RICCI TENSOR OF SLANT SUBMANIFOLDS IN COMPLEX SPACE FORMS

Koji Matsumoto, Ion Mihai* and Yoshihiko Tazawa

Abstract

B.-Y. Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for a submanifold in a Riemannian space form with arbitrary codimension. The Lagrangian version of this inequality was proved by the same author.

In this article, we obtain a sharp estimate of the Ricci tensor of a slant submanifold M in a complex space form $\tilde{M}(4 c)$, in terms of the main extrinsic invariant, namely the squared mean curvature. If, in particular, M is a Kaehlerian slant submanifold which satisfies the equality case identically, then it is minimal.

1. Preliminaries

Let M be a real n-dimensional submanifold of a complex m-dimensional complex space form $\tilde{M}(4 c)$ of constant holomorphic sectional curvature $4 c$. We denote by ∇ and $\tilde{\nabla}$ the Levi-Civita connections of M and $\tilde{M}(4 c)$, respectively. Let J be the complex structure on $\tilde{M}(4 c)$. Also, we denote by h the second fundamental form and R the Riemann curvature tensor of M.

Then the Gauss equation is given by

$$
\begin{align*}
\tilde{R}(X, Y, Z, W)= & R(X, Y, Z, W) \tag{1.1}\\
& +g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W))
\end{align*}
$$

for any vectors X, Y, Z, W tangent to M, where

$$
\begin{align*}
\tilde{R}(X, Y, Z, W)=c\{ & g(X, Z) g(Y, W)-g(X, W) g(Y, Z) \tag{1.2}\\
& -g(J X, W) g(J Y, Z)+g(J X, Z) g(J Y, W) \\
& +2 g(X, J Y) g(Z, J W)\}
\end{align*}
$$

[^0]Let $p \in M$ and $\left\{e_{1}, \ldots, e_{2 m}\right\}$ an orthonormal basis at p, such that e_{1}, \ldots, e_{n} are tangent to M and $e_{n+1}, \ldots, e_{2 m}$ are normal to M.

We denote by H the mean curvature vector, i.e.,

$$
\begin{equation*}
H(p)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) . \tag{1.3}
\end{equation*}
$$

Also, we set

$$
\begin{equation*}
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), \quad i, j \in\{1, \ldots, n\}, r \in\{n+1, \ldots, 2 m\} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) . \tag{1.5}
\end{equation*}
$$

For any $p \in M$ and $X \in T_{p} M$, we put $J X=P X+F X$, where $P X$ and $F X$ are the tangential and normal components of $J X$, respectively.

We denote by

$$
\begin{equation*}
\|P\|^{2}=\sum_{i, j=1}^{n} g^{2}\left(P e_{i}, e_{j}\right) . \tag{1.6}
\end{equation*}
$$

We recall that for a submanifold M in a Riemannian manifold, the relative null space of M at a point $p \in M$ is defined by

$$
\mathscr{N}_{p}=\left\{X \in T_{p} M \mid h(X, Y)=0, \text { for all } Y \in T_{p} M\right\} .
$$

2. Ricci tensor and squared mean curvature

B.-Y. Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for submanifolds in real space forms (see [3]). Afterwards, he obtained the Lagrangian version of this relationship (see [4]).

First, we prove a similar inequality for an n-dimensional slant submanifold M of an m-dimensional complex space form $\tilde{M}(4 c)$ of constant holomorphic sectional curvature $4 c$.

A submanifold M of a complex space form $\tilde{M}(4 c)$ is said to be a slant submanifold [1] if for any $p \in M$ and any nonzero vector $X \in T_{p} M$, the angle between $J X$ and the tangent space $T_{p} M$ is constant $(=\theta)$.

It is obvious that both complex submanifolds and totally real submanifolds are slant submanifolds, corresponding to $\theta=0$ and $\theta=\pi / 2$, respectively.

Theorem 2.1. Let M be an n-dimensional θ-slant submanifold in an m dimensional complex space form $\tilde{M}(4 c)$ of constant holomorphic sectional curvature 4c. Then:
i) For each unit vector $X \in T_{p} M$, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{n^{2}}{4}\|H\|^{2}+(n-1) c+3 c \cos ^{2} \theta \tag{2.1}
\end{equation*}
$$

ii) If $H(p)=0$, then a unit tangent vector X at p satisfies the equality case of (2.1) if and only if $X \in \mathscr{N}_{p}$.
iii) The equality case of (2.1) holds identically for all unit tangent vectors at p if and only if either p is a totally geodesic point or $n=2$ and p is a totally umbilical point.

In the proof of this theorem, we will use the following result of B.-Y. Chen.
Lemma [2]. Let $n \geq 2$ and a_{1}, \ldots, a_{n}, b real numbers such that

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+b\right) \tag{2.2}
\end{equation*}
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if

$$
a_{1}+a_{2}=a_{3}=\cdots=a_{n}
$$

We will give a very short proof, different from the original one in [2].
Proof. By the Cauchy-Schwartz inequality, we have

$$
\left[\left(a_{1}+a_{2}\right)+a_{3}+\cdots+a_{n}\right]^{2} \leq(n-1)\left[\left(a_{1}+a_{2}\right)^{2}+a_{3}^{2}+\cdots+a_{n}^{2}\right]
$$

The equation (2.2) implies

$$
\sum_{i=1}^{n} a_{i}^{2}+b \leq\left(a_{1}+a_{2}\right)^{2}+a_{3}^{2}+\cdots+a_{n}^{2}
$$

or equivalently, $2 a_{1} a_{2} \geq b$.
The equality holds if and only if

$$
a_{1}+a_{2}=a_{3}=\cdots=a_{n}
$$

Proof of Theorem 2.1. i) Let $X \in T_{p} M$ be a unit tangent vector X at p. We choose an orthonormal basis $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 m}\right\}$ such that e_{1}, \ldots, e_{n} are tangent to M at p, with $e_{n}=X$ and e_{n+1} is parallel to the mean curvature vector $H(p)$.

Then, from the Gauss equation, we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau+\|h\|^{2}-\left[n(n-1)+3 n \cos ^{2} \theta\right] c, \tag{2.3}
\end{equation*}
$$

where τ denotes the scalar curvature at p, that is,

$$
\tau=\sum_{1 \leq i<j \leq n} K\left(e_{i} \wedge e_{j}\right)=\sum_{1 \leq i<j \leq n} R\left(e_{i}, e_{j}, e_{i}, e_{j}\right)
$$

We put

$$
\delta=2 \tau-\frac{n^{2}}{2}\|H\|^{2}-\left[n(n-1)+3 n \cos ^{2} \theta\right] c
$$

Then, from (2.3), we get

$$
\begin{equation*}
n^{2}\|H\|^{2}=2\left(\delta+\|h\|^{2}\right) \tag{2.4}
\end{equation*}
$$

With respect to the above orthonormal basis, (2.4) takes the following form:

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=2\left\{\delta+\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right\} .
$$

If we put $a_{1}=h_{11}^{n+1}, a_{2}=\sum_{i=2}^{n-1} h_{i i}^{n+1}$ and $a_{3}=h_{n n}^{n+1}$, the above equation becomes

$$
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left\{\delta+\sum_{i=1}^{3}\left(a_{i}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}-\sum_{2 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}\right\}
$$

Thus a_{1}, a_{2}, a_{3} satisfy the Lemma of Chen (for $n=3$), i.e.,

$$
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left(b+\sum_{i=1}^{3}\left(a_{i}\right)^{2}\right) .
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if $a_{1}+a_{2}=a_{3}$.
In the case under consideration, this means

$$
\sum_{1 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1} \geq \delta+2 \sum_{i<j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}
$$

or equivalently,

$$
\begin{align*}
& \frac{n^{2}}{2}\|H\|^{2}+\left[n(n-1)+3 n \cos ^{2} \theta\right] c \tag{2.5}\\
& \quad \geq 2 \tau-\sum_{1 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}+2 \sum_{i<j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} .
\end{align*}
$$

Using again the Gauss equation, we have

$$
\begin{align*}
2 \tau- & \sum_{1 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}+2 \sum_{i<j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} \tag{2.6}\\
= & 2 S\left(e_{n}, e_{n}\right)+\left[(n-1)(n-2)+3(n-2) \cos ^{2} \theta\right] c+2 \sum_{i=1}^{n-1}\left(h_{i n}^{n+1}\right)^{2} \\
& +\sum_{r=n+2}^{2 m}\left\{\left(h_{n n}^{r}\right)^{2}+2 \sum_{i=1}^{n-1}\left(h_{i n}^{r}\right)^{2}+\left(\sum_{\alpha=1}^{n-1} h_{\alpha \alpha}^{r}\right)^{2}\right\}
\end{align*}
$$

where S is the Ricci tensor of M.
Combining (2.5) and (2.6), we obtain

$$
\begin{aligned}
& \frac{n^{2}}{2}\|H\|^{2}+\left[2(n-1)+6 \cos ^{2} \theta\right] c \\
& \quad \geq 2 S\left(e_{n}, e_{n}\right)+2 \sum_{i=1}^{n-1}\left(h_{i n}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m}\left\{\sum_{i=1}^{n}\left(h_{i n}^{r}\right)^{2}+\left(\sum_{\alpha=1}^{n-1} h_{\alpha \alpha}^{r}\right)^{2}\right\}
\end{aligned}
$$

which implies (2.1).
ii) Assume $H(p)=0$. Equality holds in (2.1) if and only if

$$
\left\{\begin{array}{l}
h_{1 n}^{r}=\cdots=h_{n-1, n}^{r}=0 \tag{2.7}\\
h_{n n}^{r}=\sum_{i=1}^{n-1} h_{i i}^{r}
\end{array} \quad r \in\{n+1, \ldots, 2 m\} .\right.
$$

Then $h_{i n}^{r}=0, \forall i \in\{1, \ldots, n\}, r \in\{n+1, \ldots, 2 m\}$, i.e., $X \in \mathcal{N}_{p}$.
iii) The equality case of (2.1) holds for all unit tangent vectors at p if and only if

$$
\left\{\begin{array}{l}
h_{i j}^{r}=0, \quad i \neq j, \quad r \in\{n+1, \ldots, 2 m\}, \tag{2.8}\\
h_{11}^{r}+\cdots+h_{n n}^{r}-2 h_{i i}^{r}=0, \quad i \in\{1, \ldots, n\}, r \in\{n+1, \ldots, 2 m\} .
\end{array}\right.
$$

We distinguish two cases:
a) $n \neq 2$, then p is a totally geodesic point;
b) $n=2$, it follows that p is a totally umbilical point.

The converse is trivial.
Corollary 2.2. Let M be an n-dimensional totally real submanifold in an m-dimensional complex space form $\tilde{M}(4 c)$ of constant holomorphic sectional curvature $4 c$. Then:
i) For each unit vector $X \in T_{p} M$, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{n^{2}}{4}\|H\|^{2}+(n-1) c . \tag{2.9}
\end{equation*}
$$

ii) If $H(p)=0$, then a unit tangent vector X at p satisfies the equality case of (2.9) if and only if $X \in \mathcal{N}_{p}$.
iii) The equality case of (2.9) holds identically for all unit tangent vectors at p if and only if either p is a totally geodesic point or $n=2$ and p is a totally umbilical point.

It is known that every complex submanifold of a Kaehlerian manifold is minimal.

Corollary 2.3. Let M be an n-dimensional complex submanifold in an m dimensional complex space form $\tilde{M}(4 c)$ of constant holomorphic sectional curvature 4c. Then:
i) For each unit vector $X \in T_{p} M$, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq 2(n+1) c . \tag{2.10}
\end{equation*}
$$

ii) A unit tangent vector X at p satisfies the equality case of (2.10) if and only if $X \in \mathcal{N}_{p}$.
iii) The equality case of (2.10) holds identically for all unit tangent vectors at p if and only if p is a totally geodesic point.

By polarization, from Theorem 2.1, we derive:
Theorem 2.4. Let M be an n-dimensional θ-slant submanifold in an m dimensional complex space form $\tilde{M}(4 c)$ of constant holomorphic sectional curvature 4c. Then the Ricci tensor S satisfies

$$
\begin{equation*}
S \leq\left(\frac{n^{2}}{4}\|H\|^{2}+(n-1) c+3 c \cos ^{2} \theta\right) g . \tag{2.11}
\end{equation*}
$$

The equality case of (2.11) holds identically if and only if either M is a totally geodesic submanifold or $n=2$ and M is a totally umbilical submanifold.

In particular, for totally real and complex submanifolds, respectively, we state:

Corollary 2.5 [4]. Let M be an n-dimensional totally real submanifold in an m-dimensional complex space form $\tilde{M}(4 c)$ of constant holomorphic sectional curvature $4 c$. Then the Ricci tensor S satisfies

$$
\begin{equation*}
S \leq\left(\frac{n^{2}}{4}\|H\|^{2}+(n-1) c\right) g . \tag{2.12}
\end{equation*}
$$

The equality case of (2.12) holds identically if and only if either M is a totally geodesic submanifold or $n=2$ and M is a totally umbilical submanifold.

For a classification of totally umbilical submanifolds in nonflat complex space forms we refer to [6].

Corollary 2.6. Let M be an n-dimensional complex submanifold in an m dimensional complex space form $\tilde{M}(4 c)$ of constant holomorphic sectional curvature $4 c$. Then the Ricci tensor S satisfies

$$
\begin{equation*}
S \leq 2(n+1) c g \tag{2.13}
\end{equation*}
$$

The equality case of (2.13) holds identically if and only if M is a totally geodesic submanifold.

3. Minimality of Kaehlerian slant submanifolds

Let $\tilde{M}(4 c)$ be an n-dimensional complex space form of constant holomorphic sectional curvature $4 c$ and M an n-dimensional θ-slant submanifold of $\tilde{M}(4 c)$.

By reference to [1], M is said to be a Kaehlerian slant submanifold if it is proper (i.e., $\theta \notin\{0, \pi / 2\}$) and the endomorphism P of the tangent bundle $T M$ is parallel with respect to the Riemannian connection ∇ of M (i.e. $\nabla P=0$). A Kaehlerian slant submanifold is a Kaehler manifold with respect to the induced metric and the almost complex structure $\tilde{J}=(1 / \cos \theta) P$.

It is known that every proper slant surface in a Kaehler manifold is Kaehlerian slant (see [1]). An example of a 4-dimensional Kaehlerian slant submanifold in C^{4} is given by the following immersion.

$$
x(u, v, w, z)=(u, v, k \sin w, k \sin z, k w, k z, k \cos w, k \cos z)
$$

where $k>0$ is a constant. In this case, $\theta=\pi / 4$ (see [1]).
We denote by \mathscr{R} the maximum Ricci curvature function on M (see [4]), defined by

$$
\mathscr{R}(p)=\max \left\{S(u, u) \mid u \in T_{p}^{1} M\right\}, \quad p \in M
$$

where $T_{p}^{1} M=\left\{u \in T_{p} M \mid g(u, u)=1\right\}$.
If $n=3, \mathscr{R}$ is the Chen first invariant δ_{M} defined in [2]. For $n>3, \mathscr{R}$ is the Chen invariant $\delta(n-1)$ (see [5]).

In this section, we derive an inequality for the Chen invariant \mathscr{R} and prove that any Kaehlerian slant submanifold which satisfies the equality case is minimal. This is a generalization of a result of B.-Y. Chen [4] for Lagrangian submanifolds in complex space forms.

Theorem 3.1. Let M be an n-dimensional Kaehlerian slant submanifold in an n-dimensional complex space form $\tilde{M}(4 c)$ of constant holomorphic sectional curvature $4 c$. Then

$$
\begin{equation*}
\mathscr{R} \leq \frac{n^{2}}{4}\|H\|^{2}+(n-1) c+3 c \cos ^{2} \theta \tag{3.1}
\end{equation*}
$$

If M satisfies the equality case of (3.1) identically, then M is a minimal submanifold.

Proof. The inequality (3.1) is an immediate consequence of the inequality (2.11).

We assume that M is a Kaehlerian slant submanifold of $\tilde{M}(4 c)$, which satisfies the equality case of (3.1) at a point $p \in M$. We may choose an orthonormal basis $\left\{\bar{e}_{1}, \ldots, \bar{e}_{n}\right\}$ of $T_{p} M$ such that $\mathscr{R}(p)=S\left(\bar{e}_{n}, \bar{e}_{n}\right)$. We set $\bar{e}_{n+j}=(1 / \sin \theta) F \bar{e}_{j}, j \in\{1, \ldots, n\}$. By the proof of Theorem 2.1, it follows that the equations (2.7) hold, where $h_{i j}^{r}$ are the coefficients of the second fundamental form with respect to the orthonormal basis $\left\{\bar{e}_{1}, \ldots, \bar{e}_{n}, \bar{e}_{n+1}, \ldots, \bar{e}_{2 n}\right\}$.

Let A denote the shape operator of M in $\tilde{M}(4 c)$. It is known (see [1]) that P is parallel if and only if

$$
\begin{equation*}
A_{F X} Y=A_{F Y} X \tag{3.2}
\end{equation*}
$$

for all vector fields X, Y tangent to M.
We distinguish two cases:
i) If $g(h(u, v), F w)=0, \forall u, v, w \in T_{p} M$, then obviously $H(p)=0$.
ii) We assume that case i) does not hold. Then we define

$$
f_{p}: T_{p}^{1} M \rightarrow \boldsymbol{R}, \quad f_{p}(v)=g(h(v, v), F v) .
$$

Since $T_{p}^{1} M$ is compact, there exists a vector $v \in T_{p}^{1} M$ such that f_{p} attains an absolute maximum at v. Let denote $e_{1}=v$ and $f_{p}(v)=\lambda_{1}>0$. It follows that $A_{F e_{1}} e_{1}=\lambda_{1} e_{1}$.

We can choose an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of $T_{p} M$ such that e_{i} is an eigenvector of $A_{F e_{1}}$ with corresponding eigenvalue λ_{i}, for all $i \in\{1, \ldots, n\}$.

We consider the function $f_{i}(t)=f_{p}\left((\cos t) e_{1}+(\sin t) e_{i}\right), i \in\{2, \ldots, n\}$.
It is easily seen that f_{i} has a relative maximum at $t=0$. Thus, $f_{i}^{\prime}(0)=0$ and $f_{i}^{\prime \prime}(0) \leq 0$. By a straightforward computation, one finds

$$
0 \geq f_{i}^{\prime \prime}(0)=-3 \lambda_{1}+6 \lambda_{i},
$$

i.e., $\lambda_{1} \geq 2 \lambda_{i}, \forall i \geq 2$. Since $\lambda_{1}>0$, one gets $\lambda_{1} \neq \lambda_{i}, \forall i \geq 2$. Thus, the multiplicity of the eigenvalue λ_{1} is 1 .

We have $e_{1} \neq \pm \bar{e}_{n}$. Otherwise

$$
A_{F_{i} e_{n}} \bar{e}_{n} \pm A_{F e_{i}} e_{1}= \pm A_{F e_{1}} e_{i}= \pm \lambda_{i} e_{i} \perp \bar{e}_{n}, \quad i \in\{2, \ldots, n\}
$$

implies $\lambda_{2}=\cdots=\lambda_{n}=0$, and hence, using (2.7), $\lambda_{1}=0$, which is a contradiction.
On the other hand, by (2.7) it is easily seen that \bar{e}_{n} is an eigenvector of $A_{F e_{1}}$. Thus, we can choose $e_{n}=\bar{e}_{n}$, and, consequently, we may assume $e_{j}=\bar{e}_{j}$, $\forall j \in\{1, \ldots, n\}$.

By (3.2) and (2.7), we have

$$
A_{F e_{n}} e_{1}=A_{F e_{1}} e_{n}=\lambda_{n} e_{n}=0 .
$$

Thus, (2.7) implies $\lambda_{1}+\cdots+\lambda_{n-1}=\lambda_{n}=0$. Therefore $\operatorname{tr} A_{F e_{1}}=0$.
For $i \in\{2, \ldots, n-1\}$, one has

$$
\begin{aligned}
\operatorname{tr} A_{F e_{i}}=\sum_{j=1}^{n} g\left(A_{F e_{i}} e_{j}, e_{j}\right) & =\sum_{j=1}^{n} g\left(h\left(e_{j}, e_{j}\right), F e_{i}\right)=2 g\left(h\left(e_{n}, e_{n}\right), F e_{i}\right) \\
& =2 g\left(h\left(e_{i}, e_{n}\right), F e_{n}\right)=0
\end{aligned}
$$

Similarly

$$
\operatorname{tr} A_{F e_{n}}=\sum_{j=1}^{n} g\left(h\left(e_{j}, e_{j}\right), F e_{n}\right)=2 \sum_{j=1}^{n-1} g\left(h\left(e_{j}, e_{j}\right), F e_{n}\right)=2 \sum_{j=1}^{n-1} g\left(h\left(e_{j}, e_{n}\right), F e_{j}\right)=0 .
$$

Thus, $\operatorname{tr} A_{F e_{i}}=0, \forall i \in\{1, \ldots, n\}$.
Consequently, $H(p)=0$.

Corollary 3.2. Let M be an n-dimensional Kaeherian slant submanifold of an n-dimensional complex space form $\tilde{M}(4 c)$. If $\operatorname{dim} \mathscr{N}_{p}$ is positive constant, then M satisfies the equality case of (3.1) identically and is foliated by totally geodesic submanifolds.

Proof. By the above proof, it follows that M satisfies the equality case of (3.1) at a point $p \in M$ if and only if $\operatorname{dim} \mathscr{N}_{p} \geq 1$.

Assume that $\operatorname{dim} \mathscr{N}_{p}$ is positive constant.
It is known that \mathscr{N} is involutive and its leaves are totally geodesic (see, for instance, [4], [10]). This achieves the proof.

Acknowledgements. The authors would like to thank the referee for his valuable comments.

References

[1] B.-Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Louvain, 1990.
[2] B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel), 60 (1993), 568-578.
[3] B.-Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasg. Math. J., 41 (1999), 33-41.
[4] B.-Y. Chen, On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms, Arch. Math. (Basel), 74 (2000), 154-160.
[5] B.-Y. Chen, Some new obstructions to minimal and Lagrangian isometric immersions, Japan. J. Math. (N.S.), 26 (2000), 105-127.
[6] B.-Y. Chen and K. Ogiue, Two theorems on Kaehler manifolds, Michigan Math. J., 21 (1974), 225-229.
[7] B.-Y. Chen and Y. Tazawa, Slant submanifolds of complex projective and complex hyperbolic spaces, Glasg. Math. J., 42 (2000), 439-454.
[8] K. Matsumoto, I. Mihai and A. Oiagă, Ricci curvature of submanifolds in complex space forms, Rev. Roumaine Math. Pures Appl., 46 (2001), 775-782.
[9] I. Mihai, R. Rosca and L. Verstraelen, Some Aspects of the Differential Geometry of Vector Fields, Centre Pure Appl. Differential Geom. (PADGE) 2, Katholieke Universiteit Brussel, Brussels, Katholieke Universiteit Leuven, Louvain, 1996.
[10] H. Reckziegel, On the eigenvalues of the shape operator of an isometric immersion into a space of constant curvature, Math. Ann., 243 (1979), 71-82.

Department of Mathematics
Faculty of Education
Yamagata University
Yamagata 990-8560
Japan
e-mail: ej192@kdw.kj.yamagata-u.ac.jp
Faculty of Mathematics
University of Bucharest
Str. Academiei 14
70109 Bucharest
Romania
e-mail: imihai@math.math.unibuc.ro
School of Information Environment
Tokyo Denki University
Inzai
Chiba Pref. 270-1382

Japan

e-mail: tazawa@cck.dendai.ac.jp

[^0]: 2000 Mathematics Subject Classification: 53C40, 53C25.
 Keywords: Ricci tensor, Ricci curvature, mean curvature, complex space form, Kaehlerian slant submanifold, totally real submanifold.
 *The second author was supported by a JSPS research fellowship.
 Received April 25, 2002; revised August 30, 2002.

