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Ricci Solitons in β-Kenmotsu Manifolds
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Abstract. The object of the present paper is to study Ricci soli-
ton in β-Kenmotsu manifolds. Here it is proved that a symmetric
parallel second order covariant tensor in a β-Kenmotsu manifold
is a constant multiple of the metric tensor. Using this result, it is
shown that if (LV g + 2S) is O-parallel where V is a given vector
field, then the structure (g, V, λ) yields a Ricci soliton. Further,
by virtue of this result, we found the conditions of Ricci soliton
in β-Kenmotsu manifold to be shrinking, steady and expending
respectively. Next, Ricci soliton for 3-dimensional β-Kenmotsu
manifold are discussed with an example.
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1 Introduction

The Ricci flow is an intrinsic geometric flow which was introduced by Hamil-
ton in 1982 ([25], [26]). Ricci flow on a smooth, compact and without bound-
ary Riemannian manifold M equipped with a Riemannian metric g satisfies
the following geometric evolution equation

∂g

∂t
= −2S, (1.1)
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where S is Ricci curvature tensor depending on g.
Hamilton himself and many other researchers like Cao [16], Yau [31],

Chow and others [5], Perelman ([14],[15] ), Morgan and Tian [19] developed
the theory of Ricci flow. On the other hand Hamilton [27] introduced a more
general notion of Ricci soliton in the context of metric paracontact geometry.
More precisely, Ricci soliton is the natural generalization of Einstein metric
and is defined on a Riemannian manifold.

In a Riemannian manifold (M, g), g is called a Ricci soliton if

(LV g)(X, Y ) + 2S(X, Y ) + 2λg(X, Y ) = 0 (1.2)

for any vector fields X, Y and V on M , where LV denote the Lie derivative
operator along the vector field V , S is the Ricci tensor and λ is a constant.
The metric satisfying (1.2) are very interesting in the field of Physics and are
often referred as quasi-Einstein ([32],[33],[12]).

The Ricci soliton is said to be shrinking, steady and expanding according
as λ < 0, λ = 0 and λ > 0 respectively.

In the paracontact geometry, Ricci soliton firstly was studied by Calvaruso
and Perrone [12]. Recently, Bejan and Crasmareanu [8] studied Ricci solitons
on 3-dimensional normal paracontact manifold.

It is know that [22] if a positive definite Riemannian manifold (M, g)
admits a second order parallel symmetric covariant tensor other then a con-
stant multiple of the metric tensor, then it is reducible. The necessary and
sufficient condition for the existence of such tensor was given by Levy [18].

The generalization of Levy’s results is given by Sharma ([28],[29]). He
shown that a second order parallel (not necessarily symmetric and non-
singular) tensor on an n-dimensional (n > 2) space of constant curvature
is a constant multiple of the metric tensor. He also proved that there is no
non-zero parallel 2-form in a Sasakian manifold. Das [21] studied second
order parallel tensor on an almost contact metric manifold and found that
on an α-K-contact manifold (α being non-zero real constant) a second order
symmetric parallel tensor is a constant multiple of the associative positive
definite Riemannian metric tensor. It is also proved that in an α-Sasakian
manifold there is no non-zero parallel 2-form. The study of Ricci solitons
in K-contact manifolds was started by Sharma [30] and in the continuation
of this Ghosh, Sharma and Cho [2] studied gradient Ricci soliton of a non-
Sasakian (κ, µ)-contact manifold. Generally in a P-Sasakian manifold the
structure vector field ξ is not killing, that is (LV g) 6= 0 but in K-contact man-
ifold ξ is a killing vector field, that is (LV g) = 0. Recently in [34], De have
studied Ricci soliton in P-Sasakian manifolds. Barua and De [4] have stud-
ied Ricci solitons in Riemannian manifolds. Since then, several other studied
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Ricci soliton in various contact manifolds: Eisenhart problem to Ricci soliton
in f -Kenmotsu manifold [6], Eta-Ricci solitons on para-Kenmotsu manifolds
[3], on contact and Lorentzian manifolds ([6],[9],[28]), on Sasakian manifold
([1],[7]), on α-Sasakian [13], on Kenmotsu manifold [10], etc.
Motivated by the above studies, in this paper we treat Ricci soliton in β-
Kenmotsu manifolds. The paper is structured as follows. After introduction,
section 2 is a brief review of β-Kenmotsu manifold. Section 3 is devoted to
the study of parallel symmetric second order tensor in β-Kenmotsu mani-
folds and Ricci soliton in β-Kenmotsu manifolds. So we obtain a relation
between symmetric parallel second order covariant tensor and metric tensor
in β-Kenmotsu manifold. In the second problem of this section we studied
the necessary and sufficient condition of a Ricci semi-symmetric β-Kenmotsu
manifold to be an Einstein manifold. We also analyzed the behavior of Ricci
soliton in an n-dimension β-Kenmotsu manifold and η-Einstein manifolds.
Section 4 is devoted to study Ricci soliton in 3-dimensional β-Kenmotsu
manifold with an example.

2 Preliminaries

An n-dimensional differential smooth manifold M is said to be almost contact
metric manifold [11] if it admits a (1,1) tensor field ϕ, a contravariant vector
field ξ, a 1-form η and a Riemannian metric g which satisfy

ϕ2(X) = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η(ϕX) = 0, (2.1)

g(ϕX,ϕY ) = g(X, Y )− η(X)η(Y ), g(X, ξ) = η(X), (2.2)

for all vector fields X, Y on M .

An almost contact metric manifold M(ϕ, ξ, η, g) is said to be β-Kenmotsu
manifold [20] if

(∇Xϕ)(Y ) = β[g(ϕX, Y )ξ − η(Y )ϕX]. (2.3)

From (2.3), we have

∇Xξ = β[X − η(X)ξ], (2.4)

where β ∈ C∞(M) and ∇ denote the Riemannian connection of g. If β = 1
then β-Kenmotsu manifold is called Kenmotsu manifold and if β is constant
then it is called homothetic Kenmotsu manifold.
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In an n-dimensional β-Kenmotsu manifold, the following relations hold
[20]:

R(X, Y )ξ = −β2[η(Y )X − η(X)Y ] + (Xβ)[Y − η(Y )ξ]

− (Y β)[X − η(X)ξ],
(2.5)

R(ξ,X)Y = (β2 + ξβ)[η(Y )X − g(X, Y )ξ], (2.6)

η(R(X, Y )Z) = β2[g(X,Z)η(Y )− g(Y, Z)η(X)]− (Xβ)[g(Y, Z)

− η(Y )η(Z)] + (Y β)[g(X,Z)− η(X)η(Z)],
(2.7)

S(X, ξ) = −(2nβ2 + ξβ)η(X)− (2n− 1)(Xβ), (2.8)

S(ξ, ξ) = −2n(β2 + ξβ), (2.9)

Qξ = −(2nβ2 + ξβ)ξ − (2n− 1)gradβ, (2.10)

for any vector field X, Y, Z on M , where R is the Riemannian curvature
tensor, S is the Ricci tensor of type (0,2) and Q is the Ricci operator.

3 Parallel symmetric second order tensors and Ricci
solitons in β-Kenmotsu manifolds

Let h denote a (0,2) type symmetric tensor field which is parallel with respect
to ∇ that is ∇h = 0. Then it follows that ([28],[24]):

∇2h(X, Y ;Z,W )−∇2h(X, Y ;W,Z) = 0, (3.1)

which gives
h(R(X, Y )Z,W ) + h(Z,R(X, Y )W ) = 0. (3.2)

Taking Z = W = ξ in (3.2) and using (2.5), we have

β2[η(Y )h(X, ξ)− η(X)h(Y, ξ)]− (Xβ)[h(Y, ξ)− η(Y )h(ξ, ξ)]

+ (Y β)[h(X, ξ)− η(X)h(ξ, ξ)] = 0.
(3.3)

With X = ξ in (3.3) and by the symmetry of h, we have

(β2 − ξβ)[η(Y )h(ξ, ξ)− h(Y, ξ)] = 0. (3.4)

Since β2 − ξβ 6= 0, so by (3.4), we have

h(Y, ξ) = η(Y )h(ξ, ξ). (3.5)
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Differentiating (3.5) covariantly with respect to X, we have

(∇Xh)(Y, ξ) + h(∇XY, ξ) + h(Y,∇Xξ)

= [(∇Xη)(Y ) + η(∇XY )]h(ξ, ξ)

+ η(Y )[(∇Xh)(ξ, ξ) + 2h(∇Xξ, ξ)].

(3.6)

By using (2.4), (3.5) and the parallel condition ∇h = 0 in (3.6), we have

h(X, Y ) = g(X, Y )h(ξ, ξ). (3.7)

which implies that the parallelism of h gives h(ξ, ξ) is a constant, via (3.5).
So we have the following theorem.

Theorem 3.1. A symmetric parallel second order covariant tensor in β-
Kenmotsu manifold is a constant multiple of the metric tensor.

Corollary 3.2. A locally Ricci symmetric (∇S = 0) β-Kenmotsu manifold
is an Einstein manifold.

Remark 3.1. The following statements for β-Kenmotsu manifold are equiv-
alent:

(i) Einstein,
(ii) locally Ricci symmetric,
(iii) Ricci semi-symmetric, that is R · S = 0.

The implication (i)→ (ii)→ (iii) is trivial. Now we prove that the impli-
cation (iii) → (i) in the more general frame work of β-Kenmotsu manifold.
Since R · S = 0, means exactly (3.2) with h replaced by S, that is

(R(X, Y ) · S)(U, V ) = −S(R(X, Y )U, V )− S(U,R(X, Y )V ). (3.8)

Taking R · S = 0 and putting X = ξ in (3.8), we have

S(R(ξ, Y )U, V ) + S(U,R(ξ, Y )V ) = 0. (3.9)

In view of (2.6) and β2 + ξβ 6= 0, the above equation becomes

{η(U)S(Y, V )− g(Y, U)S(ξ, V )}
+ {η(V )S(U, Y )− g(Y, V )S(U, ξ)} = 0.

(3.10)

Putting U = ξ in (3.10) and by using (2.1), (2.8) and (2.9), we obtain

S(Y, V ) =− 2n(β2 + ξβ)g(Y, V ) + (2n− 1)(Y β)η(V )

− (2n− 1)(V β)η(Y ).
(3.11)



154 R. Kumar An. U.V.T.

If ω(X) = g(X, ρ) = Xβ = g(gradβ,X) for all X, then (3.11) yields

S(Y, V ) =− 2n(β2 + ξβ)g(Y, V ) + (2n− 1){η(V )ω(Y )

− η(Y )ω(V )}.
(3.12)

From (3.12), it follows that a Ricci semi-symmetric β-Kenmotsu manifold is
an Einstein manifold if and only if

η(V )ω(Y ) = η(Y )ω(V ), (3.13)

that is, the vector field ξ and ρ = gradβ are parallel.
This leads to the following theorem.

Theorem 3.3. A Ricci semi-symmetric β-Kenmotsu manifold (M, g) is an
Einstein manifold if and only if the structure vector field ξ and the scalar
potential of the structure function β are parallel.

Corollary 3.4. If on a β-Kenmotsu manifold the tensor field (LV g+ 2S) is
O-parallel, then (g, V, λ) gives a Ricci soliton.

Proof. A Ricci soliton in β-Kenmotsu manifold defined by (1.1) which gives
(LV g+ 2S) is parallel. By theorem (3.1) it is clear that a symmetric parallel
(0,2) tensor in β-Kenmotsu manifold is a constant multiple of metric tensor.
Hence (LV g + 2S) is a constant multiple of metric tensor g that is (LV g +
2S)(X, Y ) = g(X, Y )h(ξ, ξ), where h(ξ, ξ) is a non-zero constant. It is the
application of the theorem (3.1) to Ricci soliton.

Theorem 3.5. If a metric g in β-Kenmotsu manifold is a Ricci soliton with
V = ξ, then it is η-Einstein.

Proof. Taking V = ξ in (1.2), we obtain

(Lξg)(X, Y ) + 2S(X, Y ) + 2λg(X, Y ) = 0. (3.14)

Substituting
(Lξg)(X, Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ), (3.15)

in (3.14) and by use of (2.4), we obtain

S(X, Y ) = −(β + λ)g(X, Y ) + βη(X)η(Y ),

hence the result.

Theorem 3.6. A Ricci soliton (g, ξ, λ) in an n-dimensional β-Kenmotsu
manifold can not be steady but is expanding.
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Proof. In linear algebra either the vector field V ∈ Span ξ or V⊥ξ. But the
second case V⊥ξ seems to be complex to analyze in practice. For this reason
we investigate for the case V = ξ.
By a simple computation of (LV g + 2S), we obtain

(Lξg)(X, Y ) = 0. (3.16)

From (1.2), we have

h(X, Y ) = −2λg(X, Y ).

On putting X = Y = ξ, we obtain from above relation as

h(ξ, ξ) = −2λ, (3.17)

where

h(ξ, ξ) = (Lξg)(ξ, ξ) + 2S(ξ, ξ). (3.18)

Using (2.9) and (3.16) we get from above

h(ξ, ξ) = −4n(β2 + ξβ). (3.19)

By virtue of (3.17) and (3.19), it follows that

λ = 2n(β2 + ξβ).

Since β is some non-zero function, we have λ 6= 0 and so Ricci soliton in
an n-dimension β-Kenmotsu manifold can not be steady but is expending
because λ > 0.

Theorem 3.7. If an n-dimensional β-Kenmotsu manifold is η-Einstein then
the Ricci soliton in β-Kenmotsu manifold that is (g, ξ, λ), where λ = 2nβ2 +
ξβ with varying scalar curvature can not be steady but it is expending.

Proof. The proof consists of three parts.

(i) We prove that β-Kenmotsu manifold is η-Einstein,

(ii) We prove that the Ricci soliton in β-Kenmotsu manifold is consisting
of varying scalar curvature,

(iii) We prove that the Ricci soliton in β-Kenmotsu manifold is expand-
ing.
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First we prove that the β-Kenmotsu manifold is η-Einstein: The metric g is
called η-Einstein if there exists two real functions a and b such that the Ricci
tensor of g is given by the general equation

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ). (3.20)

Let ei, i = 1, 2, ..., n be an orthonormal basis of the tangent space at any point
of the manifold. Then putting X = Y = ei in (3.20) and taking summation
over i, we get

r = na+ b. (3.21)

Again putting X = Y = ξ in (3.20) then by use of (2.9), we have

a+ b = −(2nβ2 + ξβ). (3.22)

Then from (3.21) and (3.22), we have

a =
r + (2nβ2 + ξβ)

n− 1
, b = −

[
r + n(2nβ2 + ξβ)

n− 1

]
. (3.23)

Substituting the values of a and b in (3.20), we have

S(X, Y ) =

[
r + (2nβ2 + ξβ)

n− 1

]
g(X, Y )

−
[
r + n(2nβ2 + ξβ)

n− 1

]
η(X)η(Y ),

(3.24)

the above equation shows that β-Kenmotsu manifold is an η-Einstein mani-
fold.

Now, we have to show that the scalar curvature r is not a constant and
it is varying. For an n-dimensional β-Kenmotsu manifold the symmetric
parallel covariant tensor h(X, Y ) of type (0, 2) is given by

h(X, Y ) = (Lξg)(X, Y ) + 2S(X, Y ). (3.25)

Using (3.16) and (3.24) in (3.25), we have

h(X, Y ) = 2

[
β +

r + (2nβ2 + ξβ)

n− 1

]
g(X, Y )

− 2

[
β +

r + n(2nβ2 + ξβ)

n− 1

]
η(X)η(Y ).

(3.26)
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Differentiating (3.26) covariantly with respect to Z, we have

(∇Zh)(X, Y ) = 2

[
Zβ +

(∇Zr) + 4nZβ + Z(ξβ)

n− 1

]
g(X, Y )

− 2

[
Zβ +

(∇Zr) + n(4nZβ + Z(ξβ))

n− 1

]
η(X)η(Y )

− 2β

[
β +

r + n(2nβ2 + ξβ)

n− 1

]
{g(Z,X)η(Y ) + g(Z, Y )η(X)}.

(3.27)

By substituting Z = ξ and X = Y ∈ (Span ξ)⊥ in (3.27) and using ∇h = 0,
we have

∇ξr = −(n− 1)∇ξβ − [4n∇ξβ +∇ξ(ξβ)] . (3.28)

On integrating (3.28), we have

r = −(5n− 1)β − ξβ + c, (3.29)

where c is some integral constant. Thus from (3.29) we have r is a varying
scalar curvature.

Finally, we have to check the nature of the soliton that is Ricci soliton in
β-Kenmotsu manifold.

From (1.2), we have h(X, Y ) = −2λg(X, Y ), then putting X = Y = ξ,
we have

h(ξ, ξ) = −2λ. (3.30)

On putting X = Y = ξ in (3.26), we have

h(ξ, ξ) = −2(2nβ2 + ξβ). (3.31)

Equating (3.30) and (3.31), we have

λ = 2nβ2 + ξβ. (3.32)

Since, λ 6= 0 because β is smooth function and λ > 0, that is the Ricci soliton
in β-Kenmotsu manifold is expending.

4 Ricci solitons in 3-Dimensional β-Kenmotsu mani-
fold

Theorem 4.1. In a Ricci soliton (g, ξ, λ) where λ = 6β2+1
2
ξβ of 3-dimensional

β-Kenmotsu manifold with varying scalar curvature can not be steady but it
is expending.
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Proof. The proof consists of three parts.

(i) We prove that the Riemannian curvature tensor of 3-dimensional β-
Kenmotsu manifold is η-Einstein manifold,

(ii) We prove that the Ricci soliton in 3-dimensional β-Kenmotsu man-
ifold is consisting of varying scalar curvature,

(iii) We prove that the Ricci soliton in a 3-dimensional β-Kenmotsu
manifold is expending.

The Riemannian curvature tensor of 3-dimensional β-Kenmotsu manifold is
given by

R(X, Y, Z) = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X

− S(X,Z)Y − r

2
{g(Y, Z)X − g(X,Z)Y }.

(4.1)

Putting Z = ξ in (4.1) and by using (2.5) and (2.8), we have

−β2{η(Y )X − η(X)Y }+ (Xβ){Y − η(Y )ξ} − (Y β){X − η(X)ξ}

= η(Y )QX − η(X)QY − (6β2 + ξβ)η(Y )X − 5(Y β)X

+ (6β2 + ξβ)η(X)Y + 5(Xβ)Y − r

2
{η(Y )X − η(X)Y }.

(4.2)

Again putting Y = ξ in (4.2) and by using (2.1) and (2.10), we have

QX =
(r

2
+ 5β2 + 5ξβ

)
X −

(r
2

+ 11β2 + ξβ
)
ξ

+ 5(grad β)η(X)− 5(Xβ)ξ.
(4.3)

By taking inner product of (4.3) with Y , we get

S(X, Y ) =
(r

2
+ 5β2 + 5ξβ

)
g(X, Y )−

(r
2

+ 11β2 + ξβ
)
η(X)η(Y )

+ 5(Y β)η(X)− 5(Xβ)η(Y ).
(4.4)

Interchanging X and Y in (4.4), we have

S(Y,X) =
(r

2
+ 5β2 + 5ξβ

)
g(Y,X)−

(r
2

+ 11β2 + ξβ
)
η(Y )η(X)

+ 5(Xβ)η(Y )− 5(Y β)η(X).
(4.5)

Adding (4.4) and (4.5), we have

S(X, Y ) =
(r

2
+ 5β2 + 5ξβ

)
g(X, Y )

−
(r

2
+ 11β2 + ξβ

)
η(X)η(Y ).

(4.6)
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This shows that a 3-dimensional β-Kenmotsu manifold is η-Einstein mani-
fold.

Now, we would like to show that the scalar curvature r is not a constant
that is r is varying.

For a 3-dimensional β-Kenmotsu manifold the symmetric parallel covari-
ant tensor h(X, Y ) of type (0, 2) is given by

h(X, Y ) = (Lξg)(X, Y ) + 2S(X, Y ). (4.7)

By using (3.16) and (4.6) in (4.7), we have

h(X, Y ) = (r + 10β2 + 10ξβ)g(X, Y )− (r + 22β2 + 2ξβ)η(X)η(Y ). (4.8)

Differentiating the above equation covariantly with respect to Z, we have

(∇Zh)(X, Y ) = {∇Zr + 20β(Zβ) + 10Z(ξβ)}g(X, Y )

− {∇Zr + 44β(Zβ) + 2Z(ξβ)}η(X)η(Y )

− (r + 22β2 + 2ξβ){(∇Zη)(X)η(Y )− η(X)(∇Zη)(Y )}.
(4.9)

Substituting Z = ξ and X = Y ∈ (Span ξ)⊥ in (4.9) and by virtue of∇h = 0,
we have

{∇ξr + 10∇ξ(β
2) + 10∇ξ(ξβ)} = 0. (4.10)

On integrating (4.10), we have

r = −10(β2 + ξβ) + c. (4.11)

where c is integral constant. Thus from (4.11), we have r a variable scalar
curvature.

Finally, we have to check the nature of the Ricci soliton (g, ξ, η) in 3-
dimensional β-Kenmotsu manifold.

From (1.2), we have

h(X, Y ) = −2λg(X, Y ). (4.12)

On putting X = Y = ξ in (4.12), we have

h(ξ, ξ) = −2λ. (4.13)

On taking X = Y = ξ in (4.8), we have

h(ξ, ξ) = −12β2 − ξβ. (4.14)

Equating (4.13) and (4.16), we have

λ = 6β2 +
1

2
ξβ. (4.15)

Since from (4.15), λ 6= 0 and λ > 0, therefore Ricci soliton (g, ξ, η) in 3-
dimensional β-Kenmotsu manifold is expending.
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Example 4.1. Let M = {(x, y, z) ∈ R3 : z 6= 0}, where (x, y, z) are standard
co-ordinate inR3. Let {E1, E2, E3} be linearly independent vector fields given
by

E1 = z2
∂

∂x
, E2 = z2

∂

∂y
, E3 =

∂

∂z
.

Let g be the Riemannian metric defined by

g(E1, E2) = g(E1, E3) = g(E2, E3) = 0,

g(E1, E1) = g(E2, E2) = g(E2, E3) = 1.

Let η be a 1-form defined by η(U) = g(U,E3) for any U ∈ χ(M) and ϕ be
the (1, 1)-tensor field defined by

ϕE1 = −E2, ϕE2 = E1 and ϕE3 = 0.

Then using the linearity of ϕ on g, we have

η(E3) = 1, ϕ2U = −U + η(U)E3,

and g(ϕU, ϕW ) = g(U,W )− η(U)η(W ),
for any U,W ∈ χ(M). Thus for E3 = ξ, (φ, ξ, η, g) defines an almost contact
metric structure on M .
Let ∇ be the Riemannian connection of g, then we have

[E1, E2] = 0, [E1, E3] = −2

z
E1 and [E2, E3] = −2

z
E2.

Koszul formula is given by

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X, Y ]).

By using the Koszul formula for the Riemannian metric g, we can easily
calculate

∇E1E1 =
2

z
E3, ∇E1E2 = 0, ∇E1E3 = −2

z
E1,

∇E2E1 = 0, ∇E2E2 =
2

z
E3, ∇E2E3 = −2

z
E2,

∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 = 0.

From the above it can be easily seen that (φ, ξ, η, g) is β-Kenmotsu structure
on M and satisfy

(∇Xϕ)Y = β[g(ϕX, Y )ξ − η(Y )ϕX], ∇Xξ = β[X − η(X)ξ], (4.16)
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where β = −2
z
. Hence structure (φ, ξ, η, g) defines a β-Kenmotsu structure.

Thus M equipped with β-Kenmotsu structure is a β-Kenmotsu manifold.
The tangent vector X and Y on M are expressed as linear combination of
E1, E2, E3, that is

X = a1E1 + a2E2 + a3E3,

Y = b1E1 + b2E2 + b3E3,

where ai and bi, (i = 1, 2, 3) are scalars.
Using β = −2

z
in (4.11), we have

r = −60

z2
+ c,

which shows that, the scalar curvature r is not constant.
Using β = −2

z
in (4.15), we have

λ =
25

z2
,

this implies that λ > 0, that is the Ricci soliton in 3-dimensional β-Kenmotsu
manifold is expending.
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