RICCI TENSOR OF SLANT SUBMANIFOLDS IN COMPLEX SPACE FORMS

KOJI MATSUMOTO, ION MIHAI* AND YOSHIHIKO TAZAWA

Abstract

B.-Y. Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for a submanifold in a Riemannian space form with arbitrary codimension. The Lagrangian version of this inequality was proved by the same author.

In this article, we obtain a sharp estimate of the Ricci tensor of a slant submanifold M in a complex space form $\tilde{M}(4c)$, in terms of the main extrinsic invariant, namely the squared mean curvature. If, in particular, M is a Kaehlerian slant submanifold which satisfies the equality case identically, then it is minimal.

1. Preliminaries

Let M be a real *n*-dimensional submanifold of a complex *m*-dimensional complex space form $\tilde{M}(4c)$ of constant holomorphic sectional curvature 4c. We denote by ∇ and $\tilde{\nabla}$ the Levi-Civita connections of M and $\tilde{M}(4c)$, respectively. Let J be the complex structure on $\tilde{M}(4c)$. Also, we denote by h the second fundamental form and R the Riemann curvature tensor of M.

Then the Gauss equation is given by

(1.1)
$$\hat{R}(X, Y, Z, W) = R(X, Y, Z, W)$$

+ $g(h(X, W), h(Y, Z)) - g(h(X, Z), h(Y, W))$

for any vectors X, Y, Z, W tangent to M, where

(1.2)
$$\begin{aligned} & R(X, Y, Z, W) = c\{g(X, Z)g(Y, W) - g(X, W)g(Y, Z) \\ & -g(JX, W)g(JY, Z) + g(JX, Z)g(JY, W) \\ & + 2g(X, JY)g(Z, JW)\}. \end{aligned}$$

²⁰⁰⁰ Mathematics Subject Classification: 53C40, 53C25.

Keywords: Ricci tensor, Ricci curvature, mean curvature, complex space form, Kaehlerian slant submanifold, totally real submanifold.

^{*}The second author was supported by a JSPS research fellowship.

Received April 25, 2002; revised August 30, 2002.

Let $p \in M$ and $\{e_1, \ldots, e_{2m}\}$ an orthonormal basis at p, such that e_1, \ldots, e_n are tangent to M and e_{n+1}, \ldots, e_{2m} are normal to M.

We denote by H the mean curvature vector, i.e.,

(1.3)
$$H(p) = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i).$$

Also, we set

(1.4)
$$h_{ij}^r = g(h(e_i, e_j), e_r), \quad i, j \in \{1, \dots, n\}, \ r \in \{n+1, \dots, 2m\}$$

and

(1.5)
$$||h||^2 = \sum_{i,j=1}^n g(h(e_i, e_j), h(e_i, e_j)).$$

For any $p \in M$ and $X \in T_pM$, we put JX = PX + FX, where PX and FX are the tangential and normal components of JX, respectively.

We denote by

(1.6)
$$||P||^2 = \sum_{i,j=1}^n g^2(Pe_i, e_j).$$

We recall that for a submanifold M in a Riemannian manifold, the relative null space of M at a point $p \in M$ is defined by

 $\mathcal{N}_p = \{ X \in T_p M \, | \, h(X, Y) = 0, \text{ for all } Y \in T_p M \}.$

2. Ricci tensor and squared mean curvature

B.-Y. Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for submanifolds in real space forms (see [3]). Afterwards, he obtained the Lagrangian version of this relationship (see [4]).

First, we prove a similar inequality for an *n*-dimensional slant submanifold M of an *m*-dimensional complex space form $\tilde{M}(4c)$ of constant holomorphic sectional curvature 4c.

A submanifold M of a complex space form M(4c) is said to be a *slant* submanifold [1] if for any $p \in M$ and any nonzero vector $X \in T_pM$, the angle between JX and the tangent space T_pM is constant $(= \theta)$.

It is obvious that both complex submanifolds and totally real submanifolds are slant submanifolds, corresponding to $\theta = 0$ and $\theta = \pi/2$, respectively.

THEOREM 2.1. Let M be an n-dimensional θ -slant submanifold in an mdimensional complex space form $\tilde{M}(4c)$ of constant holomorphic sectional curvature 4c. Then: i) For each unit vector $X \in T_pM$, we have

(2.1)
$$\operatorname{Ric}(X) \le \frac{n^2}{4} \|H\|^2 + (n-1)c + 3c \cos^2 \theta.$$

ii) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case of (2.1) if and only if $X \in \mathcal{N}_p$.

iii) The equality case of (2.1) holds identically for all unit tangent vectors at p if and only if either p is a totally geodesic point or n = 2 and p is a totally umbilical point.

In the proof of this theorem, we will use the following result of B.-Y. Chen.

LEMMA [2]. Let $n \ge 2$ and a_1, \ldots, a_n, b real numbers such that

(2.2)
$$\left(\sum_{i=1}^{n} a_i\right)^2 = (n-1)\left(\sum_{i=1}^{n} a_i^2 + b\right).$$

Then $2a_1a_2 \ge b$, with equality holding if and only if

 $a_1+a_2=a_3=\cdots=a_n.$

We will give a very short proof, different from the original one in [2].

Proof. By the Cauchy-Schwartz inequality, we have

$$[(a_1 + a_2) + a_3 + \dots + a_n]^2 \le (n - 1)[(a_1 + a_2)^2 + a_3^2 + \dots + a_n^2].$$

The equation (2.2) implies

$$\sum_{i=1}^{n} a_i^2 + b \le (a_1 + a_2)^2 + a_3^2 + \dots + a_n^2$$

or equivalently, $2a_1a_2 \ge b$.

The equality holds if and only if

$$a_1 + a_2 = a_3 = \dots = a_n.$$

Proof of Theorem 2.1. i) Let $X \in T_p M$ be a unit tangent vector X at p. We choose an orthonormal basis $\{e_1, \ldots, e_n, e_{n+1}, \ldots, e_{2m}\}$ such that e_1, \ldots, e_n are tangent to M at p, with $e_n = X$ and e_{n+1} is parallel to the mean curvature vector H(p).

Then, from the Gauss equation, we have

(2.3)
$$n^2 \|H\|^2 = 2\tau + \|h\|^2 - [n(n-1) + 3n\cos^2\theta]c,$$

where τ denotes the scalar curvature at p, that is,

$$\tau = \sum_{1 \le i < j \le n} K(e_i \land e_j) = \sum_{1 \le i < j \le n} R(e_i, e_j, e_i, e_j).$$

We put

$$\delta = 2\tau - \frac{n^2}{2} \|H\|^2 - [n(n-1) + 3n\cos^2\theta]c.$$

Then, from (2.3), we get

(2.4)
$$n^2 ||H||^2 = 2(\delta + ||h||^2).$$

With respect to the above orthonormal basis, (2.4) takes the following form:

$$\left(\sum_{i=1}^{n} h_{ii}^{n+1}\right)^2 = 2\left\{\delta + \sum_{i=1}^{n} (h_{ii}^{n+1})^2 + \sum_{i\neq j} (h_{ij}^{n+1})^2 + \sum_{r=n+2}^{2m} \sum_{i,j=1}^{n} (h_{ij}^r)^2\right\}.$$

If we put $a_1 = h_{11}^{n+1}$, $a_2 = \sum_{i=2}^{n-1} h_{ii}^{n+1}$ and $a_3 = h_{nn}^{n+1}$, the above equation becomes

$$\left(\sum_{i=1}^{3} a_{i}\right)^{2} = 2\left\{\delta + \sum_{i=1}^{3} (a_{i})^{2} + \sum_{i \neq j} (h_{ij}^{n+1})^{2} + \sum_{r=n+2}^{2m} \sum_{i,j=1}^{n} (h_{ij}^{r})^{2} - \sum_{2 \le \alpha \neq \beta \le n-1} h_{\alpha\alpha}^{n+1} h_{\beta\beta}^{n+1}\right\}.$$

Thus a_1, a_2, a_3 satisfy the Lemma of Chen (for n = 3), i.e.,

$$\left(\sum_{i=1}^{3} a_i\right)^2 = 2\left(b + \sum_{i=1}^{3} (a_i)^2\right).$$

Then $2a_1a_2 \ge b$, with equality holding if and only if $a_1 + a_2 = a_3$. In the case under consideration, this means

$$\sum_{1 \le \alpha \ne \beta \le n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1} \ge \delta + 2 \sum_{i < j} (h_{ij}^{n+1})^2 + \sum_{r=n+2}^{2m} \sum_{i,j=1}^n (h_{ij}^r)^2$$

or equivalently,

(2.5)
$$\frac{n^2}{2} \|H\|^2 + [n(n-1) + 3n\cos^2\theta]c$$
$$\geq 2\tau - \sum_{1 \le \alpha \ne \beta \le n-1} h_{\alpha\alpha}^{n+1} h_{\beta\beta}^{n+1} + 2\sum_{i < j} (h_{ij}^{n+1})^2 + \sum_{r=n+2}^{2m} \sum_{i,j=1}^n (h_{ij}^r)^2.$$

Using again the Gauss equation, we have

$$(2.6) \qquad 2\tau - \sum_{1 \le \alpha \ne \beta \le n-1} h_{\alpha\alpha}^{n+1} h_{\beta\beta}^{n+1} + 2 \sum_{i < j} (h_{ij}^{n+1})^2 + \sum_{r=n+2}^{2m} \sum_{i,j=1}^n (h_{ij}^r)^2$$
$$= 2S(e_n, e_n) + [(n-1)(n-2) + 3(n-2)\cos^2\theta]c + 2 \sum_{i=1}^{n-1} (h_{in}^{n+1})^2$$
$$+ \sum_{r=n+2}^{2m} \left\{ (h_{nn}^r)^2 + 2 \sum_{i=1}^{n-1} (h_{in}^r)^2 + \left(\sum_{\alpha=1}^{n-1} h_{\alpha\alpha}^r\right)^2 \right\},$$

where S is the Ricci tensor of M.

Combining (2.5) and (2.6), we obtain

$$\frac{n^2}{2} \|H\|^2 + [2(n-1) + 6\cos^2\theta]c$$

$$\geq 2S(e_n, e_n) + 2\sum_{i=1}^{n-1} (h_{in}^{n+1})^2 + \sum_{r=n+2}^{2m} \left\{ \sum_{i=1}^n (h_{in}^r)^2 + \left(\sum_{\alpha=1}^{n-1} h_{\alpha\alpha}^r\right)^2 \right\}$$

which implies (2.1).

ii) Assume H(p) = 0. Equality holds in (2.1) if and only if

(2.7)
$$\begin{cases} h_{1n}^r = \dots = h_{n-1,n}^r = 0\\ h_{nn}^r = \sum_{i=1}^{n-1} h_{ii}^r, \quad r \in \{n+1,\dots,2m\}. \end{cases}$$

Then $h_{in}^r = 0$, $\forall i \in \{1, ..., n\}$, $r \in \{n + 1, ..., 2m\}$, i.e., $X \in \mathcal{N}_p$.

iii) The equality case of (2.1) holds for all unit tangent vectors at p if and only if

(2.8)
$$\begin{cases} h_{ij}^r = 0, \quad i \neq j, \ r \in \{n+1,\dots,2m\}, \\ h_{11}^r + \dots + h_{nn}^r - 2h_{ii}^r = 0, \quad i \in \{1,\dots,n\}, \ r \in \{n+1,\dots,2m\}. \end{cases}$$

We distinguish two cases:
a) n ≠ 2, then p is a totally geodesic point;
b) n = 2, it follows that p is a totally umbilical point.

The converse is trivial.

COROLLARY 2.2. Let M be an n-dimensional totally real submanifold in an *m*-dimensional complex space form $\tilde{M}(4c)$ of constant holomorphic sectional curvature 4c. Then:

i) For each unit vector $X \in T_pM$, we have

(2.9)
$$\operatorname{Ric}(X) \le \frac{n^2}{4} \|H\|^2 + (n-1)c.$$

ii) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case of (2.9) if and only if $X \in \mathcal{N}_p$.

 \square

iii) The equality case of (2.9) holds identically for all unit tangent vectors at p if and only if either p is a totally geodesic point or n = 2 and p is a totally umbilical point.

It is known that every complex submanifold of a Kaehlerian manifold is minimal.

COROLLARY 2.3. Let M be an n-dimensional complex submanifold in an mdimensional complex space form $\tilde{M}(4c)$ of constant holomorphic sectional curvature 4c. Then:

i) For each unit vector $X \in T_pM$, we have

$$\operatorname{Ric}(X) \le 2(n+1)c.$$

ii) A unit tangent vector X at p satisfies the equality case of (2.10) if and only if $X \in \mathcal{N}_p$.

iii) The equality case of (2.10) holds identically for all unit tangent vectors at p if and only if p is a totally geodesic point.

By polarization, from Theorem 2.1, we derive:

THEOREM 2.4. Let M be an n-dimensional θ -slant submanifold in an mdimensional complex space form $\tilde{M}(4c)$ of constant holomorphic sectional curvature 4c. Then the Ricci tensor S satisfies

(2.11)
$$S \le \left(\frac{n^2}{4} \|H\|^2 + (n-1)c + 3c\cos^2\theta\right)g.$$

The equality case of (2.11) holds identically if and only if either M is a totally geodesic submanifold or n = 2 and M is a totally umbilical submanifold.

In particular, for totally real and complex submanifolds, respectively, we state:

COROLLARY 2.5 [4]. Let M be an n-dimensional totally real submanifold in an m-dimensional complex space form $\tilde{M}(4c)$ of constant holomorphic sectional curvature 4c. Then the Ricci tensor S satisfies

(2.12)
$$S \le \left(\frac{n^2}{4} \|H\|^2 + (n-1)c\right)g$$

The equality case of (2.12) holds identically if and only if either M is a totally geodesic submanifold or n = 2 and M is a totally umbilical submanifold.

For a classification of totally umbilical submanifolds in nonflat complex space forms we refer to [6].

COROLLARY 2.6. Let M be an n-dimensional complex submanifold in an mdimensional complex space form $\tilde{M}(4c)$ of constant holomorphic sectional curvature 4c. Then the Ricci tensor S satisfies

$$(2.13) S \le 2(n+1)cg.$$

The equality case of (2.13) holds identically if and only if M is a totally geodesic submanifold.

3. Minimality of Kaehlerian slant submanifolds

Let M(4c) be an *n*-dimensional complex space form of constant holomorphic sectional curvature 4c and M an *n*-dimensional θ -slant submanifold of $\tilde{M}(4c)$.

By reference to [1], M is said to be a *Kaehlerian slant submanifold* if it is proper (i.e., $\theta \notin \{0, \pi/2\}$) and the endomorphism P of the tangent bundle TM is parallel with respect to the Riemannian connection ∇ of M (i.e. $\nabla P = 0$). A Kaehlerian slant submanifold is a Kaehler manifold with respect to the induced metric and the almost complex structure $\tilde{J} = (1/\cos \theta)P$.

It is known that every proper slant surface in a Kaehler manifold is Kaehlerian slant (see [1]). An example of a 4-dimensional Kaehlerian slant submanifold in C^4 is given by the following immersion.

$$x(u, v, w, z) = (u, v, k \sin w, k \sin z, kw, kz, k \cos w, k \cos z),$$

where k > 0 is a constant. In this case, $\theta = \pi/4$ (see [1]).

We denote by \mathcal{R} the maximum Ricci curvature function on M (see [4]), defined by

$$\mathscr{R}(p) = \max\{S(u, u) \mid u \in T_p^1 M\}, \quad p \in M,$$

where $T_p^1 M = \{ u \in T_p M | g(u, u) = 1 \}.$

If n = 3, \mathscr{R} is the Chen first invariant δ_M defined in [2]. For n > 3, \mathscr{R} is the Chen invariant $\delta(n-1)$ (see [5]).

In this section, we derive an inequality for the Chen invariant \mathscr{R} and prove that any Kaehlerian slant submanifold which satisfies the equality case is minimal. This is a generalization of a result of B.-Y. Chen [4] for Lagrangian submanifolds in complex space forms.

THEOREM 3.1. Let M be an n-dimensional Kaehlerian slant submanifold in an n-dimensional complex space form $\tilde{M}(4c)$ of constant holomorphic sectional curvature 4c. Then

(3.1)
$$\mathscr{R} \le \frac{n^2}{4} \|H\|^2 + (n-1)c + 3c\cos^2\theta.$$

If M satisfies the equality case of (3.1) identically, then M is a minimal submanifold. *Proof.* The inequality (3.1) is an immediate consequence of the inequality (2.11).

We assume that M is a Kaehlerian slant submanifold of $\dot{M}(4c)$, which satisfies the equality case of (3.1) at a point $p \in M$. We may choose an orthonormal basis $\{\bar{e}_1, \ldots, \bar{e}_n\}$ of T_pM such that $\Re(p) = S(\bar{e}_n, \bar{e}_n)$. We set $\bar{e}_{n+j} = (1/\sin\theta)F\bar{e}_j, j \in \{1, \ldots, n\}$. By the proof of Theorem 2.1, it follows that the equations (2.7) hold, where h_{ij}^r are the coefficients of the second fundamental form with respect to the orthonormal basis $\{\bar{e}_1, \ldots, \bar{e}_n, \bar{e}_{n+1}, \ldots, \bar{e}_{2n}\}$.

Let A denote the shape operator of M in M(4c). It is known (see [1]) that P is parallel if and only if

for all vector fields X, Y tangent to M.

We distinguish two cases:

i) If g(h(u, v), Fw) = 0, $\forall u, v, w \in T_pM$, then obviously H(p) = 0.

ii) We assume that case i) does not hold. Then we define

$$f_p: T_p^1 M \to \mathbf{R}, \quad f_p(v) = g(h(v, v), Fv).$$

Since $T_p^1 M$ is compact, there exists a vector $v \in T_p^1 M$ such that f_p attains an absolute maximum at v. Let denote $e_1 = v$ and $f_p(v) = \lambda_1 > 0$. It follows that $A_{Fe_1}e_1 = \lambda_1e_1$.

We can choose an orthonormal basis $\{e_1, \ldots, e_n\}$ of T_pM such that e_i is an eigenvector of A_{Fe_1} with corresponding eigenvalue λ_i , for all $i \in \{1, \ldots, n\}$.

We consider the function $f_i(t) = f_p((\cos t)e_1 + (\sin t)e_i), i \in \{2, ..., n\}.$

It is easily seen that f_i has a relative maximum at t = 0. Thus, $f'_i(0) = 0$ and $f''_i(0) \le 0$. By a straightforward computation, one finds

$$0 \ge f_i''(0) = -3\lambda_1 + 6\lambda_i,$$

i.e., $\lambda_1 \ge 2\lambda_i$, $\forall i \ge 2$. Since $\lambda_1 > 0$, one gets $\lambda_1 \ne \lambda_i$, $\forall i \ge 2$. Thus, the multiplicity of the eigenvalue λ_1 is 1.

We have $e_1 \neq \pm \overline{e}_n$. Otherwise

$$A_{Fe_i}\overline{e}_n = \pm A_{Fe_i}e_1 = \pm A_{Fe_i}e_i = \pm \lambda_i e_i \perp \overline{e}_n, \quad i \in \{2, \dots, n\},$$

implies $\lambda_2 = \cdots = \lambda_n = 0$, and hence, using (2.7), $\lambda_1 = 0$, which is a contradiction.

On the other hand, by (2.7) it is easily seen that \bar{e}_n is an eigenvector of A_{Fe_1} . Thus, we can choose $e_n = \bar{e}_n$, and, consequently, we may assume $e_j = \bar{e}_j$, $\forall j \in \{1, ..., n\}$.

By (3.2) and (2.7), we have

$$A_{Fe_n}e_1 = A_{Fe_1}e_n = \lambda_n e_n = 0.$$

Thus, (2.7) implies $\lambda_1 + \cdots + \lambda_{n-1} = \lambda_n = 0$. Therefore tr $A_{Fe_1} = 0$. For $i \in \{2, \dots, n-1\}$, one has

tr
$$A_{Fe_i} = \sum_{j=1}^n g(A_{Fe_i}e_j, e_j) = \sum_{j=1}^n g(h(e_j, e_j), Fe_i) = 2g(h(e_n, e_n), Fe_i)$$

= $2g(h(e_i, e_n), Fe_n) = 0.$

Similarly

tr
$$A_{Fe_n} = \sum_{j=1}^n g(h(e_j, e_j), Fe_n) = 2 \sum_{j=1}^{n-1} g(h(e_j, e_j), Fe_n) = 2 \sum_{j=1}^{n-1} g(h(e_j, e_n), Fe_j) = 0.$$

Thus, tr $A_{Fe_i} = 0$, $\forall i \in \{1, \dots, n\}$. Consequently, H(p) = 0.

COROLLARY 3.2. Let M be an n-dimensional Kaeherian slant submanifold of an n-dimensional complex space form $\tilde{M}(4c)$. If dim \mathcal{N}_p is positive constant, then M satisfies the equality case of (3.1) identically and is foliated by totally geodesic submanifolds.

Proof. By the above proof, it follows that M satisfies the equality case of (3.1) at a point $p \in M$ if and only if dim $\mathcal{N}_p \geq 1$.

Assume that dim \mathcal{N}_p is positive constant.

It is known that \mathcal{N} is involutive and its leaves are totally geodesic (see, for instance, [4], [10]). This achieves the proof.

Acknowledgements. The authors would like to thank the referee for his valuable comments.

References

- [1] B.-Y. CHEN, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Louvain, 1990.
- B.-Y. CHEN, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel), 60 (1993), 568–578.
- [3] B.-Y. CHEN, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasg. Math. J., 41 (1999), 33–41.
- [4] B.-Y. CHEN, On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms, Arch. Math. (Basel), 74 (2000), 154–160.
- B.-Y. CHEN, Some new obstructions to minimal and Lagrangian isometric immersions, Japan. J. Math. (N.S.), 26 (2000), 105–127.
- [6] B.-Y. CHEN AND K. OGIUE, Two theorems on Kaehler manifolds, Michigan Math. J., 21 (1974), 225–229.
- [7] B.-Y. CHEN AND Y. TAZAWA, Slant submanifolds of complex projective and complex hyperbolic spaces, Glasg. Math. J., 42 (2000), 439–454.
- [8] K. MATSUMOTO, I. MIHAI AND A. OIAGĂ, Ricci curvature of submanifolds in complex space forms, Rev. Roumaine Math. Pures Appl., 46 (2001), 775–782.
- [9] I. MIHAI, R. ROSCA AND L. VERSTRAELEN, Some Aspects of the Differential Geometry of Vector Fields, Centre Pure Appl. Differential Geom. (PADGE) 2, Katholieke Universiteit Brussel, Brussels, Katholieke Universiteit Leuven, Louvain, 1996.

KOJI MATSUMOTO, ION MIHAI AND YOSHIHIKO TAZAWA

[10] H. RECKZIEGEL, On the eigenvalues of the shape operator of an isometric immersion into a space of constant curvature, Math. Ann., 243 (1979), 71–82.

> DEPARTMENT OF MATHEMATICS FACULTY OF EDUCATION YAMAGATA UNIVERSITY YAMAGATA 990-8560 JAPAN e-mail: ej192@kdw.kj.yamagata-u.ac.jp

Faculty of Mathematics University of Bucharest Str. Academiei 14 70109 Bucharest Romania e-mail: imihai@math.math.unibuc.ro

SCHOOL OF INFORMATION ENVIRONMENT TOKYO DENKI UNIVERSITY INZAI CHIBA PREF. 270-1382 JAPAN e-mail: tazawa@cck.dendai.ac.jp

94