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ABSTRACT

Using higher-dimensional gravity in (4+D)-dimensional space-time, lagrangian den-
sity of riccion is obtained with the quartic self-interacting potential. It is found that after
compactification to 4-dimensional space-time the resulting theory is one-loop multiplica-
tively renormalizable. Renormalization group equations are solved and their solutions
yield many interesting results such as (i) dependence of extra dimensions on the energy
mass scale showing that these dimensions increase with the increasing energy mass scale
such that D = 6 at extremely high energy, (ii) phase transition at 2.82 x 1016GeV and (iii)
dependence of gravitational as well as other coupling constants on energy scale. Results
also suggest that space-time above 2.82 x 1016GeV should be fractal.
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1 Introduction

Higher-derivative gravity is an important candidate from the last many years. It obeys
the principle of covariance as well as the principle of equivalence which are basic princi-
ples of the general relativity. While quantizing gravity, this theory has problems at the
perturbation level where ghost terms appear in the Feynman propagator of graviton [1].

Recently a different feature of higher-derivative gravity has been noted. The present
paper deals with the new feature of this theory. In refs. [2-5], it has been discussed that
Ricci scalar, which is a geometrical field, also behaves like a matter field at high energy
scales. Here dual roles of Ricci scalar R (like a matter field as well as a geometrical field)
are exploited. The matter aspect of R is represented by a scalar field R = ηR (where η
has length dimension and unit magnitude in natural units defined below). In quantum
field theory, fields are treated as physical concepts describing particles. After the name
of the great mathematician Ricci, a particle described by R is called ricci on.

In the earlier work [2-5], riccions are obtained from the 4-dim. space-time geometry
which has been discussed in Appendix A. In what follows, riccions are obtained from the
higher-dimensional geometry with topology M 4 ® TD (M 4 is the 4-dim. space-time with
signature (+,-,-,-) and TD is D-dimensional torus which is an extra-dimensional space).
The distance function is defined as

dS2 = gilvdxildxv - p\dQ\ - p\dQ\ p2

Dd62

D, (1.1)

where g^u(n, ν = 0,1, 2, 3) are components of the metric tensor, ρi(i = 1, 2, • • •, D) are
radii of circle components of TD and 0 < θ1, θ2, • • •, ΘD < 2π.

The paper is organized as follows. In section 2, taking the action for higher-derivative
gravity in (4+D)-dimensional space-time, action for the riccion is obtained. Section 3
contains one-loop quantum correction to riccion, calculation of counter-terms and renor-
malization. Renormalization group equations are obtained and solved in section 4. Section
5 is the concluding section where results are discussed.

Natural units are defined as ΚB = h = c = 1 (where ΚB is Boltzman's constant, h is
Planck's constant divided by 2π and c is the speed of light), which are used throughout
the paper.

2 Riccions from (4+D)-dimensional geometry

The action for the higher-derivative gravity in (4+D)-dim. space-time is taken as

J d*xdDyJ^g^ [ y ^ g j ^ + ̂ +D)Rf4+D) + ^+D)^+D)] , (2.1a)

where G(4+D) = GVD, Α(4+D) = cuV^1,

VD = (2TT) D PIP 2 -- • ΡD

and G(4+D) is the determinant of the metric tensor gMN(M, N = 0,1, 2, • • •, (4 + D)). Here
G(4+D) is the (4+D)-dim. gravitational constant and Α(4+D) as well as Γ(4+D) are coupling



constants. α is a dimensionless coupling constant, R(4+D) is (4+D)-dim. Ricci scalar and
G is the 4-dim. gravitational constant.

It is important to mention here that higher-derivative terms in the action given by
eq.(2.1a) are significant at the energy mass scale given by

M is obtained using the method described in Appendix A.

Invariance of Sg(4+D) under transformations GMN —g MN + ΔGMN yields

) (RMN — 1GMNR(4+D)) + α(4+D)HMN1 + Γ(4+D)HMN — 0, (2.2a)

where

and

MN — '3*l-;MN 'iQMN'—(4+D)-*£(4-|-.D) rTS'-̂ -W (4+D) "T" ^ ( 4 f D ) ^ M ) V ^Z\ZCJ
Z

with semi-colon (;) denoting curved space covariant derivative and

n ( 4 + D ) = - l d ( r^— GMN d
dxN

Trace of these field equations is obtained as

- 3 ) n ( 4 + D ) i t

+ γ ( 4 + D ) [ 3 ( D + 3)D ( 4 + D ) J R
2

4 + D ) + 1(D - 2)R(4+3D)] = 0.

(2.3)

In the space-time described by the distance function defined in eq.(1.1),

1 d
and

where R is the 4-dim. Ricci scalar.
Connecting eqs.(2.3) and (2.4) as well as using G ( 4 + D ) , Α(4+D) and Γ(4+D) from

eq.(2.1), one obtains

^ | ^ l 1 l = 0. (2.5)

Analogous to the Lorentz gauge, a gauge condition

=0 (2.6)



with A^ = g^^r is used in eq.(2.5). As a result, eq.(2.5) is re-written as

πG)R + α[2(D + 3)OR + 12DR2] + 121η
2R3 = 0. (2.7)

Now multiplying eq.(2.7) by η and using R = ηR, it is obtained that

where

D

+3)
1

A =

(2.8b, c,d)

To exploit the matter aspect of the 4-dimensional Ricci scalar R obtained from the
higher-dimensional geometry, R is treated as a basic physical field, because it behaves like
a matter field representing the matter aspect of R ( see Appendix A for details ) . As a
result, the lagrangian density leading to eq.(2.8) is written as

L = -{g^duRdvR - iRR - m2R2) - ^-R4 (2.9)
2 4!

with the action S^ = / d4xL. For a further check, one finds that invariance of this action
under transformation R —> R + 8R also yields eq.(2.8).

3 One-loop quantum correction and renormalization

The Sjj with the lagrangian density, given by eq.(2.9), can be expanded around the
classical minimum Ro in powers of quantum fluctuation Rq = R — Ro as

o _ c(°) , c(!) , c(2) ,

where

and
S{~] 0

as usual, because this term contains the classical equation.
The effective action of the theory is expanded in powers of h ( with h = 1 ) as

r'



with one-loop correction given as [6]

= -lnDet(D//i2),

where

D =
§R2 R=R0

= a + ξR + m2 + 2 ) R
) 0

(3.1a)

(3.1b)

and I" is a term for higher-loop quantum corrections. In eq.(3.1), JJL is a mass parameter
to keep F ^ dimensionless.

To evaluate Y^l\ the operator regularization method [7] is used . Upto adiabatic order
4 (potentially divergent terms are expected upto this order only in a 4-dim. theory),
one-loop correction is obtained as

( S _ 1 )

where
M2 = m2 + (A/2)i?2.

After some manipulations, the lagrangian density in

3 1

- 2 ) ( s -

is obtained as

,

Now the renormalized form of lagrangian density can be written as

odvRo - ^RR2

0 - m'R2) - ^R4

0 + Λ

+γ0R + 21γ1R2 +

\ {

+L

(3.2a)

(3.2b)

(3.3)

ct

(3.4a)



with bare coupling constants
Lct given as

Lct = -
2

= ( M 2 , λ, Λ,ξ, γ0, γ1, γ2, £3, Q given by eq.(3.3) and

(3.4b)

In eq.(3.4b), δλi = (δm2, #A, #A, δξ, δγ0, ̂ £i, ^2, δγ3, δγ4) are counter-terms, which are cal-
culated using the following renormalization conditions [8]

A —

A = -

m = —

R— 0

<94

d2

R0=0,R=0

γ0 =

dR2

d
γ2 =

γ3 =

γ 4 =

Ro—Ri,

RO=O,R=O

R0=0,R=R5

~Lr

—0

Ro=O,R=R6

d
R0=0,R=R7

d

d(DR)
Lr Ro=O,R=Rs

(3.5a, b, c, d, e, f,g, h, i)

As R = ηR, so when R = 0,_R(o)o = R(o)i = R(o)2 = 0 and R5 = R6 = R7 = R8 =
0 when Ro = 0.

Eqs.(3.4) and (3.5) yield counter-terms as

mA = m In(m2//i2)

16Π2ΔΛ = -3\2ln(m2/ii2)

16π2δm2 = -Xm2ln(m2/fi2)



(3.6a, b, c, d, e, f,g, h, i)

4 Renormalization group equations and their solu-

tions

The effective renormalized lagrangian can be improved further by solving renormalization
group equations for coupling constants \. For this purpose one-loop β-functions, defined
by the equation [1, 8-9]

with counter-terms δλi from eqs.(3.6), are obtained as

4

m2 =

m
f6vr2

f6vr2

λm

f6vr2

f6vr2

f6vr2

f

2880π2

f

2880π2

96π2 5

The renormalization group equations are given as

£ = "*• (4.3)

where t = 21ln(m2cJJ2) with /j, being a mass parameter defined above and mc being a
reference mass scale such that \i > mc. Using β-functions for different coupling constants



given by eqs.(4.2), solutions of differential equations (4.3) are derived as

6 +

nin [to — i
= £00 H H ( 1 - TTT^ ~ f

λ 0

 LV 1 6 π 2

>V3
γ1 = λ0

i
γ2 = γ20

2880π2

γ 3 = £ 3 0 " 2 8 8 0 ^

γ 4 = e 4 ° " 2 8 8 0 ^ " 12λ0

 I ( 1 ~ T ^ ) ~ i | '

where λi0 = \{t = 0) and t = 0 at /j, = mc according to the definition of t given
above.

These results show that as \i —> 00(t -̂ - —00) A —> 0, m 2 -̂ - 0 and C ^ |- Thus it
follows from these expressions that in the limit \i —> , theory is asymptotically free and
matter sector coupling constants tend to approach their conformally invariant values.

Further it is assumed that D = 0 at energy mass scale JJL = mc. Now recalling the
definition of ξ from eq. (2.8b), one obtains ξ0 = 0 and

D = - ^ ^ 3^A-I/3 • (4.5)

It is interesting to see from this result that D increases with increasing energy mass
scale fj, and it is equal to 6 when JJL —> . Moreover, it is not necessarily an integer but
a real number. Thus this result suggests that dimension of the space-time will be equal
to 4 at /i = mc and will increase continuously with increasing energy mass scale upto 10
at extremely large energy scale. Non - integer values of the dimension also indicate that
the space-time above the energy mass scale \i = mc should be fractal [10-11], as fractal
dimensions need not be integers like topological dimensions.

Eqs.(2.8d) and (4.4b) yield

_ If, 3i i r , . ~/, 3t \-i/3

and α0 = 1 , if λ0 = 1.



Recalling the definition of m2 from eq.(2.8c) and using eqs.(4.5)-(4.6) with λ0 = 1,
one obtains

k-fi-^r1/3i
(4.7)

i _ 3 *
16 π 2 I1- 1 6 Π 2

where G0 = GN (GN is the Newtonian gravitational constant). Now from eq.(2.8c)

m20 = 1=M P 2 (4.8)

as D = 0 at t = 0 or ft = mc and GN = MP2 (MP is Planck's constant). Thu
eqs.(4.4a) and (4.8) imply

. . Mi r /_ 3* N-1/3

5 Discussion and concluding remarks

The equation (4.9) implies that vacuum energy density Λ increases with increasing energy
mass scale ft (or decreasing t ). Taking λ0 = 1, it is obtained that (Λ — Λ0) = 1.58 x
1073Gev4 when ft —> (t —> — ) . In Table 1 (Λ — Λ0) is exhibited for different values
of ft. It is interesting to note that when ft comes down from infinity to (1 + 4 x 10~6)mc ,
(A—Λ0) decreases slowly. But when it comes down from (l+4x 10~6)mc to (l+3xlO~ 6)m c,
there is a sudden drop in the value of (Λ — Λ0) from 6.29 x 1065GeV4 to zero. It means
that all of a sudden, a huge amount of energy (with density equal to 6.29 x 1065GeV4)
is released at fi = (1 + 3 x 10~6)mc, which is sufficient to heat the universe upto a
temperature 2.82 x 1016GeV. It corresponds to the energy scale 2.82 x 1016GeV in natural
units (as Boltzman constant ΚB = 1 in these units ). Sudden release of energy indicates
a phase transition at 2.82 x 1016GeV. According to the standard model of grand unified
theories, strong and electro-weak interactions unite at 1015GeV. But gravity maintains
its identity different from these interactions upto this energy scale also. So unification
of these interactions are expected above 1015GeV [12]. Thus symmetry breaking, due to
phase transition at 2.82 x 1016GeV (discussed above) is expected to be the energy mass
scale where gravity decouples from strong-electroweak interaction. In other words, these
results suggest that unification of gravity with strong-electroweak interaction should take
place at 2.82 x 1016GeV. It implies that

mc = 2.82 x 1016GeV. (5.1)

As discussed in the preceding section, another interesting result is given by eq.(4.5)
which suggests that above the energy mass scale fi = (1 + 3 x 10~6)mc ~ 2.28 x 1016GeV,
space-time should be fractal [10-11]. Moreover, according to this result, dimension of
space-time increases from 4 to 10 with increasing energy mass scale.

Equation (4.7) implies that the gravitational constant G decreases with increasing fi
with G = GN at fi = 2.82 x 1016GeV.

At the energy scales fi < 2.82 x 1016GeV, D = 0, α = α0 = 1 and G = GN = Mp2,
so M given by eq.(2.1b) is evaluated to be

= 2.2 x 109GeV. (5.2)



Eqs.(4.4) also show that α, γ0, γ1, γ2, γ3 and γ4 increase with increasing JJL showing
that higher-derivative terms grow stronger with increasing energy scale.
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Appendix A

The 4-dim. higher-derivative gravitational action is taken as [2-5]

where a, J3 and λ are dimensionless coupling constants.
Imposing invariance of Sg under transformations g^ ν> g^ + Sg^, one obtains field

equations

{R \

+2R^Rpv - -g^W'R.s) + (3{2R:I1V - 29llvUR - -

2 ^v

= 0,

(2A)

where semi-colon (;) denotes covariant derivative with respect to the geometry of space-
time.

Trace of these field equations yields

R

R2^ = R2^ are vector components as R2 is a scalar. So, analogous to Lorentz gauge
used in the case of gauge fields, one can use a gauge condition

OR2 = (R2^ = 0. (4A)

Connecting eqs. (3 A) and (4 A), one obtains

2 2 R 3 , (5A)

where m = [32nG(a + 3/3)]"1/2. Here a and /3 are chosen such that (a + 3/3) > 0 to
avoid the ghost problem.
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From eqs. (1 A) - (5 A), it is clear that eq.(5 A) can be obtained from Sg, given by eq.(1

A), only when higher-derivative terms \aR^vRl_iV-\-f3R2 — (1/3!)λη2R3 are not insignificant

compared to 16RπG. At this stage, it is important to know the energy mass scale M where
this possibility exists. To decide the relative dominance of j£^ and higher-derivative
terms, mass scale representation of these terms can be useful. In natural units, -^G

corresponds to 1 6 ,-J is the Planck mass and G = Mp2, laR^R^ +J3R2\ corresponds to
16Π(MP

[ J M 4 as well as (1/3!)λη2R3 corresponds to (1/3!)λη2M6 , because R and R^ are
linear combinations of second derivatives and squares of first derivatives of components
of the metric tensor g^v ( being defined through dS2 = gilvdxildxv ) w.r.t.space-time
coordinates. g^v are dimensionless. Thus, it is found that higher-derivative terms are
significant only when

3[& + J3] + ^9(a + J3)
M ~ Mf 2

According to eq.(6 A), M can be obtained exactly only when a,(3 and λ are known.
But roughly it indicates that M should be above 109GeV.

Now the question arises how to interpret the physical meaning of the equation (5 A).
An equation for the scalar matter field φ given as

l 4 3 ( 7 A )φ3,

is well known in quantum field theory. This equation is derived from the action

mφ 2^2}^ j^] (8A)

using its invariance under transformation 0 ^ 0 + δφ.
Comparing eqs.(5 A) and (7 A), it is found that
(i) mass dimension of φ is 1 in natural units whereas mass dimension of R is 2
(ii) • and R both depend on g^v whereas φ does not depend on g^v.
Now equation (5 A) is multiplied by η having length dimension and unit magnitude

in natural units and ηR is recognized as R. As a result, eq.(5 A) looks like

2 R \ (9A)
mR

2(3!)(a

Thus R has mass dimension 1 like φ.
It has been discussed above that equations of type (5 A) are possible at high energy

level. High energy modes exite the physical system at small length scales. So it is
appropriate to use asymptotic expansion of g^v given as

+

(x0) + -R^avii{xo)yay13 1 -
o 0

] (

11



in the small vicinity of a space-time point with coordinates {XQ]/I = 0,1,2,3}. Here
yα = xα — X0Α(Α = 0.1,2,3) and g^u(xo) = rq^u- Using these expressions, one obtains
the operator

r-
dx"

as

with

) y α y β

(12A)

and

Bν(x;x0) =

+

]

Thus, at high energy level, one can work in the small neighbourhood of a point {x0},
where • depends on curvature terms evaluated at the point {x0} and R is defined at
arbitrary points of the neighbourhood. So, at high energy level, it is possible to have •
and R independent.

It means that ,at high energy level, R behaves like spinless matter field φ and treating
i ? a s a basic physical field , eq. (9 A) can be derived from the action

J \ 2R2 1- m2R2} - - — 1 - - ^ # ] (UA)

using its invariance under transformation R —> R + δR.
Thus the Ricci scalar has a dual role at high energy (i) as a spinless matter field

represented by R = ηR and (ii) as a geometrical field.
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Table 1
(Λ — Λ0) , G/GN and dimension of space-time (4 + D) are tabulated below against

fjL/mc with mc = 2.82 x 1016GeV taking λ0 = 1.

fi/mc

1

1 +
1 +
1 +
1 +
1 +
1 +
1 +
1.1
2

10
105

101 0

102 0

103 0

oo

3 x 10" 6

4 x 10" 6

9 x 10" 6

lO" 5

lO" 4

10" 3

lO" 2

(A-
in

0
0
6.29

6.29

1.26

•Ao)

GeV4

x 106 5

x 106 5

x 106 6

1.0 x 10 6 7

1.0 x 106 8

9.99

9.56

x 106 8

x 106 9

6.9 x 107 0

2.24

1.19
1.94

x 107 1

x 107 2

x 107 2

3.1 x 107 2

3.94

1.58

x 107 2

x 107 3

G/GN

1
1
1
1
1

1
1
1
1
1
1
1

0.99
0.985
0.975
0

(4 + D)

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

+ 7.9 x
+ 7.9 x
+ 1.59 x
+ 1.27x
+ 1.26 x
+ 1.26 x
+ 1.2 x
+ 8.74x

.03

.16

.27

.449

.596
10

10"8

10"8

: 10"7

10"6

lO"5

10"4

lO"3

lO"3
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