
International Scholarly Research Network
ISRN Geometry
Volume 2012, Article ID 421384, 13 pages
doi:10.5402/2012/421384

Research Article

Ricci Solitons in α-Sasakian Manifolds

Gurupadavva Ingalahalli and C. S. Bagewadi

Department of Mathematics, Kuvempu University, Shankaraghatta 577 451, India

Correspondence should be addressed to C. S. Bagewadi, prof bagewadi@yahoo.co.in

Received 20 April 2012; Accepted 28 May 2012

Academic Editors: F. P. Schuller and I. Strachan

Copyright q 2012 G. Ingalahalli and C. S. Bagewadi. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

We study Ricci solitons in α-Sasakianmanifolds. It is shown that a symmetric parallel second order-
covariant tensor in a α-Sasakian manifold is a constant multiple of the metric tensor. Using this, it
is shown that if LV g + 2S is parallel where V is a given vector field, then (g, V, λ) is Ricci soliton.
Further, by virtue of this result, Ricci solitons for n-dimensional α-Sasakianmanifolds are obtained.
Next, Ricci solitons for 3-dimensional α-Sasakian manifolds are discussed with an example.

1. Introduction

In 1982, Hamilton [1] introduced the concept of Ricci flow which smooths out the geometry
of manifold that is if there are singular points these can be minimized under Ricci flow. Ricci
solitons move under the Ricci flow simply by diffeomorphisms of the initial metric that is
they are stationary points of the Ricci flow: ∂g/∂t = −2Ric(g), (in this paper we use Ric = S)
in the space of metrics onM. Hence it is interesting to study Ricci solitons.

Definition 1.1. A Ricci soliton (g, V, λ) on a Riemannian manifold M is defined by

LVg + 2S + 2λg = 0. (1.1)

It is said to be shrinking, steady, or expanding according as λ < 0, λ = 0 and λ > 0.

Note that here the metric g(t) is the pull back of the initial metric g(0) by a 1-parameter
family of diffeomorphisms generated by a vector field V on a manifold M. Compact Ricci
solitons are the fixed points of the Ricci flow: ∂g/∂t = −2Ric(g) projected from the space of
metrics onto its quotient modulo diffeomorphisms and scalings and often arise as blow-up
limits for the Ricci flow on compact manifolds.



2 ISRN Geometry

In 1923, Eisenhart [2] proved that if a positive definite Riemannian manifold (M,g)
admits a second order parallel symmetric covariant tensor other than a constant multiple
of the metric tensor, then it is reducible. In 1925, Levy [3] obtained the necessary and
sufficient conditions for the existence of such tensors. In 1989, 1990, and 1991, Sharma [4–
6] has generalized Levy’s result by showing that a second order parallel (not necessarily
symmetric and nonsingular) tensor on an n-dimensional (n > 2) space of constant curvature
is a constant multiple of the metric tensor. It is also proved that in a Sasakian manifold
there is no nonzero parallel 2-form. In 2007, Das [7] in his paper proved that a second
order symmetric parallel tensor on an α-K-contact (α ∈ R0) manifold is a constant multiple
of the associated metric tensor and also proved that there is no nonzero skew symmetric
second order parallel tensor on an α-Sasakian manifold. Note that α-Sasakian manifolds are
generalisations of Sasakian manifolds. Hence one can find interest in generalisation, from
Sasakian to α-Sasakian manifolds and study Ricci solitons in this manifold.

In 2008, Sharma [8] studied Ricci solitons in K-contact manifolds, where the structure
field ξ is killing and he proved that a complete K-contact gradient soliton is compact Einstein
and Sasakian. In 2010, Călin and Crasmareanu [9] extended the Eisenhart problem to Ricci
solitons in f-Kenmotsumanifolds. They studied the case of f-Kenmotsumanifolds satisfying
a special condition called regular and a symmetric parallel tensor field of second order is a
constant multiple of the Riemannian metric. Using this result, they obtained the results on
Ricci solitons. Recently, Bagewadi and Ingalahalli [10] studied Ricci solitons in Lorentzian
α-Sasakian Manifolds.

In this paper, we obtain some results on Ricci solitons.

2. Preliminaries

LetM be an almost contact metric manifold of dimension n, equipped with an almost contact
metric structure (φ, ξ, η, g) consisting of a (1, 1) tensor field φ, a vector field ξ, a 1-form η and
a Riemannian metric g, which satisfy

φ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0, (2.1)

g
(

φX, φY
)

= g(X,Y ) − η(X)η(Y ), η(X) = g(X, ξ), (2.2)

for all X,Y ∈ X(M). An almost contact metric manifold M(φ, ξ, η, g) is said to be α-Sasakian
manifold if the following conditions hold:

(

∇Xφ
)

Y = α
(

g(X,Y )ξ − η(Y )X
)

, (2.3)

∇Xξ = −αφX,
(

∇Xη
)

Y = αg
(

X,φY
)

. (2.4)

Holds for some smooth function α on M.
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In an α-Sasakian manifold, the following relations hold:

R(X,Y )ξ = α2[η(Y )X − η(X)Y
]

+ (Yα)φX − (Xα)φY, (2.5)

R(ξ, X)Y = α2[g(X,Y )ξ − η(Y )X
]

+ g
(

X,φY
)(

grad α
)

+ (Yα)φX, (2.6)

η(R(X,Y )Z) = α2[g(Y,Z)η(X) − g(X,Z)η(Y )
]

+ (Xα)g
(

φY,Z
)

− (Yα)g
(

φX,Z
)

, (2.7)

S(X, ξ) = α2(n − 1)η(X) −
((

φX
)

α
)

, (2.8)

S(ξ, ξ) = α2(n − 1), (2.9)

Qξ = α2(n − 1)ξ + φ
(

grad α
)

, (2.10)

for all X,Y,Z ∈ X(M), where R is the Riemannian curvature tensor, S is the Ricci tensor and
Q is the Ricci operator.

3. Parallel Symmetric Second Order Tensors and Ricci Solitons
in α-Sasakian Manifolds

Fix h a symmetric tensor field of (0, 2)-type which we suppose to be parallel with respect to
∇ that is ∇h = 0. Applying the Ricci identity [4, 11]

∇2h(X,Y ;Z,W) − ∇2h(X,Y ;W,Z) = 0, (3.1)

we obtain the relation

h(R(X,Y )Z,W) + h(Z,R(X,Y )W) = 0. (3.2)

Replacing Z = W = ξ in (3.2) and by using (2.5) and by the symmetry of h, we have

2
[

(Yα)h
(

φX, ξ
)

− (Xα)h
(

φY, ξ
)]

+ 2α2[η(Y )h(X, ξ) − η(X)h(Y, ξ)
]

= 0. (3.3)

Put X = ξ in (3.3) and by virtue of (2.1), we have

2α2[η(Y )h(ξ, ξ) − h(Y, ξ)
]

− 2(ξα)h
(

φY, ξ
)

= 0. (3.4)

Replacing Y = φY in (3.4), we have

2(ξα)
[

h(Y, ξ) − η(Y )h(ξ, ξ)
]

− 2α2h
(

φY, ξ
)

= 0. (3.5)

Solving (3.4) and (3.5), we have

(

α4 + (ξα)2
)

[

η(Y )h(ξ, ξ) − h(Y, ξ)
]

= 0. (3.6)
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Since α4 + (ξα)2 /= 0, it results

h(Y, ξ) = η(Y )h(ξ, ξ). (3.7)

Differentiating (3.7) covariantly with respect to X, we have

(∇Xh)(Y, ξ) + h(∇XY, ξ) + h(Y,∇Xξ) =

[(

∇Xη
)

(Y ) + η(∇XY )
]

h(ξ, ξ) + η(Y )[(∇Xh)(Y, ξ) + 2h(∇Xξ, ξ)].
(3.8)

By using the parallel condition ∇h = 0, η(∇Xξ) = 0 and (3.7) in (3.8), we have

h(Y,∇Xξ) =
(

∇Xη
)

(Y )h(ξ, ξ). (3.9)

By using (2.4) in (3.9), we get

−αh
(

Y, φX
)

= αg
(

X,φY
)

h(ξ, ξ). (3.10)

Replacing X = φX in (3.10), we get

α
[

h(Y,X) − g(Y,X)h(ξ, ξ)
]

= 0. (3.11)

Since α is a nonzero smooth function in α-Sasakian manifold and this implies that

h(X,Y ) = g(X,Y )h(ξ, ξ), (3.12)

the above equation implies that h(ξ, ξ) is a constant, via (3.7). Now by considering the above
condition we state the following theorem.

Theorem 3.1. A symmetric parallel second order covariant tensor in an α-Sasakian manifold is a
constant multiple of the metric tensor.

Corollary 3.2. A locally Ricci symmetric (∇S = 0) α-Sasakian manifold is an Einstein manifold.

Remark 3.3. The following statements for α-Sasakian manifold are equivalent:

(1) Einstein,

(2) locally Ricci symmetric,

(3) Ricci semi-symmetric that is R · S = 0.

The implication (1)→ (2)→ (3) is trivial. Now, we prove the implication (3)→ (1) and
R · S = 0 means exactly (3.2)with replaced h by S that is,

(R(X,Y ) · S)(U,V ) = −S(R(X,Y )U,V ) − S(U,R(X,Y )V ). (3.13)
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Considering R · S = 0 and putting X = ξ in (3.13), we have

S(R(ξ, Y )U,V ) + S(U,R(ξ, Y )V ) = 0. (3.14)

By using (2.6) in (3.14), we obtain

[

g
(

φU, Y
)

S
(

grad α, V
)

+ (Uα)S
(

φY, V
)]

+ α2[g(Y,U)S(ξ, V ) − η(U)S(Y, V )
]

+
[

g
(

φV, Y
)

S
(

U,grad α
)

+ (Vα)S
(

U,φY
)]

+ α2[g(Y, V )S(U, ξ) − η(V )S(U,Y )
]

= 0.

(3.15)

PuttingU = ξ in (3.15) and by using (2.1), (2.8), and (2.9) on simplification, we obtain

(ξα)S
(

φY, V
)

− α2η(Y )
((

φV
)

α
)

− α2S(Y, V ) + g
(

Y, φV
)

S
(

ξ,grad α
)

+ α4(n − 1)g(Y, V ) + α2η(V )
((

φY
)

α
)

= 0.

(3.16)

Interchanging Y and V in (3.16), we have

(ξα)S
(

φV, Y
)

− α2η(V )
((

φY
)

α
)

− α2S(V, Y ) + g
(

V, φY
)

S
(

ξ,grad α
)

+ α4(n − 1)g(V, Y ) + α2η(Y )
((

φV
)

α
)

= 0.

(3.17)

Adding (3.16) and (3.17), we obtain

S(Y, V ) = (n − 1)α2g(Y, V ). (3.18)

We conclude the following.

Proposition 3.4. A Ricci semi-symmetric α-Sasakian manifold is an Einstein manifold.

Corollary 3.5. Suppose that on a α-Sasakian manifold the (0, 2)-type fieldLVg +2S is parallel where
V is a given vector field. Then (g, V, λ) yield a Ricci soliton. In particular, if the given α-Sasakian
manifold is Ricci semi-symmetric with LVg parallel, one has the same conclusion.

Proof. Follows from Theorem 3.1 and Corollary 3.2.
A Ricci soliton in α-Sasakian manifold defined by (1.1). Thus LVg + 2S is parallel.

In Theorem 3.1 we proved that if an α-Sasakian manifold admits a symmetric parallel (0, 2)
tensor, then the tensor is a constant multiple of the metric tensor. Hence LVg + 2S is a
constant multiple of themetric tensor g that is (LVg+2S)(X,Y ) = g(X,Y )h(ξ, ξ), where h(ξ, ξ)
is a nonzero constant. We close this section with applications of our Theorem 3.1 to Ricci
solitons.

Corollary 3.6. If a metric g in an α-Sasakian manifold is a Ricci soliton with V = ξ then it is Einstein.



6 ISRN Geometry

Proof. Putting V = ξ in (1.1), then we have

(

Lξg + 2S + 2λg
)

(X,Y ) = 0, (3.19)

where

(

Lξg
)

(X,Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ) = 0. (3.20)

Substituting (3.20) in (3.19), then we get the result.

Hence we state the following result.

Corollary 3.7. A Ricci soliton (g, ξ, λ) in an n-dimensional α-Sasakian manifold cannot be steady
but is shrinking.

Proof. From Linear Algebra either the vector field V ∈ Span ξ or V ⊥ ξ. However the second
case seems to be complex to analyse in practice. For this reason we investigate for the case
V = ξ.

A simple computation of Lξg + 2S gives

(

Lξg
)

(X,Y ) = 0. (3.21)

From (1.1), we have h(X,Y ) = −2λg(X,Y ) and then putting X = Y = ξ, we have

h(ξ, ξ) = −2λ, (3.22)

where

h(ξ, ξ) =
(

Lξg
)

(ξ, ξ) + 2S(ξ, ξ), (3.23)

by using (2.9) and (3.21) in the above equation, we have

h(ξ, ξ) = 2α2(n − 1). (3.24)

Equating (3.22) and (3.24), we have

λ = −(n − 1)α2. (3.25)

Since α is some nonzero function, we have λ/= 0, that is Ricci soliton in an n-dimensional
α-Sasakian manifold cannot be steady but is shrinking because λ < 0.

Corollary 3.8. If an n-dimensional α-Sasakian manifold is η-Einstein then the Ricci solitons in α-
Sasakian manifold that is (g, ξ, λ), where λ = −(n − 1)α2 with varying scalar curvature cannot be
steady but it is shrinking.
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Proof. The proof consists of three parts.

(i) We prove α-Sasakian manifold is η-Einstein.

(ii) We prove the Ricci soliton in α-Sasakian manifold is consisting of varying scalar
curvature.

(iii) We find that the Ricci soliton in α-Sasakian manifold is shrinking.

First we prove that the α-Sasakian manifold is η-Einstein: the metric g is called η-Einstein if
there exists two real functions a and b such that the Ricci tensor of g is given by the general
equation

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ). (3.26)

Now by simple calculations we find the values of a and b. Let ei, {i = 1, 2, . . . n} be an
orthonormal basis of the tangent space at any point of the manifold. Then putting X = Y = ei
in (3.26) and taking summation over i, we get

r = na + b. (3.27)

Again putting X = Y = ξ in (3.26) then by using (2.9), we have

a + b = (n − 1)α2. (3.28)

Then from (3.27) and (3.28), we have

a =

[

r

(n − 1)
− α2

]

, b =

[

nα2 −
r

(n − 1)

]

. (3.29)

Substituting the values of a and b in (3.26), we have

S(X,Y ) =

[

r

(n − 1)
− α2

]

g(X,Y ) +

[

nα2 −
r

(n − 1)

]

η(X)η(Y ), (3.30)

the above equation is an η-Einstein α-Sasakian manifold.
Now, we have to show that the scalar curvature r is not a constant and it is varying.

For an n-dimensional α-Sasakian manifolds the symmetric parallel covariant tensor h(X,Y )
of type (0, 2) is given by

h(X,Y ) =
(

Lξg
)

(X,Y ) + 2S(X,Y ). (3.31)

By using (3.21) and (3.30) in (3.31), we have

h(X,Y ) =

[

2r

(n − 1)
− 2α2

]

g(X,Y ) +

[

2nα2 −
2r

(n − 1)

]

η(X)η(Y ). (3.32)
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Differentiating (3.32) covariantly with respect to Z, we have

(∇Zh)(X,Y ) =

[

2(∇Zr)

(n − 1)
− 4α(Zα)

]

g(X,Y ) +

[

4nα(Zα) −
2(∇Zr)

(n − 1)

]

η(X)η(Y )

+

[

2nα2 −
2r

(n − 1)

]

[

g(X,∇Zξ)η(Y ) + g(Y,∇Zξ)η(X)
]

.

(3.33)

By substituting Z = ξ and X = Y ∈ (Span ξ)⊥ in (3.33) and by using ∇h = 0, we have

∇ξr = 2(n − 1)α(ξα) =⇒ ∇ξr = (n − 1)∇ξα
2. (3.34)

On integrating (3.34), we have

r = (n − 1)α2 + c, (3.35)

where c is some integral constant. Thus from (3.35), we have r is a varying scalar curvature.
Finally, we have to check the nature of the soliton that is Ricci soliton in α-Sasakian

manifold:
From (1.1), we have h(X,Y ) = −2λg(X,Y ) then putting X = Y = ξ, we have

h(ξ, ξ) = −2λ. (3.36)

If we put X = Y = ξ in (3.32), that is

h(ξ, ξ) =

[

2r

(n − 1)
− 2α2

]

g(ξ, ξ) +

[

2nα2 −
2r

(n − 1)

]

η(ξ)η(ξ), (3.37)

Above equation reduced as,

h(ξ, ξ) = 2(n − 1)α2. (3.38)

Equating (3.36) and (3.38), we have

λ = −(n − 1)α2. (3.39)

Since, λ/= 0 because α is some smooth function and λ < 0, that is the Ricci soliton in an α-
Sasakian manifold is shrinking.

4. Ricci Solitons in 3-Dimensional α-Sasakian Manifold

In this section we restrict our study to 3-dimensional α-Sasakian manifold, that is Ricci
solitons in 3-dimensional α-Sasakian manifold.
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Corollary 4.1. If a Ricci soliton (g, ξ, λ) where λ = −2α2 of 3-dimensional α-Sasakian manifold with
varying scalar curvature cannot be steady but it is shrinking.

Proof. The proof consists of three parts.

(i) We prove that the Riemannian curvature tensor of 3-dimensional α-Sasakian
manifold is η-Einstein.

(ii) We prove that the Ricci soliton in 3-dimensional α-Sasakian manifold is consisting
of varying scalar curvature.

(iii) We find that the Ricci soliton in a 3-dimensional α-Sasakian manifold is shrinking.

First we consider: the Riemannian curvature tensor of 3-dimensional α-Sasakian manifold
and it is given by

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y,Z)X

− S(X,Z)Y −
r

2

[

g(Y,Z)X − g(X,Z)Y
]

.

(4.1)

Put Z = ξ in (4.1) and by using (2.5) and (2.8), we have

[

(Yα)φX − (Xα)φY
]

+ α2[η(Y )X − η(X)Y
]

= η(Y )QX − η(X)QY + 2α2[η(Y )X − η(X)Y
]

−
((

φY
)

α
)

X +
((

φX
)

α
)

−
r

2

[

η(Y )X − η(X)Y
]

.

(4.2)

Again put Y = ξ in (4.2) and by using (2.1) and (2.10), on simplification we get

QX =
[ r

2
− α2

]

X +
[

3α2 −
r

2

]

η(X)ξ + (ξα)φX + η(X)
(

φ
(

grad α
))

+
((

φX
)

α
)

ξ. (4.3)

By taking an inner product Y in (4.3), we have

S(X,Y ) =
[ r

2
− α2

]

g(X,Y ) +
[

3α2 −
r

2

]

η(X)η(Y ) + (ξα)g
(

φX, Y
)

− η(X)
((

φY
)

α
)

+ η(Y )
((

φX
)

α
)

.

(4.4)

Interchanging X and Y in (4.4), we have

S(Y,X) =
[ r

2
− α2

]

(Y,X) +
[

3α2 −
r

2

]

η(X)η(Y ) + (ξα)g
(

φY,X
)

− η(Y )
((

φX
)

α
)

+ η(X)
((

φY
)

α
)

.

(4.5)
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Adding (4.4) and (4.5), we have

S(X,Y ) =
[ r

2
− α2

]

g(X,Y ) +
[

3α2 −
r

2

]

η(X)η(Y ). (4.6)

Equation (4.6) shows that a 3-dimensional α-Sasakian manifold is η-Einstein.
Now, we have to show that the scalar curvature r is not a constant that is r is varying.

Now,

h(X,Y ) =
(

Lξg
)

(X,Y ) + 2S(X,Y ). (4.7)

By using (3.21) and (4.6) in (4.7), we have

h(X,Y ) =
[

r − 2α2
]

g(X,Y ) +
[

6α2 − r
]

η(X)η(Y ). (4.8)

Differentiating the above equation covariantly with respect to Z, we have

(∇Zh)(X,Y ) = [∇Zr − 4α(Zα)]g(X,Y ) + [12α(Zα) − ∇Zr]η(X)η(Y )

+
[

6α2 − r
]

[

g(X,∇Zξ)η(Y ) + g(Y,∇Zξ)η(X)
]

.
(4.9)

Substituting Z = ξ, X = Y ∈ (Span ξ)⊥ in (4.9) and by virtue of ∇h = 0, we have

∇ξr = 4α(ξα) =⇒ ∇ξr = ∇ξ

(

2α2
)

. (4.10)

On integrating (4.10), we have

r = 2α2 + c, (4.11)

where c is some integral constant. Thus from (4.11), we have r a varying scalar curvature.
Finally, we have to check the nature of the soliton that is Ricci soliton (g, ξ, λ) in 3-

dimensional α-Sasakian manifold.
From (1.1), we have h(X,Y ) = −2λg(X,Y ) and then putting X = Y = ξ, we have

h(ξ, ξ) = −2λ. (4.12)

If X = Y = ξ in (4.8), that is

h(ξ, ξ) =
[

r − 2α2
]

g(ξ, ξ) +
[

6α2 − r
]

η(ξ)η(ξ). (4.13)

Above equation reduced as

h(ξ, ξ) = 4α2. (4.14)
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Equating (4.12) and (4.14), we have

λ = −2α2. (4.15)

Since from (4.15), we have λ/= 0. Therefore Ricci soliton (g, ξ, λ) in 3-dimensional α-Sasakian
manifold is shrinking.

Example 4.2. Let M = {(x, y, z) ∈ R3}. Let (E1, E2, E3) be linearly independent vector fields
given by

E1 = ex
∂

∂y
, E2 = ex

[

∂

∂x
+ 2y

∂

∂z

]

, E3 =
∂

∂z
. (4.16)

Let g be the Riemannian metric defined by g(E1, E2) = g(E2, E3) = g(E1, E3) = 0, g(E1, E1) =

g(E2, E2) = g(E3, E3) = 1, where g is given by

g =
1

e2x

[(

1 − 4e2xy2
)

dx ⊗ dx + dy ⊗ dy + e2xdz ⊗ dz
]

. (4.17)

Let η be the 1-form defined by η(U) = g(U,E3) for any U ∈ X(M). Let φ be the (1, 1) tensor
field defined by φE1 = E2, φE2 = −E1, φE3 = 0. Then using the linearity of φ and g yields that
η(E3) = 1, φ2U = −U + η(U)E3 and g(φU,φW) = g(U,W) − η(U)η(W) for any vector fields
U,W ∈ X(M). Thus for E3 = ξ, (φ, ξ, η, g) defines a Sasakian structure on M. By definition of
Lie bracket, we have

[E1, E2] = −exE1 + 2e2xE3, [E1, E3] = [E2, E3] = 0. (4.18)

Let ∇ be the Levi-Civita connection with respect to above metric g Koszula formula is given
by

2g(∇XY,Z) = X
(

g(Y,Z)
)

+ Y
(

g(Z,X)
)

− Z
(

g(X,Y )
)

− g(X, [Y,Z]) − g(Y, [X,Z]) + g(Z, [X,Y ]).
(4.19)

Then

∇E1
E1 = exE2, ∇E2

E2 = 0, ∇E3
E3 = 0,

∇E1
E2 = −exE1 + e2xE3, ∇E2

E1 = −e2xE3, ∇E2
E3 = e2xE1,

∇E1
E3 = −e2xE2, ∇E3

E1 = −e2xE2, ∇E3
E2 = e2xE1.

(4.20)

Clearly (φ, ξ, η, g) structure is an α-Sasakian structure and satisfy,

(

∇Xφ
)

Y = α
(

g(X,Y )ξ − η(Y )X
)

, ∇Xξ = −αφX, (4.21)
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where α = e2x /= 0. Hence (φ, ξ, η, g) structure defines α-Sasakian structure. ThusM equipped
with α-Sasakian structure is a α-Sasakian manifold. The tangent vectors X and Y to M are
expressed as linear combination of E1, E2, E3, that is X =

∑3
i=1 aiEi and Y =

∑3
i=1 biEi, where

ai and bi (i = 1, 2, 3) are scalars.

Using α = e2x in (4.11), we have

r = 2e4x + c /= 0, (4.22)

and it shows that the scalar curvature is not constant.

Using α = e2x in (4.15), we have

λ = −2e4x /= 0. (4.23)

In this example α = e2x /= 0, this implies that λ < 0, that is the Ricci soliton in 3-dimensional
α-Sasakian manifold is shrinking.

5. Conclusion

In this paper we have shown that the Ricci soliton in an α-Sasakianmanifold cannot be steady
but it is shrinking accordingly because λ is negative.
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