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Abstract Herein, natural fiber (energy reeds and rice

straw) reinforced with phenol formaldehyde (PF)

polymeric resin biocomposites are developed and

reported in this study. The dimensions of energy reeds

and rice straws used for this research were

0.5–1.66 mm and 0.1–3.55 mm, respectively. The

hot-pressing technology was used for manufacturing

the biocomposites. The proportions for mixing of rice

straw/energy reed fibers in composite systems were

90/0, 54/36, 36/54, and 0/90 whereas remaining 10%

were belong to PF resin. The nominal densities of the

biocomposite panels were 680 kg/m3, however the

actual densities were 713.655, 725, 742.79, and

764.49 kg/m3. The main objective of this study is to

develop hybrid biocomposites from different propor-

tions of energy reeds and rice straw fibers using PF

resin and to find the convenient ratio and materials for

biocomposites production. The obtained results

demonstrate that mechanical properties and stability

against the moisture increases with the increase of

energy reeds loading in the composite systems. The

biocomposite developed from 100% energy reeds

provided the higher mechanical properties compared

to 100% rice straw. The thermal and morphological

properties of the produced biocomposite materials

were investigated and found significant. The thermo-

mechanical properties of the composite materials

increase with the increase in energy reed fiber loading

in composite system. Furthermore, the coefficient of

variation (R2) also demonstrates a positive attributions

of energy reed fibers loading in composite systems.

Moreover, the overall performances of the developed

biocomposite panels demonstrate them as potential

and novel candidate to the composite community in

the coming times.
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Introduction

Sustainable biobased materials are getting attentions

throughout the globe continuously to minimize the

burdens from environment. The European manufac-

turing companies are trying to find out more

biodegradable, strong, and competitive raw materials

for composites production. However, sustainability

and innovative design of the product is getting priority

to fulfill this purpose. Moreover, the plenty of plant-

based materials are getting extensive attentions as they

are considered as the most common, prominent, and

renewable sources of raw materials available every-

where (Fuqua et al. 2012; Gallos et al. 2017; Hasan

et al. 2021a; Jagadeesh et al. 2020; Ma et al. 2014;

Mahmud et al. 2021; Matsuzaki 2016; Mokhothu and

John 2017; Ramamoorthy et al. 2015; Rangappa et al.

2020; Sanjay and Siengchin 2021; Shubhra 2010;

Thyavihalli Girijappa et al. 2019; Wang et al. 2015;

Xia 2016). Still, there are enormous plants remaining

around the world which could be explored further

through implementing state of the art technologies for

converting them into suitable products as they are non-

toxic in nature, biodegradable, renewable, and con-

sume less energy to process which would facilitate the

composite community. Furthermore, the hygroscopic

characteristics (Li et al. 2018; Nouri et al. 2020; Yin

et al. 2020) of plant-based materials provide healthier

environment when the associated biocomposites are

used for indoor applications. As the peoples are

spending a long time indoor environment, hence it is

required to keep the indoor air safer. However, plant-

based materials possess a high capability to ensure a

balance in the indoor relative humidity and tempera-

tures especially for construction materials (Antunes

et al. 2019). There are lots of researches conducted on

commonly used woods (like poplar, scots pine,

hornbeam, oak, beech, etc.) (Ferdosian et al. 2017;

Hasan et al. 2021g, 2021h) and natural fibers (like

hemp, flax, jute, sisal, ramie, and so on) (Faruk et al.

2012; Getme and Patel 2020; Gholampour and

Ozbakkaloglu 2020; Holbery and Houston 2006;

Rangappa et al. 2020; Sanjay et al. 2019) to utilize

them as reinforcement material for developing

123

7860 Cellulose (2021) 28:7859–7875



biocomposites. However, still now, the research on

hybrid composites development through utilizing

energy reeds available in central Europe and rice

straws are not studied yet to make them usable as a

prominent biocomposite material.

Energy reed plants are grown nearby the lake shores

and sea. There are some organizations like Ener-

gianövény-Team Kft., company Lengyeltóti, Hungary

is working since 2006 for harvesting energy reeds in

eastern and central European countries (Ener-

gianövény 2021). However, the same company is also

taking initiatives to expand the energy reeds cultiva-

tion in some other neighboring countries of Hungary

like Romania, Slovakia, and so on from 2017 (Ener-

gianövény 2021). The energy reed plants materials

could potentially be used as suitable raw materials for

food packaging, biomass heat power, and afterall high

strength composite panels (Energianövény 2021). The

energy reeds are used to produce bioenergy in some

European countries like Finland (67 2008), however

the potential applications on composite field is needed

more attempts to explore. In this regard, it could be an

interesting work to explore more viable options of

fiber materials and processing methods to enhance the

performance characteristics of sustainable products.

Interfacial bonding between the fiber and polymer is

extremely important. One of the possible reason

behind the poor internal bonding strengths maybe

the poor interfacial adhesion between the fibers and

matrix. However, the pretreatment could facilitate

with the improved fiber to matrix interactions (Hasan

et al. 2020b) which could consequently increase the

mechanical performances of the biocomposites as

well. In this regard, pretreated energy reed is

attempted to reinforce with PF resin through hybri-

dized with another prominent natural resources like

rice straw. It is found that the performance of the

biocomposite panels increased with the increase of

energy reeds fiber content in the composite systems.

However, unfortunately, according to our knowledge,

still now no research on energy reed fiber reinforced

polymeric composites are found yet to carry on with

the comparative study.

Rice is extensively grown throughout the world as a

popular agricultural products (Xie et al. 2015). Rice

straw is a common agricultural byproduct which is

inexpensive and abundantly available as the naturally

derived waste material having no commercial values

that is why generally burnt or thrown away in the field

for disposal after the extractions of rice (Basta et al.

2013; Pham et al. 2017). However, the burning and

associated disposals create some extra burdening

effects to the environments through generating CO2.

Nevertheless, the rice straws generated from rice

milling industries could be utilized as the prominent

biocomposite material. There is around 20% of total

rice product is considered as the byproduct materials

(Rout and Satapathy 2012). The polymeric compo-

nents present in rice husk (Table 1) demonstrates that

cellulose is the main chemical component here like as

other natural fibers (Mahmud et al. 2021). There are

also significant presence of lignin and hemicellulose in

the polymeric structures of rice husk. However, the as-

mentioned rice straw could be conveniently used for

biocomposites productions too. El-Kassa et al. (El-

Kassas and Mourad 2013) reported about the rice

straw reinforced urea formaldehyde resin composites

where they found 24.00 MPa MOR (modulus of

rupture), 2850 MPa MOE (modulus of elasticity),

and 0.50 MPa IBS (internal bonding strength). Zhang

et al. (Zhang and Hu 2014) developed hybrid

composites from rice straw and coir fibers reinforced

with PF resin and found 30.23 MPa MOR, 4.55 GPa

MOE, 0.41 MPa IBS, and 13.09% TS (thickness

swelling) for 100% rice straw and 27.16 MPa MOR,

2.92 GPa MOE, 1.00 MPa IBS, and 8.06 TS for 50%

rice straw and 50% coir fibers for medium density

fiberboards (728 kg/m3). However, still now, no

researches performed yet on energy reeds and rice

straw reinforced hybrid polymeric composites.

Moreover, the pretreatment of natural fibers could

facilitate with the enhancements in thermomechanical

performances in the composite systems through

improving the fiber to matrix interactions (Hasan

et al. 2020a). There are different pretreatment methods

like mercerization, acetylation, etherification, perox-

ide treatment, graft copolymerization, benzoylation,

and so on for natural fibers surface modification (Kalia

et al. 2009). However, the alkaline pretreatment

method is used for this research to treat the energy

reed and rice straw materials before the fabrications.

In order to achieve the better performance character-

istics through fiber treatment, it is required to use an

optimum concentrations of alkaline reagents like

NaOH or Na2CO3 (El-Sabbagh 2014; Njoku et al.

2019; Zhang et al. 2018). The possible reaction

mechanism of energy reed and rice straw materials

are shown in equation (1) and (2). On the other hand,
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in European countries, medium density fiber boards

(MDFs) are widely produced and used composite

materials. In this regards, both the rice straw and

energy reeds are collected from central European

regions to find out more diversified renewable mate-

rials for medium density biocomposite panels

production.

Ricestraw� OH þ Na� OH

! Ricestraw � O� � Naþ þ H2O ð1Þ

Energyreeds� OH þ Na� OH

! Energyreeds� O� � Naþ þ H2O ð2Þ

The mechanical properties found from rice husk

reinforcement is lower compared to energy reeds.

However, the incorporations of energy reeds with the

rice husks enhanced the performances of developed

biocomposite panels due to the attribution of positive

hybrid reinforcement effects. Moreover, this research

work would facilitate the biocomposite panel manu-

facturers with a sustainable and novel materials from

renewable sources, where energy reed fibers could

function as a new reinforcement biomaterial.

Materials and methods

Materials

The energy reeds (Miscanthus spp.) were collected

from Energianövény-Team Kft., company located in

Lengyeltóti, Hungary. The rice straw was received

from local areas of central Europe (Hungary). How-

ever, both the rice straw and energy reeds (Fig. 1)

were dried at ambient temperature and defibrated

through using a defibrating machine. The fiber mate-

rials were sieved for ensuring homogeneous fiber

dimensions before going to composite productions.

Phenolic resin like PF was supplied by Chemco, a. s. in

Slovakia for the purpose of research. The PF is reddish

brown in appearance, liquid, and viscous. However,

the dynamic viscosity of the PF resin was within

240–1080 mPa.s, density 1210 ± 20 kg/m3, dry mat-

ter content minimum 48, pH 10–12, and maximum

free phenol content 0.1 (wt%).

Methods

Preparation of rice straw and energy reeds fiber

The rice straw and energy reeds are long stem plant

materials which were chopped around 30–40 mm in

lengths by using a circular cutting equipment

(DCS570N XJ model, Pennsylvania, United States).

After that, both the rice straw and energy reeds were

pretreated with 5% (w/v) of NaOH for removing any

impurities present in the raw plant materials. The

excessive usage of alkaline reagents could damage the

cells of cellulosic substrates (Hasan et al. 2021c;

Rokbi et al. 2011), hence an optimum values of NaOH

was used for this pretreatment (Mishra 2003). The

materials were soaked in cold water for 24 h at basic

pH medium (around 12.0). The treated rice straw and

energy reeds were then washed with tape water for

removing the excess impurities and mucus from the

surfaces and dried in an oven drier for 30 min at

100 �C. The pH of energy reed and rice straws were

checked again after the treatments which was around

7.0. Moisture contents of the rice straw and energy

reeds were checked after the drying and found to have

around 9.3%. Later, the rice straw and energy reed

stems were defibrated using a defibrating machine (VZ

23,412, Dinamo Budapest, Hungary) without destroy-

ing the fibrils of the materials through adjusting the

grain and grinders distance. All the fibrous materials

were sieved using a Sieve analyzer from Fritsch

Table 1 Chemical components present in reeds fiber and rice husk material

Constituent polymers Energy reed fiber (Wahid et al. 2015) Rice straw fiber (Xie et al. 2015)

Cellulose 50.3 35.6

Hemicellulose 21.7 20.5

Lignin 15.0 16.8

Mineral ash 4.0 15

Moisture content – 12.1
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GmbH (ANALYSETTE 3Pro, Germany) having dif-

ferent dimensions from 0.1 to 3.55 mm for rice straws

and 0.5–1.66 mm for energy reeds. The amplitude

vibrations of the sieve analyzers were 1.0 for a 15 min

duration of time for 100.0 g (randomly chosen) rice

straw and energy reeds, respectively. It is found that

the highest dimension of rice straw fibers were 44.1%

and energy reeds were 44.6%. However, 5.7% rice

straw fibers dimension were within 2.55 mm, 27.6%

fibers 3.55 mm, 10.6% fibers 0.5 mm, 11.1% fibers

0.1 mm. On the other hand, 26.7% energy reeds were

within 1.25 mm, 13.8% fibers 1.0 mm, 14.8% fibers

were 0.5 mm in dimensions as shown in supplemen-

tary file (Fig. S1). Overall, the prepared sieved

materials from rice straw and energy reeds were

termed as the fiber materials.

Production of biocomposites panels

The hot pressing technology was implemented for

manufacturing biocomposites from rice straw and

energy reed fibers. Initially, the PF resin as per the

recipe mentioned in Table 2 was sprayed uniformly to

the fibers in a rotating drum blender. In case of first

biocomposite panel (EH1) 90% rice straw fibers were

used but for biocomposite panel 4 (EH4) 90% energy

reed fibers were used. The biocomposite panel 2 (EH2)

was produced from 54% rice straw to 36% energy

reeds, whereas the biocomposite panel 3 (EH3) by

36% rice straw and 54% energy reed fibers. However,

there were just only 10% PF used for all the

biocomposite panels. The moisture contents of the

mat were considered as 12% and resin by 34% to

Fig. 1 Physical and

morphological photographs

of energy reeds and rice

husks: a Physical

photographs of energy

reeds; b SEM image of

energy reeds; c Physical

photographs of rice straw;

d SEM image of rice straw

Table 2 Experimental design for rice straw and energy reed

fibers reinforced PF biocomposite panels production

Composite materials RS

(%)

ER

(%)

PF

(%)

EH1 90 0 10

EH2 54 36 10

EH3 36 54 10

EH4 0 90 10

*RS Rice straw, ER Energy reeds, and PF Phenol formaldehyde

resin
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calculate the recipe from the fractions. The mixed

fibers were placed in a 400 mm 9 400 mm wooden

frame through ensuring uniform spreading. Later, two

12 mm thickness steel rods were placed in the two

sides of the mats for providing a specific thickness to

the ultimate biocomposite panels. A hot press machine

(G. Siempelkamp GmbH and Co., Kg., Germany) was

used for hot pressing the composites. The platen

temperature was set to 135 �C, whereas the initial

pressure applied to the biocomposite panels were

7.1 MPa for a period of 2 min, which was reduced to

4.7 MPa after another 2 min and 3.2 MPa after

following the similar time durations (2 min). Later,

the temperature is minimized to the environmental

conditions through providing a cold water flow in the

machine and the pressure was then totally released.

The reason behind the extended time of pressing is

performed for achieving the perfect curation of PF

resin with the rice straw and energy reeds fiber. The

extended duration of curing was also reported by

another researcher where pMDI and UF bonded rice

straw boards were produced (Li et al. 2010). However,

the total time used for this current research to produce

each biocomposite was 6 min which is much more

lower than reported by another recent study (20 min)

(Zhang and Hu 2014). On the other hand, reason

behind the gradual decrease in pressure is to ensure a

crack free and uniform composite panels. Otherwise,

the panels could be destroyed if the pressure is

released instantly. Finally, biocomposite panels were

removed from the machine and kept in normal

atmospheric conditions (25 �C temperature and 65%

relative humidity). However, there were four biocom-

posite panels (Fig. 2) which were produced alike

following the same operation protocols.

Characterizations

A moisture analyzer (Kern ULB 50-3 N, KERN AND

SOHN GmbH, Germany) was used for investigating

the moisture contents of fiber materials. However,

accuracy of the equipment was 0.001 g, whereas the

temperature was 105 ± 0.3 �C. The standard EN

322:1993 was followed for moisture content investi-

gations. Thermal conductivity of rice straw and energy

reed fiber reinforced PF composites were investigated

as per MSZ EN ISO 10456 2012 standard through

following hot plate method at ambient atmospheric

conditions (relative humidity 65 ± 5% and

temperature 20 ± 2 �C). The detailed procedures for

the test is explained in our previous study (coir fiber

reinforcedMUF composites) (Hasan et al. 2021c). The

mechanical performances of biocomposite panels

were tested in terms of flexural properties (strength

and modulus) and IBS through Instron testing machine

(4208, United States). There were six samples from

each composite type prepared and taken for the

respective tests as per the standards. The standard

EN 310 was followed for flexural properties investi-

gation and EN 319 for IBS. Furthermore, morpholog-

ical studies were conducted through a SEM equipment

(S 3400 N, High Technologies Co., Ltd., Hitachi,

Japan) by means of 100 and 200 times magnifications

at 15.0 kV for both unfractured and fractured samples.

Results and discussion

Density of the thermosetting polymer reinforced

biocomposites play a significant role for determining

thermomechanical properties of the products. Hence

the densities of the biocomposites were also investi-

gated. Although, the nominal densities were calcu-

lated to be 680 kg/m3, but the actual densities found

after the biocomposite formations were 713.66, 725,

742.79, and 764.49 kg/m3. Interestingly, it is observed

that with the increase of energy reed fibers in the

composite systems, density also started to increase

whereas highest value was found for 100% energy

reeds reinforced composite (with a 12.43% increase

compared to the nominal density) whilst the lowest

value was noticed for rice straw reinforced composite

panels (with a 4.94% increase compared to nominal

density). It maybe that the energy reed fibers are

comparatively stronger than the rice straw, hence

increased the density in composite systems. Further-

more, increased fiber porosity also influences the

biocomposites density.

The load versus displacement curves of biocom-

posite panels are plotted in Fig. 3a, b both for flexural

properties and IBS characteristics. The highest load

was displayed by composite panel 4 (around 2096 N),

whereas composite panel 1, 2, and 3 showed approx-

imately 673, 1019, and 1114 N loads, respectively.

Conversely, in case of flexural properties, the values of

load corresponding to the composite panel 1, 2, 3 and 4

are nearly 194, 225, 341, and 261 N, respectively.

However, after showing the maximum load for
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cracking of the test samples, still the load continues

with the extended delaminations until the biocompos-

ite panels total failure occurs. It is found that the 100%

energy reed fibers reinforced biocomposites with PF

resin requires the highest load for breaking/bending

the samples compared to rice straw reinforced poly-

meric biocomposite panels. The similar effects were

also reported in the previous studies for different

natural fiber reinforced hybrid polymeric composites

(De Olveira et al. 2018; Tran et al. 2015; Wong et al.

2010).

Mechanical characteristics of the developed com-

posite panels from rice straw and energy reed fibers

reinforced PF composites are tabulated in Table 3. The

Fig. 2 Photographs of

produced biocomposite

panels produced from rice

straw and energy reed fibers

reinforced PF composites:

a EH1, b EH2, c EH3, and

d EH4

Fig. 3 Load versus displacement curves for energy reed and rice straw fibers reinforced PF composites: a IBS and b flexural properties
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maximum value for MOR was seen for composite

material 4 by 21.47 (2.12) MPa, whereas the lowest

value was observed for composite material 1 just only

11.18 (1.91) MPa with a 47.9% decline from the

composite 1. However, other two composite panels

also showed the moderate results, whereas composite

2 provided 15.65 (3.91)MPa and composite 3 by 16.94

(2.02) MPa. The differences in flexural strengths

started to increase with the increase in energy reeds

proportions in the composite systems. The similar

trends are also noticed for the MOE and IBS proper-

ties. Likewise, composite 4 showed the highest MOE

8.73 (0.16) MPa and composite 1 by 5.42 (0.69) MPa.

Just except composite 2 (thickness value 9.52 (0.18)

MPa), all other panels were showing the decreasing

pattern of thicknesses (9.85 (0.31), 9.85 (0.11), and

9.58 (0.04) MPa) (Table 3) with the increase in rice

straws. It seems rice straws provided higher thickness

compared to the energy reeds. The associated elonga-

tion at break (EBS) for flexural studies also showing

dissimilar results, although the lowest value was found

for composite 1 by 0.396 (0.04) %, and highest values

for composite 3 by 0.53 (0.056) %. However, still

composite 4 is showing higher values (0.41 (0.08) %)

compared to composite 1 panel.

IBS is another most important parameter to con-

sider for the biocomposites performance analysis. The

highest performances against internal bonding failure

are displayed by the energy reed fiber reinforced

composite panels (0.52 (0.04) MPa) compared to all

other types of panel (0.25 (0.02), 0.31 (0.09), and 0.34

(0.04) MPa) for composite 1, 2, and 3. The composite

panel 4 showed a higher strength by 108% compared

to composite 1, 67.7% compared to composite 2, and

52.9% compared to composite panel 3. Likewise,

other mechanical properties (flexural strengths and

modulus), IBS also provided the similar trends: the

increase in performances depend on the increased

loading of energy reed fibers proportion in hybrid

composite system. However, still we could not find

any report regarding the reinforcement of rice straw

and energy reeds fiber reinforced hybrid composites to

compare the performances, however the perceived

results are providing satisfactory mechanical proper-

ties in case of medium density composite panels.

Statistically, mechanical properties of the manufac-

tured composite panels were tested further using

coefficient of variation (R2) in terms of energy reeds

fiber proportions in composite systems. The R2 values

for density, MOR, and MOE are higher than 0.5,

whereas the values of IBS, T and E@BS are also

higher than 0.41. The R2 values of all the mechanical

properties (Table 1) demonstrating a significant influ-

ence of energy reeds on the flexural properties of the

developed materials. Hence, it could be stated that, the

increased loading of energy reed fibers in composite

system possesses a positive attributions for determin-

ing the different characteristics of biocomposite

panels.

The morphological observations of rice straw and

energy reed fibers provides a deep insight views of

both material types (Fig. 1). However, the surfaces of

fiber materials are seems to be rougher which is

happened maybe for the alkaline pretreatment of the

materials before the fabrication which also agrees with

some other previous studies by the researchers (Zhang

and Hu 2014). Furthermore, the rougher surfaces

obtained through treatment of the materials could

provide better mechanical properties to the composites

too as the impurities like oil, wax, etc. are removed

Table 3 Mechanical characteristics of produced biocomposite panels from rice straw and energy reed fibers reinforced PF

composites

BCs D

(kg/m3)

MOR

(MPa)

MOE

(GPa)

IBS

(MPa)

T

(mm)

EBS

(%)

EH1 713.66 (30.45) 11.18 (1.91) 5.42 (0.69) 0.25 (0.02) 9.85 (0.31) 0.396 (0.04)

EH2 725 (21.01) 15.65 (3.91) 6.64 (0.66) 0.31 (0.09) 9.52 (0.18) 0.523 (0.066)

EH3 742.79 (16.51) 16.94 (2.02) 7.85 (0.25) 0.34 (0.04) 9.85 (0.11) 0.53 (0.056)

EH4 764.49 (8.28) 21.47 (2.12) 8.73 (0.16) 0.52 (0.04) 9.58 (0.04) 0.41 (0.08)

Coefficient of variation (R2) 0.50 0.64 0.85 0.41 0.49 0.46

*D Density; MOR Modulus of Rupture; MOE Modulus of Elasticity; IBS Internal Bonding Strength; T Thickness; EBS Elongation at

bending stress
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from the cellulosic materials. The morphological

photographs of unfractured surfaces (Fig. 4) are

displaying flat and uniform coating of PF resins over

the fiber surfaces demonstrating a stronger bonding in

composite systems. The reason behind the strong

reinforcement effects between the fiber and polymers

is mediated by the pretreatment of the rice straw

(Kalagar et al. 2011) and energy reeds materials.

Although the fibers are somehow appeared in the

unfractured surfaces, but the clear representative fibers

could be seen explicitly in fractured surfaces (Fig. 5).

Overall, it could be summarized that a better rein-

forcement effect is achieved through pretreating rice

straw and energy reeds before the defibration and

fabrications which also in agreement with the previous

reports by the researchers (Wang et al. 2018).

Furthermore, the presence of chemical elements in

the biocomposite panels were also studied in terms of

SEM mediated EDX (energy-dispursive X-ray) spec-

tra to investigate the constituents of the materials. The

main chemical elements of natural fibers are carbon

(C) and oxygen (O) (Hasan et al. 2021f; Manimaran

et al. 2018) which are detected as the broad peaks in

Fig. 6a, b. however, the presence of C and O could

also be observed for all the composites as well

(Fig. 6c–f). Moreover, there is also a signal detected

for the presence of chlorine (Cl), Aluminum (Al),

potassium (K) in the composite panels which is maybe

responsible for using the tape waters or processing

equipments during preparing the materials in different

stages appeared as impurities. However, the promi-

nence of C and H is found to have increased especially

for Fig. 6e, h compared to Fig. 6a, b. The PF resin also

contains H (hydrogen) and carbon in their polymeric

structures which may have consequence for this

changes in the composite systems. Hence, the overall

discussions confirm a strong and successful binding of

PF resin with the cellulosic energy reeds and rice straw

fibers.

Thermal conductivity is a critical performance and

reliability assessment parameters of polymeric com-

posite panels for structural and construction materials.

The types of finer and associated volume fraction of

fiber materials play a significant role for improved

thermal conductivity of natural fiber reinforced com-

posites (Mounika et al. 2012). It is found that

composite panel 1 displayed lowest values of thermal

conductivity (0.061 (0.00083)) W/(m.K), whereas the

highest values found for 100% energy reed fibers

reinforced composites (0.104790 (0.000571)). More-

over, the values of EH@2 and EH@3 composites are

providing 0.10383 (0.00061) and 0.10447 (0.00069)

W/(m.K) thermal conductivity. It is noticed that

thermal conductivity also showing an increasing

trends like as mechanical properties with the increased

loading of energy reeds in composites system. In our

previous study (Hasan et al. 2021b) for coir fiber and

fibrous chips reinforced with MUF polymeric com-

posite panels (medium density), we have found the

thermal conductivity values between

0.09302 ± 00.999 and 0.1078 ± 00.0072 W/(m.K).

In another study by Ramanaiah et al. (2011) for Typha

angustifolia reinforced polyester composites (high

density) showed the thermal conductivity between

0.137 and 0.432 W/(mK). However, the obtained

thermal conductivity reported in this current study is

found to provide comparatively better results demon-

strating the produced biocomposite panels could

perform as prominent insulation materials. However,

the density could be enhanced from medium to higher

for attaining lower values of thermal conductivity

which could be utilized as a potential building

material. Additionally, rice straw reinforced compos-

ites provided better thermal conductivity values

although the mechanical properties found were not

competitive compared to energy reed fibers reinforced

panels.

The functional groups of cellulosic materials used

in this research were detected further in terms of FTIR

spectra (Fig. 7). Both the rice straw and energy reeds

are displaying broad absorption peaks within

3600–3200 cm-1 wavelength demonstrating the pres-

ence of –OH groups in their polymeric structures

(Ismail et al. 2011; Qin 2011). However, the similar

peaks also still could be noticed after the fabrication of

biocomposites. The peaks become broader after the

reinforcement maybe due to the reinforcement with PF

resin. The peaks at around 2921 and 2852 cm-1 is

indicating the C=H stretching vibrations (Arshad

2021; Qin et al. 2011). Moreover, peaks at

1733 cm-1 is related to the lignin fractions present

in the naturally derived materials. The absorption band

at 1507 cm-1 is assigned for the vibrations of aromatic

ring. The presence of primary alcohol is confirmed by

the peaks at 1032 cm-1 (El Mansouri et al. 2018). The

overall detection of different chemical bonding in the

composite materials demonstrate a successful
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Fig. 4 SEM micrographs of biocomposite panels (before fracture) from rice straw and energy reed fibers reinforced PF composites at

different magnifications a and b EH1; c and d EH2; e and f EH3; g and h EH4
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Fig. 5 SEM micrographs of fractured biocomposite panels from rice straw and energy reed fibers reinforced with PF resin at different

magnifications: a and b EH1; c and d EH2; e and f EH3; g and h EH4
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Fig. 6 EDX spectra of produced biocomposite panels from rice straw and energy reed fibers reinforced with PF resin: a energy reeds

fiber; b rice straw fiber; c EH1; d EH2; e EH3; f EH4
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reinforcement effects between the natural fibers and

PF resin.

The water absorbency, thickness swelling, and

physical properties are the key parameters for inves-

tigating physical properties of biocomposite materials

(Fig. 8). All the properties were measured for 2 and

24 h duration of times. The water absorbency and

thickness swelling properties were tested after immer-

sion of the hybrid biocomposite samples under the

water. Compared to the artificial fibers, natural fiber

reinforced composites absorb higher water and mois-

ture from the surrounding atmosphere (Hasan et al.

2021f). The cause of higher water absorption is due to

the presence of some hydrophilic chemical com-

pounds like –CO, –COOH, –NH2, and –OH, in the

natural fibers polymeric structures (Hasan et al.

2021e, 2021f). The water absorption, thickness

swelling, and moisture content studies of the devel-

oped hybrid biocomposite panels shown that 100%

rice straw reinforced composites provided the maxi-

mum values (54.284 (2.6580)% for water absorbency,

38.572 (0.1744)% for thickness swelling, and 5.92

(0.6464)% for moisture content) whereas the energy

reed fiber (100%) reinforced composites provided the

lowest values (7.746 (0.3391)% for water absorbency,

9.383 (0.5115)% for thickness swelling, and 5.11

(0.2423)% for moisture content) after 2 h. However,

the similar trend is also noticed after 24 h although the

absorption rates started to decline gradually after 2 h.

The sequence of the physical properties in terms of

higher values is EH1[EH2[EH3[EH4 for the

composite panels. It is seen that energy reed fiber

loaded biocomposites absorb less moisture and water

compared to the rice straw loaded biocomposites.

However, the moisture content in the hybrid compos-

ite systems start to decrease with the increased loading

of energy reeds in the proportions. The similar

phenomenon were also discussed by the researchers

in previous studies for different natural fiber rein-

forced polymeric composites (Bera et al. 2019; Hasan

et al. 2021d; Njoku et al. 2019; Vinod 2021).

Conclusions

The reinforcement of rice straw and energy reed fibers

for hybrid biocomposites production through using

hot-pressing technology is a feasible and convenient

manufacturing approach. The mechanical properties

(IBS and flexural properties), thermal conductivity,

and physical properties in terms of moisture content,

water absorbency, and thickness swelling stability are

found satisfactory with an increasing trend whilst the

energy reeds incorporation was increased in the

composite system. The EDX analysis provided the

peaks for different chemical elements which are

demonstrating a strong binding between the cellulosic

rice straw and energy reed fibers with PF resin. The

Fig. 7 FTIR spectra of control energy reed, rice straw, and associated biocomposites
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morphological characteristics also further shown a

strong coating of PF resin with rice straw and energy

reed reinforcement materials. The thermal conductiv-

ity tests provided significant potentiality of the

biocomposite panels as prominent insulation materi-

als. In this regard, the developed composites exhibited

a superior potentiality for particle boards production,

structural applications, light weight vehicles, and so

on. Furthermore, energy reed fibers are also found to

have a prominent potential as the reinforcement

materials in the near futures. Moreover, this research

work shown a new potentiality for future researchers

and industrial production houses with novel hybrid

biocomposite materials from renewable sources.
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De Olveira LÁ, Santos JCd, Panzera TH, Freire RTS, Vieira

LMG, Rubio JCC (2018) Investigations on short coir fibre-

reinforced composites via full factorial design. Polym

Polym Compos 26:391–399. https://doi.org/10.1177/

0967391118806144

El Mansouri NE, Yuan Q, Huang F (2018) Preparation and

characterization of phenol-formaldehyde resins modified

with alkaline rice straw lignin. BioResources

13:8061–8075. https://doi.org/10.15376/biores.13.4.8061-

8075

El-Kassas A, Mourad AI (2013) Novel fibers preparation tech-

nique for manufacturing of rice straw based fiberboards

and their characterization. Mater Des 50:757–765. https://

doi.org/10.1016/j.matdes.2013.03.057

El-Sabbagh A (2014) Effect of coupling agent on natural fibre in

natural fibre/polypropylene composites on mechanical and

thermal behaviour. Compos Part B Eng 57:126–135.

https://doi.org/10.1016/j.compositesb.2013.09.047
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Hasan KF, Horváth PG, Kóczán Z, Alpár T (2021c) Thermo-

mechanical properties of pretreated coir fiber and fibrous

chips reinforced multilayered composites. Sci Rep. https://

doi.org/10.1038/s41598-021-83140-0
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