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Abstract. In the present paper we study 3-dimensional normal almost para-
contact metric manifolds admitting Ricci solitons and gradient Ricci solitons.
We give an example of 3-dimensional normal almost paracontact metric man-

ifold. It is shown that if in a 3-dimensional normal almost paracontact metric
manifold with α, β = constant the metric is Ricci soliton, where potential vec-
tor field V is collinear with the characteristic vector field ξ, then the manifold
is η-Einstein. We also prove that an η-Einstein 3-dimensional normal almost

paracontact metric manifold with α, β = constant and V = ξ admits a Ricci
soliton. Furthermore, we show that if a 3-dimensional normal almost paracon-
tact metric manifold admits a Ricci soliton (g, ξ, λ) then the Ricci soliton is

shrinking.

1. Introduction

The notion of Ricci soliton was introduced by Hamilton [17] in 1982. A Ricci
soliton is a natural generalization of an Einstein metric. A pseudo-Riemannian
manifold (M, g) is called a Ricci soliton if it admits a smooth vector field V (po-
tential vector field) on M such that

(1.1)
1

2
(£V g) (X,Y ) + S(X,Y ) + λg(X,Y ) = 0,

where £V denotes the Lie-derivative in the direction V, λ is a constant and X, Y
are arbitrary vector fields on M . A Ricci soliton is said to be shrinking, steady
or expanding according to λ being negative, zero or positive, respectively. It is
obvious that a trivial Ricci soliton is an Einstein manifold with V zero or Killing.
Since Ricci solitons are the fixed points of the Ricci flow, they are important in
understanding Hamilton’s Ricci flow [18] : ∂

∂tgij = −2Sij , viewed as a dynamical
system, on the space of Riemannian metrics modulo diffeomorphisms and scalings.
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In differential geometry, the Ricci flow is an intrinsic geometric flow. It is a process
that deforms the metric of a Riemannian manifold in a way formally analogous to
the diffusion of heat, smoothing out irregularities in the metric.

The vector field V generates the Ricci soliton viewed as a special solution of the
Ricci flow, and is called the generating vector field. A Ricci soliton is said to be a
gradient Ricci soliton if the generating vector field V is the gradient of a potential
function −f , that is V = −∇f .

Some basic facts about Ricci solitons are given in following:
1. Compact steady or expanding solitons are Einstein in all dimensions [17, 19];
2. Compact shrinking solitons in dimension n = 2 and n = 3 must be of positive

constant curvature [18, 19];
3. Compact Ricci solitons are always gradient Ricci solitons [6, 25].
If the manifold is Euclidean space, or more generally Ricci-flat, then Ricci flow

leaves the metric unchanged. Conversely, any metric unchanged by Ricci flow is
Ricci-flat. For a compact Einstein manifold, the metric is unchanged under nor-
malized Ricci flow. Conversely, any metric unchanged by normalized Ricci flow is
Einstein.

Geometric flows, especially Ricci flows, have become important tools in theoret-
ical physics. Ricci soliton is known as quasi Einstein metric in physics literature
and solutions of the Einstein field equations correspond to Ricci solitons [1, 14].
See also, [10, 22, 31].

Sharma [26] initiated the study of Ricci solitons in contact geometry as a K-
contact metric. The authors in [16] studied gradient Ricci soliton of a non-Sasakian
(κ, µ)-contact manifold. Sharma and Ghosh [27] proved that Sasakian 3-manifold
as a Ricci soliton represents the Heisenberg group. We also refer [11, 15, 23, 28, 29]
for further read.

In spite of introducing and studying firstly in Riemannian geometry, the Ricci
soliton equation has recently been investigated in pseudo-Riemannian context, es-
pecially in Lorentzian case (see [4, 5, 24]).

These circumstances motivated us to study the Ricci solitons in paracontact
geometry. As a first step we consider 3-dimensional normal almost paracontact
metric manifolds.

The study of paracontact geometry was initiated by Kaneyuki and Konzai in
[20]. The authors defined almost paracontact structure on a pseudo-Riemannian
manifoldM of dimension (2n+1) and constructed the almost paracomplex structure
on M2n+1 ×R. Recently, Zamkovoy [34] studied paracontact metric manifolds and
some important subclasses like para-Sasakian manifolds. Especially, in the recent
years, many authors [2, 3, 7, 8, 13] have pointed out the importance of paracontact
geometry, and in particular of para-Sasakian geometry, by several papers giving
the relationships with the theory of para-Kähler manifolds and its role in pseudo-
Riemannian geometry and mathematical physics.

The paper is organized as follows. Section 2 is devoted to some basic defini-
tions for 3-dimensional normal almost paracontact metric manifolds. In section
3, we obtain some curvature identities for a 3-dimensional normal almost para-
contact metric manifold and construct an example. In section 4, we prove that if
a 3-dimensional non-paracosymplectic normal almost paracontact metric manifold
with α, β =constant admits a Ricci soliton and V is pointwise collinear with the
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structure vector field ξ, then V is a constant multiple of ξ, the manifold is an η-
Einstein manifold and the Ricci soliton is shrinking. Moreover, we show that if
a 3-dimensional non-paracosymplectic normal almost paracontact metric manifold
with α, β =constant is an η-Einstein manifold then the manifold admits a Ricci
soliton. In section 5, we obtain some results for a 3-dimensional normal almost
paracontact metric manifold admitting gradient Ricci soliton.

2. 3-dimensional normal almost paracontact metric manifolds

A differentiable manifold M of dimension (2n+ 1) is called almost paracontact
manifold with the almost paracontact structure (φ, ξ, η) if it admits a tensor field
φ of type (1, 1), a vector field ξ, a 1−form η satisfying the following conditions [20]:

(2.1) φ2 = I − η ⊗ ξ,

(2.2) η(ξ) = 1, φξ = 0,

where I denotes the identity transformation. Moreover the tensor field φ induces
an almost paracomplex structure on the paracontact distribution D = ker η, i.e.
the eigendistributions D± corresponding to the eigenvalues ±1 of φ are both n-
dimensional. As an immediate consequences of the conditions (2.1) and (2.2) we
have

η ◦ φ = 0, rank(φ) = 2n.

If a (2n+ 1)-dimensional almost paracontact manifold M with an almost para-
contact structure (φ, ξ, η) admits a pseudo-Riemannian metric g such that [34]

(2.3) g(φX,φY ) = −g(X,Y ) + η(X)η(Y ), X, Y ∈ TM,

then we say that M is an almost paracontact metric manifold with an almost para-
contact metric structure (φ, ξ, η, g) and such metric g is called compatible metric.
Any compatible metric g is necessarily of signature (n+ 1, n).

From (2.3) it can be easily seen that [34]

(2.4) g(X,φY ) = −g(φX, Y ),

(2.5) g(X, ξ) = η(X),

for any X, Y ∈ TM . The fundamental 2-form of M is defined by

Φ(X,Y ) = g(X,φY ).

An almost paracontact metric structure becomes a paracontact metric structure if

g(X,φY ) = dη(X,Y ),

for all vector fields X,Y , where dη(X,Y ) = 1
2{Xη(Y )− Y η(X)− η([X,Y ])}.

For a (2n+1)-dimensional manifold M with an almost paracontact metric struc-
ture (φ, ξ, η, g) one can also construct a local orthonormal basis. Let U be coordi-
nate neighborhood on M and X1 any unit vector field on U orthogonal to ξ. Then
φX1 is a vector field orthogonal to both X1 and ξ, and |φX1|2 = −1. Now choose
a unit vector field X2 orthogonal to ξ, X1 and φX1. Then φX2 is also vector field
orthogonal to ξ, X1, φX1 and X2 and |φX2|2 = −1. Proceeding in this way we
obtain a local orthonormal basis (Xi, φXi, ξ), (i = 1, 2, ..., n), called a φ-basis [34].

An almost paracontact metric manifold is said to be normal if [21]

(2.6) N(X,Y )− 2dη(X,Y )ξ = 0,
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where N is the Nijenhuis torsion tensor of φ given by

(2.7) N(X,Y ) = φ2[X,Y ] + [φX,φY ]− φ [φX, Y ]− φ [X,φY ] ,

for all X, Y ∈ TM . The normality condition says that the almost paracomplex
structure J on M2n+1 × R is defined by [21]

(2.8) J

(
X, f

d

dt

)
=

(
φX + fξ, η(X)

d

dt

)
is integrable (paracomplex).

The following Proposition presents conditions equivalent to the normality of 3-
dimensional almost paracontact metric manifold for later use.

Proposition 2.1. [32]For a 3-dimensional almost paracontact metric manifold M ,
the following three conditions are mutually equivalent

(i) M is normal,
(ii) there exists functions α, β on M such that

(2.9) (∇X φ)Y = β (g(X,Y )ξ − η(Y )X)− α (g(φX, Y ) ξ − η(Y )φX),

(iii) there exist functions α, β on M such that

(2.10) ∇X ξ = α (X − η(X)ξ) + βφX.

Corollary 2.1. [32]The functions α, β realizing (2.9) as well as (2.10) are given
by

(2.11) 2α = trace{X → ∇X ξ}, 2β = trace{X → φ∇X ξ}.

A 3-dimensional normal almost paracontact metric manifold is said to be

• paracosymplectic [9] if α = β = 0,
• quasi-para-Sasakian [12, 32] if and only if α = 0 and β ̸= 0,
• β-para-Sasakian [32, 34] if and only if α = 0, β ̸= 0 and β is constant, in
particular, para-Sasakian if β = −1 ,

• α-para-Kenmotsu [33] if α ̸= 0 and α is constant and β = 0.

3. Some basic curvature identities

In this section we obtain some curvature identities for a 3-dimensional normal
almost paracontact metric manifold.

Let M be a 3-dimensional normal almost paracontact metric manifold. Then we
have

R(X,Y )ξ = −
{
Y α+ (α2 + β2)η(Y )

}
φ2X +

{
Xα+ (α2 + β2)η(X)

}
φ2Y

−{Y β + 2αβη(Y )}φX + {Xβ + 2αβη(X)}φY,(3.1)

(3.2) S(Y, ξ) = −Y α−
(
ξα+ 2(α2 + β2)

)
η(Y ) + φY β,

(3.3) ξβ + 2αβ = 0,

for all X, Y ∈ TM.
In a 3-dimensional semi-Riemannian manifold, it is well known that the curvature

tensor always satisfies

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y(3.4)

−r

2
(g(Y,Z)X − g(X,Z)Y ) ,
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where X, Y, Z ∈ TM , Q is the Ricci operator and r is the scalar curvature of the
manifold [30].

Now let R̃(X,Y, Z,W ) = g(R(X,Y )Z,W ), for all X, Y, Z ∈ TM . From (3.4)
and (3.1) we have

(3.5) R̃(ξ, Y, Z, ξ) =
(
ξα+ (α2 + β2)

)
g(φY, φZ).

Proposition 3.1. For a 3-dimensional normal almost paracontact metric manifold
with α, β =constant, we have

(3.6) S(X,Y ) = −
(r
2
+ α2 + β2

)
g (φX,φY ) + 2(α2 + β2)η(X)η(Y ),

(3.7) QX =
(r
2
+ α2 + β2

)
X +

(
−r

2
+ α2 + β2

)
η(X)ξ,

for all X,Y ∈ TM .

Proof. From (3.2), (3.4) and (3.5), the proof is straightforward.
Using (3.6) in (3.4), we have following

Lemma 3.1. Let M be a 3-dimensional normal almost paracontact metric manifold
with α, β =constant, then the Riemannian curvature tensor satisfies

R(X,Y )Z =
(r
2
+ 2

(
α2 + β2

))
(g(Y,Z)X − g(X,Z)Y )

−g(X,Z)
(
−r

2
+ α2 + β2

)
η(Y )ξ

+
(
−r

2
+ α2 + β2

)
η(Y )η(Z)X(3.8)

+g(Y, Z)
(
−r

2
+ α2 + β2

)
η(X)ξ

−
(
−r

2
+ α2 + β2

)
η(X)η(Z)Y,

where X,Y, Z ∈ TM and r is the scalar curvature.

From (3.3), we also have

Proposition 3.2. Let M be a 3-dimensional normal almost paracontact metric
manifold. If α, β =constant, then M is either β-para-Sasakian, α-para-Kenmotsu
or paracosymplectic.

Note that β-para-Sasakian manifolds are quasi-para-Sasakian.
Now we shall give an example of 3-dimensional normal almost paracontact metric

manifold.

Example 3.1. Let M be the 3-dimensional real number space endowed with a
coordinate system (x, y, z) such that z ̸= 0 and a semi-Riemannian metric of index
1 which is defined by

(3.9) g =
dx2 − dy2 + dz2

z2
.

We can define an orthonormal basis for the tangent space of M by

(3.10) e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = z

∂

∂z
.

Now we consider
φe1 = e2, φe2 = e1, φe3 = 0,
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ξ = e3, η(Z) = g(Z, e3), for all Z ∈ TM.

Then we have
η(e3) = 1,

φ2Z = Z − η(Z)ξ

and
g(φZ,φW ) = −g(Z,W ) + η(Z)η(W ),

for all Z,W ∈ TM , which imply that the set (φ, ξ, η, g) is an almost paracontact
metric structure on M .

The nonvanishing Christoffel symbols of M are

Γ1
13 = −Γ3

11 = Γ3
22 = Γ2

23 = Γ3
33 = −1

z
.

Then for the covariant derivatives of the Levi-Civita connection of the metric g
defined by (3.9), we have

(3.11)

 ∇e1e1 = e3, ∇e1e2 = 0, ∇e1e3 = −e1,
∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = −e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0,

where {e1, e2, e3} is the orthonormal basis for the tangent space given by (3.10).
From (3.11) we see that the equation (2.9) is satisfied for α = −1 and β = 0.
Hence, M is a 3-dimensional normal almost paracontact metric manifold with
α, β =constant.

4. Ricci Soliton

In this section, we consider a 3-dimensional normal almost paracontact metric
manifold M admitting a Ricci soliton defined by (1.1). Let V be a pointwise
collinear vector field with the structure vector field ξ, that is V = bξ, where b is a
function on M . From (1.1) we write

(4.1) g(∇X bξ, Y ) + g(X,∇Y bξ) + 2S(X,Y ) + 2λg(X,Y ) = 0

for X,Y ∈ TM . Then, we have

(Xb)η(Y ) + bg(∇X ξ, Y ) + (Y b)η(X)(4.2)

+bg(X,∇Y ξ) + 2S(X,Y ) + 2λg(X,Y ) = 0,

which implies

(Xb)η(Y ) + (Y b)η(X) + 2αbg(X,Y )(4.3)

−2αbη(X)η(Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0,

by virtue of (2.10). By putting Y = ξ in (4.3) and using (3.6) we obtain

(4.4) Xb+ (ξb)η(X) + 4(α2 + β2)η(X) + 2λη(X) = 0.

Taking X = ξ in the previous equation gives

(4.5) ξb = −
(
2(α2 + β2) + λ

)
.

If we replace (4.5) in (4.4), we get

Xb = −(2(α2 + β2) + λ)η(X),

which yields

(4.6) db = −(2(α2 + β2) + λ)η.
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Applying d on both sides of the last equation, we have

(2(α2 + β2) + λ)dη = 0.

In a normal almost paracontact metric manifold, since dη ̸= 0 we have

(4.7) 2(α2 + β2) = −λ,

which implies

db = 0, that is, b = constant,

by virtue of (4.6). Thus, using constancy of b in (4.3) we obtain

(4.8) S(X,Y ) = −(λ+ αb)g(X,Y ) + αbη(X)η(Y ),

for all X,Y ∈ TM. Hence we have,

Theorem 4.1. Let M be a 3-dimensional non-paracosymplectic normal almost
paracontact metric manifold with α, β =constant. If M admits a Ricci soliton
and V is pointwise collinear with the structure vector field ξ, then V is a constant
multiple of ξ and M is an η-Einstein manifold.

Let assume the converse, that is, let M be a 3-dimensional η-Einstein normal
almost paracontact metric manifold with α, β =constant and V = ξ. Then we can
write

(4.9) S(X,Y ) = µg(X,Y ) + ρη(X)η(Y ),

where µ, ρ are scalars and X,Y ∈ TM . From (2.10) we have

(£ξ g) (X,Y ) = g(∇X ξ, Y ) + g(X,∇Y ξ)

= 2αg(X,Y )− 2αη(X)η(Y ),(4.10)

which implies that

(£ξ g) (X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 2(α+ µ+ λ)g(X,Y )(4.11)

−2(α− ρ)η(X)η(Y ).

From the previous equation it is obvious that M admits a Ricci soliton (g, ξ, λ) if

α+ µ+ λ = 0

and

ρ = α = constant.

Equating the right hand sides of (3.6) and (4.9) and taking X = Y = ξ gives

2(α2 + β2) = µ+ ρ,

that is,

µ = 2(α2 + β2)− α = constant.

Thus, we get

Theorem 4.2. Let M be a 3-dimensional non-paracosymplectic normal almost
paracontact metric manifold with α, β =constant. If M is an η-Einstein manifold
with S = µg + ρη ⊗ η, then the manifold admits a Ricci soliton (g, ξ,−(µ+ ρ)).
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Now taking V = ξ, the equation (1.1) becomes

(4.12) (£ξ g) (X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0,

for all X,Y ∈ TM. By using (2.10) it is easy to see that

(4.13) (£ξ g) (X,Y ) = 2α (g(X,Y )− η(X)η(Y )) .

Using (4.13) and (3.6) we have

(£ξ g) (X,Y ) + 2S(X,Y ) =
{
r + 2

(
α2 + β2

)}
g(X,Y )(4.14)

−
{
r − 2

(
α2 + β2 − α

)}
η(X)η(Y ).

Replacing the last equation in (4.12) we obtain

(4.15)
{
r + 2

(
α2 + β2 + α+ λ

)}
g(X,Y )−

{
r − 2

(
α2 + β2 − α

)}
η(X)η(Y ) = 0.

Putting X = Y = ξ in (4.15) gives

λ = −(α2 + β2).

Thus, we have

Theorem 4.3. If a 3-dimensional non-paracosymplectic normal almost paracontact
metric manifold with α, β =constant admits a Ricci soliton (g, ξ, λ) then the Ricci
soliton is shrinking.

Now let us denote £ξ g + 2S by B. Then from (4.14) we write

(4.16) B(X,Y ) =
{
r + 2

(
α2 + β2

)}
g(X,Y )−

{
r − 2

(
α2 + β2 − α

)}
η(X)η(Y ),

for any X,Y ∈ TM. Taking into account (4.12) it is obvious that B is a parallel
symmetric (0, 2)-tensor field. Thus using (4.16) we have

0 = (∇U B)(X,Y )

= dr(U) {g(X,Y )− η(X)η(Y )}
−
{
r − 2

(
α2 + β2 − α

)}
{(∇U η) (X)η(Y ) + η(X) (∇U η) (Y )} .

Taking X = Y = ei in the last equation above we get

dr = 0.

Here {ei}, i = 1, 2, 3, is an orthonormal basis of TpM , ∀p ∈ M . So we have

Theorem 4.4. If a 3-dimensional non-paracosymplectic normal almost paracontact
metric manifold M with α, β =constant admits a Ricci soliton (g, ξ, λ) then M is
of constant scalar curvature.

5. Gradient Ricci Soliton

A Ricci soliton is said to be a gradient Ricci soliton if the generating vector field
V is the gradient of a potential function −f , that is V = −∇f . In this case (1.1)
takes the form

(5.1) ∇∇f = S + λg.

Let M be a 3-dimensional non-paracosymplectic normal almost paracontact metric
manifold with α, β =constant. From (5.1) for any Y ∈ TM we write

(5.2) ∇Y gradf = QY + λY,

which gives

(5.3) R(X,Y )gradf = (∇X Q)Y − (∇Y Q)X,
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where Q is the Ricci operator of the manifold and X ∈ TM . By using (3.7) we get

(∇U Q)X =
dr(U)

2
(X − η(X)ξ)

+
(
−r

2
+ α2 + β2

)
{α [(g(X,U)− η(X)η(U))ξ + U ](5.4)

+β [g(X,φU)ξ + η(X)φU ]} ,

for all U ∈ TM . Taking U = ξ in (5.4) we obtain

(5.5) (∇ξ Q)X =
dr(ξ)

2
(X − η(X)ξ)−

(
−r

2
+ α2 + β2

)
α (η(X)− 1) ξ.

If we put X = ξ in (5.4) we also get

(5.6) (∇U Q) ξ = −
(
−r

2
+ α2 + β2

)
(α (η(U)− 1) ξ − βφU) .

So from (5.5) and (5.6) we have

(5.7) g ((∇ξ Q)X − (∇X Q) ξ, ξ) = 0,

which implies

(5.8) g (R(ξ,X)gradf, ξ) = 0.

Using (3.5) in the last equation we obtain

(5.9) 0 =
(
α2 + β2

)
{−g(X, gradf) + η(X)η(gradf)}.

Since α2 + β2 ̸= 0, we get

(5.10) g(X, gradf) = η(X)η(gradf),

which implies

(5.11) gradf = ξ(f)ξ.

Now using (5.11) in (5.1) we write

S(X,Y ) + λg(X,Y ) = g(∇Y gradf,X)

= g(Y (ξf) ξ + (ξf)∇Y ξ,X).

Thus, we have

S(X,Y ) + λg(X,Y ) = Y (ξf) η(X)

+ (ξf) {α(g(X,Y )− η(X)η(Y )) + βg(X,φY )} ,(5.12)

by virtue of (2.10). Taking X = ξ in the last equation and using (3.6) we have

(5.13) Y (ξf) = (−2
(
α2 + β2

)
+ λ)η(Y ).

Interchanging the roles of X and Y in (5.12) gives

S(Y,X) + λg(Y,X) = X (ξf) η(Y )

+ (ξf) {α(g(Y,X)− η(Y )η(X)) + βg(Y, φX)} .(5.14)

Since the Ricci tensor and the metric is symmetric from (2.4), (3.1) and (3.3) we
obtain

2S(X,Y ) + 2λg(X,Y ) = X (ξf) η(Y ) + Y (ξf) η(X)

+2α (ξf) (g(X,Y )− η(X)η(Y )),(5.15)
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which implies

g(QX,Y ) + λg(X,Y ) = α (ξf) g(X,Y )

+
(
−2

(
α2 + β2

)
+ λ− α (ξf)

)
η(X)η(Y ),(5.16)

by virtue of (5.13). Then from (5.2) and (5.16) we get

(5.17) ∇Y gradf = α (ξf)Y +
(
λ− 2

(
α2 + β2

)
− α (ξf)

)
η(Y )ξ.

By using the last equation one obtains

R(X,Y )gradf = α {X (ξf)Y − Y (ξf)X − (X (ξf) η(Y )− Y (ξf) η(X)) ξ}
+(−2

(
α2 + β2

)
+ λ− α (ξf)) {((∇X η)Y − (∇Y η)X) ξ(5.18)

+η(Y )∇X ξ − η(X)∇Y ξ}
and from (5.11) we get

(5.19) 0 = g(R(X,Y )gradf, ξ) = 2β(−2
(
α2 + β2

)
+ λ− α (ξf))g(φX, Y ),

for all X,Y ∈ TM. Hence, we conclude

(5.20) β(−2
(
α2 + β2

)
+ λ− α (ξf)) = 0,

which implies following three cases:
Case I : If β = 0 then the manifold is a α-para-Kenmotsu manifold.
Case II : If −2

(
α2 + β2

)
+ λ− α (ξf) = 0, then from (5.13) we have

(5.21) Y (ξf) = −α (ξf) η(Y ).

Using the last expression, equation (5.13) reduces to

(5.22) S(X,Y ) + λg(X,Y ) = α (ξf) g(X,Y ).

Putting X = Y = ei, where {ei}, i = 1, 2, 3, is an orthonormal basis of TpM ,
∀p ∈ M in (5.22) and then taking a sum gives

r + 3λ = 3α (ξf) ,

which implies that r = −3λ, that is, r is a constant.
Case III : If β = 0 and −2

(
α2 + β2

)
+ λ− α (ξf) = 0 then we get

(ξf) = −2α+
λ

α
,

which implies that (ξf) = c =constant. Then from (5.11) we have

df(X) = cη(X).

Applying d to the both sides of the last equation we get

cdη = 0.

Since dη ̸= 0 then we see that c = 0 and so f is a constant function. Hence, (5.1)
reduces to

S = −λg = −2α2g.

According to three cases given above, we have

Theorem 5.1. If a 3-dimensional non-paracosymplectic normal almost paracon-
tact metric manifold with α, β =constant admits a gradient Ricci soliton then the
manifold is an α-para-Kenmotsu manifold , or of constant scalar curvature or Ein-
stein.
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