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Abstract. This paper gives a classification of real hypersurfaces in a complex

projective space under assumptions that the structure vector £ is principal, the

focal map has constant rank, and V¿S = 0, where S is the Ricci tensor of the

real hypersurface.

Introduction

Let PH(C) bean «-dimensional complex projective space with Fubini-Study

metric G of constant holomorphic sectional curvature 4, and let M be a
real hypersurface of Pn(C). Then M has an almost contact metric structure

(<!>,£,'],g) (cf. §1) induced from the complex structure J of P„(C). Many

differential geometers have studied M by using structure (<t>,£,n, g). Typi-

cal examples of real hypersurfaces in P„(C) are homogeneous ones. Takagi [9]
classified homogeneous real hypersurfaces in P„(C). By virtue of his work, we

find that a homogeneous real hypersurface of P„{C) is locally congruent to one
of the six model spaces of type Ax, A2, B, C, D, and E (see Theorem A).

It is well known that there exist no Einstein real hypersurfaces M in P„(C),

n > 3 (cf. [5]). Moreover, P„iC) in > 3) does not admit real hypersurfaces

M with parallel Ricci tensor S (that is, VxS = 0 for each vector field X
tangent to M, where V denotes the induced Riemannian connection from the

Riemmanian connection V of P„(C) ; cf. [2]). So, it is natural to investigate

real hypersurfaces M by using some conditions (on the derivative of S) which
are weaker than VS = 0.

The purpose of this paper is to classify real hypersurfaces M in P„(C) sat-
isfying VçS = 0 (that is, the Ricci tensor S is parallel in the direction of the
structure vector £, = -JN, where TV is a unit normal vector field on M) under

the condition that £ is a principal curvature vector of M and that the focal
map has constant rank on M. We have
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Theorem. Let M be a real hypersurface of PniC) in > 3) on which £ is a

principal curvature vector with principal curvature a = 2 cot 2r and the focal

map fa has constant rank on M. If V^S = 0, then M is locally congruent to

one of the following:
il) a homogeneous real hypersurface which lies on a tube of radius r over a

totally geodesic PkiC)  (1 < k < n - 1), where 0 < r < n/2 ;
(2) a homogeneous real hypersurface which lies on a tube of radius r over a

complex quadric Q„-X, where 0 < r < n/4 and cot2 2r = n - 2 ;

(3) a homogeneous real hypersurface which lies on a tube of radius r over

P\(C) x P(„_i)/2(C), where 0<r <n/4, coX22r = l/(w — 2), and n (> 5) is
odd;

(4) a homogeneous real hypersurface which lies on a tube of radius r over a

complex Grassmann G2tsiC), where 0 < r < n/4, cot22r = 3/5, and n = 9;
(5) a homogeneous real hypersurface which lies on a tube of radius r over a

Hermitian symmetric space SO(10)/U(5), where 0 < r < n/4, coX22r = 5/9,

and n = 15 ;
(6) a nonhomogeneous real hypersurface which lies on a tube of radius n/4

over a Kaehler submanifold Ñ with nonzero principal curvatures ¿ ± 1 ;
(7) a nonhomogeneous real hypersurface which lies on a tube of radius r

over a k-dimensional Kaehler submanifold N on which the rank of each

shape operator is not greater than 2 with nonzero principal curvatures ^

±((2k - 1)1 (In -2k- l))1/2 and cot2r = (2k - 1)1 (In - 2k - I), where
k = l,...,n-l.

1. Preliminaries

Let M be an orientable real hypersurface of Pn(C), and let N be a unit

normal vector field on M. The Riemannian connections V in Pn(C) and V
in M are related by the following formulas for any vector fields X and Y on

M:

(1.1) VxY = VxY + giAX,Y)N,

(1.2) VXN = -AX,

where g denotes the Riemannian metric of M induced from the Fubini-Study

metric G of PniC) and A is the shape operator of M in P„(C). An eigen-
vector X of the shape operator A is called a principal curvature vector. Also an

eigenvalue A of A is called a principal curvature. In what follows, we denote by

Vx the eigenspace of A associated with eigenvalue X. It is known that M has

an almost contact metric structure induced from the complex structure / on

PniC) ; that is, we define a tensor field cf> of type (1.1), a vector field Ç, and a 1-

form n on M by g(<f>X, Y) = GiJX, Y) and g(i,X) = n(X) = GiJX, N).
Then we have

(1.3) <p2X = -X + tiiX)Z,        g(i,£) = l,        44 = 0.

It follows from (1.1) that

(1.4) (Vx4>)Y = niY)AX-giAX,Y)cl,

(1.5) Vxl; = <pAX.
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Let R and R be the curvature tensors of P„(C) and M, respectively. Since the

curvature tensor R has a nice form, we have the following Gauss and Codazzi
equations:

(1.6)
g(R(X, Y)Z , W) = g(Y, Z)g(X, W) - giX, Z)g(Y, W)

+ g(<pY, Z)gi<f>X, W)
- g(4>X, Z)gi<t>Y, W) - 2g(c/>X, Y)g(<pZ , W)

+ giAY, Z)giAX, W)-g(AX, Z)giAY, W),

(1.7) (VXA)Y - (VYA)X = n(X)4>Y - n(Y)<f>X - 2g(<pX, Y)c;.

From (1.3), (1.5)-(1.7) we get

(1.8) SX = (2n+l)X-3n(X)c¡ + hAX-A2X,

Í19) (VxS)Y= -3{g(cl>AX,Y)c: + n(Y)(pAX} + (Xh)AY

[ ' ' + (hI-A)(VxA)Y-(VxA)AY,

where h = traced, S is the Ricci tensor of type (1, 1) on M, and / is the
identity map.

In the following, we use the same terminology and notation as above unless

otherwise stated. Now we prepare the following without proof in order to prove
our Theorem:

Theorem A [9]. Let M be a homogeneous real hypersurface of Pn(C). Then

M is a tube of radius r over one of the following Kaehler submanifolds:

(Ax) hyperplane P„-X(C), where 0 < r < n/2;
(A2) totally geodesic Pk(C)  (1 < k < n - 2), where 0 < r < n/2 ;
(B) complex quadric Q„-X, where 0 < r < n/4 ;

(C) Pi(C) x />(„_i)/2(C), where 0 < r < n/4 and n  (> 5) is odd;
(D) complex Grassmann G2¡5(C), where 0 < r < n/4 and n = 9 ;

(E) Hermitian symmetric space SO(10)/U(5), where 0 < r < n/4 and n =
15.

Theorem B [3]. Let M be a real hypersurface of Pn(C). Then M has constant

principal curvatures and £ is a principal curvature vector if and only if M is

locally congruent to a homogeneous real hypersurface.

Theorem C [4]. Let M be a real hypersurface of Pn(C). If V¡A = 0, then Ç
is a principal curvature vector; in addition, except for the null set on which the
focal map <j>r degenerates, M is locally congruent to one of the following:

(i) a homogeneous real hypersurface which lies on a tube of radius r over a

totally geodesic Pk(C)  (1 < k < n - 1), where 0 < r < n/2 ;
(ii) a nonhomogeneous real hypersurface which lies on a tube of radius n/4

over a Kaehler submanifold N with nonzero principal curvatures / ±1.

Proposition A [6]. If ¿; is a principal curvature vector, then the corresponding
principal curvature a is locally constant.

Proposition B [6]. Assume that i is a principal curvature vector and the cor-
responding principal curvature is a. If AX = XX for X _L £,, then we have

AtpX = ((aX + 2)/(2X - a))tpX.
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Proposition C [1]. Let M be a connected orientable real hypersurface (with unit

normal vector N) in Pn(C) on which ¿; is a principal curvature vector with

principal curvature a = 2 cot 2r and the focal map fa has constant rank on M.
Then the following hold:

(i) M lies on a tube (in the direction of n = y'(r), where y(r) = expx(rN)

and x is a base point of the normal vector N) of radius r over a certain Kaehler

submanifold Ñ in Pn(C).
(ii) Let cox 6 be a principal curvature of the shape operator An at y = y(r)

of the Kaehler submanifold Ñ. Then the real hypersurface M has a principal
curvature coX(r -6) at x = y(0).

Finally we prepare the following three lemmas.

Lemma 1. If AC = 0, then V^A = 0.

Proof. Since £ is a principal curvature vector, in general (1.5) and Proposition
A assert that

(1.10) (V^){ = 0.

Let X be a principal curvature (unit) vector orthogonal to ¿; with principal
curvature X. Then Proposition B shows that

(1.11) AtpX = (1 / X)<pX.

Now, for any principal curvature vector X orthogonal to Ç we have

(V(A)X = (VXA)£, + 4>X   (from (1.7)

= VX(AÇ) - AVX£, + 4>X = -AtpAX + <pX   (from A£ = 0 and (1.5))

= 0   (from (1.11)).

So, we conclude that Vf ,4 = 0.   G

Lemma 2. If ä, is a principal curvature vector, then £ (traced) = 0.

Proof. For each principal curvature (unit) vector X orthogonal to £ with prin-

cipal curvature X, from (1.5), (1.7) and Propositions A and B we get

(1.12) (VtA)X = a{X - (aX + 2)/(2A - a)}/2 ■ <pX.

Hence (1.10) and (1.12) imply tracetV,^) = 0, so £(trace^)(= trace(Vf^)) =
0.   a

Lemma 3. // V^A = 0, then V^S = 0.

Proof. We note that V$A = 0 implies £ is a principal curvature vector (cf.
Theorem C) and ¿¡(traced) = 0. Then (1.9) tells us that V^A = 0 implies
V{5 = 0.   D

2. Proof of Theorem

By hypothesis we may put AE, = at,. From Proposition A our discussion is

divided into two cases: (i) a = 0 and (ii) a ^ 0.

Case (i): a = 0. First we remark that our real hypersurface M satisfies

V$A = 0 (cf. Lemma 1). Hence by virtue of Theorem C we find that M

is locally congruent to a homogeneous real hypersurface which lies on a tube
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of radius 7t/4 over a totally geodesic Pk(C) (1 < k < n - 1) or congruent to
a nonhomogeneous real hypersurface which lies on a tube of radius n/4 over

a Kaehler submanifold N with nonzero principal curvatures / ±1, that is,
M is of case (1) with r = n/4 or of case (6) in Theorem. Of course, these

examples satsify V(S = 0 (see Lemma 3).

Case (ii): a / 0. In the following, X denotes a principal curvature (unit)
vector orthogonal to £ with principal curvature X. Since £ is a principal
curvature vector, (V¿5)£ = 0 holds (see, (1.9), (1.10), and Lemma 2). So we

have only to determine real hypersurfaces M satisfying (V^S)X = 0 for any

X. Incase X = (aX + 2)/(2X-a), from (1.9), (1.12), and Lemma 2 we find that
(V^X = 0. Next we consider the case of X / (aX + 2)/(2A - a). Here, for

simplicity we put a = a{X - (aX + 2)/2A - a)}/2. Note that a # 0. It follows
from (1.9), (1.12), and Lemma 2 that

(V(S)X = a{h-X- (aX + 2)/(2a - a)}<f>X.

Hence X must satisfy the following quadratic equation for X :

(1.13) h-X-(aX + 2)/(2X-a) = 0.

Since £ is a principal curvature vector and the focal map fa has constant rank
on M, our manifold M is a tube (of radius r) over a certain (fc-dimensional)

Kaehler submanifold N in P„(C). So we may put a = 2cot2r (= cot r- tan r)

(cf. Proposition C). Hence, solving the equation X - (aX + 2)/(2A - a) = 0, we

see that X = coXr, -tanr. We here denote by Xx, X2 (/ cotr, -tanr) the

solutions for (1.13). Note that (cf. Proposition B)

(1.14) 4>VC0Xr = Vcotr,        <f)V-tanr= F-tan,,    and   <pVXx = Vh.

Then M has at most five distinct principal curvatures 2 cot 2r (with multiplic-

ity 1), cotr (withmultiplicity 2n-2k-2), -tanr (withmultiplicity 2k-2m),
Xx (with multiplicity m > 0), and X2 (with multiplicity m > 0). We here note
that the multiplicity of the principal curvature cot r is determined by the result
of Proposition 3.1 of [1]. Hence

(1.15) h = (2n-2k- l)coXr- (2k-2m + l)tanr + m(Xx +X2).

On the other hand,

(1.16) h = Xx+X2.

It follows from (1.15) and (1.16) and X2 = (aXx + 2)/(2Ai - a) that

(2n-2k- 1) cotr- (2k-2m+ 1) tanr

('    } +(m-l){Ai+Mi+2)/(2Ai-a)} = 0.

In the following, Case (ii) is divided into three cases: (I) m = 0, (II) m = 1,
and (III) m > 2.

Case (I). Our manifold M is of case (1) with 0 < r(/ tt/4) < n/2 in Theorem
(cf. [6]). As a matter of course, the manifold M satisfies V^S = 0 (cf. Theorem
C and Lemma 3).

Case (II). Our real hypersurface M has at most five distinct principal curva-

tures 2cot2r (withmultiplicity 1) cotr (withmultiplicity 2n-2k-2), -tanr
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(with multiplicity 2k -2), Xx (with multiplicity 1), and X2 (with multiplicity
1). Since the multiplicities of the principal curvatures of M do not match the

multiplicities of any homogeneous real hypersurface, the manifold M is not

homogeneous (cf. [10]). Hence, both Xx and X2 are not constant (cf. Theo-

rem B). Moreover, Proposition C shows that Xx and X2 can, respectively, be

expressed as Xx = coX(r - 6) and X2 = coX(r + 6). where cot 6 is a principal

curvature of the Kaehler submanifold Ñ. In addition, Equation (1.17) yields

(1.18) cot2r = (2Ä:-l)/(2n-2Ä:-l).

Hence the manifold M satisfying (1.14), (1.16), and (1.18) is of case (7) in
Theorem.

Case (III). It follows from (1.17) and Proposition A that Xx is constant. There-

fore, we can see that our manifold M is homogeneous (cf. Theorem B). Now
we shall check V^S = 0 one-by-one for homogeneous real hypersurfaces of

types (B), (C), (D), and (E).
Let M be of type (B) (which is a tube of radius r). Let x = cotr. Then

M has three distinct constant principal curvatures rx = (1 + x)/(l - x) with
multiplicity n - 1, r2 = (x - l)/(x + 1) with multiplicity n - 1, and a =

(x2 - l)/x with multiplicity 1 (cf. [10]). Since tf>Vri = Vri, V{5" = 0 is equiva-

lent to h - rx - r2 = 0. Then we have the equation x4 - 2(2« - 3)x2 + 1 = 0.

Hence, we find x2 = 2« - 3 ± 2-v/(n - 1)(« - 2) so that x = y/n - 1 + \Jn-2,
since x > 1. So M is of case (2) in Theorem. Now let M be of type (C) (which

is a tube of radius r). Let x = cot r. Then M has five distinct constant prin-

cipal curvatures T\ = (1 + x)/(l - x) with multiplicity 2, r2 = (x - l)/(x + 1)

with multiplicity 2, r3 = x with multiplicity n - 3, r¡, = -1/x with mul-

tiplicity n - 3, and a = (x2 - l)/x with multiplicity 1 (cf. [10]). Since
4>Vri = Vr2, tpVr¡ = Vr¡, and §VU = Vu , it follows that V¿5 = 0 is equivalent to

h - rx - r2 = 0. Then we have the equation (« - 2)x4 - 2nx2 + «-2 = 0. Hence,

we find x2 = (« ± 2\/n — l)/(« - 2) so that x = (•»/« - 1 + 1)/Vn - 2, since
x > 1. Hence, M is of case (3) in Theorem. Let M be of type (D) (which is a

tube of radius r). Let x = cot r. Then M has five distinct constant principal

curvatures /"i = (1 + x)/(l - x) with multiplicity 4, r2 = (x - l)/(x + 1) with

multiplicity 4, r3 = x with multiplicity 4, r4 = -1/x with multiplicity 4, and

a = (x2 - l)/x with multiplicity 1 (cf. [10]). By virtue of the discussion in

case of type (C) we have only to solve the equation h - rx - r2 = 0. Namely,

we get the equation 5x4 - 22x2 + 5 = 0 so that x = (->/8 + \/~3)/V5. Hence M
is of case (4) in Theorem. Finally let M be of type (E) (which is a tube of ra-
dius r). Let x = cot r. Then M has five distinct constant principal curvatures

rx = (1 +x)/(l -x) with multiplicity 6, r2 = (x- l)/(x+1) with multiplicity 6,

r3 = x with multiplicity 8, r4 = -1/x with multiplicity 8, and a = (x2 - l)/x
with multiplicity 1 (cf. [10]). Considering the equation h - rx - r2 = 0, we have

the equation 9x4 - 38x2 + 9 = 0 so that x = (v^ + vT4)/3 . Hence, M is of
case (5) in Theorem.   Q.E.D.

Remarks. ( 1 ) The condition "the Kaehler submanifold Ñ does not have prin-

cipal curvatures ±1 " in case (6) of Theorem and the condition "the Kaehler

submanifold Ñ does not have principal curvatures ±((2/c-l)/(2n-2rC-l))1/2''

in case (7) of Theorem are necessary. In general, Proposition C (ii) shows that
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the point x   (= y(0)) is a singular point of M (that is, M is not smooth at
the point x), when r = 9 .

(2) Case (2) in Theorem is the only tube over Q„-X which is pseudo-Einstein
(cf. [1]).

(3) Case (7) in Theorem is nothing else but case (6) in Theorem, when n =

2k.
(4) The author does not know examples of manifolds N having the properties

required in Case (7) in Theorem in the case of k > 2. The following N is an

example in the case of k = 1.

Let N = Pi(C) (of holomorphic sectional curvature 4/n) be a complex

curve imbedded into P„(C) (of holomorphic sectional curvature 4) through

the Veronese imbedding of degree n  (> 3) (see [7, Remark, p. 83]).

Therefore, the tube of radius cot-1 {( 1/(2« -3))1/2} over the complex curve

N must be an example of Case (7) in Theorem in the case of k = 1 (see [7, p.
90-91]).

(5) Y. J. Suh considered another condition on the derivative of S. He showed
the following (cf. [8]): Let M be a real hypersurface of P„(C). Then £ is a

principal curvature vector and gi(VxS)Y, Z) = 0 for any X, Y, and Z
which are orthogonal to <* if and only if M is locally congruent to one of the

homogeneous real hypersurfaces of types (At), (A2), and (B).
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