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In this paper, we study α-cosymplectic manifold M admitting ∗ -Ricci tensor. First, it is shown that a ∗ -Ricci semisymmetric
manifold M is ∗ -Ricci flat and a ϕ-conformally flat manifold M is an η-Einstein manifold. Furthermore, the ∗ -Weyl curvature
tensorW∗ on M has been considered. Particularly, we show that a manifold M with vanishing ∗ -Weyl curvature tensor is a weak
ϕ-Einstein and amanifold M fulfilling the condition R(E1, E2) · W∗ � 0 is η-Einstein manifold. Finally, we give a characterization
for α-cosymplectic manifoldM admitting ∗ -Ricci soliton given as to be nearly quasi-Einstein. Also, some consequences for three-
dimensional cosymplectic manifolds admitting ∗ -Ricci soliton and almost ∗ -Ricci soliton are drawn.

1. Introduction

In the last few years, theory of almost contact geometry and
related topics are an active branch of research due to elegant
geometry and applications to physics. Nowadays, many
attentions have been drawn towards the study of almost
cosymplectic manifolds which are a special class of almost
contact manifolds. +is notion was initiated by Goldberg
and Yano [1], in 1969, and then, a very systematic approach
for the study of almost cosymplectic manifolds was carried
forward by many geometers. A smooth manifold of
(2n + 1)-dimension with the condition η∧dηn ≠ 0 for a
closed 1-form η is a cosymplectic manifold. A simple ex-
ample of almost cosymplectic manifolds is given by the
products of almost Kaehler manifolds and the real line R or
the circle S1. At this moment, we refer the studies [2–5] and
the references therein for a vast and exhaustive survey of the
results on almost cosymplectic manifolds.

A new concept of the Ricci tensor named as ∗ -Ricci
tensor has been defined by Tachibana [6] and Hamada [7] in
complex geometry. Similar to a complex case, the ∗ -Ricci
tensor of an almost contact metric manifold has been de-
fined as follows:

S
∗

E1, E2( 􏼁 �
1
2

Tr E3⟶ R E1, ϕE2( 􏼁ϕE3( 􏼁, (1)

for all E1, E2 ∈ TM, where R is the Riemannian curvature
tensor. Naturally, Hamada also considered the notion of
∗ -Einstein manifold. An Hermitian manifold is ∗ -Einstein
if we have g(Q∗E1, E2) � λg(E1, E2), where λ is a constant.
Also, in the same study of Hamada, a classification of
∗ -Einstein hypersurfaces was given. On the other hand, for
an extension of Hamada’s work, we refer to Ivey and Ryan
[8]. +e concept of the ∗ -Ricci tensor has been studied in
contact case. Venkatesha and his group ([9, 10]) recently
studied some of the curvature properties on Sasakian
manifold and contact metric generalized (κ, μ)-space form
using the ∗ -Ricci tensor.

In this study, the ∗ -Ricci tensor within the framework of
α-cosymplectic manifolds has been studied. In Section 2, we
recall some basic formulas and results concerning
α-cosymplectic manifold and ∗ -Ricci tensor, which will be
useful in further sections. An α-cosymplectic manifold
satisfying ∗ -Ricci semisymmetric and ϕ-conformally flat
conditions are studied in Section 3 and shown that a
ϕ-conformably flat α-cosymplectic manifold is η-Einstein
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and a ∗ -Ricci semisymmetric α-cosymplectic manifold is
∗ -Ricci flat. In next section, the ∗ -Weyl curvature tensor
has been studied in the background of α-cosymplectic
manifold, and several consequences are noticed. In the last
section, we studied a special type of metric called ∗ -Ricci
soliton. Here, we have proved some important results of
α-cosymplectic manifold admitting ∗ -Ricci soliton.

2. Preliminaries

Here, we are going to recall some general facts on
α-cosymplectic manifolds which are relevant to our work.

An almost contact metric manifold of (2n + 1)-dimen-
sion is a 5-tuple (M, ϕ, ξ, η, g) with the following resources
[11].

ϕ2E1 � − E1 + η E1( 􏼁ξ,

η(ξ) � 1,

ϕξ � 0,

η ϕE1( 􏼁 � 0,

g ϕE1, ϕE2( 􏼁 � g E1, E2( 􏼁 − η E1( 􏼁η E2( 􏼁,

E1, E2 ∈ TM,

(2)

for a (1, 1)− tensor field ϕ, a characteristic vector field ξ, a 1-
form η is dual of ξ, and g is a Riemannian metric. It is easily
seen that

g ϕE1, E2( 􏼁 � − g E1, ϕE2( 􏼁,

g E1, ξ( 􏼁 � η E1( 􏼁,

E1, E2 ∈ TM.

(3)

It is well known that the fundamental 2-formω is defined
by ω(E1, E2) � g(ϕE1, E2) on M.

For an almost contact metric manifold M, we have the
following classifications ([12, 13]):

(1) If dη � ω, then M is a contact metric manifold
(2) If dη � 0 and dω � 0, then M is an almost cosym-

plectic manifold [1]
(3) If dη � 0 and dω � 2αη∧ω, then M is an almost

α-Kenmotsu manifold for a nonzero scalar α

In the contact geometry, the notion is normality that is a
contact analogue of the integrability of an almost complex
structure. An almost cosymplectic metric manifold being
normal, if we have [ϕ, ϕ] � 0 which is the Nijenhuis tensor of
the tensor field ϕ, is defined by

[ϕ, ϕ] � ϕ2 E1, E2􏼂 􏼃 + ϕE1,ϕE2􏼂 􏼃 − ϕ ϕE1, E2􏼂 􏼃 − ϕ E1,ϕE2􏼂 􏼃,

(4)

for all E1, E2 ∈ TM. A normal almost cosymplectic manifold
is a cosymplectic manifold.

Almost α− cosymplectic manifolds have been defined by
Kim and Pak [14] by combining an almost α-Kenmotsu and
almost cosymplectic structures by the following formula:

dη � 0,

dω � 2αη∧ω,
(5)

for a constant α. On an α-cosymplectic manifold, we have

∇E1
ϕ􏼐 􏼑E2 � α g ϕE1, E2( 􏼁ξ − η E2( 􏼁ϕE1( 􏼁, (6)

where ∇ denotes the Riemannian connection. From (6), it is
easy to see that

∇E1
ξ � − αϕ2E1 � α E1 − η E1( 􏼁ξ􏼂 􏼃, (7)

and

∇E1
η􏼐 􏼑E2 � α g E1, E2( 􏼁 − η E1( 􏼁η E2( 􏼁􏼂 􏼃. (8)

On an α-cosymplectic manifold M of dimension 2n + 1,
the following relationships are valid:

R ξ, E1( 􏼁E2 � α2 η E2( 􏼁E1 − g E1, E2( 􏼁ξ( 􏼁, (9)

R E1, E2( 􏼁ξ � α2 η E1( 􏼁E2 − η E2( 􏼁E1( 􏼁, (10)

S E1, ξ( 􏼁 � − 2nα2η E1( 􏼁, (11)

where R and S are the curvature and Ricci tensors,
respectively.

By the following lemma, we obtain some derivational
features of α-cosymplectic manifold.

Lemma 1. On an α− cosymplectic manifold of dimension
2n + 1, we have

∇E1
Q􏼐 􏼑ξ � − αQE1 − 2nα3E1, (12)

∇ξQ􏼐 􏼑E1 � − 2αQE1 − 4nα3E1, (13)

ξ(r) � − 2α r + 2n(2n + 1)α2􏽮 􏽯. (14)

Proof. Note that (11) implies Qξ � − 2nα2ξ, for Q defined by
S(E1, E2) � g(QE1, E2). Differentiating this along E1 and
using (7), we get (12). Next, differentiation of (10) with
respect to T gives

∇TR( 􏼁 E1, E2( 􏼁ξ � − αR E1, E2( 􏼁T

+ α3 g E1, T( 􏼁E2 − g E2, T( 􏼁E1􏼈 􏼉.
(15)

Let ei􏼈 􏼉
2n+1
i�1 be a local basis on M. Replacing E1 � T � ei

in the foregoing equation with summing over i gives

􏽘

2n+1

i�1
g ∇ei

R􏼐 􏼑 ei, E2( 􏼁ξ, E3􏼐 􏼑 � αS E2, E3( 􏼁 + 2nα3g E2, E3( 􏼁.

(16)
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Using second Bianchi’s identity leads to

􏽘

2n+1

i�1
g ∇ei

R􏼐 􏼑 E3, ξ( 􏼁E2, ei􏼐 􏼑

� g ∇E3
Q􏼐 􏼑ξ, E2􏼐 􏼑 − g ∇ξQ􏼐 􏼑E3, E2􏼐 􏼑.

(17)

By considering (16) in (17) and then with the help of (12),
we conclude

g ∇ξQ􏼐 􏼑E1, E2􏼐 􏼑 � − 2αS E1, E2( 􏼁 − 4nα3g E1, E2( 􏼁, (18)

which proves (13). Finally, contraction of (13) gives (14). □

From Riemannian geometry, the covariant derivative of
a (1, s)-type of tensor field K is given by

(divK) E1, E1, . . . , E1s( 􏼁 � 􏽘
2n+1

i�1
g ∇ei

K􏼐 􏼑 E1, E1, . . . , E1( 􏼁, ei􏼐 􏼑.

(19)

for all E1, E1, . . . , E1 ∈ TM, where div is stated for the di-
vergence [15].

By following descriptions, we present some classification
facts which come from the Ricci tensor and have been stated.

(1) An α− cosymplectic manifold M is called by weak
ϕ-Einstein if we have

S
ϕ

E1, E2( 􏼁 � βg
ϕ

E1, E2( 􏼁, ∀E1, E2 ∈ TM, (20)

for some function β, where gϕ(E1, E2) � g(ϕE1,

ϕE2), and Sϕ is defined by

S
ϕ

E1, E2( 􏼁 �
1
2

S
∗

E1, E2( 􏼁 + Ric
∗

E2, E1( 􏼁􏼈 􏼉,

E1, E2 ∈ TM,

(21)

In other words, Sϕ denotes the symmetric part of S∗.
If β is constant, then M is called ϕ-Einstein [16].

(2) M is called near quasi-Einstein manifold if the Ricci
tensor is of the form

S E1, E2( 􏼁 � ag E1, E2( 􏼁 + bE E1, E2( 􏼁, ∀E1, E2 ∈ TM,

(22)

where a and b are the nonzero scalars and E is a
nonzero (0, 2) tensor [17].

(3) M is called an η-Einstein manifold if we have

S E1, E2( 􏼁 � αg E1, E2( 􏼁 + cη E1( 􏼁η E2( 􏼁, ∀E1, E2 ∈ TM,

(23)

where α and c are the constants [18].

By decomposition of Riemannian curvature tensor R, the
Weyl conformal curvature tensor W has been obtained in
this way:

W E1, E2( 􏼁E3 � R E1, E2( 􏼁E3 −
1

2n − 1
S E2, E3( 􏼁E1 − S E1, E3( 􏼁E2 + g E2, E3( 􏼁QE1 − g E1, E3( 􏼁QE2􏼈 􏼉

+
r

2n(2n − 1)
g E2, E3( 􏼁E1 − g E1, E3( 􏼁E2􏼈 􏼉.

(24)

for all E1, E2, E3 ∈ TM [15]. It is noted that, Weyl conformal
curvature tensor vanishes whenever the metric is con-
formally identical to a flat metric, and it is one of the im-
portant curvature properties on a manifold.

3. ∗ -Ricci Tensor on α-Cosymplectic Manifold

We are in a situation to confer the equation of the ∗ -Ricci
tensor in the framework of α-cosymplectic manifolds and
then study its various properties. In [19], authors derived the
expression of the ∗ -Ricci tensor on α-cosymplectic mani-
fold which is of the following form:

S
∗

E1, E2( 􏼁 � S E1, E2( 􏼁 +(2n − 1)α2g E1, E2( 􏼁

+ α2η E1( 􏼁η E2( 􏼁,
(25)

for all E1, E2 ∈ TM.

Note that S∗ is not symmetric. By contraction of (25), the
∗ -scalar curvature is specified by

r
∗

� r + 4n
2α2. (26)

If the ∗ -Ricci tensor S∗ is a constant multiple of the
Riemannian metric g, then we say that the manifold is
∗ -Einstein. Moreover, the ∗ -scalar curvature is not con-
stant on a ∗ -Einstein manifold.

3.1. ∗ -Ricci Semisymmetric α-Cosymplectic Manifolds. An
α-cosymplectic manifold M satisfying the condition
R(E1, E2) · S � 0 for all E1, E2 ∈ TM is called Ricci semi
symmetric, where R(E1, E2) acts as a derivation on S. +is
notion was introduced by Mirjoyan [20] for Riemann spaces
and then studied by many authors. Analogous to this, an
α-cosymplectic manifold is called ∗ -Ricci semisymmetric if
its ∗ -Ricci tensor satisfies the condition
R(E1, E2) · S∗ � 0∀E1, E2 ∈ TM.

Theorem 1. If a (2n + 1)-dimensional α-cosymplectic
manifold M is ∗ -Ricci semisymmetric, then M is ∗ -Ricci
flat. Moreover, it is an η-Einstein manifold, and the Ricci
tensor is to be exhibited as
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S E1, E2( 􏼁 � (1 − 2n)α2g E1, E2( 􏼁 − α2η E1( 􏼁η E2( 􏼁,

E1, E2 ∈ TM.
(27)

Proof. Let us consider ∗ -Ricci semisymmetric α-cosym-
plectic manifold M. +en, condition R(E1, E2).S

∗ � 0 is
equivalent to

S
∗

R E1, E2( 􏼁E3, E4( 􏼁 + S
∗

E3, R E1, E2( 􏼁E4( 􏼁 � 0. (28)

Putting E1 � ξ in (28) and then recalling (9), we have

α2 S
∗

E2, E4( 􏼁η E3( 􏼁 − g E2, E3( 􏼁S
∗ ξ, E4( 􏼁􏼈 􏼉

+ α2 S
∗

E3, E2( 􏼁η E4( 􏼁 − g E2, E4( 􏼁S
∗

E3, ξ( 􏼁􏼈 􏼉 � 0.
(29)

It is well known that Ric∗(E1, ξ) � 0. Making use of this
in (29), we find

α2 S
∗

E2, E4( 􏼁η E3( 􏼁 + S
∗

E3, E2( 􏼁η E4( 􏼁􏼉􏼈 􏼉 � 0. (30)

Again, plugging E4 by ξ in (30) shows that M is ∗ -Ricci
flat, that is, S∗(E3, E2) � 0, E3, E2 ∈ TM. Moreover, in view
of (25) and (30), we have the required result. □

3.2. ϕ-Conformally Flat α-Cosymplectic Manifolds. An
α-cosymplectic manifold M is said to be ϕ-conformally flat if
we have

ϕ2W ϕE1, ϕE2( 􏼁ϕE3 � 0, (31)

for all E1, E2, E3 ∈ TM. Sasakian manifolds which are
ϕ-conformally flat have been studied in [21]. In the fol-
lowing, we study a ϕ-conformally flat α-cosymplectic
manifold.

Theorem 2. An φ-conformally flat α-cosymplectic manifold
is ∗ − η-Einstein manifold. Moreover, M is weak φ-Einstein.

Proof. Assume that an α-cosymplectic manifold is
ϕ-conformally flat. So, it is easy to see that ϕ2C(ϕE1,

ϕE2)ϕE3 � 0 carry if and only if g(C(ϕE1,

ϕE2)ϕE3, ϕE4) � 0∀E1, E2, E3, E4 ∈ TM. Hence, ϕ-con-
formally flat means

g R ϕE1,ϕE2( 􏼁ϕE3, ϕE4( 􏼁 �
1

2n − 1
S ϕE2, ϕE3( 􏼁g ϕE1, ϕE4( 􏼁 − S ϕE1, ϕE3( 􏼁g ϕE2,ϕE4( 􏼁 + g ϕE2, ϕE3( 􏼁S ϕE1, ϕE4( 􏼁􏼈

− g ϕE1, ϕE3( 􏼁S ϕE2, ϕE4( 􏼁􏼉􏼉

−
r

2n(2n − 1)
g ϕE2, ϕE3( 􏼁g ϕE1,ϕE4( 􏼁􏼈

− g ϕE1, ϕE3( 􏼁g ϕE2,ϕE4( 􏼁􏼉.

(32)

For a local orthonormal basis ofTM with e1, . . . , e2n, ξ􏼈 􏼉,
if we put E1 � E4 � ei in (32) and sum up with respect to i,
then we obtain

􏽘

2n

i�1
g R ϕei, ϕE2( 􏼁ϕE3,ϕei( 􏼁 �

1
2n − 1

􏽘

2n

i�1
g ϕei,ϕei( 􏼁S ϕE2, ϕE3( 􏼁 − g ϕE2,ϕei( 􏼁S ϕei, ϕE3( 􏼁 + g ϕE2, ϕE3( 􏼁S ϕei, ϕei( 􏼁􏼈

− g ϕei,ϕE3( 􏼁S ϕE2, ϕei( 􏼁􏼉

−
r

2n(2n − 1)
􏽘

2n

i�1
g ϕei,ϕei( 􏼁􏼈

g ϕE2,ϕE3( 􏼁 − g ϕei, ϕE3( 􏼁g ϕE2, ϕei( 􏼁􏼉,

(33)

and therefore,

S ϕE2, ϕE3( 􏼁 − g R ξ, E2( 􏼁E3, ξ( 􏼁 �
2(n − 1)

2n − 1
S ϕE2,ϕE3( 􏼁 +

1
2n − 1

r

2n
+ α2􏼔 􏼕g ϕE2, ϕE3( 􏼁. (34)
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From (9), we obtain g(R(ξ, E2)E3, ξ) � − α2g(ϕE2,ϕE3),
and hence, from (34), we get

S ϕE2,ϕE3( 􏼁 �
r

2n
+ α2􏼔 􏼕g ϕE2,ϕE3( 􏼁. (35)

+en, from (35), it follows from (32) that

g R ϕE1, ϕE2( 􏼁ϕE3,ϕE4( 􏼁 �
r + 4nα2

2n(2n − 1)
g ϕE2, ϕE3( 􏼁g ϕE1, ϕE4( 􏼁 − g ϕE1, ϕE3( 􏼁g ϕE2, ϕE4( 􏼁􏼈 􏼉. (36)

In an α-cosymplectic manifold, in view of (3) and (9) for
all E1, E2, E3, E4 ∈ TM, we can verify that

R φ2
E1,φ

2
E2,φ

2
E3,φ

2
E4􏼐 􏼑 � R E1, E2, E3, E4( 􏼁 + α2 g E2, E3( 􏼁η E1( 􏼁η E2( 􏼁 − g E1, E3( 􏼁η E2( 􏼁η E4( 􏼁􏼈

+ g E1, E4( 􏼁η E2( 􏼁η E3( 􏼁 − g E2, E4( 􏼁η E1( 􏼁η E3( 􏼁􏼉.
(37)

Taking φE1,φE2,φE3,φE4 instead of E1, E2, E3, E4 in
(37), respectively, and making use of (36), we obtain

R E1, E2, E3, E4( 􏼁 �
r + 4nα2

2n(2n − 1)
g E1, E4( 􏼁g E2, E3( 􏼁 − g E2, E4( 􏼁g E1, E3( 􏼁􏼈 􏼉

−
r + 2n(2n + 1)α2

2n(2n − 1)
g E2, E3( 􏼁η E1( 􏼁 − g E1, E3( 􏼁η E2( 􏼁( 􏼁η E4( 􏼁 + g E1, E4( 􏼁η E2( 􏼁 − g E2, E4( 􏼁η E1( 􏼁( 􏼁η E3( 􏼁􏼈 􏼉.

(38)

By the definition of S∗, direct computation yields

S
∗

E1, E2( 􏼁 � 􏽘
2n+1

i�1
R E1, ei, ϕei, ϕE2( 􏼁

� βg E1, E2( 􏼁 − βη E1( 􏼁η E2( 􏼁,

(39)

where β � (r + 4nα2)/(2n(2n − 1)) reveals that M is
∗ − η-Einstein. In view of (3), we have

S
∗

E1, E2( 􏼁 �
r + 4nα2

2n(2n − 1)
g
ϕ

E1, E2( 􏼁, E1, E2 ∈ TM. (40)

+us, S∗ � Sϕ, and hence, it is weak ϕ-Einstein. +is
completes the proof. □

Next, for a constant scalar curvature of M, in view of
(40), we state the following.

Corollary 1. A ϕ-conformally flat α-cosymplectic manifold of
constant scalar curvature is a ϕ--Einstein manifold.

In an α-cosymplectic manifold, the ∗ -Ricci tensor is
given by (25), and so in view of (40), we state the following.

Corollary 2. A ϕ-conformally flat α-cosymplectic manifold is
η-Einstein.

Furthermore, an α-cosymplectic manifold M is called to
have the η-parallel Ricci tensor if its Ricci tensor S satisfies
the condition (∇E1

S)(ϕE2, ϕE3) � 0, E1, E2, E3 ∈ TM.
+is notion was introduced in 1976 by Kon [22] in the
framework of Sasakian manifolds and then studied by many
authors. Analogous to this notion, we state the following:

Definition 1. An α-cosymplectic manifold M is said to have
a η-parallel ∗ -Ricci tensor if its ∗ -Ricci tensor satisfies the
condition (∇E1

S∗)(ϕE2,ϕE3) � 0∀E1, E2, E3 ∈ TM.

Replacing E1 by ϕE1 and E2 by ϕE2 in (39), we obtain
S∗(ϕE1, ϕE2) � βg(ϕE1, ϕE2). Covariant derivative of the
foregoing equation with respect to E4, we get
(∇E4

S∗)(ϕE1,ϕE2) � dr(E4)g(ϕE1, ϕE2). +erefore, from
Definition 1, we have the following.

Corollary 3. Let M be a (2n + 1)-dimensional ϕ-con-
formally flat α-cosymplectic manifold. If M admits a
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η-parallel ∗ -Ricci tensor, then M has a constant scalar
curvature.

4. ∗ -Weyl Curvature Tensor on
α-Cosymplectic Manifolds

+e notion of ∗ -Weyl curvature tensor W∗ on real hy-
persurfaces of complex space forms (particularly, nonflat) is

defined recently by Kaimakamis and Panagiotidou [23] in
the following way:

W
∗

E1, E2( 􏼁E3 � R E1, E2( 􏼁E3 +
r
∗

2n(2n − 1)
g E2, E3( 􏼁E1 − g E1, E3( 􏼁E2􏼈 􏼉

−
1

2n − 1
g Q
∗
E2, E3( 􏼁E1 − g Q

∗
E1, E3( 􏼁E2 + g E2, E3( 􏼁Q

∗
E1 − g E1, E3( 􏼁Q

∗
E2􏼈 􏼉,

(41)

for all E1, E2, E3 ∈ TM, where Q∗ is the ∗ -Ricci operator
and r∗ is the ∗ -scalar curvature corresponding to Q∗.

Using (25), we can write

Q
∗
E1 � QE1 + α2 (2n − 1)E1 + η E1( 􏼁ξ􏼈 􏼉. (42)

With the help of (41), (32), and (42), we obtain the
expression for the ∗ -Weyl curvature tensor on
(2n + 1)-dimensional α-cosymplectic manifold M as

W
∗

E1, E2( 􏼁E3 � W E1, E2( 􏼁E3 −
2(n − 1)α2

2n − 1
g E2, E3( 􏼁E1 − g E1, E3( 􏼁E2􏼈 􏼉

−
α2

2n − 1
η E2( 􏼁η E3( 􏼁E1 − η E1( 􏼁η E3( 􏼁E2 + g E2, E3( 􏼁η E1( 􏼁ξ − g E1, E3( 􏼁η E2( 􏼁ξ􏼈 􏼉.

(43)

4.1. α-Cosymplectic Manifold with Vanishing ∗ -Weyl Cur-
vature Tensor

Theorem 3. An α-cosymplectic manifold with vanishing
∗ -Weyl curvature tensor is an η-Einstein manifold.

Proof. Let us consider an α-cosymplectic manifold M with
vanishing ∗ -Weyl curvature tensor, that is,
W∗(E1, E2)E3 � 0. +us, (43) infers that

W E1, E2( 􏼁E3 �
2(n − 1)α2

2n − 1
g E2, E3( 􏼁E1 − g E1, E3( 􏼁E2􏼈 􏼉

+
α2

2n − 1
η E2( 􏼁η E3( 􏼁E1 − η E1( 􏼁η E3( 􏼁E2 + g E2, E3( 􏼁η E1( 􏼁ξ − g E1, E3( 􏼁η E2( 􏼁ξ􏼈 􏼉.

(44)

Covariant differentiation of above relation along E4 and
then contracting the resultant equation over E4 yields
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divW E1, E2( 􏼁E3 � 2(n − 1)α3 g E1, E3( 􏼁η E2( 􏼁􏼈

− g E2, E3( 􏼁η E1( 􏼁􏼉,
(45)

where “div” denotes the divergence. On the other side,
differentiatingW covariantly along E4 and then contracting
with the aid of following well-known formulas,

divR E1, E2( 􏼁E3 � g ∇E1
Q􏼐 􏼑E2, E3􏼐 􏼑 − g ∇E2

Q􏼐 􏼑E1, E3􏼐 􏼑,

divQE1 �
1
2
E1(r),

(46)

we easily obtain

divW E1, E2( 􏼁E3 �
2(n − 1)

2n − 1
g ∇E1

Q􏼐 􏼑E2, E3􏼐 􏼑 − g ∇E2
Q􏼐 􏼑E1, E3􏼐 􏼑􏽮 􏽯 −

(n − 1)

2n(2n − 1)
g E2, E3( 􏼁E1(r) − g E1, E3( 􏼁E2(r)􏼈 􏼉. (47)

By virtue of (45) and (47), we have

2(n − 1)

2n − 1
g ∇E1

Q􏼐 􏼑E2, E3􏼐 􏼑 − g ∇E2
Q􏼐 􏼑E1, E3􏼐 􏼑􏽮 􏽯 � 2(n − 1)α3 g E1, E3( 􏼁η E2( 􏼁 − g E2, E3( 􏼁η E1( 􏼁􏼈 􏼉

+
(n − 1)

2n(2n − 1)
g E2, E3( 􏼁E1(r) − g E1, E3( 􏼁E2(r)􏼈 􏼉.

(48)

Replacing E2 by ξ in (48), we obtain

2(n − 1)

2n − 1
g ∇E1

Q􏼐 􏼑ξ, E3􏼐 􏼑 − g ∇ξQ􏼐 􏼑E1, E3􏼐 􏼑􏽮 􏽯 � 2(n − 1)α3 g E1, E3( 􏼁 − η E1( 􏼁η E3( 􏼁􏼈 􏼉

+
(n − 1)

2n(2n − 1)
η E3( 􏼁E1(r) − g E1, E3( 􏼁ξ(r)􏼈 􏼉.

(49)

Recalling Lemma 1 to find

2(n − 1)

2n − 1
α g QE1, E3( 􏼁 + α2g E1, E3( 􏼁􏽮 􏽯 + 2(n − 1)α3η E1( 􏼁η E3( 􏼁 �

n − 1
2n(2n − 1)

η E3( 􏼁E1(r) − g E1, E3( 􏼁ξ(r)􏼈 􏼉. (50)

Writing ξ instead of E3 by ξ in the foregoing equation
and by making use of (11), we derive

X(r) � ξ(r)η E1( 􏼁. (51)

Making use of this equation in (50) yields

αg QE1, E3( 􏼁 � − α3 +
1
4n

ξ(r)􏼔 􏼕g E1, E3( 􏼁 + − (2n − 1)α3 +
1
4n

ξ(r)􏼔 􏼕η E1( 􏼁η E3( 􏼁. (52)
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Using (14) in (52), we get

S E1, E3( 􏼁 � 2nα2 +
r

2n
􏼚 􏼛g E1, E3( 􏼁

+ − 4nα2 −
r

2n
􏼚 􏼛η E1( 􏼁η E3( 􏼁.

(53)

+is proves our result. □

Substituting (53) in (25), we have

S
∗

E1, E3( 􏼁 � c g E1, E3( 􏼁 − η E1( 􏼁η E3( 􏼁􏼈 􏼉, (54)

where c � (1/2n) + (4n − 1)α2 shows that M is ∗ − η-Ein-
stein. In view of (3), we obtain

S
∗

E1, E3( 􏼁 �
r

2n
+(4n − 1)α2􏼔 􏼕g

ϕ
E1, E3( 􏼁, E1, E3 ∈ TM.

(55)

+us, S∗ � Sϕ, and hence, it is weak ϕ-Einstein. +us, we
state the following.

Theorem 4. An α-cosymplectic manifold with vanishing
∗ -Weyl curvature tensor is a weak ϕ-Einstein manifold.

4.2. α-Cosymplectic Manifold Satisfying the Condition
R(X, Y) · W∗ � 0. An α-cosymplectic manifold M is called
semisymmetric if its curvature tensor satisfies the condition
R · R � 0. In [24], Szabo studied the intrinsic classification of
semisymmetric spaces thoroughly. In this context, Ven-
katesha and Kumara [21] studied Sasakian manifolds sat-
isfying condition R(E1, E2) · W∗ � 0. In this section, we
make an attempt to study this condition in the framework of
α-cosymplectic manifolds and prove the following.

Theorem 5. An α-cosymplectic manifold satisfying the
condition R(E1, E2) · W∗ � 0 is an η-Einstein manifold.

Proof. Let M be an (2n + 1)-dimensional α-cosymplectic
manifold satisfying the condition (R(E1, E2) · W∗)

(U, V)E4 � 0. +is infers that

R E1, E2( 􏼁W
∗
(U, V)E4 − W

∗
R E1, E2( 􏼁U, V( 􏼁E4 − W

∗
U, R E1, E2( 􏼁V( 􏼁E4 − W

∗
(U, V)R E1, E2( 􏼁E4 � 0. (56)

Plugging ξ in place of E1 in the previous equation and
then picking inner product with ξ for the resultant equation,
we obtain

η R ξ, E2( 􏼁W
∗
(U, V)E4( 􏼁 − η W

∗
R ξ, E2( 􏼁U, V( 􏼁E4( 􏼁 − η W

∗
U, R ξ, E2( 􏼁V( 􏼁( 􏼁E4 − η W

∗
(U, V)R ξ, E2( 􏼁E4( 􏼁 � 0. (57)

In view of (9), it follows from (56) that

α2
W
∗

U, V, E4, E2( 􏼁 − g E2, U( 􏼁η W
∗
(ξ, V)E4( 􏼁 − η W

∗
(U, V)E4( 􏼁η E2( 􏼁

− g E2, V( 􏼁η W
∗
(U, ξ)E4( 􏼁 + η(U)η W

∗
E2, V( 􏼁E4( 􏼁 + η(V)η W

∗
U, E2( 􏼁E4( 􏼁

− g E2, E4( 􏼁η W
∗
(U, V)ξ( 􏼁 + η E4( 􏼁η W

∗
(U, V)E2( 􏼁

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

� 0. (58)

Replacing E2 by U in the above equation, we have

W
∗

U, V, E4, U( 􏼁 − g(U, U)η W
∗
(ξ, V)E4( 􏼁 − g(U, V)η W

∗
(U, ξ)E4( 􏼁 + η E4( 􏼁η W

∗
(U, V)U( 􏼁 � 0, (59)

provided α2 ≠ 0. By virtue of (43), one can easily see that
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η W
∗

E1, E2( 􏼁E3( 􏼁 � −
1

2n − 1
g QE2, E3( 􏼁η E1( 􏼁 − g QE1, E3( 􏼁η E2( 􏼁􏼈 􏼉 +

r

2n(2n − 1)
−
2(n − 1)

2n − 1
α2􏼢 􏼣

g E2, E3( 􏼁η E1( 􏼁 − g E1, E3( 􏼁η E2( 􏼁􏼈 􏼉, η W
∗

E1, E2( 􏼁ξ( 􏼁 � 0,

(60)

η W
∗

E1, ξ( 􏼁E3( 􏼁 �
1

2n − 1
g QE1, E3( 􏼁 +

1
2n − 1

2(n − 1)α2 −
r

2n
􏼔 􏼕g E1, E3( 􏼁 +

1
2n − 1

r

2n
+ 2α2􏼔 􏼕η E1( 􏼁η E3( 􏼁, (61)

􏽘

2n+1

i�1
W
∗

ei, E2, E3, ei( 􏼁 � − (2n − 1)α2g E2, E3( 􏼁 − α2η E2( 􏼁η E3( 􏼁, (62)

where ei􏼈 􏼉
2n+1
i�1 is an orthonormal basis of the tangent space at

any point of the manifold. Taking U � ei in (59) and
summing over i and making use of (56)–(61), we get

S V, E4( 􏼁 �
1
2n

r + α2􏽮 􏽯g V, E4( 􏼁

−
1
2n

r + 4n
2

+ 1􏼐 􏼑α2􏽮 􏽯η(V)η E4( 􏼁.

(63)

+is completes the proof. □

5. α-Cosymplectic Manifolds Admitting
∗ -Ricci Solitons

Hamilton [25] introduced the notion of Ricci solitons as
fixed points of the Ricci flows on a Riemannian manifold,
and they are also self-similar solutions. +ese self-similar
solutions also generalize Einstein metrics. Ricci solitons also
correspond to self-similar solutions of Hamilton’s Ricci flow.
A Ricci soliton with a potential vector field V is defined by

EVg( 􏼁 E1, E2( 􏼁 + 2S E1, E2( 􏼁 + 2λg E1, E2( 􏼁 � 0, (64)

for some constant λ. +e Ricci soliton is said to be shrinking,
steady, and expanding accordingly as λ is negative, zero, and
positive, respectively. +e study of Ricci solitons and almost
Ricci solitons on three-dimensional cosymplectic manifolds
have been carried out by Wang [26] and De and Dey [27],
respectively.

By taking the necessary modification (64), Kaimakamis
and Panagiotidou [28] introduced the notion of a special

type of metric called ∗ -Ricci soliton on real hypersurfaces of
nonflat complex space forms. A Riemannian metric g on M

is called ∗ -Ricci soliton, if the Lie derivative of a vector field
V on M is given by

EVg( 􏼁 E1, E2( 􏼁 + 2S
∗

E1, E2( 􏼁 + 2λg E1 · E2( 􏼁

� 0,∀E1, E2 ∈ TM.
(65)

Recently, the study of ∗ -Ricci solitons within the
context of almost contact and paracontact manifolds were
carried out in the studies [18, 29–34] and drawn several
interesting results. In this section, we intended to ∗ -Ricci
soliton on a α-cosymplectic manifold. Now, we prove the
following result.

Theorem 6. Let M be α-cosymplectic manifold admitting a
∗ -Ricci soliton. If the potential vector field V is pointwise
collinear with ξ, then M is a near quasi-Einstein manifold.

Proof. Let V be a pointwise collinear vector field with ξ.
+en, we have V � bξ. From (7) and (65), we derive

EVg( 􏼁 E1, E2( 􏼁 � g ∇E1
V, E2􏼐 􏼑 + g ∇E2

V, E1􏼐 􏼑

� E1(b)η E2( 􏼁 + E2(b)η E1( 􏼁 + 2bα g E1, E2( 􏼁􏼈

− η E1( 􏼁η E2( 􏼁􏼉.

(66)

Let M be an α-cosymplectic manifold admitting a
∗ -Ricci soliton. +en, from (61) and (62), we obtain

S
∗

E1, E2( 􏼁 � − λ + bα{ }g E1, E2( 􏼁 + bαη E1( 􏼁η E2( 􏼁 −
1
2

E1(b)η E2( 􏼁 + E2(b)η E1( 􏼁􏼈 􏼉. (67)
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Let Db be a gradient of smooth function b on M, that is,
E1(b) � g(Db , E1) and E2(b) � g(Db , E2). +en, by
denoting the dual form of Db by v, we write

E1(b) � v E1( 􏼁,

E2(b) � v E2( 􏼁.
(68)

By taking account of foregoing equations in (67), we get

S
∗

E1, E2( 􏼁 � − λ + bα{ }g E1, E2( 􏼁 + bαη E1( 􏼁η E2( 􏼁 −
1
2

v E1( 􏼁η E2( 􏼁 + v E2( 􏼁η E1( 􏼁􏼈 􏼉. (69)

+en, from (25), equation (65) reduces to

S E1, E2( 􏼁 � − λ + bα +(2n − 1)α2􏽮 􏽯g E1, E2( 􏼁 + bα − α2􏽮 􏽯η E1( 􏼁η E2( 􏼁 −
1
2

v E1( 􏼁η E2( 􏼁 + v E2( 􏼁η E1( 􏼁􏼈 􏼉. (70)

Let us take a nonvanishing symmetric (0, 2) tensor E in
(66), such that

S E1, E2( 􏼁 � bα − α2􏽮 􏽯η E1( 􏼁η E2( 􏼁 −
1
2

v E1( 􏼁η E2( 􏼁􏼈

+ v E2( 􏼁η E1( 􏼁􏼉.

(71)

+en, equation (66) yields

S E1, E2( 􏼁 � ag E1, E2( 􏼁 + E E1, E2( 􏼁, (72)

where a � − λ + bα + (2n − 1)α2􏼈 􏼉. So, M is a near quasi-
Einstein. □

As an immediate outcome of +eorem 6, we have the
following corollary.

Corollary 4. An α-cosymplectic manifold admitting a
∗ -Ricci soliton is an η-Einstein manifold if V � ξ.

A near quasi-Einstein manifold is not a manifold of
nearly quasiconstant curvature. But, it is noted (+eorem 3.1
of [35]) that, a conformally flat near quasi-Einstein manifold
is a manifold of nearly quasiconstant curvature. Hence, as
immediate consequence of this fact, we obtain the following
corollary:

Corollary 5. A conformally flat α-cosymplectic manifold
admitting a ∗ -Ricci soliton is a manifold of near quasi-
constant curvature if V is a pointwise collinear with ξ.

However, since a 3-dimensional Riemannian manifold is
conformally flat, we have following.

Corollary 6. A 3-dimensional α-cosymplectic manifold ad-
mitting ∗ -Ricci soliton is a manifold of nearly quasiconstant
curvature if V is a pointwise collinear with ξ.

6. Conclusions

Einstein manifolds which are arisen from Einstein field
equations are very important classes of Riemann mani-
folds. Some generalizations of Einstein manifolds have
been defined in the literature, and there have been ob-
tained some applications of these kinds of manifolds in
theoretical physics. Contact manifolds are special Rie-
mann manifolds with almost contact structures. In the-
oretical physics, there are valuable applications of contact
manifolds. Contact manifolds divided into many sub-
classes via the certain properties of the structure. An
important one is α-cosymplectic manifold. +is structure
is also a generalization of some different contact struc-
tures. Many different characteristic properties of mani-
folds with structures have been arisen from their special
structures. One of important notion is the ∗ -Ricci tensor.
+is notion carries significant curvature features, and this
feature gives valuable information about the geometry of
the manifold. In this study, α-cosymplectic manifolds
have been examined under the effect of the ∗ -Ricci
tensor. Important results have been obtained on some
generalized Einstein manifolds, which emerged with the
effect of the ∗ -Ricci tensor. +e notion of Ricci soliton
comes from searching the solutions of Ricci flow equa-
tions. Ricci solitons have been effected from the structure
of manifolds. We studied the concept of ∗ -Ricci soliton
for α-cosymplectic manifolds. By the way, important
physical results have been stated in this study.
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