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RICCI TENSOR OF SLANT SUBMANIFOLDS

IN COMPLEX SPACE FORMS

Koji Matsumoto, Ion Mihai* and Yoshihiko Tazawa

Abstract

B.-Y. Chen established a sharp relationship between the Ricci curvature and the

squared mean curvature for a submanifold in a Riemannian space form with arbi-

trary codimension. The Lagrangian version of this inequality was proved by the same

author.

In this article, we obtain a sharp estimate of the Ricci tensor of a slant submanifold

M in a complex space form ~MMð4cÞ, in terms of the main extrinsic invariant, namely the

squared mean curvature. If, in particular, M is a Kaehlerian slant submanifold which

satisfies the equality case identically, then it is minimal.

1. Preliminaries

Let M be a real n-dimensional submanifold of a complex m-dimensional
complex space form ~MMð4cÞ of constant holomorphic sectional curvature 4c. We
denote by ‘ and ~‘‘ the Levi-Civita connections of M and ~MMð4cÞ, respectively.
Let J be the complex structure on ~MMð4cÞ. Also, we denote by h the second
fundamental form and R the Riemann curvature tensor of M.

Then the Gauss equation is given by

~RRðX ;Y ;Z;WÞ ¼ RðX ;Y ;Z;WÞð1:1Þ
þ gðhðX ;WÞ; hðY ;ZÞÞ � gðhðX ;ZÞ; hðY ;WÞÞ

for any vectors X ;Y ;Z;W tangent to M, where

~RRðX ;Y ;Z;WÞ ¼ cfgðX ;ZÞgðY ;WÞ � gðX ;WÞgðY ;ZÞð1:2Þ
� gðJX ;WÞgðJY ;ZÞ þ gðJX ;ZÞgðJY ;WÞ
þ 2gðX ; JYÞgðZ; JW Þg:
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Let p A M and fe1; . . . ; e2mg an orthonormal basis at p, such that e1; . . . ; en
are tangent to M and enþ1; . . . ; e2m are normal to M.

We denote by H the mean curvature vector, i.e.,

HðpÞ ¼ 1

n

Xn
i¼1

hðei; eiÞ:ð1:3Þ

Also, we set

hr
ij ¼ gðhðei; ejÞ; erÞ; i; j A f1; . . . ; ng; r A fnþ 1; . . . ; 2mgð1:4Þ

and

khk2 ¼
Xn
i; j¼1

gðhðei; ejÞ; hðei; ejÞÞ:ð1:5Þ

For any p A M and X A TpM, we put JX ¼ PX þ FX , where PX and FX
are the tangential and normal components of JX , respectively.

We denote by

kPk2 ¼
Xn
i; j¼1

g2ðPei; ejÞ:ð1:6Þ

We recall that for a submanifold M in a Riemannian manifold, the relative
null space of M at a point p A M is defined by

Np ¼ fX A TpM j hðX ;YÞ ¼ 0; for all Y A TpMg:

2. Ricci tensor and squared mean curvature

B.-Y. Chen established a sharp relationship between the Ricci curvature
and the squared mean curvature for submanifolds in real space forms (see [3]).
Afterwards, he obtained the Lagrangian version of this relationship (see [4]).

First, we prove a similar inequality for an n-dimensional slant submanifold
M of an m-dimensional complex space form ~MMð4cÞ of constant holomorphic
sectional curvature 4c.

A submanifold M of a complex space form ~MMð4cÞ is said to be a slant
submanifold [1] if for any p A M and any nonzero vector X A TpM, the angle
between JX and the tangent space TpM is constant ð¼ yÞ.

It is obvious that both complex submanifolds and totally real submanifolds
are slant submanifolds, corresponding to y ¼ 0 and y ¼ p=2, respectively.

Theorem 2.1. Let M be an n-dimensional y-slant submanifold in an m-
dimensional complex space form ~MMð4cÞ of constant holomorphic sectional curva-
ture 4c. Then:
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i) For each unit vector X A TpM, we have

RicðX Þa n2

4
kHk2 þ ðn� 1Þcþ 3c cos2 y:ð2:1Þ

ii) If HðpÞ ¼ 0, then a unit tangent vector X at p satisfies the equality case
of (2.1) if and only if X A Np.

iii) The equality case of (2.1) holds identically for all unit tangent vectors at
p if and only if either p is a totally geodesic point or n ¼ 2 and p is a totally
umbilical point.

In the proof of this theorem, we will use the following result of B.-Y. Chen.

Lemma [2]. Let nb 2 and a1; . . . ; an; b real numbers such that

Xn
i¼1

ai

 !2
¼ ðn� 1Þ

Xn
i¼1

a2i þ b

 !
:ð2:2Þ

Then 2a1a2 b b, with equality holding if and only if

a1 þ a2 ¼ a3 ¼ � � � ¼ an:

We will give a very short proof, di¤erent from the original one in [2].

Proof. By the Cauchy-Schwartz inequality, we have

½ða1 þ a2Þ þ a3 þ � � � þ an�2 a ðn� 1Þ½ða1 þ a2Þ2 þ a23 þ � � � þ a2n �:

The equation (2.2) implies

Xn
i¼1

a2i þ ba ða1 þ a2Þ2 þ a23 þ � � � þ a2n

or equivalently, 2a1a2 b b.
The equality holds if and only if

a1 þ a2 ¼ a3 ¼ � � � ¼ an: r

Proof of Theorem 2.1. i) Let X A TpM be a unit tangent vector X at p.
We choose an orthonormal basis fe1; . . . ; en; enþ1; . . . ; e2mg such that e1; . . . ; en
are tangent to M at p, with en ¼ X and enþ1 is parallel to the mean curvature
vector HðpÞ.

Then, from the Gauss equation, we have

n2kHk2 ¼ 2tþ khk2 � ½nðn� 1Þ þ 3n cos2 y�c;ð2:3Þ
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where t denotes the scalar curvature at p, that is,

t ¼
X

1ai< jan

Kðei5ejÞ ¼
X

1ai< jan

Rðei; ej; ei; ejÞ:

We put

d ¼ 2t� n2

2
kHk2 � ½nðn� 1Þ þ 3n cos2 y�c:

Then, from (2.3), we get

n2kHk2 ¼ 2ðdþ khk2Þ:ð2:4Þ

With respect to the above orthonormal basis, (2.4) takes the following
form:

Xn
i¼1

hnþ1
ii

 !2
¼ 2 dþ

Xn
i¼1

ðhnþ1
ii Þ2 þ

X
i0j

ðhnþ1
ij Þ2 þ

X2m
r¼nþ2

Xn
i; j¼1

ðhr
ijÞ

2

( )
:

If we put a1 ¼ hnþ1
11 , a2 ¼

Pn�1
i¼2 hnþ1

ii and a3 ¼ hnþ1
nn , the above equation

becomes

X3
i¼1

ai

 !2
¼ 2 dþ

X3
i¼1

ðaiÞ2 þ
X
i0j

ðhnþ1
ij Þ2 þ

X2m
r¼nþ2

Xn
i; j¼1

ðhr
ijÞ

2 �
X

2aa0ban�1

hnþ1
aa hnþ1

bb

( )
:

Thus a1; a2; a3 satisfy the Lemma of Chen (for n ¼ 3), i.e.,

X3
i¼1

ai

 !2
¼ 2 bþ

X3
i¼1

ðaiÞ2
 !

:

Then 2a1a2 b b, with equality holding if and only if a1 þ a2 ¼ a3.
In the case under consideration, this means

X
1aa0ban�1

hnþ1
aa hnþ1

bb b dþ 2
X
i<j

ðhnþ1
ij Þ2 þ

X2m
r¼nþ2

Xn
i; j¼1

ðhr
ijÞ

2

or equivalently,

n2

2
kHk2 þ ½nðn� 1Þ þ 3n cos2 y�cð2:5Þ

b 2t�
X

1aa0ban�1

hnþ1
aa hnþ1

bb þ 2
X
i<j

ðhnþ1
ij Þ2 þ

X2m
r¼nþ2

Xn
i; j¼1

ðhr
ijÞ

2:

Using again the Gauss equation, we have
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2t�
X

1aa0ban�1

hnþ1
aa hnþ1

bb þ 2
X
i<j

ðhnþ1
ij Þ2 þ

X2m
r¼nþ2

Xn
i; j¼1

ðhr
ijÞ

2ð2:6Þ

¼ 2Sðen; enÞ þ ½ðn� 1Þðn� 2Þ þ 3ðn� 2Þ cos2 y�cþ 2
Xn�1

i¼1

ðhnþ1
in Þ2

þ
X2m
r¼nþ2

ðhr
nnÞ

2 þ 2
Xn�1

i¼1

ðhr
inÞ

2 þ
Xn�1

a¼1

hr
aa

 !28<
:

9=
;;

where S is the Ricci tensor of M.
Combining (2.5) and (2.6), we obtain

n2

2
kHk2 þ ½2ðn� 1Þ þ 6 cos2 y�c

b 2Sðen; enÞ þ 2
Xn�1

i¼1

ðhnþ1
in Þ2 þ

X2m
r¼nþ2

Xn
i¼1

ðhr
inÞ

2 þ
Xn�1

a¼1

hr
aa

 !28<
:

9=
;

which implies (2.1).
ii) Assume HðpÞ ¼ 0. Equality holds in (2.1) if and only if

hr
1n ¼ � � � ¼ hr

n�1;n ¼ 0

hr
nn ¼

Pn�1
i¼1 hr

ii

(
; r A fnþ 1; . . . ; 2mg:ð2:7Þ

Then hr
in ¼ 0, Ei A f1; . . . ; ng, r A fnþ 1; . . . ; 2mg, i.e., X A Np.

iii) The equality case of (2.1) holds for all unit tangent vectors at p if and
only if

hr
ij ¼ 0; i0 j; r A fnþ 1; . . . ; 2mg;

hr
11 þ � � � þ hr

nn � 2hr
ii ¼ 0; i A f1; . . . ; ng; r A fnþ 1; . . . ; 2mg:

�
ð2:8Þ

We distinguish two cases:
a) n0 2, then p is a totally geodesic point;
b) n ¼ 2, it follows that p is a totally umbilical point.
The converse is trivial. r

Corollary 2.2. Let M be an n-dimensional totally real submanifold in an
m-dimensional complex space form ~MMð4cÞ of constant holomorphic sectional cur-
vature 4c. Then:

i) For each unit vector X A TpM, we have

RicðX Þa n2

4
kHk2 þ ðn� 1Þc:ð2:9Þ

ii) If HðpÞ ¼ 0, then a unit tangent vector X at p satisfies the equality case
of (2.9) if and only if X A Np.
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iii) The equality case of (2.9) holds identically for all unit tangent vectors at
p if and only if either p is a totally geodesic point or n ¼ 2 and p is a totally
umbilical point.

It is known that every complex submanifold of a Kaehlerian manifold is
minimal.

Corollary 2.3. Let M be an n-dimensional complex submanifold in an m-
dimensional complex space form ~MMð4cÞ of constant holomorphic sectional curvature
4c. Then:

i) For each unit vector X A TpM, we have

RicðX Þa 2ðnþ 1Þc:ð2:10Þ

ii) A unit tangent vector X at p satisfies the equality case of (2.10) if and only
if X A Np.

iii) The equality case of (2.10) holds identically for all unit tangent vectors at
p if and only if p is a totally geodesic point.

By polarization, from Theorem 2.1, we derive:

Theorem 2.4. Let M be an n-dimensional y-slant submanifold in an m-
dimensional complex space form ~MMð4cÞ of constant holomorphic sectional curva-
ture 4c. Then the Ricci tensor S satisfies

Sa
n2

4
kHk2 þ ðn� 1Þcþ 3c cos2 y

� �
g:ð2:11Þ

The equality case of (2.11) holds identically if and only if either M is a totally
geodesic submanifold or n ¼ 2 and M is a totally umbilical submanifold.

In particular, for totally real and complex submanifolds, respectively, we
state:

Corollary 2.5 [4]. Let M be an n-dimensional totally real submanifold in
an m-dimensional complex space form ~MMð4cÞ of constant holomorphic sectional
curvature 4c. Then the Ricci tensor S satisfies

Sa
n2

4
kHk2 þ ðn� 1Þc

� �
g:ð2:12Þ

The equality case of (2.12) holds identically if and only if either M is a totally
geodesic submanifold or n ¼ 2 and M is a totally umbilical submanifold.

For a classification of totally umbilical submanifolds in nonflat complex
space forms we refer to [6].
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Corollary 2.6. Let M be an n-dimensional complex submanifold in an m-
dimensional complex space form ~MMð4cÞ of constant holomorphic sectional curva-
ture 4c. Then the Ricci tensor S satisfies

Sa 2ðnþ 1Þcg:ð2:13Þ

The equality case of (2.13) holds identically if and only if M is a totally
geodesic submanifold.

3. Minimality of Kaehlerian slant submanifolds

Let ~MMð4cÞ be an n-dimensional complex space form of constant holo-
morphic sectional curvature 4c and M an n-dimensional y-slant submanifold of
~MMð4cÞ.

By reference to [1], M is said to be a Kaehlerian slant submanifold if it is
proper (i.e., y B f0; p=2g) and the endomorphism P of the tangent bundle TM is
parallel with respect to the Riemannian connection ‘ of M (i.e. ‘P ¼ 0). A
Kaehlerian slant submanifold is a Kaehler manifold with respect to the induced
metric and the almost complex structure ~JJ ¼ ð1=cos yÞP.

It is known that every proper slant surface in a Kaehler manifold is Kaeh-
lerian slant (see [1]). An example of a 4-dimensional Kaehlerian slant sub-
manifold in C 4 is given by the following immersion.

xðu; v;w; zÞ ¼ ðu; v; k sin w; k sin z; kw; kz; k cos w; k cos zÞ;

where k > 0 is a constant. In this case, y ¼ p=4 (see [1]).
We denote by R the maximum Ricci curvature function on M (see [4]),

defined by

RðpÞ ¼ maxfSðu; uÞ j u A T 1
p Mg; p A M;

where T 1
p M ¼ fu A TpM j gðu; uÞ ¼ 1g.

If n ¼ 3, R is the Chen first invariant dM defined in [2]. For n > 3, R is the
Chen invariant dðn� 1Þ (see [5]).

In this section, we derive an inequality for the Chen invariant R and prove
that any Kaehlerian slant submanifold which satisfies the equality case is mini-
mal. This is a generalization of a result of B.-Y. Chen [4] for Lagrangian
submanifolds in complex space forms.

Theorem 3.1. Let M be an n-dimensional Kaehlerian slant submanifold in
an n-dimensional complex space form ~MMð4cÞ of constant holomorphic sectional
curvature 4c. Then

Ra
n2

4
kHk2 þ ðn� 1Þcþ 3c cos2 y:ð3:1Þ

If M satisfies the equality case of (3.1) identically, then M is a minimal sub-
manifold.
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Proof. The inequality (3.1) is an immediate consequence of the inequality
(2.11).

We assume that M is a Kaehlerian slant submanifold of ~MMð4cÞ, which
satisfies the equality case of (3.1) at a point p A M. We may choose an
orthonormal basis fe1; . . . ; eng of TpM such that RðpÞ ¼ Sðen; enÞ. We set
enþj ¼ ð1=sin yÞFej, j A f1; . . . ; ng. By the proof of Theorem 2.1, it follows that
the equations (2.7) hold, where hr

ij are the coe‰cients of the second fundamental
form with respect to the orthonormal basis fe1; . . . ; en; enþ1; . . . ; e2ng.

Let A denote the shape operator of M in ~MMð4cÞ. It is known (see [1]) that
P is parallel if and only if

AFXY ¼ AFYX ;ð3:2Þ

for all vector fields X ;Y tangent to M.
We distinguish two cases:
i) If gðhðu; vÞ;FwÞ ¼ 0, Eu; v;w A TpM, then obviously HðpÞ ¼ 0.
ii) We assume that case i) does not hold. Then we define

fp : T
1
p M ! R; fpðvÞ ¼ gðhðv; vÞ;FvÞ:

Since T 1
p M is compact, there exists a vector v A T 1

p M such that fp attains

an absolute maximum at v. Let denote e1 ¼ v and fpðvÞ ¼ l1 > 0. It follows
that AFe1e1 ¼ l1e1.

We can choose an orthonormal basis fe1; . . . ; eng of TpM such that ei is an
eigenvector of AFe1 with corresponding eigenvalue li, for all i A f1; . . . ; ng.

We consider the function fiðtÞ ¼ fpððcos tÞe1 þ ðsin tÞeiÞ, i A f2; . . . ; ng.
It is easily seen that fi has a relative maximum at t ¼ 0. Thus, f 0

i ð0Þ ¼ 0
and f 00

i ð0Þa 0. By a straightforward computation, one finds

0b f 00
i ð0Þ ¼ �3l1 þ 6li;

i.e., l1 b 2li, Eib 2. Since l1 > 0, one gets l1 0 li, Eib 2. Thus, the multi-
plicity of the eigenvalue l1 is 1.

We have e1 0Gen. Otherwise

AFei en ¼GAFei e1 ¼GAFe1ei ¼Gliei ? en; i A f2; . . . ; ng;

implies l2 ¼ � � � ¼ ln ¼ 0, and hence, using (2.7), l1 ¼ 0, which is a contradiction.
On the other hand, by (2.7) it is easily seen that en is an eigenvector of

AFe1 . Thus, we can choose en ¼ en, and, consequently, we may assume ej ¼ ej ,
Ej A f1; . . . ; ng.

By (3.2) and (2.7), we have

AFene1 ¼ AFe1en ¼ lnen ¼ 0:

Thus, (2.7) implies l1 þ � � � þ ln�1 ¼ ln ¼ 0. Therefore tr AFe1 ¼ 0.
For i A f2; . . . ; n� 1g, one has
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tr AFei ¼
Xn
j¼1

gðAFei ej; ejÞ ¼
Xn
j¼1

gðhðej; ejÞ;FeiÞ ¼ 2gðhðen; enÞ;FeiÞ

¼ 2gðhðei; enÞ;FenÞ ¼ 0:

Similarly

tr AFen ¼
Xn
j¼1

gðhðej; ejÞ;FenÞ ¼ 2
Xn�1

j¼1

gðhðej; ejÞ;FenÞ ¼ 2
Xn�1

j¼1

gðhðej; enÞ;FejÞ ¼ 0:

Thus, tr AFei ¼ 0, Ei A f1; . . . ; ng.
Consequently, HðpÞ ¼ 0. r

Corollary 3.2. Let M be an n-dimensional Kaeherian slant submanifold of
an n-dimensional complex space form ~MMð4cÞ. If dim Np is positive constant, then
M satisfies the equality case of (3.1) identically and is foliated by totally geodesic
submanifolds.

Proof. By the above proof, it follows that M satisfies the equality case of
(3.1) at a point p A M if and only if dim Np b 1.

Assume that dim Np is positive constant.
It is known that N is involutive and its leaves are totally geodesic (see, for

instance, [4], [10]). This achieves the proof. r
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