − 1), (iv) a homogeneous
tube over totally geodesic HlC (1 ≤ l ≤ n − 2).

Since the equation (11) with µ = 0 is reduced to a Ricci soliton equation, we have the
following corollary.

COROLLARY 7. A real hypersurface in a non-flat complex space form does not admit
a Ricci soliton with the soliton vector field ξ .
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