
Y. WANG
KODAI MATH. J.
39 (2016), 469–483

RICCI TENSORS ON THREE-DIMENSIONAL ALMOST

COKÄHLER MANIFOLDS

Yaning Wang

Abstract

Let M 3 be a three-dimensional almost coKähler manifold such that the Ricci

curvature of the Reeb vector field is invariant along the Reeb vector field. In this

paper, we obtain some classification results of M 3 for which the Ricci tensor is

h-parallel or the Riemannian curvature tensor is harmonic.

1. Introduction

In the last several decades, the study of almost contact geometry has been an
interesting research field both from pure mathematical and physical viewpoints.
One important class of di¤erentiable manifolds in the framework of almost
contact geometry is known as the coKähler manifolds, which were first intro-
duced by Blair [1] and studied by Blair [2], Goldberg and Yano [7] and Olszak
et al. [5, 11]. We point out here that the coKähler manifolds in this paper are
just the cosymplectic manifolds shown in the above early literatures. The new
terminology was recently adopted by many authors mainly due to Li [8], in which
the author gave a topology construction of coKähler manifolds via Kähler
mapping tori. According to Li’s work, we see that the coKähler manifolds are
really odd dimensional analogues of Kähler manifolds. We also refer the readers
to a recent survey by Cappelletti-Montano et al. [3] and many references therein
regarding geometric and topological results on coKähler manifolds.

As a generalization of coKähler manifolds and an analogy of almost Kähler
manifolds, the almost coKähler manifolds were widely studied by many authors
recently. In particular, D. Perrone in [12] obtained a complete classification of
homogeneous almost coKähler manifolds of dimension three and also gave a
local characterization of such manifolds under a condition of local symmetry.
Recently, the present author in [15] proved that on a three-dimensional almost
coKähler manifold the conditions of local symmetry and f-symmetry are
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equivalent. Also, D. Perrone in [13] characterized the minimality of the Reeb
vector field of three-dimensional almost coKähler manifolds. In addition, a new
local classification of three-dimensional almost coKähler manifolds under the
condition ‘‘‘xh ¼ 2f fh and kgradðlÞk is a non-zero constant, where f is a
smooth function and l denotes a positive eigenvalue function of h :¼ 1

2Lxf’’ was
also provided by Erken and Murathan [6].

In this paper, we aim to study a three-dimensional almost coKähler manifold
M 3 such that the Ricci curvature of the Reeb vector field is invariant along the
Reeb vector field (this is equivalent to ‘xh ¼ 2f fh, where f denotes a smooth
function). Some examples of such manifolds were also provided in Section 3.
If, in addition, the Ricci tensor of M 3 is of Codazzi-type (this is equivalent to
that the Riemannian curvature tensor of M 3 is harmonic), we prove that M 3 is
locally isometric to the product R�N 2ðcÞ, where N 2ðcÞ denotes a Kähler surface
of constant curvature c ðc ¼ 0 means that M 3 is locally the flat Euclidean space
R3Þ. We also prove that if the Ricci tensor of M 3 is h-parallel, then either M 3

is locally the product R�N 2ðcÞ or M 3 is locally isometric to a Lie group
equipped with a left invariant almost coKähler structure. Some applications and
corollaries of our main results are also provided.

2. Preliminaries

On a ð2nþ 1Þ-dimensional smooth manifold M 2nþ1 if there exist a ð1; 1Þ-type
tensor field f, a global vector field x and a 1-form h such that

f2 ¼ �idþ hn x; hðxÞ ¼ 1;ð2:1Þ

where id denotes the identity endomorphism, then we say that M 2nþ1 admits
an almost contact structure which is denoted by the triplet ðf; x; hÞ and x is called
the characteristic or the Reeb vector field. It follows from relation (2.1) that
fðxÞ ¼ 0, h � f ¼ 0 and rankðfÞ ¼ 2n. We denote by ðM 2nþ1; f; x; hÞ a smooth
manifold M 2nþ1 endowed with an almost contact structure, which is called
an almost contact manifold. We define an almost complex structure J on the
product manifold M 2nþ1 � R by

J X ; f
d

dt

� �
¼ fX � f x; hðXÞ d

dt

� �
;ð2:2Þ

where X denotes the vector field tangent to M 2nþ1, t is the coordinate of R and
f is a smooth function defined on the product M 2nþ1 � R.

An almost contact structure is said to be normal if the above almost complex
structure J is integrable, i.e., J is a complex structure. According to Blair [2],
the normality of an almost contact structure is expressed by ½f; f� ¼ �2 dhn x,
where ½f; f� denotes the Nijenhuis tensor of f defined by

½f; f�ðX ;YÞ ¼ f2½X ;Y � þ ½fX ; fY � � f½fX ;Y � � f½X ; fY �

for any vector fields X , Y on M 2nþ1.
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If on an almost contact manifold there exists a Riemannian metric g satisfying

gðfX ; fY Þ ¼ gðX ;Y Þ � hðX ÞhðY Þð2:3Þ
for any vector fields X and Y , then g is said to be compatible with the given
almost contact structure. In general, an almost contact manifold equipped with
a compatible Riemannian metric is said to be an almost contact metric manifold
and is denoted by ðM 2nþ1; f; x; h; gÞ. The fundamental 2-form F on an almost
contact metric manifold M 2nþ1 is defined by FðX ;YÞ ¼ gðX ; fY Þ for any vector
fields X and Y .

In this paper, by an almost coKähler manifold we mean an almost contact
metric manifold such that both the 1-form h and 2-form F are closed (see [3]).
In particular, an almost coKähler manifold is said to be a coKähler manifold
(see [8]) if the associated almost contact structure on it is normal, which is also
equivalent to ‘f ¼ 0, or equivalently, ‘F ¼ 0. Notice that (almost) coKähler
manifolds are just the (almost) cosymplectic manifolds studied in [1, 2, 5, 7, 11].
The simplest example of (almost) coKähler manifolds is the Riemannian product
of a real line or a circle and a (almost) Kähler manifold. However, there do
exist some examples of (almost) coKähler manifolds which are not globally the
product of a (almost) Kähler manifold and a real line or a circle (see, for
example, Dacko [11, Section 3]).

On an almost coKähler manifold ðM 2nþ1; f; x; h; gÞ, we shall set h ¼ 1
2Lxf

and h 0 ¼ h � f (notice that both h and h 0 are symmetric operators with respect
to the metric g). Then the following formulas can be found in Olszak [11] and
Perrone [12]:

hx ¼ 0; hfþ fh ¼ 0; trðhÞ ¼ trðh 0Þ ¼ 0;ð2:4Þ
‘xf ¼ 0; ‘x ¼ h 0; div x ¼ 0;ð2:5Þ

‘xh ¼ �h2f� fl;ð2:6Þ
flf� l ¼ 2h2;ð2:7Þ

where l :¼ Rð�; xÞx is the Jacobi operator along the Reeb vector field and the
Riemannian curvature tensor R is defined by

RðX ;YÞZ ¼ ‘X‘YZ � ‘Y‘XZ � ‘½X ;Y �Z;

and tr and div denote the trace and divergence operators, respectively. The well-
known Ricci tensor S is defined by

SðX ;Y Þ ¼ gðQX ;YÞ ¼ trfZ ! RðZ;XÞYg;
where Q denotes the associated Ricci operator with respective to the metric g.

3. Three-dimensional almost coKähler manifolds

In the following, we denote by ðM 3; f; x; h; gÞ an almost coKähler manifold
of dimension three. According to the second term of relation (2.5) we obtain
that ðLxgÞðX ;YÞ ¼ 2gðh 0X ;Y Þ, then we have
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Lemma 3.1 ([7, Proposition 3]). Any 3-dimensional almost coKähler manifold
is coKähler if and only if x is a Killing vector field, or equivalently, h ¼ 0.

Following Perrone [13], let U1 be the open subset of M 3 on which h0 0 and
U2 the open subset defined by U2 ¼ fp A M 3 : h ¼ 0 in a neighborhood of pg.
Therefore, U1 [U2 is an open dense subset of M 3. For any point p A U1 [U2,
we find a local orthonormal basis fx; e1; e2 ¼ fe1g of three distinct unit eigen-
vector fields of h in certain neighborhood of p. On U1 we assume that he1 ¼ le1
and hence he2 ¼ �le2, where l is a positive function. Notice that l is con-
tinuous on M 3 and smooth on U1 [U2.

Lemma 3.2 ([13, Lemma 2.1]). On U1 we have

‘xe1 ¼ fe2; ‘xe2 ¼ �fe1; ‘e1x ¼ �le2; ‘e2x ¼ �le1;

‘e1e1 ¼
1

2l
ðe2ðlÞ þ sðe1ÞÞe2; ‘e2e2 ¼

1

2l
ðe1ðlÞ þ sðe2ÞÞe1;

‘e2e1 ¼ lx� 1

2l
ðe1ðlÞ þ sðe2ÞÞe2; ‘e1e2 ¼ lx� 1

2l
ðe2ðlÞ þ sðe1ÞÞe1;

‘xh ¼ 1

l
xðlÞ idþ 2f f

� �
h;

where f is a smooth function and s is the 1-form defined by sð�Þ ¼ Sð�; xÞ.

Using the above Lemma 3.2, one obtains that the Ricci operator Q is
expressed as follows (see [13, Proposition 4.1]):

Q ¼ a idþ bhn xþ f‘xh� sðf2Þn xþ sðe1Þhn e1 þ sðe2Þhn e2;ð3:1Þ

where a ¼ 1
2 ðrþ trðh2ÞÞ, b ¼ � 1

2 ðrþ 3 trðh2ÞÞ and r denotes the scalar curvature.
Moreover, using Lemma 3.2 we have the following Poisson brackets

½x; e1� ¼ ð f þ lÞe2; ½e2; x� ¼ ð f � lÞe1;

½e1; e2� ¼
1

2l
ðe1ðlÞ þ sðe2ÞÞe2 �

1

2l
ðe2ðlÞ þ sðe1ÞÞe1:

ð3:2Þ

Therefore, from the well-known Jacobi identity

½½x; e1�; e2� þ ½½e1; e2�; x� þ ½½e2; x�; e1� ¼ 0;

we get from relation (3.2) that

�e2ð f þ lÞ � x
e1ðlÞ þ sðe2Þ

2l

� �
þ e2ðlÞ þ sðe1Þ

2l
ð f þ lÞ ¼ 0;

�e1ð f � lÞ þ x
e2ðlÞ þ sðe1Þ

2l

� �
þ e1ðlÞ þ sðe2Þ

2l
ð f � lÞ ¼ 0:

ð3:3Þ
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By Lemma 3.2 and relation (3.1) we obtain

Sðx; xÞ ¼ �trðh2Þ ¼ �2l2:ð3:4Þ

Comparing this with the last term of Lemma 3.2 then we get

Proposition 3.1. On a three-dimensional almost coKähler manifold, the Ricci
curvature of the Reeb vector field is invariant along the Reeb vector field if and
only if

‘xh ¼ 2f fh;ð3:5Þ

where f is a smooth function.

Next, we present several examples of three-dimensional almost coKähler
manifolds satisfying condition (3.5). Firstly, from ðLxgÞðX ;YÞ ¼ 2gðh 0X ;YÞ we
see that relation (3.5) holds trivially on any almost coKähler manifold with x a
Killing vector field.

Example 3.1. Let M 3 be an almost coKähler manifold of dimension 3 such
that the Reeb vector field x belongs to the ðk; m; nÞ-nullity distribution (see [5]),
i.e.,

RðX ;Y Þx ¼ kðhðYÞX � hðXÞY Þ þ mðhðYÞhX � hðXÞhY Þ
þ nðhðYÞh 0X � hðX Þh 0YÞ

for any vector fields X , Y , Z, where we have assumed that k is a non-zero
constant and m, n are smooth functions. From (2.4) and the above relation we
know that Sðx; xÞ ¼ 2k is a non-zero constant. Then, applying Lemma 3.2 we
see that relation (3.5) holds on M 3.

Example 3.2 ([6]). Let us recall the following example constructed in [6].
On a three-dimensional manifold M 3 ¼ fðx; y; zÞ A R3 j z > 0g we denote by

x ¼ q

qx
; e ¼ z2

q

qx
þ 2xz� zþ y

2z

� �
q

qy
þ q

qz
; fe ¼ q

qy
:

Consider a Riemannian metric g and a ð1; 1Þ-type tensor field f defined by

g ¼

1 0 � a1

a3

0 1 � a2

a3

� a1

a3
� a2

a3

1þ a21 þ a22
a3

0
BBBBBBB@

1
CCCCCCCA

and f ¼

0 �a1
a1a2

a3

0 �a2
1þ a22
a3

0 �a3 a2

0
BBBBB@

1
CCCCCA
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respectively, with respective to the local basis
q

qx
;
q

qy
;
q

qz

� �
, where a1 ¼ z2,

a2 ¼ 2xz� xþ y

2z
and a3 ¼ 1. The 1-form h of M 3 is defined by h ¼ dx� z2 dz

and the fundamental 2-form of M 3 is given by F ¼ dy5dz. One can check that
ðM 3; f; x; h; gÞ is a non-coKähler almost coKähler manifold satisfying condition
(3.5), i.e., ‘xh ¼ 2zfh. For more details see [6, Example 3.6].

Example 3.3. The following example is a special case of [11, Section 3].
Assume that g is a three-dimensional real solvable Lie algebra with basis
fe0; e1; e2g and whose Lie brackets are given as follows:

½e0; e1� ¼ �½e1; e0� ¼ �ae1 � be2; ½e0; e2� ¼ �½e2; e0� ¼ �be1 þ ae2; ½e1; e2� ¼ 0;

where both a and b are assumed to be constants satisfying a2 þ b2 > 0.
Let M 3 be a Lie group whose Lie algebra is g. We denote by fE0;E1;E2g

three left invariant vector fields on M 3 extended from fe0; e1; e2g. Then we have

½E0;E1� ¼ �½E1;E0� ¼ �aE1 � bE2; ½E1;E2� ¼ 0;

½E0;E2� ¼ �½E2;E0� ¼ �bE1 þ aE2:

We define a left invariant Riemannian metric g on M 3 by

gðEi;EjÞ ¼ dij for any 0a i; ja 2:

We denote by ‘ the left invariant connection with respect to the Riemannian
metric g. It follows that

‘E1
E0 ¼ aE1 þ bE2; ‘E2

E0 ¼ bE1 � aE2;

‘E1
E1 ¼ �aE0; ‘E1

E2 ¼ ‘E2
E1 ¼ �bE0; ‘E2

E2 ¼ aE0;

‘E0
E1 ¼ 0; ‘E0

E2 ¼ 0; ‘E0
E0 ¼ 0:

ð3:6Þ

Finally, we define on M 3 a 1-form h and a ð1; 1Þ-type tensor field f by

hðEiÞ ¼ d0i for any i ¼ 0; 1; 2

and

fE0 ¼ 0; fE1 ¼ E2 and fE2 ¼ �E1;

respectively.
Here we state that fM 3; f;E0; h; gg is a non-coKähler almost coKähler

manifold satisfying h0 0. For more details see Olszak [11]. Also, from the
first term of relation (3.6) and relation (2.5) we obtain

h 0E1 ¼ aE1 þ bE2; h 0E2 ¼ bE1 � aE2:

Then it follows that trðh2Þ ¼ 2ða2 þ b2Þ is a non-zero constant. Using
relation (3.4) and Proposition 3.1 we know that in this case relation (3.5) holds
on M 3. In fact, using (3.6), by a simple calculation we obtain ‘xh ¼ 0.
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4. h-parallel Ricci tensor

We observe from Section 3 that there do exist some three-dimensional almost
coKähler manifolds such that ‘xh ¼ 2f fh, where f is a non-zero constant or
vanishes. In what follows, we shall concentrate on the study of such manifolds
under additional conditions. We first introduce the following

Definition 4.1. The Ricci tensor of a ð2nþ 1Þ-dimensional almost contact
metric manifold ðM; f; x; h; gÞ is said to be h-parallel if it satisfies

gðð‘XQÞY ;ZÞ ¼ 0ð4:1Þ

for any vector fields X , Y , Z orthogonal to x.

Obviously, if the Ricci tensor S of any almost contact metric manifold M
is parallel (i.e., ‘Q ¼ 0) or h-Einstein (i.e., Q ¼ a idþ bhn x, where we assume
that a is a constant and b is a function), then it is h-parallel.

Theorem 4.1. Let M 3 be a 3-dimensional almost coKähler manifold satisfy-
ing ‘xh ¼ 2f fh, where f A R. Suppose that the Ricci tensor of M 3 is h-parallel.
Then either M 3 is locally isometric to the product space R�N 2ðcÞ, where N 2ðcÞ
denotes a Kähler surface of constant curvature c ðc ¼ 0 means that M 3 is locally
the flat Euclidean space R3Þ, or M 3 is locally isometric to a simply connected
unimodular Lie group equipped with a left invariant almost coKähler structure.
For the later case, we have the following classification.

� In case f ¼ 0, then M 3 is locally isometric to the group Eð1; 1Þ of rigid
motions of the Minkowski 2-space.

� In case f > 0, then M 3 is locally isometric to either the universal covering
~EEð2Þ of the group of rigid motions of the Euclidean 2-space if f > l, the
Heisenberg group H 3 if f ¼ l or the group Eð1; 1Þ of rigid motions of the
Minkowski 2-space if f < l.

� In case f < 0, then then M 3 is locally isometric to either the universal
covering ~EEð2Þ of the group of rigid motions of the Euclidean 2-space if
f < �l, the Heisenberg group H 3 if f ¼ �l or the group Eð1; 1Þ of rigid
motions of the Minkowski 2-space if f > �l.

Proof. If on a 3-dimensional almost coKähler manifold M 3 the condition
‘xh ¼ 2f fh holds for a global constant f A R, then by applying Lemma 3.2
we have xðlÞ ¼ 0. Moreover, on U1 it follows from equations (3.1) and (3.5)
that

Qx ¼ �2l2xþ sðe1Þe1 þ sðe2Þe2;
Qe1 ¼ sðe1Þxþ ða� 2f lÞe1;
Qe2 ¼ sðe2Þxþ ðaþ 2f lÞe2:

8><
>:ð4:2Þ

On U1 by applying Lemma 3.2 again we obtain the following relations.
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ð‘xQÞx ¼ ðxðsðe1ÞÞ � f sðe2ÞÞe1 þ ðxðsðe2ÞÞ þ f sðe1ÞÞe2:ð4:3Þ

ð‘e1QÞe1 ¼ e1ðsðe1ÞÞ �
1

2l
sðe2Þðe2ðlÞ þ sðe1ÞÞ

� �
xð4:4Þ

þ e1ða� 2f lÞe1 � ðlsðe1Þ þ 2f ðe2ðlÞ þ sðe1ÞÞÞe2:

ð‘e2QÞe2 ¼ e2ðsðe2ÞÞ �
1

2l
sðe1Þðe1ðlÞ þ sðe2ÞÞ

� �
xð4:5Þ

� ðlsðe2Þ � 2f ðe1ðlÞ þ sðe2ÞÞÞe1 þ e2ðaþ 2f lÞe2:

ð‘e1QÞe2 ¼ e1ðsðe2ÞÞ þ lð2f l� bÞ þ 1

2l
sðe1Þðe2ðlÞ þ sðe1ÞÞ

� �
xð4:6Þ

� ðlsðe1Þ þ 2f ðe2ðlÞ þ sðe1ÞÞÞe1
� ð2lsðe2Þ � e1ðaþ 2f lÞÞe2:

ð‘e2QÞe1 ¼ e2ðsðe1ÞÞ � lð2f lþ bÞ þ 1

2l
sðe2Þðe1ðlÞ þ sðe2ÞÞ

� �
xð4:7Þ

� ð2lsðe1Þ � e2ða� 2f lÞÞe1
� ðlsðe2Þ � 2f ðe1ðlÞ þ sðe2ÞÞÞe2:

Since the Ricci tensor is h-parallel, then we get from equations (4.1) and (4.4)
that

e1ða� 2f lÞ ¼ 0;

lsðe1Þ þ 2f ðe2ðlÞ þ sðe1ÞÞ ¼ 0:

�
ð4:8Þ

Similarly, we obtain from equations (4.1) and (4.5) that

e2ðaþ 2f lÞ ¼ 0;

lsðe2Þ � 2f ðe1ðlÞ þ sðe2ÞÞ ¼ 0:

�
ð4:9Þ

Also, comparing relations (4.6) and (4.7) with (4.1), respectively, and using
relations (4.8) and (4.9) we obtain

2lsðe2Þ � e1ðaþ 2f lÞ ¼ 0;

2lsðe1Þ � e2ða� 2f lÞ ¼ 0:

�
ð4:10Þ

The first term of relation (4.8) can be written as e1ðaÞ ¼ 2fe1ðlÞ. Using this

in the first term of (4.10) we obtain sðe2Þ ¼
2f

l
e1ðlÞ, where we have used that l

is a positive function on U1. Adding this relation in the second term of relation
(4.9) we obtain

4f 2e1ðlÞ ¼ 0:ð4:11Þ
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Similarly, using the first term of relation (4.9) in the seccond term of (4.10) we

obtain sðe1Þ ¼ � 2f

l
e2ðlÞ. Using this in the second term of relation (4.8) we

obtain

4f 2e2ðlÞ ¼ 0:ð4:12Þ
Let us recall the following well-known formula

div Q ¼ 1

2
gradðrÞ;

where grad denotes the gradient operator with respect to g. By using equations
(4.3)–(4.5) and relations (4.8) and (4.9) we obtain

1

2
gradðrÞ ¼ ðe1ðsðe1ÞÞ þ e2ðsðe2ÞÞxð4:13Þ

� 1

2l
sðe1Þðe1ðlÞ þ sðe2ÞÞx�

1

2l
sðe2Þðe2ðlÞ þ sðe1ÞÞx

þ ðxðsðe1ÞÞ � f sðe2ÞÞe1 þ ðxðsðe2ÞÞ þ f sðe1ÞÞe2:

Next, we shall separate our discussions into two cases as follows.

Case I: f ¼ 0. Firstly, let us suppose that U1 is a non-empty subset. By
using condition f ¼ 0 in the second terms of relations (4.8) and (4.9), respec-
tively, and in view of l > 0 on U1 we obtain that x is an eigenvector field of the
Ricci operator. Therefore, using sðe1Þ ¼ sðe2Þ ¼ 0 in equation (4.13) we obtain
that the scalar curvature is a constant. Moreover, using the first term of relation

(4.8) we have e1ðaÞ ¼ e1
r

2
þ l2

� �
¼ 0. Since l > 0 on U1, then we have

e1ðlÞ ¼ 0:

Similarly, using the first term of relation (4.9) and in view of l > 0 we get

e2ðlÞ ¼ 0:

Taking into account xðlÞ ¼ 0 we see that l is a constant. Since l is
continuous, thus we state that l is a global positive constant on M 3. In this
context, we obtain from relation (3.2) that

½x; e1� ¼ le2; ½e2; x� ¼ �le1; ½e1; e2� ¼ 0:

According to Milnor [9] or Perrone [12, 13] we see that M 3 is locally
isometric to a simply connected unimodular Lie group Eð1; 1Þ of rigid motions of
the Minkowski 2-space, equipped with a left invariant almost coKähler structure.

Next, if U1 is an empty subset, by Lemma 3.1 we know that M 3 is a
coKähler manifold. Thus, due to h ¼ 0 we get from equations (2.5) and (2.6)
that Qx ¼ 0, l ¼ 0. Since h ¼ 0 and Qx ¼ 0, from (3.1) we get

Q ¼ r

2
id� r

2
hn x;ð4:14Þ
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where r denotes the scalar curvature, and this means that M 3 is an h-Einstein
manifold. Taking the covariant derivative of (4.14), we obtain

ð‘XQÞY ¼ 1

2
XðrÞY � 1

2
X ðrÞhðY Þxð4:15Þ

for any vector fields X , Y . Using the formula div Q ¼ 1
2 gradðrÞ and setting

Y ¼ x in equation (4.15), we get xðrÞ ¼ 0. Since the Ricci tensor is h-parallel,
then it follows from equation (4.15) that XðrÞ ¼ 0 for any vector field X
orthogonal to x. This implies that the scalar curvature r is a constant and
hence we get ‘Q ¼ 0. This is also equivalent to that M 3 is locally symmetric.
Finally, from Perrone [12, Proposition 3.1], we know that any 3-dimensional
locally symmetric almost coKähler manifold is coKähler and is locally iso-
metric either the flat Euclidean space R3 or the Riemannian product R�N 2ðcÞ,
where N 2ðcÞ denotes a Kähler surface of constant curvature c0 0.

Case II: f 0 0. We consider only the non-coKähler case, that is, U1 is a
non-empty subset. By using f 0 0 in equations (4.11) and (4.12), respectively,
we state that l is a global positive constant, where we have used xðlÞ ¼ 0 and the

fact that l is continuous. Consequently, we get easily that sðe2Þ ¼
2f

l
e1ðlÞ ¼ 0

and sðe1Þ ¼ � 2f

l
e2ðlÞ ¼ 0. This is equivalent to that x is an eigenvector field

of the Ricci operator. According to [13, Theorem 3.1], we know that the Reeb
vector field of 3-dimensional almost coKähler manifold is minimal if and only
if x is an eigenvector field of the Ricci operator. Moreover, it follows from
equation (4.13) that the scalar curvature is also a global constant. In this
context, relation (3.2) can be rewritten as the following

½x; e1� ¼ ð f þ lÞe2; ½e2; x� ¼ ð f � lÞe1; ½e1; e2� ¼ 0:

Let us recall the following invariant

p :¼ k‘xhk �
ffiffiffi
2

p
khk2

defined in Perrone [13]. In case of f > 0, from relation (3.5) and using a simple
computation we obtain that p ¼ 2

ffiffiffi
2

p
lð f � lÞ. Otherwise, if f < 0, then we

obtain p ¼ �2
ffiffiffi
2

p
lð f þ lÞ. Notice that both k‘xhk and khk are constants.

Also, x is a minimal vector field. According to [13, Theorem 4.4] we state
that M 3 is locally isometric to a simply connected unimodular Lie group G
equipped with a left invariant almost coKähler structure. More precisely, G is
the universal covering ~EEð2Þ of the group of rigid motions of the Euclidean
2-space if p > 0, the Heisenberg group H 3 if p ¼ 0 or the group Eð1; 1Þ of rigid
motions of the Minkowski 2-space if p < 0. For the coKähler case, the proof
follows from Case I. This completes the proof. r
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Remark 4.1. An explicit description of the left invariant almost coKähler
structures on the Lie groups Eð1; 1Þ, ~EEð2Þ and H 3 are given in [12].

Let us consider a three-dimensional almost coKähler manifold M 3 satisfying
the ðk; m; nÞ-nullity condition (see Example 3.1) for k; m A R and n a function.
By this nullity condition we obtain l ¼ �kf2 þ mhþ nh 0 and using this in (2.7)
we obtain h2 ¼ kf2. Using this in (2.6) we get that ‘xh ¼ mh 0 � nh and hence
we obtain ‘xh

2 ¼ �2knf2. Comparing this with h2 ¼ kf2 we obtain n ¼ 0 and
hence ‘xh ¼ �mfh. On the other hand, by the nullity condition we see that
x is an eigenvector field of the Ricci operator. When k ¼ 0 (, h ¼ 0) and
the Ricci tensor is h-parallel, from Theorem 4.1 we obtain that M 3 is locally
isometric to either the flat Euclidean space R3 or the Riemannian product
R�N 2ðcÞ, c0 0.

When k < 0 (, h0 0), from relation (3.1) we obtain the Ricci operator

Q ¼ r

2
� k

� �
idþ 3k � r

2

� �
hn xþ mh. In this case, from relation (4.13) we see

that the scalar curvature is a constant. Thus, applying Lemma 3.2 we see that
the Ricci tensor is h-parallel.

Remark 4.2. A three-dimensional non-coKähler almost coKähler manifold
M 3 satisfying the ðk; m; nÞ-nullity condition for k; m A R and n a function whose
Ricci tensor is h-parallel is locally isometric to the universal covering ~EEð2Þ of the
group of rigid motions of the Euclidean 2-space if k < 0 and either m > 2

ffiffiffiffiffiffiffi
�k

p

or m < �2
ffiffiffiffiffiffiffi
�k

p
, the Heisenberg group H 3 if k < 0 and either m ¼ 2

ffiffiffiffiffiffiffi
�k

p
or

m ¼ �2
ffiffiffiffiffiffiffi
�k

p
or the group Eð1; 1Þ of rigid motions of the Minkowski 2-space if

k < 0 and �2
ffiffiffiffiffiffiffi
�k

p
< m < 2

ffiffiffiffiffiffiffi
�k

p
.

5. Harmonic curvature tensor

In this section, we shall present some classification results of three-
dimensional almost coKähler manifolds satisfying condition (3.5) for certain
constant f . It is well-known that the curvature tensor R of a Riemannian
manifold is said to be harmonic if it is divergence free, that is, divðRÞ ¼ 0 (see
Mukhopadhyay and Barua [10] and Wang and Liu [14]). Moreover, we know
that the curvature tensor is harmonic if and only if the associated Ricci operator
is of Codazzi-type, that is,

ð‘XQÞY ¼ ð‘YQÞXð5:1Þ

for any vector fields X , Y . Using again the well-known formula div Q ¼
1
2 gradðrÞ, from equation (5.1) we obtain the following

Lemma 5.1. The scalar curvature of any Riemannian manifold with harmonic
curvature tensor is a constant.
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Using this lemma we obtain the following

Theorem 5.1. Let M 3 be a 3-dimensional almost coKähler manifold satisfy-
ing ‘xh ¼ 2f fh, where f A R. If, in addition, the Riemannian curvature tensor is
harmonic, then M 3 must be a coKähler manifold. More precisely, M 3 is locally
isometric to the product space R�N 2ðcÞ, where N 2ðcÞ denotes a Kähler surface of
constant curvature c ðc ¼ 0 means that M 3 is locally the flat Euclidean space R3Þ.

Proof. From Lemma 3.2 and relation (3.5) we obtain that xðlÞ ¼ 0.
Moreover, on U1 we see that (4.2) holds in this context. Applying Lemma 3.2
and relation (4.2) we have the following relations on U1.

ð‘xQÞe1 ¼ ðxðsðe1ÞÞ � f sðe2ÞÞxþ xða� 2f lÞe1 � 4f 2le2:ð5:2Þ

ð‘xQÞe2 ¼ ðxðsðe2ÞÞ þ f sðe1ÞÞx� 4f 2le1 þ xðaþ 2f lÞe2:ð5:3Þ

ð‘e1QÞx ¼ 2lðsðe2Þ � 2e1ðlÞÞxð5:4Þ

þ e1ðsðe1ÞÞ �
1

2l
sðe2Þðe2ðlÞ þ sðe1ÞÞ

� �
e1

þ 2l3 þ e1ðsðe2ÞÞ þ lðaþ 2f lÞ þ 1

2l
sðe1Þðe2ðlÞ þ sðe1ÞÞ

� �
e2:

ð‘e2QÞx ¼ 2lðsðe1Þ � 2e2ðlÞÞxð5:5Þ

þ e2ðsðe2ÞÞ �
1

2l
sðe1Þðe1ðlÞ þ sðe2ÞÞ

� �
e2

þ 2l3 þ e2ðsðe1ÞÞ þ lða� 2f lÞ þ 1

2l
sðe2Þðe1ðlÞ þ sðe2ÞÞ

� �
e1:

Since the Riemannian curvature tensor R is harmonic, comparing equations (5.2)
with (5.4), (5.3) with (5.5), (4.6) with (4.7), respectively, we obtain

xðsðe1ÞÞ � f sðe2Þ � 2lðsðe2Þ � 2e1ðlÞÞ ¼ 0;

xða� 2f lÞ � e1ðsðe1ÞÞ þ
1

2l
sðe2Þðe2ðlÞ þ sðe1ÞÞ ¼ 0;

2l3 þ lðaþ 2f lÞ þ e1ðsðe2ÞÞ þ
1

2l
sðe1Þðe2ðlÞ þ sðe1ÞÞ þ 4f 2l ¼ 0:

8>>>>><
>>>>>:

ð5:6Þ

xðsðe2ÞÞ þ f sðe1Þ � 2lðsðe1Þ � 2e2ðlÞÞ ¼ 0;

xðaþ 2f lÞ � e2ðsðe2ÞÞ þ
1

2l
sðe1Þðe1ðlÞ þ sðe2ÞÞ ¼ 0;

2l3 þ e2ðsðe1ÞÞ þ lða� 2f lÞ þ 1

2l
sðe2Þðe1ðlÞ þ sðe2ÞÞ þ 4f 2l ¼ 0:

8>>>>><
>>>>>:

ð5:7Þ

and
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lsðe2Þ þ 2f ðe1ðlÞ þ sðe2ÞÞ � e1ðaþ 2f lÞ ¼ 0;

lsðe1Þ � 2f ðe2ðlÞ þ sðe1ÞÞ � e2ða� 2f lÞ ¼ 0;

e2ðsðe1ÞÞ þ
1

2l
ðsðe2Þðe1ðlÞ þ sðe2ÞÞ � sðe1Þðe2ðlÞ þ sðe1ÞÞÞ

¼ e1ðsðe2ÞÞ þ 4f l2:

8>>>>><
>>>>>:

ð5:8Þ

On the other hand, by Lemma 5.1 we see that the scalar curvature of M 3 is a
constant. Applying this and using equations (4.3)–(4.5) we obtain

xðsðe1ÞÞ þ ð f � lÞsðe2Þ þ 2fe1ðlÞ þ e1ða� 2f lÞ ¼ 0;

xðsðe2ÞÞ � ð f þ lÞsðe1Þ � 2fe2ðlÞ þ e2ðaþ 2f lÞ ¼ 0;

e1ðsðe1ÞÞ þ e2ðsðe2ÞÞ ¼
1

2l
ðsðe1Þðe1ðlÞ þ sðe2ÞÞ þ sðe2Þðe2ðlÞ þ sðe1ÞÞÞ:

8>>><
>>>:

ð5:9Þ

Since a ¼ r

2
þ l2 (where the scalar curvature r is a constant), then it follows from

the first two terms of relation (5.8) that

ðlþ 2f Þsðe2Þ ¼ 2le1ðlÞð5:10Þ

and

ðl� 2f Þsðe1Þ ¼ 2le2ðlÞ:ð5:11Þ

In what follows, we still separate our discussions into two cases as follows:

Case I: f ¼ 0. Firstly, suppose that U1 is a non-empty subset. Obviously,
since l > 0 on U1, from equations (5.10) and (5.11) we have

sðe2Þ ¼ 2e1ðlÞ and sðe1Þ ¼ 2e2ðlÞ:

Thus, by using this in the first terms of relations (5.6) and (5.7), respectively, we
have

xðsðe1ÞÞ ¼ xðsðe2ÞÞ ¼ 0:

Furthermore, by using the above relation, sðe2Þ ¼ 2e1ðlÞ and sðe1Þ ¼ 2e2ðlÞ
in relation (3.3) we get that l is a global constant and x is an eigenvector field of
the Ricci operator, where we have used that l is continuous and xðlÞ ¼ 0. Thus,
by using the third term of relation (5.6) (or (5.7)) we get

rþ 6l2 ¼ 0:

Using the above equation in relations (4.3)–(4.7) and (5.2)–(5.5) we obtain
‘Q ¼ 0 and hence M 3 is locally symmetric. Applying Perrone [12, Proposition
3.1] again we know that a locally symmetric almost coKähler manifold of
dimension three is coKähler and this means that h ¼ 0 and hence U1 is an empty
subset, a contradiction. In case U1 is empty, from Lemma 3.1 we conclude that
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M 3 is coKähler. In this context, we have h ¼ 0 and l ¼ 0 and hence by (4.14)
we see that equation (4.15) holds. From Lemma 5.1 we know that the scalar
curvature is a constant. Then, by equation (4.15) we obtain that M 3 is Ricci
symmetric and hence also locally symmetric. As shown in proof of Theorem 4.1,
from [12, Proposition 3.1] we see that M 3 is locally isometric to the product
R�N 2ðcÞ, where N 2ðcÞ denotes a Kähler surface of constant curvature c.

Case II: f 0 0. Firstly, let us consider the subcase l ¼ 2f 0 0 which is a
non-zero global constant. Clearly, it follows from equation (5.10) that sðe2Þ ¼ 0.
Using this in the first term of relation (3.3) we get sðe1Þ ¼ 0. However, it
follows from the third term of relation (5.8) that 4f l2 ¼ 0 and hence l ¼ 0.

Similarly, next we consider the subcase l ¼ �2f 0 0 being a non-zero global
constant. By equation (5.11) we obtain sðe1Þ ¼ 0. Using this in the second
term of relation (3.3) we obtain sðe2Þ ¼ 0. Using again the third term of
relation (5.8) we obtain l ¼ 0.

Finally, let us consider the last subcase l2 � 4f 2 0 0 which holds on an
open subset U3 � U1. Using equation (5.10) in the first term of relation (5.6) we
have

xðsðe1ÞÞ ¼ � 6f l

lþ 2f
e1ðlÞ:ð5:12Þ

Also, using equation (5.11) in the first term of relation (5.7) we have

xðsðe2ÞÞ ¼
6f l

l� 2f
e2ðlÞ:ð5:13Þ

Making use of equations (5.10), (5.11) and (5.13) in the first term of relation (3.3)
we obtain

ððl� 2f Þ2 � 12f 2Þe2ðlÞ ¼ 0;ð5:14Þ

where we have used that l > 0 on U1. Obviously, assuming ðl� 2f Þ2 0 12f 2 we
obtain from equation (5.14) that e2ðlÞ ¼ 0 and hence by relation (5.11) we obtain
sðe1Þ ¼ 0. Using this in (5.12) we obtain e1ðlÞ ¼ 0. By equation (5.10) we also
have sðe2Þ ¼ 0. By the third term of relation (5.8) we obtain l ¼ 0 being a
global constant due to f 0 0. Otherwise, we conclude that ðl� 2f Þ2 � 12f 2 ¼ 0
holds. This implies that l is a global constant. Then, by using equations (5.10)
and (5.11) we have sðe1Þ ¼ sðe2Þ ¼ 0. Moreover, by the third term of relation
(5.8) we get 4f l2 ¼ 0 and this yields again that l ¼ 0.

For the above several subcases, l ¼ 0 means that U1 is an empty subset and
hence by Lemma 3.1 we see that M 3 is coKähler. Then the remaining proof is
the same with that of Case I . This completes the proof. r

Remark 5.1. Since the condition of local symmetry implies that ‘xh ¼ 0
and ‘Q ¼ 0, then Theorem 5.1 can be regarded as a generalization of Perrone
[12, Proposition 3.1].
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