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RICCI TENSOR OF SLANT SUBMANIFOLDS
IN COMPLEX SPACE FORMS
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Abstract

B.-Y. Chen established a sharp relationship between the Ricci curvature and the
squared mean curvature for a submanifold in a Riemannian space form with arbi-
trary codimension. The Lagrangian version of this inequality was proved by the same
author.

In this article, we obtain a sharp estimate of the Ricci tensor of a slant submanifold
M in a complex space form M (4c), in terms of the main extrinsic invariant, namely the
squared mean curvature. If, in particular, M is a Kaehlerian slant submanifold which
satisfies the equality case identically, then it is minimal.

1. Preliminaries

Let M be a real n-dimensional submanifold of a complex m-dimensional
complex space form M (4¢) of constant holomorphic sectional curvature 4c. We
denote by V and V the Levi-Civita connections of M and M (4c), respectively.
Let J be the complex structure on M (4c). Also, we denote by /i the second
fundamental form and R the Riemann curvature tensor of M.

Then the Gauss equation is given by

(1.1) R(X,Y,Z,W)=R(X,Y,Z, W)
+g(h(Xa W)vh(sz)) - g(h(sz>7h(Y7 W))

for any vectors X, Y,Z, W tangent to M, where

(12) R(X’ YaZ’ W) = C{g(XaZ)g(Ya W) - g(Xa W)g(sz)
—g(JX, Wg(JY,Z)+g(JX,Z)g(JY , W)
+29(X,JY)g(Z,JW)}.
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Let pe M and {ey,...,ex,} an orthonormal basis at p, such that e,...,e,
are tangent to M and e,.,...,ey, are normal to M.
We denote by H the mean curvature vector, i.e.,

1 n
(1.3) H(p) = E; h(e, e;).
Also, we set
(1.4) hi=g(h(ei ¢),e,), i,je{l,...,n}, re{n+1,...,2m}
and
(1.5) I7)1> =">" g(h(es, ¢)), (e ¢))).

i,j=1

For any pe M and X € T,M, we put JX = PX + FX, where PX and FX
are the tangential and normal components of JX, respectively.
We denote by

(1.6) IPII> =" g*(Pei,¢p).
ij=1

We recall that for a submanifold M in a Riemannian manifold, the relative
null space of M at a point p e M is defined by

Ny ={XeT,M|h(X,Y)=0, for all Y eT,M}.

2. Ricci tensor and squared mean curvature

B.-Y. Chen established a sharp relationship between the Ricci curvature
and the squared mean curvature for submanifolds in real space forms (see [3]).
Afterwards, he obtained the Lagrangian version of this relationship (see [4]).

First, we prove a similar inequality for an n-dimensional slant submanifold
M of an m-dimensional complex space form M(4c) of constant holomorphic
sectional curvature 4c. ~

A submanifold M of a complex space form M (4c) is said to be a slant
submanifold [1] if for any pe M and any nonzero vector X € T,M, the angle
between JX and the tangent space 7,M is constant (= 0).

It is obvious that both complex submanifolds and totally real submanifolds
are slant submanifolds, corresponding to § =0 and 6 = /2, respectively.

THEOREM 2.1. Let M be an n-dimensional O-slant submanifold in an m-
dimensional complex space form M (4c) of constant holomorphic sectional curva-
ture 4c. Then:
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i) For each unit vector X € T,M, we have
. n2 2 )
(2.1) Ric(X) < Z”HH + (n—1)c+ 3¢ cos” 0.

i) If H(p) =0, then a unit tangent vector X at p satisfies the equality case
of (2.1) if and only if X € M.

iii) The equality case of (2.1) holds identically for all unit tangent vectors at
p if and only if either p is a totally geodesic point or n =2 and p is a totally
umbilical point.

In the proof of this theorem, we will use the following result of B.-Y. Chen.

LemMaA [2]. Let n>2 and ay,...,a,,b real numbers such that

(2.2) (Za,) (n—1) (Za +b>

Then 2aya; = b, with equality holding if and only if
ay+ay=az3=---=a,.
We will give a very short proof, different from the original one in [2].
Proof. By the Cauchy-Schwartz inequality, we have
(@ +a)+as+-+a) < (n=1D[(@ +a) +a;+- +a).
The equation (2.2) implies
S @b < (@) et
=1

or equivalently, 2a;a; > b.
The equality holds if and only if

a+a=a3=---=a,. O

Proof of Theorem 2.1. i) Let X € T,M be a unit tangent vector X at p.
We choose an orthonormal basis {ej,...,e,, €ut1,...,€1,} such that ej,... e,
are tangent to M at p, with ¢, = X and e, is parallel to the mean curvature
vector H(p).

Then, from the Gauss equation, we have

(2.3) n?||H||* = 2t + ||h||* = [n(n — 1) + 3n cos? e,
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where 7 denotes the scalar curvature at p, that is,

E K(ei A ¢) E R(ei, e, ei,¢)).

I<i<j<n I<i<j<n

We put
n’ 2 2
5:2‘5—7||H|| — [n(n — 1) + 3n cos” O]c.

Then, from (2.3), we get
(2.4) || H||* =200 + [|A]]%).

With respect to the above orthonormal basis, (2.4) takes the following
form:

n 2 n
(Zh;;“) =2{5+Z<h;:+‘ YLD Z j }
i=1 i=1 i#] r=n+21i,j=

1 .
If we put aj =hf!, ay =317 h'! and a3 = h%f!, the above equation
becomes

2
(ZCI;) = 2{5+ Z az + Z h",'H + i i U _ Z hn+l/’l/’};1}
i#] r=n+2i,j= 2<a#f<n—1

Thus aj,a»,as satisfy the Lemma of Chen (for n = 3), ie.,

(i: ai>2 =2 (b + i;(a,-f) .

Then 2aja, > b, with equality holding if and only if a; 4+ a; = as.
In the case under consideration, this means

D byt =042 (ki) +ZZ )

1<a#f<n—1 i<j r=n+21i,j=

or equivalently,

2
(2.5) ’% || + [n(n — 1) + 3n cos? Ol

>20— > hpt 2y () +ZZ 0

I<a#f<n—-1 i<j r=n+2i,j=1

Using again the Gauss equation, we have
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2m n

26) 20— > a2 () +ZZ/1,,

I<a#f<n-1 i<j r=n+21i,j=

= 28(en, en) + [(n— 1)(n —2) + 3(n — 2) cos> ()c—!—ZZ (b2
i=1

2m

n—1 n—1 2
+ ) <h,’;n)2+22(h{n>2+<zh:1> :
i=1 o=1

r=n+2

where S is the Ricci tensor of M.
Combining (2.5) and (2.6), we obtain

2
”7 IH|)? + 201 — 1) + 6 cos? O]c

n—1 2m n n—1 2
 2S(emen) + 25 0+ S0 S gy + (zh;a)
i=1 a=1

r=n+2 i=1

which implies (2.1).
i) Assume H(p) =0. Equality holds in (2.1) if and only if

hi =---=h"_, =0
(2.7) { T re{nt 1. 2m).
hyy = 32550 hi;
Then A, =0, Vie{l,...,n}, re{n+1,...,2m}, ie., X € 4.
iii) The equality case of (2.1) holds for all unit tangent vectors at p if and
only if

(28) hj; =0, i#j, re{n+1,...,2m},
' hjy+---+h, —2hn.=0, ie{l,....n}, re{n+1,...,2m}.

We distinguish two cases:

a) n#2, then p is a totally geodesic point;

b) n =2, it follows that p is a totally umbilical point.

The converse is trivial. O

COROLLARY 2.2. Let M be an n-dimensional totally real submanifold in an
m-dimensional complex space form M(4c) of constant holomorphic sectional cur-
vature 4c. Then:

i) For each unit vector X € T,M, we have

(2.9) Ric(X) < ’1—2||H||2 +(n—1e.

i) If H(p) =0, then a unit tangent vector X at p satisfies the equality case
of (2.9) if and only if X € Nj.
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iii) The equality case of (2.9) holds identically for all unit tangent vectors at
p if and only if either p is a totally geodesic point or n =2 and p is a totally
umbilical point.

It is known that every complex submanifold of a Kaehlerian manifold is
minimal.

COROLLARY 2.3. Let M be an n-dimensional complex submanifold in an m-

dimensional complex space form M(4c) of constant holomorphic sectional curvature
4c.  Then:
i) For each unit vector X € T,M, we have

(2.10) Ric(X) <2(n + 1)c.
i) A unit tangent vector X at p satisfies the equality case of (2.10) if and only
if X e,

iii) The equality case of (2.10) holds identically for all unit tangent vectors at
p if and only if p is a totally geodesic point.

By polarization, from Theorem 2.1, we derive:
THEOREM 2.4. Let M be an n-dimensional O-slant submanifold in an m-

dimensional complex space form M (4c) of constant holomorphic sectional curva-
ture 4c. Then the Ricci tensor S satisfies

2
(2.11) S < (%||H||2—|—(n—l)c—i—?»ccos2 ()>g.

The equality case of (2.11) holds identically if and only if either M is a totally
geodesic submanifold or n =2 and M is a totally umbilical submanifold.

In particular, for totally real and complex submanifolds, respectively, we
state:

COROLLARY 2.5 [4]. Let M be an n-dimensional totally real submanifold in

an m-dimensional complex space form M (4¢) of constant holomorphic sectional
curvature 4c. Then the Ricci tensor S satisfies

nz
(2.12) S < (Z |H|* + (n - l)c>g.

The equality case of (2.12) holds identically if and only if either M is a totally
geodesic submanifold or n =2 and M is a totally umbilical submanifold.

For a classification of totally umbilical submanifolds in nonflat complex
space forms we refer to [6].
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COROLLARY 2.6. Let M be an n-dimensional complex submanifold in an m-
dimensional complex space form M (4c) of constant holomorphic sectional curva-
ture 4c. Then the Ricci tensor S satisfies

(2.13) S <2(n+1)cg.

The equality case of (2.13) holds identically if and only if M is a totally
geodesic submanifold.

3. Minimality of Kaehlerian slant submanifolds

Let M(4c) be an n-dimensional complex space form of constant holo-
morphic sectional curvature 4c¢ and M an n-dimensional 6-slant submanifold of

M(4c).

By reference to [1], M is said to be a Kaehlerian slant submanifold if it is
proper (i.e., 8 ¢ {0,7/2}) and the endomorphism P of the tangent bundle TM is
parallel with respect to the Riemannian connection V of M (i.e. VP =0). A
Kaehlerian slant submanifold is a Kaehler manifold with respect to the induced
metric and the almost complex structure J = (1/cos 6)P.

It is known that every proper slant surface in a Kaehler manifold is Kaeh-
lerian slant (see [1]). An example of a 4-dimensional Kaehlerian slant sub-
manifold in C* is given by the following immersion.

x(u,v,w,z) = (u,v,k sin w, k sin z, kw, kz, k cos w, k cos z),

where k > 0 is a constant. In this case, 0 = /4 (see [1]).

We denote by # the maximum Ricci curvature function on M (see [4]),
defined by

R(p) = max{S(u,u)|ue Tle}, pEM,

where T)M = {ue T,M |g(u,u) = 1}.

If n =3, # is the Chen first invariant J, defined in [2]. For n > 3, # is the
Chen invariant d(n — 1) (see [5]).

In this section, we derive an inequality for the Chen invariant # and prove
that any Kaehlerian slant submanifold which satisfies the equality case is mini-
mal. This is a generalization of a result of B.-Y. Chen [4] for Lagrangian
submanifolds in complex space forms.

THEOREM 3.1. Let M be an n-dimensional Kaehlerian slant submanifold in

an n-dimensional complex space form M (4¢) of constant holomorphic sectional
curvature 4c. Then

2
(3.1) R < %||H\|2+(n—l)c+3ccosz 0.

If M satisfies the equality case of (3.1) identically, then M is a minimal sub-
manifold.
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Proof. The inequality (3.1) is an immediate consequence of the inequality
(2.11).

We assume that M is a Kaehlerian slant submanifold of M(4c), which
satisfies the equality case of (3.1) at a point pe M. We may choose an
orthonormal basis {é;,...,é,} of T,M such that Z(p) = S(e,,e,). We set
euij = (1/sin O)Fe;, je{l,...,n}. By the proof of Theorem 2.1, it follows that
the equations (2.7) hold, where /j; are the coeficients of the second fundamental
form with respect to the orthonormal basis {ej,...,&,, &1, -.,@n}-

Let A denote the shape operator of M in M (4c). It is known (see [1]) that
P is parallel if and only if

(3.2) Apx Y = Apy X,

for all vector fields X, Y tangent to M.
We distinguish two cases:
i) If g(h(u,v), Fw) =0, Yu,v,w € T,M, then obviously H(p)=0.
ii) We assume that case i) does not hold. Then we define

E Tle —R, f,(v) =g(h(v,v), Fv).

Since 7,) M is compact, there exists a vector ve T,/ M such that f, attains
an absolute maximum at v. Let denote ¢ =v and f,(v) =4, > 0. It follows
that AFelel = Ae1.

We can choose an orthonormal basis {ei,...,e,} of T,M such that ¢; is an
eigenvector of Ap, with corresponding eigenvalue A;, for all ie {1,...,n}.

We consider the function fi(¢) = f,((cos t)e; + (sin t)e;), i€ {2,...,n}.

It is easily seen that f; has a relative maximum at +=0. Thus, f/(0) =0
and f”(0) <0. By a straightforward computation, one finds

0> £"(0) = =34, + 64,

ie., 4] >24;, Vi>2. Since 1) >0, one gets A # 4;, Vi > 2. Thus, the multi-
plicity of the eigenvalue A; is 1.
We have e¢; # +¢é,. Otherwise

AF@,»én = iAFe;el = iAFelei =*tAe L ey, I€ {27 <. 7”}7

implies 4, = --- = 4, = 0, and hence, using (2.7), A; = 0, which is a contradiction.
On the other hand, by (2.7) it is easily seen that e, is an eigenvector of
Ape,. Thus, we can choose e, = &,, and, consequently, we may assume e; = ¢&;,
vjie{l,..., n}.
By (3.2) and (2.7), we have

Arpe,e1 = Ape €y = Aney = 0.

Thus, (2.7) implies A; + -+ 4+ A,-1 =4, = 0. Therefore tr Ap, = 0.
For ie{2,...,n— 1}, one has
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tr Ap,, = Z 9(Areej,€5) = Zg(h(ej, e;), Fe;) = 2g(h(e,, e,), Fe;)
j=1 =1

=2g(h(e;,en), Fe,) = 0.
Similarly

n n—1 n—1

tr Ape, = Zg(h(eiaej)7F€'1) = 2Zg(h(€j,€/),Fen) = ZZg(h(ej,en),Fe/) =0.

Jj=1 j=1 J=1
Thus, tr Ap,, =0, Vie {l,...,n}.
Consequently, H(p) = 0. O

COROLLARY 3.2.  Let M be an n-dimensional Kaeherian slant submanifold of
an n-dimensional complex space form M(4c). If dim .4, is positive constant, then
M satisfies the equality case of (3.1) identically and is foliated by totally geodesic
submanifolds.

Proof. By the above proof, it follows that M satisfies the equality case of
(3.1) at a point p e M if and only if dim .4, > 1.

Assume that dim .4, is positive constant.

It is known that 4" is involutive and its leaves are totally geodesic (see, for
instance, [4], [10]). This achieves the proof. O
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