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Abstract. We extend the searchable symmetric encryption (SSE) protocol of [Cash et al., Crypto’13]
adding support for range, substring, wildcard, and phrase queries, in addition to the Boolean queries
supported in the original protocol. Our techniques apply to the basic single-client scenario underlying
the common SSE setting as well as to the more complex Multi-Client and Outsourced Symmetric PIR
extensions of [Jarecki et al., CCS’13]. We provide performance information based on our prototype
implementation, showing the practicality and scalability of our techniques to very large databases, thus
extending the performance results of [Cash et al., NDSS’14] to these rich and comprehensive query
types.

1 Introduction

Searchable symmetric encryption (SSE) addresses a setting where a client outsources an encrypted database
(or document/file collection) to a remote server E such that the client, which only stores a cryptographic key,
can later search the collection at E while hiding information about the database and queries from E . Leakage
to E is to be confined to well-defined forms of data-access and query patterns while preventing disclosure of ex-
plicit data and query plaintext values. SSE has been extensively studied [25,12,7,10,8,18,15,17,14,6,13,5,20,19],
particularly in last years due to the popularity of clouds and data outsourcing, focusing almost exclusively
on single-keyword search.

Recently, Cash et al. [6] and Pappas et al. [20] presented the first SSE solutions that go well beyond single-
keyword search by supporting Boolean queries on multiple keywords in sublinear time. In particular, [6,5]
build a very scalable system with demonstrated practical performance with databases containing indexes
in the order of tens of billions document-keyword pairs. In this work we extend the search capabilities of
the system from [6] (referred to as the OXT protocol) by supporting range queries (e.g., return all records
of people born between two given dates), substring queries (e.g., return records with textual information
containing a given pattern, say ‘crypt’), wildcard queries (combining substrings with one or more single-
character wildcards), and phrase queries (return records that contain the phrase “searchable encryption”).
Moreover, by preserving the overall system design and optimized data structures of [5], we can run any of
these new queries in combination with Boolean-search capabilities (e.g., combining a range and/or substring
query with a conjunction of additional keywords/ranges/substrings) and we can do so while preserving the
scalability of the system and additional properties such as support for dynamic data.

We also show how to extend our techniques to the more involved multi-client SSE scenarios studied by
Jarecki et al. [13]. In the first scenario, denoted MC-SSE, the owner of the data, D, outsources its data to a
remote server E in encrypted form and later allows multiple clients to access the data via search queries and
according to an authorization policy managed by D. The system is intended to limit the information learned
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by clients beyond the result sets returned by authorized queries while also limiting information leakage to
server E . A second scenario, OSPIR-SSE or just OSPIR (for Outsourced Symmetric PIR), addresses the
multi-client setting but adds a requirement that D can authorize queries to clients following a given policy,
but without D learning the specific values being queried. That is, D learns minimal information needed to
enforce policy, e.g., the query type or the field to which the keyword belongs, say last name, but not the
actual last name being searched.

We present our solution for range queries in Section 3, showing how to reduce any such query to a disjunction
of exact keywords, hence leveraging the Boolean query capabilities of the OXT protocol and its remarkable
performance. In the OSPIR setting, we show how D can authorize range queries based on the total size of
the queried range without learning the actual endpoints of the range. This is useful for authorization policies
that limit the size of a range as a way of preventing a client from obtaining a large fraction of the database.
Thus, D may learn that a query on a data field spans 7 days but not which 7 days the query is about.
Achieving privacy from both D and E while ensuring that the authorized search interval does not exceed a
size limit enforced by D, is challenging. We propose solutions based on the notion of universal tree covers
for which we present different instantiations trading performance and security depending on the SSE model
that is being addressed.

The other queries we support, i.e. substrings, wildcards and phrases, are all derived from a novel technique
that allows us to search on the basis of positioning information (where the data and the position information
are encrypted). This technique can be used to implement any query type that can be reduced to Boolean
formulas on queries of the form “are two data elements at distance ∆?”. For example, in the case of substring
queries, the substring is tokenized (i.e., subdivided) into a sequence of possibly-overlapping k-grams (strings
of k characters) and the search is performed as a conjunction of such k-grams. However, to avoid false
positives, i.e., returning documents where the k-grams appear but not at the right distances from each other,
we use the relative positions of the tokens to ensure that the combined k-grams represent the searched
substring. Wildcard queries are processed similarly, because t consecutive wildcard positions (i.e., positions
that can be occupied by any character) can be implemented by setting the distance between the two k-grams
that bracket the string of t wildcards to k + t. Phrase queries are handled similarly, by storing whole words
together with their encrypted positions in the text.

The crux of this technique is a homomorphic computation on encrypted position information that gives rise
to a very efficient SSE protocol between client C and server E for computing relative distances between data
elements while concealing this information from E . This protocol meshes naturally with the homomorphic
properties of OXT but in its general form it requires an additional round of interaction between client and
server. In the SSE setting, the resulting protocol preserves most of the excellent performance of the OXT
protocol (with the extra round incurring a moderate increase in query processing latency). For the OSPIR
setting we resort to bilinear groups for some homomorphic operations, hence impacting performance in a
more noticeable way which we are currently investigating.

We prove the security of our protocols in the SSE model of [10,8,6], and the extensions to the MC-SSE and
OSPIR settings of [13], where security is defined in the real-vs-ideal model and is parametrized by a specified
leakage function L(DB,q). A protocol is said to be secure with leakage profile L(DB,q) against adversary
A if the actions of A on adversarially-chosen input DB and query set q can be simulated with access to the
leakage information L(DB,q) only (and not to DB or q). This allows modeling and bounding the partial
leakage incurred by SSE protocols. It means that even an adversary that has full information about the
database and queries, or even chooses them at will, does not learn anything from the protocol execution
other than what can be derived solely from the defined leakage profile. We achieve provable adaptive security
against adversarial servers E and D, and against malicious clients. Servers E and D are assumed to return
correct results (e.g., server E returns all documents specified by the protocol) but can otherwise behave
maliciously. However, in the OSPIR setting, query privacy from D is achieved as long as D does not collude
with E .
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Practicality of our techniques was validated by a comprehensive implementation of: (i) the SSE protocols
for range, substring and wildcard queries, and their combination with Boolean functions on exact keywords,
and (ii) the OSPIR-SSE protocol for range queries. These implementations (extending those of [6,13,5]) were
tested by an independent evaluator on DB’s of varying size, up to 10 Terabytes with 100 million records
and 25.6 billion record-keyword pairs. Performance was compared to MariaDB’s (an open-source fork of
MySQL) performance on the same databases running on plaintext data and plaintext queries. Due to the
highly optimized protocols and careful I/O management, the performance of our protocols matched and
often exceeded the performance of the plaintext system. These results are presented in Section 6.

Related Work. The only work we are aware of that addresses substring search on symmetrically encrypted
data is the work of Chase and Shen [9]. Their method, based on suffix trees, is very different than ours and the
leakage profiles seem incomparable. This is a promising direction, although the applicability to (sublinear)
search on large databases, and the integration with other query types, needs to be investigated. Its potential
generalization to the multi-client or OSPIR settings is another interesting open question. Range and Boolean
queries are supported, also for the OSPIR setting, by Pappas et al. [20] (building on the work of Raykova et
al [22]). Their design is similar to ours in reducing range queries to disjunctions (with similar data expansion
cost) but their techniques are very different offering an alternative (and incomparable) leakage profile for
the parties. The main advantages of our system are the support of the additional query types presented
here and its scalability. The scalability of [20] is limited by their crucial reliance on Bloom filters that
requires database sizes whose resultant Bloom filters can fit in RAM. A technique that has been suggested
for resolving range queries in the SSE setting is order-preserving encryption (e.g., it is used in the CryptDB
system [21]). However, it carries a significant intrinsic loss of privacy as the ordering of ciphertexts is visible
to the holding server (and the encryption is deterministic). Range queries are supported in the multi-writer
public key setting by Boneh-Waters [4] and Shi et al. [24] but at a significantly higher computational cost.

2 Preliminaries

Our work concerns itself with databases in a very general sense, including relational databases (with data
arranged in “rows” and “columns”), document collections, textual data, etc. We use interchangeably the word
‘document’ and ‘record’. We think of keywords as (attribute,value) pairs. The attribute can be structured
data, such as name, age, SSN, etc., or it can refer to a textual field. We sometimes refer explicitly to
the keyword’s attribute but most of the time it remains implicit. We denote by m the number of distinct
attributes and use I(w) to denote the attribute of keyword w.

SSE protocols and formal setting (following [6]). Let τ be a security parameter. A database DB =
(indi,Wi)

d
i=1 is a list of identifier and keyword-set pairs, where indi ∈ {0, 1}τ is a document identifier and

Wi = DB[indi] is a list of its keywords. Let W =
⋃d
i=1 Wi. A query ψ is a predicate on Wi where DB(ψ) is the

set of identifiers of document that satisfy ψ. E.g. for a single-keyword query we have DB(w) = {ind s.t. w ∈
DB[ind]}.

A searchable symmetric encryption (SSE) scheme Π consists of an algorithm Setup and a protocol Search
fitting the following syntax. Setup takes as input a database DB and a list of document (or record) decryption
keys RDK, and outputs a secret key K along with an encrypted database EDB. The search protocol Search
proceeds between a client C and server E , where C takes as input the secret key K and a query ψ and E
takes as input EDB. At the end of the protocol, C outputs a set of (ind, rdk) pairs while E has no output.
We say that an SSE scheme is correct for a family of queries Ψ if for all DB,RDK and all queries ψ ∈ Ψ , for
(K,EDB)← Setup(DB,RDK), after running Search with client input (K,ψ) and server input EDB, the client
outputs DB(ψ) and RDK[DB(ψ)] where RDK[S] denotes {RDK[ind] | ind ∈ S}. Correctness can be statistical
(allowing a negligible probability of error) or computational (ensured only against computationally bounded
attackers - see [6]).
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Note (retrieval of matching encrypted records). Above we define the output of the SSE protocol as the set of
identifiers ind pointing to the encrypted documents matching the query (together with the set of associated
record decryption keys rdk). The retrieval of the document payloads, which can be done in a variety of ways,
is thus decoupled from the storage and processing of the metadata which is the focus of the SSE protocols.

Multi-Client SSE Setting [13]. The MC-SSE formalism extends the SSE syntax by an algorithm GenToken,
which generates a search-enabling value token from the secret key K generated by the data owner D in Setup,
and query ψ submitted by client C. Protocol Search is then executed between server E and client C on resp.
inputs EDB and token, and the protocol must assure that C outputs sets DB(ψ) and RDK[DB(ψ)].

OSPIR SSE Setting [13]. An OSPIR-SSE scheme replaces the GenToken procedure, which in MC-SSE is
executed by the data owner D on the cleartext client’s query q, with a two-party protocol between C and
D that allows C to compute the search-enabling token without D learning ψ. However, D should be able to
enforce a query-authorization policy on C’s query. We consider attribute-based policies, where queries are
authorized based on the attributes associated to keywords in the query (e.g., a client may be authorized
to run a range query on attribute ‘age’ but not on ‘income’, or perform a substring query on the ’address’
field but not on the ‘name’ field, etc.). Later, we will consider extensions where the policy can define further
constraints, e.g., the total size of an allowed interval in a range query, or the minimal size of a pattern in a
substring query. An attribute-based policy for any query type is represented by a set of attribute-sequences
P s.t. a query ψ involving keywords (or substrings, ranges, etc) (w1, ..., wn) is allowed by policy P if and only
if the sequence of attributes av(ψ) = (I(w1), ..., I(wn)) ∈ P. Using this notation, the goal of the GenToken
protocol is to let C compute token corresponding to its query on ψ only if av(w̄) ∈ P. Note that different
query types will have different entries in P. Reflecting these goals, an OSPIR-SSE scheme is a tuple Σ =
(Setup,GenToken,Search) where Setup and Search are as in MC-SSE, but GenToken is a protocol run by C on
input ψ and by D on input (P,K), with C outputting token if av(ψ) ∈ P, or ⊥ otherwise, and D outputting
av(ψ).

3 Range Queries

Our solution for performing range queries on encrypted data reduces these queries to a disjunction of exact
keywords and therefore can be integrated with SSE solutions that support such disjunctions. In particular,
we use this solution to add range query support to the OXT protocol from [6,13] while keeping all the other
properties of OXT intact. This includes OXT’s remarkable scalability, its support for different models (SSE,
MC, OSPIR), and its boolean search capability. Thus, we obtain a protocol where range queries can be run
in isolation or in combination with boolean expressions on other terms, including conjunctive ranges such as
30≤age≤39 and 50,000 ≤ income ≤ 99,999.

Range queries can be applied to any ordered set of elements; our description focuses on integer ranges for
simplicity. We denote range queries with input an interval [a, b], for integers a ≤ b, by RQ(a, b). We refer to
a and b as the endpoints and to the number b− a+ 1 as the size of the range. Inequality queries of the form
x ≥ a are represented by the range [a, b] where b is an upper bound on all applicable values for the searched
attribute; queries of the form x ≤ b are handled similarly.

We now describe the extensions to the OXT protocol (and its OSPIR version) for supporting range queries.
Thanks to our generic reduction of range queries to disjunctions of exact keywords, our range-query presen-
tation does not require a detailed knowledge of the OXT protocol and basic familiarity with OXT suffices
(the interested reader can find more details on OXT in the above papers and also in Section 4.1).

Pre-Processing (Setup). For concreteness, consider a database table with an attribute (or column) A over
which range queries are enabled. The values in the column are mapped to integer values between 0 and 2t−1
for some number t. To support range queries on attribute A we augment the given cleartext database DB
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with t virtual1 columns which are populated at Setup as follows. Consider a full binary tree with t+ 1 levels
and 2t leaves. Each node in the tree is labeled with a binary string describing the path from the root to the
node: The root is labeled with the empty string, its children with strings 0 and 1, its grandchildren with 00,
01, 10, 11, and so on. A node at depth d is labeled with a string of length d, and the leaves are labeled with
t-long strings that correspond to the binary representation of the integer value in that leaf, i.e. a t-bit binary
representation padded with leading zeros.

Each of the t added columns correspond to a level in the tree, denoted A′(1), A′(2), . . . , A′(t) (A′ indicates
that this is a “virtual attribute” derived from attribute A). A record (or row) whose value for attribute A
has binary representation vt−1, . . . , v1, v0 will have the string (vt−1, . . . , v1, v0) in column A′(t), the string
(vt−1, . . . v1) in column A′(t−1), and so on till column A′(1) which will have the string vt−1. Once the above
plaintext columns A′(1), . . . , A′(t− 1) are added to DB (note that A′(t) is identical to the original attribute
A), they are processed by the regular OXT pre-processing as any other original DB column, but they will
be used exclusively for processing range queries.

Client processing. To query for a range RQ(a, b), the client selects a set of nodes in the tree that form a
cover of the required range, namely, a set of tree nodes for which the set of descendant leaves corresponds
exactly to all elements in the range [a, b] (e.g. a cover for range 3 to 9 in a tree of depth 4 will contain
cover nodes 0011, 01, 100). Let c1, . . . , c` be the string representation of the nodes in the cover and assume
these nodes are at depths d1, . . . , d`, respectively (not all depths have to be different). The query then is
formed as a disjunction of the ` exact-match queries “column A′(di) has value ci”, for i = 1, . . . , `. Note
that this simple reduction to a disjunction of exact terms allows us to reuse the full OXT functionality
(and implementation). In particular, we can combine range queries with Boolean expressions on other terms,
etc. Also note that we assume that the client knows how nodes in the tree are represented; in particular it
needs to know the total depth of the tree. We stress that this reduction to a disjunctive query works with
any strategy for selecting the cover set. This is important since different covers present different trade-offs
between performance and leakage. Moreover, since the pre-processing of data is independent of the choice
of cover, one can allow multiple cover strategies to co-exist to suit different leakage-performance trade-offs.
Later, we will describe specific strategies for cover selection.

Interaction of client C with server E. The search at E is carried exactly as in the Search phase of OXT
as with any other disjunction. In particular, E does not need to know whether this disjunction comes from
a range query.

Server D′s token generation and authorization. For the case of single-client and multi-client) SSE,
token generation and authorization work as with any disjunction in the original OXT protocol. However, in
the OSPIR setting, D needs to authorize the query without learning the queried values. Specifically, in the
scenario addressed by our implementation, authorization of range queries is based on the searched attribute
(e.g., age) and the total size of the range (i.e., policy attaches to each client an upper bound on the size of a
range the client is allowed to query for the given attribute). To enforce this policy, we allow D to learn the
searched attribute and the total size of the range, i.e., b − a + 1, but not the actual end-point values a, b.
This is accomplished as follows.

Client C computes a cover corresponding to his range query and maps each node in the cover to a keyword
(d, c), where d is the depth of the node in the tree and c the corresponding string. It then generates a
disjunction of the resultant keywords (di, ci), i = 1, . . . , `, where ` is the size of the cover, di acts as the
keyword’s attribute and ci as its value. C provides D with the attributes d1, . . . , d` thus allowing D to
provide the required search tokens to C as specified by the OXT protocol for the OSPIR setting [13] (OXT
requires the keyword attribute to generate such token). However, before providing these tokens, D needs to
verify that the total size of the range is under the bound that C is authorized for. D computes this size using
her knowledge of the depths d1, . . . , d` by the formula

∑`
i=1 2t−di which gives the number of leaves covered

1 The original DB is not changed, only the inverted indexes (TSet’s) corresponding to these virtual columns are
generated.
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by these depths. Note that this ensures the total size of the range to be under a given bound but the range
can be formed of non-consecutive intervals. Importantly, note that this authorization approach works with
any cover selection strategy used by the client.

Cover Selection. There remains one crucial element to take care of: Making sure that the knowledge of
the cover depths d1, . . . , d` does not reveal to D any information other than the total size of the range. Note
that the way clients select covers is essentially independent of the mechanisms for processing of range queries
described above. Here we analyze some choices for cover selection. The considerations for these choices are
both performance (e.g. size of the cover) and privacy. Privacy-wise the goal is to limit the leakage to server E
and, in the OSPIR case, also to D. In the latter case, the goal is to avoid leakage beyond the size of the range
that D needs to learn in order to check policy compliance. These goals raise general questions regarding
canonical covers and minimal over-covers which we outline below.

A natural cover selection for a given range is one that minimizes the number of nodes in the cover (hence
minimizes the number of disjuncts in the search expression). Unfortunately, such cover leaks information
beyond the size of a range, namely, it allows to distinguish between ranges of the same size. E.g., ranges
[0, 3] and [1, 4] are both of size 4 but the first has a single node as its minimal cover while the latter requires
3 nodes. Clearly, if C uses such a cover, D (and possibly E) will be able to distinguish between the two cases.

Canonical Profiles and Universal Covers. The above example raises the following question: Given that
authorization allows D to learn the depths of nodes in a cover, is there a way of choosing a cover that only
discloses the total size of the range (i.e., does not allow to distinguish between two different ranges of the
same size even when the depths are disclosed)? In other words, we want a procedure that given a range
produces a cover with a number of nodes and depths that is the same for any two ranges of the same size.
We call such covers universal. The existence of universal covers is demonstrated by the cover that uses each
leaf in the range as a singleton node in the cover. Can we have a minimal universal cover? Next, we answer
this question in the affirmative.

Definition 1. The profile of a range cover is the multi-set of integers representing the heights of the nodes
in the cover. (The height of a tree node is its distance from a leaf, i.e., leaves have height 0, their parents
height 1, and so on up to the root which has height t− 1.) A profile for a range of size n is universal if any
range of size n has a cover with this profile. A universal cover is one whose profile is universal. A universal
profile for n is minimal if there is a range of size n for which all covers have that profile. (For example, for
n > 2 the all-leaves cover is universal but not minimal.)

Definition 2 (Canonical profile). A profile for ranges of size n is called canonical if it is composed of
the heights 0, 1, 2, . . . , L − 1, where L = blog(n+ 1)c, plus the set of powers (’1’ positions) in the binary
representation of n′ = n− 2L + 1. A canonical cover is one whose profile is canonical.

Example: for n = 20 we have L = 4, n′ = 5, and the canonical profile is {0, 1, 2, 3, 0, 2} where the last 0, 2
correspond to the binary representation 101 of 5 (note that 20 = 20 + 21 + 22 + 23 + 20 + 22).

Theorem 1. For every integer n > 0 the canonical profile of ranges of size n is universal and minimal (and
the only such profile).

The proof of this lemma is elementary but somewhat lengthy and is presented in Appendix A where we also
present a procedure for computing canonical covers. (We note that a notion similar to canonical covers has
been used, independently and in a different context, in [16].)

3-node universal over-covers. The canonical cover has the important property of not leaking any infor-
mation to D beyond the size of the range (that D needs to learn anyway to authorize a query). However,
the number of nodes in a canonical cover can leak information on the range size to server E (assuming that
E knows that a given disjunction corresponds to a range query). Another drawback is that canonical covers
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may include 2 log n nodes. Ideally, we would like to use covers with a small and fixed number of nodes that
also have universal profiles, i.e., any two ranges of a given size will always be represented by covers with the
same depths profile. While we show this to be impossible for exact covers, we obtain covers with the above
properties by allowing false-positives, i.e., covers that may include elements outside the requested range,
hence we call them over-covers.

We instantiate this approach by showing an example of 3-node universal over-cover which works on all ranges,
and its covered range may be up to a 66% larger than the original range (and it is 40% larger on average).
Note that leakage-wise, false positives (visible to C) are not a problem in the single-client SSE setting while
in the multi-client case one would require the over-cover to fully fall under the range sizes authorized for
C. Importantly, these over-covers reduce leakage to E by fixing the number of disjuncts regardless of range.
Choosing a cover strategy can depend on a specific query and the particular attribute where the range query
is applied to. Fortunately a client can choose its own strategy for cover selection on an individual query basis.
All other parts of the protocol are independent of the client’s choice of particular covers.

We define a 3-node universal over-cover profile for a given range size n as follows. Let n = 2L + 2s + n′ + 2
where s < L, n′ + 2 < 2s, i.e., L and s are the two leftmost positions of 1’s in the binary representation of
n− 2 (for n = 2L + 2 define s = 0). The 3-node profile contains heights L, s and max{s+ 1, L− 1} (i.e., the
third element is L if s = L− 1 and L− 1 otherwise).

Theorem 2. Every range of size n = 2L + 2s + n′ + 2, s < L, n′ + 2 < 2s, has a 3-node over-cover with
profile heights L, s and max{s+ 1, L− 1}.

Proof. In any range of size n = 2L + 2s + n′ + 2 as above there must be a 2L boundary (i.e., a number in
the range of the form k · 2L for some k ≥ 0). We consider two cases depending on whether there is a full 2L

block inside the range (i.e. a sub-range [k · 2L, (k + 1) · 2L − 1] for some k ≥ 0) or not.

In the first case (full 2L block) consider the following sub-range lengths (where commas correspond to
boundaries between 2L blocks):

1. (2s−1 + 1, 2L, 2s−1 + 1) which requires a L-height node and two s-height nodes
2. (1, 2L, 2s + 1) which requires a L-height node and a (s+ 1)-height node.

For the case where no full 2L block is included in the range, the range will have two parts across a 2L-
boundary. One of the two parts (the larger) can be covered by L-height node (which case 1 shows to be
needed). Thus we need two nodes to cover the second part. The worst case is when this second part is as large
as possible which happens at bn/2c = 2L−1 + 2s−1 + bn′c+ 1. Since two (L− 1)-height nodes are insufficient
to cover it then we need at least one L-height node for this; the remaining range of size 2s−1 + bn′c+ 1 then
requires a s-height node. Thus, this case requires in total a (L− 1)-height node and a s-height node.

Summarizing, we need all of the following three combinations of heights: {L, s, s}, {L, s+ 1}, {L, L− 1, s}.
The 3-node profile defined in the theorem is the minimal to satisfy all these combinations.

Here are a few examples to ilustrate the Theorem. To calculate the profile of a range of size n = 15, we write
the binary representation of n− 2, which is 13=1101, i.e., L = 3, s = 2, so the 3-node profile is (3, 3, 2), and
the size of the over-cover is 20, with an overhead of 5 leaves. For n = 20 we have 18=10010, hence the profile
is (4, 3, 1) and overhead is 6. For n = 100, we have 98=1100010, hence the profile is (6, 6, 5) and overhead is
60.

Choosing a 3-node universal over-cover for a given interval can be implemented with a simple algorithm (just
follow the constructive argument in the proof). The drawback of choosing an over-cover is that it contains
values outside the given range. We call the number of leaves covered by an over-cover its volume, so if V is
the volume of the over-cover of a range of size n, the overhead is V/n − 1. The worst case overhead is for
range sizes n of the form 2L + 2L−1 + 2 for which V/n − 1 = (2 · 2L + 2L−1)/(2L + 2L−1 + 2) ≈ 5/3, i.e.,
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a 66% overhead in the worst case. We can also calculate the average overhead for all ranges whose 3-node
universal profile starts with a given L, i.e., numbers n with n− 2 between 2L and 2L+1 − 1. This is done by
computing the sum, over these n values, of the volumes of the corresponding 3-node over-covers. For every
L the average overhead comes very close to 7/18-th, i.e. about 40%.

Finally, we note that using 2-node over-covers is not recommended as their volume can grow up to three
times the size of the original range.

4 Substring Queries

Our substring-search capable SSE scheme is based on the conjunctive-search SSE protocol OXT of [6], and
it extends that protocol as follows: Whereas the OXT scheme of [6] supported efficient retrieval of records
containing several required keywords at once (i.e. satisfying a conjunction of several keyword-equality search
terms), our extension supports efficient retrieval of records containing the required keywords at required
relative positions to one another. This extension of conjunctive search with positional distance criteria allows
us to handle several query types common in text-based information retrieval. To simplify the description,
and using the notation from Section 2, consider a database DB = (indi, Ti) containing records with just one
free text attribute, i.e. where each record Ti is a text string. We support the following types of queries q:

Substring Query. Here q is a text string, and DB(q) returns all indi s.t. Ti contains q as a substring.

Wildcard Query. Here q is a text string which can contain wildcard characters ′?′ (matching any single
character), and DB(q) returns all indi s.t. Ti contains a substring q′ s.t. for all j from 1 to |q|, qj =′ ?′ ∨ qj = q′j ,
where qj and q′j denote j-th characters in strings q and q′. If the query should match only prefixes (suffixes)
of Ti, the query can be prefixed (suffixed) with a ′ˆ′ (′$′).

Phrase Query. Here q is a sequence of words, i.e. text strings, q = (q1, . . . , ql), where each qi can equal to
a wildcard character ′?′. Records Ti in DB are also represented as sequences of words, Ti = (T 1

i , . . . , T
n
i ).

DB(q) returns all indi s.t. for some k and for all j from 1 to l, it holds that qj =′ ?′ ∨ qj = T k+ji . (Note that
phrase queries allow a match of a single wildcard with a whole word of any size, while in a wildcard query a
single wildcard can match only a single character.)

All these query types utilize the same crypto machinery that we describe next for the substring case. In
Section 4.2 we explain briefly how to adapt the techniques to these queries too.

4.1 Basic SSE Substring Search

Here we present protocol SUB-SSE-OXT that supports substring search in the basic SSE model (i.e., a single
client C outsources its encrypted database to server E) and where the query consists of a single substring.
This simpler case allows us to explain and highlight the basic ideas that we also use for addressing the
general case of boolean expressions that admit substrings as the expression terms as well as for extending
these solutions to the more involved MC and OSPIR settings.

Figure 1 describes the protocol where shadowed text highlights the changes with respect to the original OXT
protocol from [6] for resolving conjunctive queries in the SSE model (the reader can visualize the underlying
OXT protocol by omitting the shadowed text). We first explain the basic rationale and functioning of the
conjunctive-search OXT protocol, and then we explain how we extend it by imposing additional constraints
on relative positions of the searched terms, and how this translates into support for substring-search SSE.

The Conjunctive SSE Scheme OXT. Let q = (w1, . . . , wn) be a conjunctive query where DB(q) =
∩ni=1DB(wi). Let FG be a Pseudorandom Function (PRF) with key KG. (This PRF will map onto a cyclic
group G, hence the name.) Let the setup algorithm create as metadata a set of (keyed) hashes XSet, named for
“cross-check set”, containg the hash values xtagw,ind = FG(KG, (w, ind)) for all keywords w ∈W and records

8



ind ∈ DB(w). Let the setup also create the matadata needed to quickly retrieve the set of record indexes
DB(w) matching any given single keyword w ∈ W. The OXT protocol is based on a simple conjunctive
plaintext search algorithm which identifies all records corresponding to a conjunctive query q = (w1, . . . , wn)
as follows: It first identifies the set of indexes DB(w1) satisfying the first term w1, called an s-term, and then
for each ind ∈ DB(w1) it returns ind as part of DB(q) if and only if hash value xtagwi,ind = FG(KG, (wi, ind))
is in XSet for all x-terms (i.e. “cross-check terms”) w2, . . . , wn. If group G is sufficiently large then except
for negligible collision probability, if xtagwi,ind ∈ XSet for i ≥ 2 then ind ∈ ∩ni=2DB(wi), and since ind was
taken from DB(w1) it follows that ind ∈ DB(q). Since this algorithm runs in O(|DB(w1)|) time w1 should be
chosen as the least frequent keyword in q.

To implement the above protocol over encrypted data the OXT protocol modifies it in three ways: First, the
metadata supporting retrieval of DB(w) is implemented using single-keyword SSE techniques, specifically
the Oblivious Storage data structure TSet [6,5], named for “tuples set”, which reveals to server E only
the total number of keyword occurrences in the database,

∑
w∈W |DB(w)|, but hides all other information

about individual sets DB(w) except those actually retrieved during search. (A TSet can be implemented
very efficiently as a hash table using PRF F whose key KT is held by client C, see [6,5].) Secondly, the
information stored for each w in the TSet datastructure, denoted TSet(w), which E can recover from TSet
given F (KT , w), is not the plaintext set of indexes DB(w) but the encrypted version of these indexes using
a special-purpose encryption. Namely, a tuple corresponding to the c-th index indc in DB(w) (arbitrarily
ordered) contains value yc = Fp(KI , indc) · Fp(Kz, c)

−1, an element in a prime-order group Zp where Fp is a
PRF onto Zp, and KI ,Kz are two PRF keys where KI is global and Kz is specific to keyword w (derived e.g.
via another PRF on input w). This encryption enables fast secure computation of hash xtagwi,indc between
client C and server E , where E holds ciphertext yc = Fp(KI , indc) ·Fp(Kz, c)

−1 of c-th index indc taken from
TSet(w1) and C holds keyword wi and keys KI ,Kz. Let FG(KG, (w, ind)) = gFp(KX ,w)·Fp(KI ,ind) where g
generates group G and KG = (KX ,KI) where KX is a PRF key. C then sends to E :

xtoken[c, i] = gFp(KX ,wi)·Fp(Kz,c)

for i = 2, . . . , h and c = 1, . . . , |TSet(w1)|, and E computes FG(KG, (wi, indc)) for each c, i as:

(xtoken[c, i])yc = (xtoken[c, i])Fp(KI ,indc)·Fp(Kz,c)
−1

Since Kz is specific to w1 mask zc = Fp(Kz, c) applied to indc in yc is a one-time pad, hence this protocol
reveals only the intended values FG(KG, (wi, indc)) for all indc ∈ DB(w1) and w2, . . . , wn.

Extending OXT to Substring SSE. The basic idea for supporting substring search is first to represent a
substring query as a conjunction of k-grams (strings of length k) at given relative distances from each other
(e.g., a substring query ‘yptosys’ can be represented as a conjunction of a 3-gram ‘tos’ and 3-grams ‘ypt’ and
‘sys’ at relative distances −2 and 2 from the first 3-gram, respectively), and then to extend the conjunctive
search protocol OXT of [6] so that it verifies not only whether the conjunctive terms all occur within the same
document, but also that they occur at positions whose relative distances are specified by the query terms. We
call representation of a substring q as a set of k-grams with relative distances a tokenization of q. We denote
the tokenizer algorithm as T , and we denote its results as T (q) = (kg1, (∆2, kg2), . . . , (∆h, kgh)) where ∆i are
any non-zero integer values, including negatives, e.g. T (‘yptosys′) can output (‘tos′, (−2, ‘ypt′), (2, ‘sys′)),
but many other tokenizations of the same string are possible. We call k-gram kg1 an s-gram and the remaining
k-grams x-grams, in parallel to the s-term and x-term terminology of OXT, and as in OXT the s-gram should
be chosen as the least frequent k-gram in the tokenization of q. Let KG be a list of k-grams which occur
in DB. Let DB(kg) be the set of (ind, pos) pairs s.t. DB[ind] contains k-gram kg at position pos, and let
DB(ind, kg) be the set of pos’s s.t. (ind, pos) ∈ DB(kg).

The basic idea of the above conjuctive-search protocol to handling substrings is that the hashes xtag inserted
into the XSet will use PRF FG applied to a triple (kg, ind, pos) for each kg ∈ KG and (ind, pos) ∈ DB(kg), and
when processing search query q where T (q) = (kg1, (∆2, kg2), . . . , (∆h, kgh)), server E will return (encrypted)
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Setup(DB,RDK)

– Select keys KS , KT for PRF Fτ and KI ,KX for PRF Fp, and parse DB as (indi, posi , kgi)
d
i=1.

(PRF Fτ maps onto {0, 1}τ and Fp onto Zp.)

– Initialize T to an empty array and XSet to an empty set. For each k-gram kg ∈ KG do the following:

• Set strap← Fτ (KS , kg), (Kz,Ke, Ku )← (Fτ (strap, 1), Fτ (strap, 2), Fτ (strap, 3) ).

• For c = 1, . . . , |DB(kg)|, for (ind, pos ) a c-th tuple in DB(kg) (randomly permuted) do:

∗ Set rdk← RDK(ind), e← Enc(Ke, (ind|rdk)), xind← Fp(KI , ind).

∗ Set xtag← gFp(KX ,kg)·xind
pos

and add xtag to XSet.

∗ Set z ← Fp(Kz, c), u← Fp(Ku, c) , y ← xind · z−1, v ← xindpos · u−1 .

∗ Append (e, y, v ) to T[kg].

– Set TSet← TSetSetup(T, 〈Fτ 〉,KT ). Output K = (KS ,KX ,KT ) and EDB = (TSet,XSet).

Search protocol

Client C, on input K = (KS ,KX ,KT ) defined above and query q s.t. T (q) = (kg1, (∆2, kg2), . . . , (∆h, kgh)):

– Set stag← Fτ (KT , kg1), strap← Fτ (KS , kg1).

– (Kz,Ke, Ku )← (Fτ (strap, 1), Fτ (strap, 2), Fτ (strap, 3) ), and {xtrapi ← gFp(KX ,kgi)}hi=2.

– Send (stag, ∆2, . . . ,∆h ) to E , and for c = 1, 2, . . ., until E sends stop, do the following:

• Set zc ← Fp(Kz, c), uc ← Fp(Ku, c) , and {xtoken[c, i]← (xtrapi)
((zc)

∆i · (uc)) }hi=2.

• Send xtoken[c] = (xtoken[c, 2], . . . , xtoken[c, h]) to E .

Server E , on input EDB = (TSet,XSet), responds with a set ESet formed as follows:

– On message (stag, ∆2, . . . ,∆n ) from C, retrieve t← TSetRetrieve(TSet, stag) from TSet.

– For c = 1, ..., |t|, retrieve c-th tuple (e, y, v ) in t.

– On xtoken[c] from C, add e to ESet if ∀i = 2, . . . , h : (xtoken[c, i])
(y∆i · v)

∈ XSet. When c = |t| send stop to C.

Client C computes (ind|rdk)← Dec(Ke, e) for each e in ESet and adds (ind, rdk) to its output.

Fig. 1. SUB-SSE-OXT: SSE Protocol for Substring Search (shadowed text indicates additions to the basic OXT
protocol for supporting substring queries)

index ind corresponding to some (indc, posc) pair in DB(kg1) if and only if

FG(KG, (kgi, indc, posc +∆i)) ∈ XSet for i = 2, . . . , h

To support this modified search over encrypted data the setup procedure Setup(DB,RDK) forms EDB as a
pair of data structures TSet and XSet as in OXT, except that keywords are replaced by k-grams and both
the encrypted tuples in TSet and the hashes xtag in XSet will be modified by the position-related information
as follows. First, the tuple corresponding to the c-th (index,position) pair (indc, posc) in DB(kg) will contain
value yc = Fp(KI , indc) · Fp(Kz, c)

−1 together with a new position-related value vc = Fp(KI , indc)
posc ·

Fp(Ku, c)
−1, where Kz,Ku are independent PRF keys specific to kg. Secondly, XSet will contain values

computed as:
FG((KX ,KI), (kg, ind, pos)) = gFp(KX ,kg)·Fp(KI ,ind)

pos

(1)

In the Search protocol, client C will tokenize its query q as T (q) = (kg1, (∆2, kg2), . . . , (∆h, kgh)), send
stagkg1

= FT (KT , kg1) to server E , who uses it to retrieve TSet(kg1) from TSet, send the position-shift

10



vectors (∆2, . . . ,∆h) to E , and then, in order for E to compute FG(KG, (kgi, indc, posc+∆i)) for all c, i pairs,
client C sends to E :

xtoken[c, i] = gFp(KX ,kgi)·(Fp(Kz,c))
∆i ·Fp(Ku,c)

which lets E compute FG(kgi, indc, posc +∆i) as (xtoken[c, i]) exponentiated to power (yc)
∆i · vc for (yc, vc)

in the c-th tuple in TSet(kg1), which computes correctly because

y∆ic · vc = Fp(KI , indc)
∆i+posc · Fp(Kz, c)

−∆i · Fp(Ku, c)
−1

4.2 Wildcards and Phrase Queries

Any sequence of single character wildcards within regular substring queries can be handled by changing
tokenization to allow gaps in the query string covered by the computed tokens, e.g. T (′ypt??yst′) would
output (′ypt′, (5,′ yst′)).

In addition to support wildcard queries matching prefixes and/or suffixes, we add special “anchor” tokens at
the beginning (′ˆ′) and end (′$′) of every record to mark the text boundaries. These anchors are then added
during tokenization. This allows searching for substrings at fixed positions within a record. For these queries
T (′ypt??yst′) would output (′ˆyp′, (1,′ ypt′), (6,′ yst′), (7,′ st$′))

Still, this simple change limits us to queries which contain k consecutive characters in-between every substring
of wildcards. However, we can remove this restriction if we add to the the XSet all unigrams (i.e. k = 1)
occurring in a text in addition to the original k-grams.

Adding support for phrase queries is another simple change to the way we parse DB. Instead of parsing by
(k-gram,position) pairs, we parse each record by (word,position). Tokenization of q then becomes splitting q
into its component words and relative position of each word to the s-term word. As with substrings, wildcards
in q result in a gap in the returned ∆’s.

4.3 Query Flexibility

While many queries can be formed by using substring or wildcard queries independently, many queries are
not computable. We can greatly increase the number of available queries by combining the two query types.
This allows us to answer any query q s.t. all non-wildcard characters in q are part of at least one k length
substring containing no wildcards and q starts and ends with a non-wildcard character. This may require
a sufficiently large k (a performance benefit) but limit the type of queries supported. To further increase
flexibility we can index fields with multiple values for k or with a different k for each data structure: kx
for XSet and ks for TSet. The result is a very flexible policy that we can support any query q that meets
the following: (1) there exists at least one consecutive ks length sequence of non-wildcards in q, (2) all non-
wildcard characters in q are part of at least one kx length substring containing no wildcards, and (3) q starts
and ends with a non-wildcard character.

Condition (3) above can be avoided if we have an index for k = 1 by exploiting OXT’s general support of
boolean expressions including negation: To handle queries q with n leading (resp. trailing) wildcards, we take
the tokenization t of the query string stripped of the leading (resp. trailing) wildcards q′ and search for q′

but make sure to exclude matches which would be a distance less than n from an anchor. Formally we query:
t∧¬∨ni=1 (−i, ˆ) (resp. t∧¬∨ni=1 (δmax + i, $)) with ˆ and ˆ the anchors and δmax the relative position of the
right “edge” of q′. The OXT support for general boolean expressions can also be used to support some subset
of regular expressions: besides the already implicitly used conjunctions, we could support queries containg:
disjunctions to handle alternative sub-patterns such as “Court (Road|Street)”, negations to explicitly exclude
sub-patterns such as “Michael!(a)” and combinations thereof.
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4.4 Substring Protocol Extensions

Firstly, we generalize the substring-search protocol SUB-SSE-OXT to support any Boolean query where
atomic terms can be formed by any number of substring search terms and/or exact keyword terms.

We note that in above protocol substring/wildcard terms have to be s-terms which restricts the task to
handle general queries. Nevertheless, we still can trivially extend above to handle cases where there is at
most one substring or wildcard term per conjunction at the “top-level” of the query expression (tree): we just
append any additional top-level conjuncts to the substring/wild-card term as x-terms and compose them as
in OXT with any other top-level disjuncts.

Furthermore, we note that a pattern matching only a single k-gram (singleton) can be treated as a normal
equality-match term and for many environments the set of lengths of queried sub-sequences can be fairly
small, e.g., in one government sponsored project it was 3. To exploit this at only moderate cost, we can add
a k-gram index for all k values in the set of queryable sub-sequence lengths and include in the index position
information as normal and also as information for equality-matching (i.e. we add two tags to the XSet).
During query-processing we always try to select a k for a sub-sequence term which results in a singleton
and correspondingly compute the equality-term tag rather than the k-gram-tag in such a case. With this
strategy, we can handle multiple substring/wildcard terms as long as all but one are singletons per top-level
conjuncts. These additional indexes have the added benifit of increased query-time performance.

However, to allow for arbitrary queries we have to extend our protocols. We call the resulting protocol
MIXED-SSE-OXT, so named because it freely mixes substring and exact keyword search terms, and present
it in Appendix B.1. The ability to handle Boolean formulas on exact keywords together with substring terms
comes from the similarities between substring-handling SUB-SSE-OXT and Boolean-formula-handling OXT
of [6]. However, one significant adjustment needed to put the two together is to disassociate the position-
related information vc in the tuples in TSet(kg) from the index-related information yc in these tuples. This is
because when all k-gram terms are x-terms (as would be the the case e.g. when an exact keyword is chosen
as an s-term) then E must identify the position-related information pertaining to a particular (kg, ind) pair
given the (kg, ind)-related xtoken value. Our MIXED-SSE-OXT protocol supports this by adding another
oblivious TSet-like datastructure which uses xtagkg,ind to retrieve the position-related information, i.e. the
vc’s, for all pos ∈ DB(ind, kg).

A second extension generalizes the SUB-SSE-OXT protocol to the OSPIR setting [13] where D can obliviously
enable third-party clients C to compute the search-enabling tokens (see Section 2). The main ingredient in
this extension is the usage of Oblivious PRF (OPRF) evaluation for several PRF functions used in MIXED-
SSE-OXT for computing search tokens. Another important component is a novel protocol which securely
computes the xtagkg,ind,pos values given these obliviously-generated trapdoors, in a way which avoids leaking
any partial-match information to C. This protocol, named MIXED-OSPIR-OXT and presented in Appendix
B.2, uses bilinear maps which results in a significant slowdown compared to the MIXED-SSE-OXT in the
(single client) SSE setting.

Future work. We are investigating more efficient variants of the MIXED-OSPIR-OXT protocol that would
require less pairing operations and would reduce the communication between clients and server E . In partic-
ular, we can show that in the Multi-Client (MC) setting where the third-party clients’ queries are not hidden
from the database owner D, one can simplify the xtag-computation protocol, in particular eliminating the
usage of bilinear maps and making the resulting protocol almost equal in cost to the MIXED-SSE-OXT
protocol.

5 Security Analysis

Privacy of an SSE scheme, in the SSE, Multi-Client, or OSPIR settings, is quantified by a leakage profile
L, which is a function of the database DB and the sequence of client’s queries q. We call an SSE scheme
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L-semantically-secure against party P (which can be C, E , or D) if for all DB and q, the entirety of P ’s view
of an execution of the SSE scheme on database DB and C’s sequence of queries q is efficiently simulatable
given only L(DB,q). We say that the scheme is adaptively secure if the queries in q can be set adaptively by
the adversary based on their current view of the protocol execution. An efficient simulation of a party’s view
in the protocol means that everything that the protocol exposes to this party carries no more information
than what is revealed by the L(DB,q) function. Therefore specification of the L function fully characterizes
the privacy quality of the solution: What it reveals about data DB and queries q, and thus also what it hides.
(See [6,13] for a more formal exposition.)

5.1 Security of Range Queries

Below we state the security of the range query protocol for stand-alone range queries and we informally
comment on the case of range queries that are parts of composite (e.g., Boolean) queries. We consider
adaptive security against honest-but-curious and non-colluding servers E ,D, and against fully malicious
clients. For query qj = RQ(aj , bj), let ((dj1, c

j
1), . . ., (djt , c

j
t )) be the tree cover of interval [aj , bj ] and let

wji = (dji , c
j
i ). We define three leakage functions for D, E , C, respectively:

• LD(DB, (q1, . . . , qm)) includes the query type (“range” in this case), the attribute to which qj pertains,
and the size of the range bj − aj + 1, for each qj .
• LE(DB, (q1, . . . , qm)) = LOXT(DB, (w1

1, . . . , w
m
t )) where the latter function represents the leakage to server

E in the OXT protocol for a query series that includes all wji ’s. By the analysis of [6], this leakage contains
the TSet leakage (which in our TSet implementation is just the total number of document-keyword pairs in
DB), the sequence {(|DB(wji )| : (i, j) = (1, 1), . . . , (t,m)}, i.e., the number of elements in each DB(wji ), and
the result set returned by the query (in the form of encrypted records).
• LC(DB, (q1, . . . , qm)) = ∅.

Theorem 3. The range protocol from Sec. 3 is secure in the OSPIR model with respect to D, E , C with
leakage profiles LD,LE ,LC, respectively.

The leakage functions for D and C are as good as possible: D only learns the information needed to enforce
authorization, namely the attribute and size of the range, while there is no leakage at all to the client. The
only non-trivial leakage is E ’s which leaks the number of documents matching each disjunct or, equivalently,
the size of each sub-range in the range cover. The leakage to D remains the same also when the range query
is part of a composite query. For the client this is also the case except that when the range query is the
s-term of a Boolean expression, the client also learns an upper bound on the sizes |DB(wji )| for all i, j. For

E , a composite query having range as its s-term is equivalent to tm separate expressions wji as in [6] (with

reduced leakage due to disjoint s-terms), and if the range term is an x-term in a composite query then wji ’s
leak the same as if they were x-terms in a conjunction.

5.2 Security of Substring Queries

Here we prove the security of protocol SUB-SSE-OXT against server E . Our security arguments are based
on the following assumptions: the T-set implementation is secure against adaptive adversaries [6,5]; Fp and
Fτ are secure pseudorandom functions; the hash function H is modeled as a random oracle; and the q-DDH
assumption [1] (see Appendix C) holds in the group G.2

Security Against Server E. We first describe the leakage function corresponding to server E . It is an
adaptation of the leakage for the conjunctive protocol from [6] to our setting. To simplify presentation

2 The extension to the OSPIR model also assumes the One-More Gap Diffie-Hellman assumption and assumes
bilinear groups where the linear DH assumption [2,23] holds.
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(avoiding complex notation) and focus on the important aspects of this leakage function, our description
assumes that substring queries contain a single substring tokenized into two k-grams, i.e., one s-term k-
gram and one x-term k-gram. The extension to the general case is similar to the extension from two-term
conjunctions to general conjunctions in [6].

Leakage to Server E. We represent a sequence of Q non-adaptive substring queries by q = (s,x,∆) s.t.
(s[i], (x[i],∆[i])) is the tokenization T (q[i]) of the i-th substring query q[i], where s[i],x[i] are k-grams, and
∆[i] is an integer between −k+1 and k−1. For notation simplicity we assume that vector q does not contain
repeated queries, although E would learn that a repeated query has been made. Function LE(DB,q) which
specifies leakage to E outputs (N, s,SP,RP,DP, IP) defined as follows:

• The (N, s,SP,RP) part of this leakage is exactly the same as in the conjunctive SSE protocol SSE-OXT of

[6] on which our substring-search SUB-SSE-OXT protocol is based. N =
∑d
i=1 |Wi| is the total number of

appearances of all k-grams in all the documents, and it is revealed simply by the size of the EDB metadata.
s ∈ [m]Q is the equality pattern of s ∈ KGQ indicating which queries have the equal s-terms. For example,
if s = (abc, abc, xyz, pqr, abc, pqr, def, xyz, pqr) then s = (1, 1, 2, 3, 1, 3, 4, 2, 3). SP is the s-term support size
which is the number of occurrences of the s-term k-gram in the database, i.e. SP[i] = |DB(s[i])|. Finally,
RP is the results pattern, i.e. RP[i] is the set of (ind, pos) pairs where ind is an identifier of document which
matches the query q, and pos is a position of the s-term k-gram s[i] in that document.

• DP is the Delta pattern ∆[i] of the queries, i.e. the shifts between k-grams in a query which result from
the tokenization of the queries.

• IP is the conditional intersection pattern, which is a Q by Q table IP defined as follows: IP[i, j] = ∅ if i = j or
x[i] 6= x[j]. Otherwise, IP[i, j] is the set of all triples (ind, pos, pos′) (possibly empty) s.t. (ind, pos) ∈ DB(s[i]),
(ind, pos′) ∈ DB(s[j]), and pos′ = pos + (∆[i]−∆[j]).

Understanding Leakage Components. Parameter N is the size of the meta-data, and leaking such a bound
is unavoidable. The equality pattern s, which leaks repetitions in the s-term k-gram of different substring
queries, and the s-term support size SP, which leaks the total number of occurrences of this s-term in the
database, are both a consequence of the optimized search that singles out the s-term in the query, which we
adopt from the conjunctive SSE search solution of [6]. RP is the result of the query and therefore no real
leakage in the context of SSE. Note also that the RP over-estimates the information E observes, because E
observes only a pointer to the encrypted document, and a pointer to the encrypted tuple storing a unique
(ind, pos) pair, but not the pair (ind, pos) itself. DP reflects the fact that our protocols leak the relative shifts
∆ between k-grams which result from tokenization of the searched string. If tokenization was canonical, and
divided a substring into k-grams based only on the substring length, the shifts ∆ would reveal only the
substring length. (Otherwise, see below for how ∆’s can be hidden from E .)

The IP component is the most subtle. It is a consequence of the fact that when processing the q[i] query E
computes the (pseudo)random function FG(x[i], ind, pos + ∆[i]) for all (ind, pos) ∈ DB(s[i]), and hence can
see collisions in it. Consequently, if two queries q[i] and q[j] have the same x-gram then for any document
ind which contains the s-grams s[i] and s[j] in positions, respectively, pos and pos′ = pos + (∆[i] −∆[j]),
server E can observe a collision in FG and triple (ind, pos, pos′) will be included in the IP leakage. Note,
however, that IP[i, j] defined above overstates this leakage, because E does not learn the ind, pos, pos′ values
themselves, but only establishes a link between two encrypted tuples, one containing (ind, pos) in TSet(s[i])
and one containing (ind, pos′) in TSet(s[j]). To visualize the type of queries which will trigger this leakage,
take k = 3, q[i] = *MOTHER*, q[j] = *OTHER*, and let q[i] and q[j] tokenize with a common x-gram,
e.g. T (q[i]) = (MOT, (HER, 3)) and T (q[j]) = (OTH, (HER, 2)). The IP[i, j] leakage will contain tuple
(ind, pos, pos′) for pos′ = pos + (∆[i] −∆[j]) = pos + 1 iff record DB[ind] contains 3-gram s[i] = MOT at
position pos and 3-gram s[j] = OTH at position pos + 1, i.e. iff it contains substring MOTH.

Theorem 4. Protocol SUB-SSE-OXT (restricted to substrings which tokenize into two k-grams) is adaptively
LE -semantically-secure against malicious server E, assuming the security of the PRF’s, the encryption scheme

14



Enc, and the TSet scheme, the random oracle model for hash functions, and the q-DDH assumption on the
group G of prime order.

The proof of Theorem 4 is included in Appendix C.

Hiding Deltas. Since the tokenizer T should pick the least frequent k-gram as an s-gram, the information on
which k-gram was chosen, which is visible from the vector of ∆’s, can leak some sensitive statistics about the
substring term. For example, if the tokenizer chooses the s-gram based on the k-gram frequency statistics,
but then determines all the x-grams in a canonical way, then there are n − k + 1 ways of tokenizing an n-
character substring, hence E learns to which of the n−k+ 1 partitions the client’s substring term belongs. If
this moderate information leakage is unacceptable, it can be eliminated entirely at a moderate cost incurred
by a ∆-hiding variant of the Search protocol. This can be done by relying on a multiplicative homomorphism
of either ElGamal or linear encryption to create a multiplicative sharing of xind∆ without revealing ∆ to E ,
and then combine it with the multiplicative sharing of xindpos in the xtag computation.

6 Implementation and Performance

Here we provide testing and performance information for our prototype implementation of the range and
SUB-SSE-OXT protocols described in Sections 3 and 4.1. The results confirm the scalability of our solutions
to very large databases and complex queries. The prototype is an extension of the OXT implementation
of [5]. Both the description of the changes and performance information are limited, to the extent possible,
to the protocols introduced in this paper. An extensive evaluation of the prototype is outside of the scope
of this paper as it would be highly dependent on previous work.

Prototype Summary. The three components of our system are the preprocessor, the server, and the client.
The preprocessor generates the encrypted database from the cleartext data. The client, which implements a
representative set of SQL commands, ’encrypts’ end-user requests and ’decrypts’ server responses. The server
uses the encrypted database to answer client SELECT-type queries or expands the encrypted database on
UPDATE, INSERT, and (even) DELETE queries [5].

To support range queries (see Section 3) the Boolean-query OXT prototype was augmented with generation of
range-specific TSet’s at pre-processing, and with range-specific authorization and range-cover computation at
the client. Support for substring and wildcard queries required redesigning pre-processing to take into account
the k-gram position information, adding support for ’k-gram’-based record tokenization to the client, and
changing the Search protocol to support position-enhanced computation (see Section 4) and authorization. A
few other changes were necessary in order to continue handling UPDATE, INSERT and DELETE queries.
These extensions largely follow the update mechanics outlined in [5], with the addition of a new PSet+ data
structure.

To match the SQL standard, our implementation uses the LIKE operator syntax for substring and wild-
card queries: ’ ’ (’%’) represent single-character (variable-length) wildcards and the query must match the
complete field, i.e, unless a query must match the prefix (suffix) of fields, it should begin (end) with a ’%’.

Experimental Platform. The experiments described in the remainder of this section were run on two Dell
PowerEdge R710 systems, each one of them equipped with two Intel Xeon X5650 processors, 96GB RAM
(12x8 1066MHz), an embedded Broadcom 1GB Ethernet with TOE and a PERC H700 RAID controller with
a 1GB Non-Volatile Cache and 1 or 2 daisy-chained MD1200 disk controllers each with 12 2TB 7.2k RPM
Near-Line SAS hard drives configured for Raid 6 (19TB and 38TB total storage per machine).

An automated test harness, written by an independent evaluator [26], drives the evaluation, including the
set of queries and the dataset used in the experiments.

Dataset. The synthetic dataset used in the reported experiments is a US census-like table with twenty one
columns of standard personal information, such as name (first, last), address (street, city, state, zipcode),
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SSN, etc. The values in each column are generated according to the distributions in the most recent US
census. In addition, the table has one XML column with at most 10000 characters, four text columns with
varying average lengths (a total of at most 12300 characters or ≈ 2000 words), and a binary column (payload)
with a maximum size of 100KB. Our system can perform structured queries on data in all but the XML and
binary columns. The size of (number of records in) the table is a parameter of the dataset generator. We
tested on a wide variety of database sizes, but we focus our results on a table with 100 million records or
10TBytes.

Experimental Methodology. In the initial step, the encrypted database is created from the cleartext data
stored in a MariaDB (a variant of open-source MySQL RDBMS) table. Then, a per-protocol collection of
SQL queries, generated by the harness to test its features, is run against the MariaDB sever and against our
system. The queries are issued sequentially by the harness, which also records the results and the execution
times of each query. Finally, the harness validates the test results by comparing the result sets from our
system and from the MariaDB server. Not only does this step validate the correctness of our system, it
also ensures our system meets our theoretical false positive threshold over large, automatically generated,
collections of queries.

Encrypted Index. We built a searchable index on all personal information columns (twenty one) in the
plaintext database but we only use a small subset of these indexes for the following experiments. Note that
we support substring and wildcard queries simultaneously over a given column using a single shared index.
We built a substring-wildcard index for four columns (average length of 12 characters) and a range index
for five columns of varying types (one 64 bit integer, one date, one 32 bit integer, and one enum). Each
substring-wildcard index was constructed with a single k value of 4. Each range index has a granularity of
one. For the date type, this equates to a day. We support date queries between 0-01-01 and 9999-12-31, and
integer queries between 0 and integer max (232 − 1 or 264 − 1).

On average each record generates 256.6 document-keyword pairs (tuples) among all indexes. This equates to
a total encrypted index for our largest database of ≈ 20TB. We back our XSet by an in memory Bloom filter
with a false positive rate of 2−12; this allows us to save unnecessary disk accesses and it does not influence
the false positive rate of the system.

Performance Costs by Query Type. Our complex query types have both increased storage overhead and
query time costs as compared to the keyword only implementation of [5]. In order to support substring and
wildcard queries on a column, we must store additional tuples: for a record of length l (for the indexed field)
we must store (l− k) + 3 tuples. Note that we must pay this cost for each k we chose to create the index for.
The choice of k also affects query time performance. For a query q, it’s performance is linearly dependent on
the number of tokens generated by the tokenization T (q). A smaller k results in a larger number of tokens.
Specifically for subsequence queries there will be d|q|/ke-1 xtokens3. k also impacts the number of matching
documents returned by the s-term. A larger k results in a higher entropy s-term. The choice of k is a careful
trade-off between efficiency and flexibility.

Range queries incur storage costs linear in their bit depth. Specifically, log2(max value) tuples are stored
for a record for each range field. Notably for date fields this value is 22. In addition we implemented the
canonical cover from Section 3, which results in up to 2 ∗ log2(max value) disjunctions.

Phrase queries incur storage costs linear in the total number of words in a column. Specifically for every
record with n free-text words, the index stores n tuples. Although phrase queries and free-text queries can
be supported via the same index, we have to pay the marginally higher price of the phrase index in which
we must store even repeated words.

Encrypted Search Performance. We illustrate the performance of our system using the latency (i.e., total
time from query issuing to completion) of a large number of representative SELECT queries. The independent
evaluator selected a representative set of queries to test the correctness and performance of the range,

3 Wildcard queries pay a similar overhead, related to the size of each contiguous substring within the query.
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substring and wildcard queries (phrase queries were not implemented). The two leftmost columns in Table 1
show how many unique queries were selected for each query type. The third, fourth and fifth columns
characterize the 95% fastest queries of each type. Finally, the rightmost column shows the percentage of
queries that complete in less than two minutes.

All queries follow the pattern SELECT id FROM CensusTable WHERE ..., with each query having a specific
WHERE clause. Range-type queries use the BETWEEN operator to implement two-sided comparison on nu-
merical fields as well as date and enum fields. Specific queries were chosen to assess the performance effect
of differing result set sizes and range covers. In particular, in order to assess the effect of cover size, queries
with moderate result sets (of size under 10,000) were chosen while the size of cover sets range from a handful
to several dozens. The results show relatively homogeneous latencies (all under 0.8 seconds) in spite of the
large variations in cover size, highlighting the moderate effect of cover sizes.

Our instantiation of SUB-SSE-OXT includes extensions for supporting substring and wildcard searches
simultaneously. However, to evaluate the effects of each specific extension we measure them individually.
Both query types use the LIKE operator in the WHERE clause.

Substring queries use the variable-length wildcard ’%’ at the beginning, at the end, or at both ends of the
LIKE operand, as in WHERE city LIKE ’%ttle Falls%’. Wildcard queries use the single-character wildcard
(’ ’) anywhere in the LIKE operand, provided the query criteria dictated by k is still met.

In addition, we noticed that the choice of s-gram dominates the latency of the substring queries. Our analysis
shows that low performing queries can often be tied to high-frequency s-terms (e.g., “ing ” or “gton ”), which
are associated with large Tsets. By default, the current implementation uses the first k characters in the
pattern string as s-gram. Thus, implementing a tokenization strategy guided by the text statistics (which we
leave for future work) can significantly reduce query latency for many of the slow performers. To estimate the
potential benefits of such a strategy, we added the STARTAT ’n’ option to the LIKE ’pattern’ operator,
where ’n’ is the starting position of the s-gram. Experiments using the ’%gton Colle%’ pattern show
latency improvements of up to 32 times when the s-gram starts at the third or fourth character in the
pattern string.

Query # of fastest 95% % ≤
type queries avg min max 120 secs

range 197 .37 .19 .61 100

substring 939 40 0.22 166 93

wildcard 511 31.22 6.7 224 93

Table 1. Latency (in secs) for 10 TByte DB, 100M records, 25.6 billion record-keyword pairs

Comparison to Cleartext Search. Here we include the most relevant aspects of the performance com-
parison between our prototype and MariaDB. In the case of the 100 million record database, for ≈ 45%
of the range queries, the two systems have very similar performance. For the remaining 55%, our system
is increasingly (up to 500 times!) faster. The large variations in MariaDB performance seem to arise from
its reliance on data (and index) caching, which is hindered by large DBs. In contrast, our system issues
between log2 s and 2 log2 s disk accesses in parallel (where s is the size of the cover). On smaller census
databases (with fewer records) that fit in RAM, MariaDB outperforms our system, sometimes by more than
one order of magnitude, although in this case all query latencies (ours and MariaDB’s) are under a second.
Additionally, for substring and wildcard queries and the largest, 100 million records, database our system
always outperforms MariaDB, admittedly due to MariaDB’s lack of support for a specialized-index based
substring search. Instead, it often scans the dataset to resolve queries involving the LIKE operator.
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7 Conclusion

This work presents a significant advance in the ability to run truly complex queries on encrypted data in a
variety of operational and trust models. Specifically, we augmented the capabilities of the OXT protocol from
the works of [6,13,5] to support substring, wildcard, phrase and range queries, and to allow any combination
of these query types under boolean expressions. By leveraging and expanding the underlying machinery of
OXT we are able to build on the impressive scalability of the protocol, and while the new query types carry
costs in performance and storage, we demonstrated their practicality through a prototype implementation
tested under large scale databases by an independent evaluator. One important conclusion is that searching
on outsourced encrypted data with significant functionality and privacy-preserving properties is practical
today even for large databases. Hopefully, we will see the actual use of these technologies in the near future.
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A On Canonical Covers

Here we present a proof of Theorem 1 as well as a procedure for computing canonical covers.

A.1 Computing a canonical cover

We first describe a simple procedure for generating a minimal (in the number of nodes) cover which we then
use for computing a canonical cover.
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Given a t-depth binary tree and a range [a, b] included in [0, 2t−1] we say that a tree node N is the next-max
node for [a, b] if N covers the maximal range (i.e., largest set of leaves) that includes the endpoint a and is
fully contained in [a, b].

The next-max algorithm. The algorithm starts with the given range [a, b], then iteratively chooses the next-
max node for the current range, adds the node to the cover, removes from the range the covered prefix,
and goes on to choose the next-max node for the remaining suffix of the range. The next-max node can be
selected by traversing the path from the leaf a to the root until a node N is reached whose cover exceeds b.
The node added to the cover is the last node in the a path before reaching N (more efficient implementations,
e.g., based on the binary representation of nodes, are possible).

We will call the cover generated by the next-max algorithm a next-max cover.

Lemma 1. The next-max cover is minimal in the number of nodes.

Proof. If a given cover C ′ has a smaller number of nodes than the next-max cover C, there must be two
consecutive leaves in the range that are covered by different nodes N1, N2 in C but are under the same
node N in C ′. Thus, N is an ancestor of both N1, N2 whose covered leaves are all in range so the next-max
algorithm should have chosen N before choosing N1.

The canonical next-max algorithm. The canonical cover of a given range [a, b] can be found as follows. We
first compute the canonical profile for n = b− a+ 1, then we apply the next-max algorithm from Section 2
except that we restrict the cover nodes to have heights as given by the canonical profile. That is, at each
iteration we keep a set U of unused profile heights and we choose the next node as one that provides a
maximal cover among nodes whose heights are in U .

A canonical cover for a range [a, b] can be found by a simple procedure. Define the cover c(v) of a tree
node v as the interval of leaves under the subtree rooted at v. We say that v covers a prefix of [a, b] if
c(v) = [a, b′], b′ ≤ b. The procedure first computes the canonical profile for n = b − a + 1, sets U as the
multi-set of heights defined by the profile, and sets R to the interval [a, b]. Then, from all nodes v that cover
a prefix of R one selects the one with the largest cover c(v) and such that height(v) ∈ U . Then, height(v)
is removed from U and the above procedure is repeated with interval R defined as [a, b] \ {c(v)}. When R
becomes empty the selected nodes form a canonical cover.

Example: In a tree with 32 leaves, the next-max algorithm computes a minimal cover for range [0, 19] as the
nodes with label 0 (covers 0-15) and node 100 (covers 16-19), i.e., with profile {4, 2}. On the other hand,
applying the next-max algorithm subject to the canonical profile {0, 0, 1, 2, 2, 3} for n = 20 results in a cover
with nodes {00, 010, 011, 1000, 10010, 10011}. While this profile is suboptimal for the range [0, 19] we prove
below that it is necessary for range [1, 20].

Note: The ordering of nodes selected by the above procedure can leak information on the range’s endpoints.
Thus, a client choosing a canonical cover will present the cover heights to D in an independent order (e.g.,
sorted by decreasing heights).

Note that while the profile of a cover generated by the above algorithm for a given range size is independent
of the ordering in which the cover nodes are found, this ordering may be different for different ranges of the
same size. Therefore, it is important that when the client generates the range disjunction for authorization,
it does so using an order that is independent of the order in which these nodes were found by the above
algorithm (it can order them randomly, lexicographically, by depth, etc.).

A.2 Proof of Theorem 1

Definition 3. A cover is called two-bounded if no height in its profile repeats more than twice. A cover
{c1, . . . , c`} (with nodes ordered from left to right) is called convex if for any i < j < k, if height(ci) ≥
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height(ck) then height(ci) ≥ height(cj) ≥ height(ck) (i.e., a convex range will have a profile with a non-
decreasing prefix followed by a non-increasing suffix).

We will make use of the following:

Observation. After placing a node of height i in a cover, one can select the next node to be of height j for any
j ≤ i (assuming the uncovered range is of size at least 2j). Indeed, the node of height i defines a subtree of
size 2i after which another subtree of size 2i starts, but then also a subtree of size 2j starts at that boundary
for any j ≤ i.

Lemma 2. A next-max cover is two-bounded and convex.

Proof. Every node in a next-max cover (i.e., a cover produced by the next-max algorithm) has the property
that its sibling is not in the cover (otherwise one can add their parent), but if one had three nodes with same
height, the middle one would have a sibling in the cover. Thus, the cover is two-bounded.

Consider any three values i, j, k in the profile of a next-max cover, such that a node of height j was placed
between a node of height i and a node of height k. We need to prove that if j ≤ i then k ≤ j. If we had k > j
and k ≤ i, then by the above observation the next-max algorithm would have placed the node of height k
before the one of height j. If k > j and k > i, we consider two sub-cases: i > j and i = j. In the first case, a
subtree of size 2i is followed by a subtree of size 2j , j < i, which does not end in a 2i boundary, hence not in
a 2k boundary (k > i), so it can’t be followed by a node of height k. In the second case, we have a 2i subtree
followed by another 2i subtree and then a 2k one. The second 2i subtree ends at a 2k boundary hence also
at a 2i+1 boundary (since k ≥ i+ 1), so the next-max algorithm would have chosen a i+ 1-height (or larger)
node instead of the first i-height node.

Hereafter, we focus our attention on two-bounded covers (which the above lemma shows to exist for any
range and which also produce universal covers as we will see below).

Lemma 3. For any L > 0, ranges of size n = 2L − 1 have a unique two-bounded cover and its profile is
canonical, i.e., {0, 1, 2, . . . , L− 1}.

Proof. Let C be a two-bounded cover of a given range of size n = 2L − 1 with profile P . Let P1, P2 be sets
defined, respectively, as the set of all the values in P without repetitions and the set of values in P that
repeat (we assume for contradiction that P2 is not empty). Let n1 be the sum of 2i over all i in P1 and let
n2 be the sum of 2i over all i in P2. We have that n = n1 + n2. By construction the binary representations
of n1 and n2 have (at least) one bit in common (corresponding to the repeating values). Let i be the least
significant of these common bits. Then, bit i is 0 in n = n1 + n2, contradicting the fact that in the binary
representation of n all bits (0 to L− 1) are 1’s. Thus P contains no repetitions and therefore it must contain
exactly the values {0, 1, 2, . . . , L− 1}.

Lemma 4. Any range has a convex canonical cover.

Proof. We prove the lemma by induction on the number of repeated elements in the canonical profile.

Base step: If no value in the canonical profile repeats then the profile is {0, 1, 2, . . . , L − 1} which means
n = 2L − 1 for which we know that a canonical cover exists and is convex (convexity follows from Lemma 3
that shows that the canonical cover is the only two-bounded cover for n = 2L−1 – hence it is also a next-max
cover – and from Lemma 2 that shows that such cover is convex).

Induction step: If a value in the profile repeats, consider the least value that repeats, say i. The profile for
n − 2i has one less repeated value, hence by induction the range [a, b − 2i] has a convex canonical range.
The idea is to add a i-height node to the [a, b− 2i] cover. But where does 2i go? Choose the last (rightest)
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node, call it N , in the [a, b− 2i] cover that has a height at least i, then the claim is that we can add the new
i-height node after N . This is possible by the observation preceding Lemma 2. Also note that by the choice
of N , the height of nodes after N in the [a, b− 2i] cover are all of height less than i, thus by convexity they
form a non-increasing sequence. Hence the new node will fit immediately after N . Note that the obtained
cover is canonical and convex, proving the claim.

Corollary 1. The canonical cover can be computed by the canonical next-max algorithm described above.

Proof. The proof follows the inductive argument from the proof of Lemma 4. For the base case of n = 2L−1
we know that the canonical cover is obtained via the next-max algorithm using the canonical profile while
in the inductive step we always choose the least available height and place it as to the right as possible.

Lemma 5. For all n, the only two-bounded cover for range [1, n] is the canonical cover (hence the canonical
cover guaranteed by Lemma 4 is also minimal – and unique among universal two-bounded covers).

Proof. Let L = blog(n+ 1)c. Let n1 = 2L − 1, n2 = n − n1. Consider any cover C of [1, n] and look at the
nodes in C that are needed to cover [1, n1]. In principle, these nodes could cover beyond n1, however this is
not possible as it would require a node that covers both leaves n1 and n1 + 1. However the smallest subtree
covering these two leaves is of size 2L+1 > n. Thus, [1, n1] must be covered exactly by a prefix C1 of C
and the range [n1 + 1, n] must be covered exactly by remaining suffix C2 of C. The profile of C1 must be
{0, 1, 2, . . . , L−1} by Lemma 3 while the profile P2 of C2 is a subset of {0, 1, 2, . . . , L−1} without repetitions
(otherwise we’d have an element in C repeating more than twice). n2 is the sum of 2i over i in P2 and since
these i’s do not repeat then we get that P2 is the set of ’1’ positions in the binary representation of n2.

Lemmas 4 and 5 prove Theorem 1.

B Substring SSE Extensions

B.1 MIXED-SSE-OXT: Substring Terms in General Boolean Formula Queries

We show how to generalize the SUB-SSE-OXT protocol so that it supports conjunctions (or indeed, any
Boolean formula) whose atomic terms can be formed by any number of substring search terms and/or exact
keyword terms, with flexible choice of s-term as either one of the exact keyword terms or a k-gram in one of
the substring terms. The resulting protocol, shown in Figure 2, is called MIXED-SSE-OXT because it freely
mixes substring and exact keyword search terms.

Protocol SUB-SSE-OXT stores in each tuple of T[kg] the (encrypted) values of xind and xindpos. In MIXED-
SSE-OXT we decouple these two values: We store in T[kg] only the xind values, and we create a separate
data structure for the (encrypted) position-related values xindpos. By shifting the encrypted xindpos values to
another data structure, we can combine the k-gram and keyword indexes together so that for all a ∈ (KG∪W)
and all ind ∈ DB(a), list T[a] will include an entry (y, e) at some position c s.t. e = Enc(Ke, (ind|rdk))
and y = xind/z, for xind = Fp(KI , ind), rdk = RDK[ind], z = Fp(Kz, c), and keys Kz,Ke derived from
strap = Fτ (KS , a) similarly as in the SUB-SSE-OXT. Treating the k-gram and exact keywords in this
uniform way allows us to compose the substring search capability of SUB-SSE-OXT with the Boolean search
on exact keywords of SSE-OXT.

For storing the position-related information for resolving subsequence queries, namely the encrypted xindpos

values, we use a separate look-up table P. Let F ′G denote a “truncated” version of function FG from equation
(1), namely

F ′G((KX ,KI), (kg, ind)) = gFp(KX ,kg)·Fp(KI ,ind) (2)
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Setup(DB,RDK)

– Pick keys KS ,KT for PRF Fτ , KI ,KX for PRF Fp, parse DB as (indi,Wi)
d
i=1 and (indi, posi, kgi)

d′
i=1.

– Initialize T and P to empty arrays and XSet to an empty set. For each w ∈W ∪ KG do the following:
• Set strap← Fτ (KS , w) and (Kz,Ke)← (Fτ (strap, 1), Fτ (strap, 2)).

• For c = 1, . . . , |DB(w)|, for ind a c-th element in DB(w) (randomly permuted) do:

∗ Set rdk← RDK(ind), e← Enc(Ke, (ind|rdk)), xind← Fp(KI , ind).

∗ Set z ← Fp(Kz, c), y ← xind · z−1, and append (e, y) to T[w].

∗ If w ∈W then set xtag← gFp(KX ,w)·xind and add xtag to XSet.

∗ If w ∈ KG then for c′ = 1, . . . , |DB(ind, w)|, for pos a c′-th element in DB(ind, w) do:

· Set ptag← gFp(KX ,w)·xind,Ku ← Fτ (strap, 3, ptag), u← Fp(Ku, c
′), v ← xindpos · u−1, append v to P[(w, ind)].

· Set xtag← gFp(KX ,w)·Fp(KI ,ind)pos and add xtag to XSet.

– Set TSet← TSetSetup(T, 〈Fτ 〉,KT ) and PSet← TSetSetup(P, (KX ,KI)).

– Output K = (KS ,KX ,KT ), EDB = (TSet,XSet,PSet).

Search protocol

– Client C, on input key K = (KS ,KX ,KT ) and conjunctive query w̄ consisting of a single (for simplicity) substring-search
term q, tokenized as (kg1, (kg2,∆2), . . . , (kgh,∆h)), and exact-keyword terms w1, . . . , wn, with w1 as the s-term of the query:

• Set stag← Fτ (KT , w1), strap← Fτ (KS , w1), (Kz,Ke)← (Fτ (strap, 1), Fτ (strap, 2)).
• Set {xtrapi ← gFp(KX ,wi)}ni=2, {xtrapkgi ← gFp(KX ,kgi)}hi=1, and strapkg1 ← Fτ (KS , kg1).
• Send (stag,∆2, . . . ,∆h) to E .
• For c = 1, 2, . . ., until E sends stopc do:

∗ Set zc ← Fp(Kz, c); Set {xtoken[c, i]← (xtrapi)
zc}ni=2 and ptoken[c]← (xtrapkg1)zc .

∗ Send xtoken[c] = (xtoken[c, 2], . . . , xtoken[c, n], ptoken[c]) to E .

∗ On ptag[c] from E , set Ku ← Fτ (strapkg1 , 3, ptag[c]), and for c′ = 1, 2, . . ., until E sends stopc,c′ do:

· Set uc′ ← Fp(Ku, c
′) and

{
xtokenkg[c, c

′, i]← (xtrapkgi)
(zc)

∆i ·(uc′ )
}h

i=2
.

· Send xtokenkg[c, c
′] = (xtokenkg[c, c

′, 2], . . . xtokenkg[c, c
′, h]) to E .

– Server E , on input EDB = (TSet,XSet,PSet), responds with a set ESet formed as follows:

• On (stag,∆2, . . . ,∆h) from C, retrieve t← TSetRetrieve(TSet, stag).

• For c = 1, ..., |t|, on xtoken[c] from C, retrieve c-th tuple (e, y) in t, set (OK1
c ,OK2

c)← (0, 0).

∗ Set OK1
c ← 1 if ∀i = 2, . . . , n : (xtoken[c, i])y ∈ XSet.

∗ Set ptag[c]← ptoken[c]y, retrieve p← PSet[ptag[c]], send ptag[c] to C.
∗ If |p| = 0 send stopc,c′ to C and continue (to next c). Otherwise, for c′ = 1, . . . , |p| do:

· On xtoken[c, c′] from C, retrieve c′-th element v from p;

· Set OK2
c ← 1 if ∀i = 2, . . . , h : (xtokenkg[c, c

′, i])y
∆i ·v ∈ XSet; Send stopc,c′ to C when c′ = |p|.

∗ If (OK1
c ,OK2

c) = (1, 1) then add e to ESet. When c = |t| send stopc to C.

– Client C computes (ind|rdk)← Dec(Ke, e) for each e in ESet, and adds (ind, rdk) to its output.

Fig. 2. MIXED-SSE-OXT: SSE for Conjunctions of Multiple Substring and Exact Keyword Terms
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For every (kg, ind) s.t. k-gram kg appears in DB[ind], P[(kg, ind)] stores a list of values v = xindpos/u, where
xind = Fp(KI , ind), for each pos s.t. (ind, pos) ∈ DB(kg). The value u that masks c-th value xindpos is computed
as u = Fp(Ku, c) where Ku = Fτ (strapkg, ptag(kg,ind)) and ptag(kg,ind) = F ′G((KX ,KI), (kg, ind)) (ptag serves
a similar purpose as stag but for positioning information). Finally, we store P in another instance of the
TSet data structure, called PSet, where a handle for identification and decryption of a list P[(kg, ind)] is an
output of F ′G((KX ,KI), ·) on (kg, ind), i.e. ptag(kg,ind).

Lastly, the data-structure XSet will store the xtag values for both exact keywords and for (k-gram,position)
pairs, i.e. it will contain values FG((KX ,KI), (kg, ind, pos)) for all kg ∈ KG and (ind, pos) ∈ DB(kg) and
values F ′G((KX ,KI)(w, ind) for all w ∈W and ind ∈ DB(w).

The three data structures (TSet,PSet,XSet) are used in Search to combine the substring processing in
SUB-SSE-OXT with the Boolean search (on exact keywords) of the original SSE-OXT. Assume that C’s
query q is a conjunction of n exact query terms w1, . . . , wn and a single substring search term q′ tok-
enized as T (q′) = (kg1, (∆2, kg2), . . . , (∆h, kgh)). Assume also that the exact keyword w1 is chosen as an
s-term. All these assumptions are not necessary and are used solely to simplify the protocol description
below. Client C sends stagw1

= FT (KT , w1) to E , who uses it to retrieve t = T[w1] from TSet. For each
(encrypted) ind in t, C and E perform the following: First they compute (in parallel, and following the
combined operations of SSE-OXT and SUB-SSE-OXT) values ptag(kg1,ind)

= F ′G((KX ,KI), (kg1, ind)) and
xtag(wi,ind) = F ′G((KX ,KI), (wi, ind)) for i = 2, . . . , n. If xtag(wi,ind) 6∈ XSet for any i = 2, . . . , n or if the list
p = P[ptag(kg1,ind)

] is empty, we can conclude that ind 6∈ DB(q), and so E moves on to the next (encrypted)
ind in t. Otherwise, E sends back ptag(kg1,ind)

to C, who uses it to derive the key Ku, and then for each (en-
crypted) indpos value in p, C and E jointly compute xtag(kgi,ind,pos+∆i)

= FG((KX ,KI), (kgi, ind, pos + ∆i))
for i = 2, . . . , h. The latter computation is similar to the one described for SUB-SSE-OXT above, ex-
cept that the (encrypted) ind value comes from list t while (encrypted) indpos value comes from list p. If
xtag(kgi,ind,pos+∆i)

∈ XSet for some pos in the p list and all i = 2, . . . , h, we can conclude (except for proba-
bility of collision in FG) that substring q′ appears in DB[ind] at position pos, and hence that ind ∈ DB(q).
Therefore in that case E sends ciphertext e corresponding to this ind to C, which allows C to retrieve and
decrypt record DB[ind].

If query q involves more substring terms, each of them is processed as the substring term q′ above. Since
T[w] for w ∈W and T[kg] for kg ∈ KG are implemented in the same way, an s-gram kg1 from any substring
search term can play the role of the s-term. Finally, the protocol can be easily modified to support any
query expressed as w ∧ Φ(w1, . . . , wn, q

′
1, . . . , q

′
k), where w is either an exact keyword term or a substring

term, w1, . . . , wn are exact keyword terms, q′1, . . . , q
′
k are substring terms, and Φ is any Boolean formula.

The protocol cost is upper-bounded by (n+ h1 + . . .+ hk) exponentiations per party per each tuple in T[w],
where hi is the number of k-grams in the tokenization of q′i.

Note that MIXED-SSE-OXT adds an extra communication round compared to SUB-SSE-OXT. However, E
can generate its responses ptag(kg1,ind)

(one for each c = 1, . . . , |t| and each substring term qi, i = 1, . . . , k)
without retrieving list PSet[(kg1, ind)] from the disk (except for a small probability of a false positive error)
if E keeps a Bloom filter which is small enough to fit in the memory and which allows E to check if any ptag
value corresponds to a non-empty list in PSet.

B.2 MIXED-OSPIR-OXT: Substring and Keyword Search in OSPIR Setting

The MIXED-SSE-OXT protocol extends to the Multi-Client and OSPIR settings. Because of the similarity
between MIXED-SSE-OXT with the SSE-OXT protocol of [6], we can re-use all the techniques of [13], which
adopted protocol SSE-OXT to the Multi-Client and OSPIR settings. Here we recall these techniques briefly:
First, we modify several PRF’s used by C in MIXED-SSE-OXT so that they can be efficiently computed via
an Oblivious PRF (OPRF) protocol between C and the data owner D. (In particular we replace gxtrap for

xtrap = Fp(KI , kg) with xtrap = H(kg)KI , so e.g. FG(kg, ind, pos) becomes xtrap
Fp(KI ,ind)

pos

kg .) The security of
the OPRF protocol implies that all the individual terms in C’s query are hidden from D. However, just like
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in the OSPIR-OXT protocol of [13], we ask client C to reveal the attributes of every term (exact keyword or
k-gram) in its query, which allows D to apply an attribute-based access control policy. To make this policy
enforcement effective, we replace PRF keys involved in these OPRF instances with an array of keys, one for
each database attribute. Third, to prevent malicious C from mixing and matching the trapdoors received
for different query terms, and thus potentially violate D’s access control policy, we use the same technique
as [13], i.e. D blinds each trapdoor it obliviously computes, for each term wi or kgi, by a random blinding
factor ρi used in the exponent, e.g. C computes xtrapi

ρi instead of xtrapi. D then puts the vector of these
ρi factors in an authenticated envelope encrypted under a symmetric key shared by D and E . During the
Search protocol, E receives this envelope from C, authenticates it, decrypts it, and then adds factor ρ−1i in the
exponent to de-blind the xtag (or ptag) value it computes jointly with C, where C enters a trapdoor blinded
by the corresponding factor ρi. In this way ρi and ρ−1i factors cancel each other out in the exponent.

However, while all the above mentioned methods carry over from the OSPIR-OXT protocol of [13], protocol
MIXED-SSE-OXT differs fundamentally from SSE-OXT in one aspect for which we need new techniques.
Namely, MIXED-SSE-OXT contains an extra round of interaction in which C learns the ptag(kg1,ind)

values,

potentially for each ind encrypted in T[w1]. Consider two queries q(i) and q(j) whose s-terms are different,

i.e. w1
(i) 6= w1

(j), but their substring queries have the same s-gram i.e. kg1
(i) = kg1

(j). Since ptag(kg1,ind)

is a deterministic function of (kg1, ind), the ptag values leak the number of common ind’s in DB(w1
(i)) and

DB(w1
(j)), regardless of what information the client C legitimately gets in DB(q(i)) and DB(q(j)).

We address this problem by modifying the function FG and the way position information indpos is en-
crypted in the P[(kg1, ind)] list, which in turn allows us to modify the two-party computation of xtag’s
FG(KG, (kgi, ind, pos +∆i)), for i = 2, . . . , h, in a way that prevents leakage of any information to C and at
the same time assures that D learns only the final output of FG on these inputs. We have several ways of
doing this, relying on different computational assumptions and resulting in different pre-computation/on-
line efficiency trade-offs. One solution comes from using an elliptic curve group G with a bilinear map
e : G × G → GT , where FG can be defined as FG((KX ,KI), (kg, ind, pos)) = e(xtrapkg, h)xind

pos

, and using a
variant of ElGamal encryption based on Linear Diffie-Hellman (LDH) assumption on G to jointly compute
FG given the position-related information in P in the form of encrypted hind

pos

values.

MIXED-OSPIR-SSE using Bilinear Maps. We provide a more detailed description of the MIXED-
OSPIR-SSE variant which uses a group with a bilinear map to allow for a practical two-party computation
of xtag’s, i.e. of function FG((KX ,KI), (·, ·, ·)). Let G be a group of a prime order p with a bilinear map
e : G×G→ GT . Assume that the Linear Diffie-Hellman (LDH) assumption holds on G [3]. Consider function
FG modified as FG((KX ,KI), (kg, ind, pos)) = e(xtrapkg, h)xind

pos

, where xtrapkg and xind are defined as before,

i.e. xtrapkg = H(kg)KX [I(kg)] for H mapping onto G, and xind = Fp(KI , ind). We also change the way values
indpos are encrypted in list P[(kg, ind)], namely for every pos at which kg appears in DB[ind], P[(kg, ind)]
contains a Linear Encryption (LE) ciphertext (a, b, c) = Enc(x1,x2)(h

indpos) where h is a generator of G and
the encryption key (x1, x2) ∈ Zp×Zp is set as (Fp(strapkg, n1), Fp(strapkg, n2)). The encryption Enc(x1,x2)(m)
on message m ∈ G picks random r, s in Zp, and outputs (a, b, c) = (hs, hr,m · hx1·s+x2·r). The decryption
Dec(x1,x2)(a, b, c) outputs a−x1 · b−x2 · c.

In the Search protocol, when E identifies a non-empty list P[(kg, ind)], then for each ciphertext Enc(x1,x2)(h
indpos)

in this list, and each x-gram kgi in the tokenization of C’s substring search term, the two parties perform

a sub-protocol whose goal is for E to compute xtagi = e(xtrapkgi
, h)xind

pos+∆i
. Recall that for each x-gram

kgi, C holds the shift ∆i corresponding to kgi and a blinded trapdoor (xtrapkgi
)ρi , while E holds the cor-

responding de-blinding factor ρ−1i . Recall also that C and E hold a multiplicative sharing, z and y s.t.

z · y = xind, hence z∆i · y∆i = xind∆i . Let B = ((xtrapkgi
)
ρi)

z∆i
, let v = y∆i · ρ−1, and denote hind

pos

encrypted in (a, b, c) as m. The goal of the sub-protocol therefore reduces to computing e(B,m)v, on E ’s
input (a, b, c) = Enc(x1,x2)(m) and v, and C’s input (x1, x2) and B. Note that e(B,m)v = e(xtrapkgi

, h)t for

t = (ρi · z∆i) · indpos · (y∆i · ρ−1) = ind∆i+pos. An additional input into this computation is E ’s LE private
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key (k1, k2) and the corresponding public key (K1,K2) = (hk1 , hk2) held by C. The computation proceeds as
follows:

(1) E sends the following three tuples to C:

(αa, βa, γa)← Enc(k1,k2)(a)

(αb, βb, γb)← Enc(k1,k2)(b)

(αc, βc, γc)← Enc(k1,k2)(c)

(2) C picks rδ, sδ at random in Zp, computes

ᾱ = (αa)−x1 · (αb)−x2 · αc · hrδ

β̄ = (βa)−x1 · (βb)−x2 · βc · hsδ

γ̄ = (γa)−x1 · (γb)−x2 · γc · (K1)rδ · (K2)sδ

and sends (α, β, γ) = (e(B, ᾱ), e(B, β̄), e(B, γ̄)) to E .

(3) E outputs xtag = (α−k1 · β−k2 · γ)v[= e(B,m)v].

The crucial point is that when C uses the decryption key (x1, x2) on the twice-encrypted values – first under
(x1, x2) and then under (k1, k2) – then by exponentiation commutativity the result (ᾱ, β̄, γ̄) is an encryption
under key (k1, k2) of the same plaintext m which was encrypted under key (x1, x2) in (a, b, c). (Terms hrδ ,
hsδ , and (K1)rδ(K2)sδ randomize this re-encryption.)

We note that only the computation of the xtag’s corresponding to k-gram positions, i.e. to (ind, kg, pos)
triples, will be computed using the above approach, while the xtag’s corresponding to exact keywords, i.e. to
(ind, kg) pairs, will still be computed as in MIXED-SSE-OXT. This modification does not add new rounds
to MIXED-SSE-OXT: Instead of ptag, E will now send the three tuples computed as in step (1) above for
each pos encrypted in p = PSet[ptag]. Moreover, for large databases E will now have to access the disk to
retrieve p from the disk before it can send its response to C. As for pre-computation, the computational cost
increase incurred by this method will be moderate, because the bilinear map operation is done only once per
each kg in KG, and the linear encryption operations involve fixed-base exponentiations. However, the on-line
procedure cost will be dominated by three pairings per each x-gram kgi for i = 2, . . . , h in the search term
and each indpos s.t. (ind, pos) ∈ DB[kg1] (and s.t. ind ∈ DB[w1]). We are currently investigating the exact
effects of these changes on the overall performance of the protocol.

Security in the OSPIR Setting. The privacy profile of the MIXED-OSPIR-OXT protocol against ma-
licious data owner D, malicious clients C, and honest but curious server E , are very similar to those of
the OSPIR-OXT protocol of [13] for the case of exact-keyword conjunctions. Privacy profile against D is
similar because we use the same mechanisms for adapting our MIXED-SSE-OXT protocol to the OSPIR
setting as [13], namely oblivious computation of the PRF’s. However, in addition to revealing the vector
of attributes pertaining to the query terms, which enables attribute-based access policy control by D, the
MIXED-OSPIR-OXT protocol additionally reveals the number of k-grams in each substring term and their
relative positions ∆2, . . . ,∆h. Formally, if q is a vector of queries of the form q = (w1, . . . , wn, q

′
1, . . . , q

′
k)

where each wi is an exact query term, with w1 chosen as the s-term (to simplify the presentation), and
each q′i is a substring term s.t. T (q′i) = (kgi,1, (kgi,2, ∆i,2), . . . , (kgi,hi , ∆i,hi)), then LD(DB,q) consists of DB
(since D is the owner of the database DB) and the following information for each q in q: a vector of attributes
(I(w1), . . . , I(wn), I(q′1), . . . , I(q′k)), and the vectors of shifts (∆i,2, . . . ,∆i,hi) for each substring term q′i in
q. We note that if the moderate leakage of information on the substring terms leaked in the ∆ vectors is
unacceptable, it can be eliminated by a ∆-hiding variant of our protocol.

The privacy profile to the malicious C is also very similar to the OSPIR-OXT protocol. As in there, the
client learns the size of the TSet list for the s-term keyword or k-gram in the search query. However, since we
handle position-related information by the PSet’s, one for every substring term in the search query, C also
learns the sizes of these PSet’s. Formally, if q is a vector of queries of the form q = (w1, . . . , wn, q

′
1, . . . , q

′
k)
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where each wi is an exact query terms, and w1 is the s-term, and each q′i is a substring term, and if
T (q′i) = (kgi,1, (kgi,2, ∆i,2), . . . , (kgi,hi , ∆i,hi)), then LC(DB,q) consists of |DB(w1)| for s-term w1 in each
query q in q, and |DB(kgi,1)| for s-term k-gram kgi,1 in each substring term qi in each query q in q.

The privacy profile to the honest-but-curious server E is similar as that specified for the SUB-SSE-OXT
protocol in Section 5.2, but it contains some new elements. For simplicity of notation we will assume that
each query has n exact terms and k substring terms, and that each substring search term tokenizes to h

k-grams. Building on the above notation, denote the i-th query as q(i) = (w1
(i), . . . , wn

(i), q′1
(i)
, . . . , q′k

(i)
)

where w1
(i) is an s-term, and let T (q′j

(i)
) =

(
kgj,1

(i), (kg
(i)
j,2, ∆j,2

(i)), . . . , (kgj,h
(i), ∆j,h

(i))
)

. Define function

LE(DB,q) which specifies leakage to E as a vector (N, s,SP,RP,DP, IP,PSP). Leakage elements N, s,SP,RP
are defined exactly the same as in Section 5.2, or indeed as in the underlying OXT protocol of [6]. The delta-
pattern DP is defined as in Section 5.2, except that it is generalized to k substring terms with h k-grams
each. (Formally, DP[i] is the sequence of vectors {(∆j,2

(i), . . . ,∆j,h
(i))} for j = 2, . . . , k.)

The conditional intersection pattern IP in E ’s leakage function LE contains the leakage due to exact keyword
terms and the s-grams of the substring terms, which is the same as in the OXT protocol of [6], and the
leakage due to the remaining k-grams in the substring terms, which is the generalization of the IP leakage
described in Section 5.2 to the case of multiple substring terms each with multiple k-grams. Formally, we
define IP as a tuple (IPw, IPs, IPk). The IPw part contains the leakage due to the exact keyword x-terms,
exactly as in the OXT protocol of [6]. The IPs part contains the leakage due to the s-grams, i.e. the s-term
k-grams in each substring term, which is similar to the leakage IPw because in the MIXED-OSPIR-OXT
protocol E computes a ptag for each s-gram in the same way as it computes an xtag for each exact keyword
x-term, namely as a PRF of the (keyword,record-index) pair, and thus both have the same value whenever
the (keyword,record-index) pair repeats. Formally, IPw is a Q×Q× n× n table (where Q is the number of
queries) where IPw[i1, i2, j1, j2] is non-zero only if i1 6= i2, i.e. if this entry relates to two different queries, and
if wj1

(i1) = wj2
(i2) and 2 ≤ j1, j2 ≤ n, i.e. if the j1-th keyword in i1-th query is the same as the j2-th keyword

in the i2-th query (with both keywords being x-terms), in which case IPw[i1, i2, j1, j2] contains all indexes ind
in DB(w1

(i1)) ∩ DB(w1
(i2)), i.e. indexes of records that contain the s-terms of both i1-th and i2-th queries.

IPs is a Q×Q× k× k table where IPs[i1, i2, j1, j2] is non-zero only if i1 6= i2 and kgj1,1
(i1) = kgj2,1

(i2), i.e. if
the s-gram in the j1-th substring term in i1-th query is the same as the s-gram in the j2-th substring term
in the i2-th query, in which case IPs[i1, i2, j1, j2] contains all indexes ind in DB(w1

(i1)) ∩DB(w1
(i2)), exactly

as in the case of IPw leakge above. The third part of IP leakage is IPk, the leakage due to E ’s computation of
xtag’s for each (k-gram,position,record-index) tuple. This leakage is exactly the same as the IP leakage in the
SUB-SSE-OXT protocol described in Section 5.2, but generalized to multiple substring terms and k-grams.
Formally, IPk is a Q × Q × k × k × h × h table, where IPk[i1, i2, j1, j2, `1, `j ] is non-zero only if i1 6= i2 and

kgj1,`1
(i1) = kgj2,`2

(i2), i.e. if the `1-th k-gram in the j1-th substring term in i1-th query is the same as the
`2-th k-gram in the j2-th substring term in the i2-th query, in which case IP[i1, i2, j1, j2, `1, `j ] contains the
set of all triples (ind, pos1, pos2) (possibly empty) s.t. (ind, pos1) ∈ DB(w1

(i1)), (ind, pos2) ∈ DB(w1
(i2)), and

pos2 = pos1 + (∆j1,`1
(i1) −∆j2,`2

(i2)), i.e. indexes of records which contain the s-terms of the i1-th and the
i2-th queries, at positions whose relative distance matches the difference between the ∆’s associated with
the above two k-grams in the tokenization of the corresponding queries.

The last component of E ’s leakage function is a PSet size pattern PSP, which is a Q × k table whose entry
PSP[i, j] contains a sequence of integers (s1, s2, . . . , sm) where m = |DB(w1

(i))|, s.t. sc is the number of

occurrences of kgj,1
(i), i.e. the s-gram in the j-th substring term in the i-th query, in record DB[indc], where

indc is the c-th record index in DB(w1
(i)). This leakage comes from the fact that for each s-gram in each

query E retrieves the (possibly empty) PSet associated with ptag[c] for c = 1, . . . ,m, and the size of this

PSet reflects the number of occurrences of k-gram kgj,1
(i) in the c-th record in DB(w1

(i)).

Note: We stress that that above formal specification of E ’s leakage is in many ways an overstatement.
Most importantly, the real information E learns due to the IP leakage does not contain the indexes (even
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randomized) of the records which satisfy the conditioned formed by the two queries, but only the fact that
the corresponding TSet entries contain the same index ind.

The proof of theorem 5 below is very simple, while the proofs of theorem 6 and 7, although more complex,
are similar to the proof of security against the client and the server of the OSPIR-OXT protocol of [13]. All
proofs are omitted.

Theorem 5. Protocol MIXED-OSPIR-OXT is LD-semantically-secure against malicious data owner D.

Theorem 6. Protocol MIXED-OSPIR-OXT is LC-semantically-secure against a malicious client C, assum-
ing the security of the encryption Enc, the authenticated encryption, the TSet implementation, the PRF’s Fp
and Fτ , assuming the random oracle model for hash functions, the One-More GDH and the LDH assump-
tions on the group G with a bilinear map, the q-DDH assumption on its target group GT , and the One-More
GDH assumption on a standard prime-order group.

Theorem 7. Protocol MIXED-OSPIR-OXT is LE -semantically-secure against honest-but-curious server E,
assuming the security of the encryption Enc, the TSet implementation, the PRF’s Fp and Fτ , the random
oracle model for hash functions, and the LDH assumptions on group G.

C Security Proof for Substring Search SSE

Here we present the proof of Theorem 4 stated in Section 5, which describes the security property of protocol
SUB-SSE-OXT, the basic substring search SSE protocol shown in Figure 1. We simplify notation by focusing
on substrings which tokenize into two k-grams. The extension to any number of k-grams is straightforward.

Hardness assumptions. We recall the q-DDH assumption (we assume familiarity with the DDH assump-
tion). LetG be a prime order cyclic group of order p generated by g. We say that the q-decision Diffie-Hellman

(q-DDH) assumption holds in G if Advq−ddh
G,A is negligible for any generator g and all efficient adversaries A,

Advq−ddh
G,A = Pr[A(g, ga, ga

2

, . . . , ga
q−1

, ga
q

) = 1]

−Pr[A(g, ga, ga
2

, . . . , ga
q−1

, gb) = 1]

where the probability is over the randomness of A and uniformly chosen a, b from Z∗p .

Note that the q-DDH assumption implies the DDH assumption. We will use the following lemma in the
argument below. Let α, β be integers, let a ∈ (Z∗p )α, b ∈ (Z∗p )β , and let q = (1, 2, . . . , q). Let a · bq be the

(α×β×q) array M s.t. M[i, j, k] = a[i]·b[j]k, and let ga·b
q

be the (α×β×q) array MG s.t. MG[i, j, k] = gM[i,j,k]

where M = a · bq.

Lemma 6. If the q-DDH assumption holds in G then for any integers α, β (polynomial in |p|) and any
efficient adversary A, we have that AdvAG is negligble, where

AdvAG = Pr[A(g, ga·b
q

) = 1]− Pr[A(g,MG) = 1]

where a is uniform over (Z∗p )α, b is uniform over (Z∗p )β, and MG is uniform over Gα×β×q.

Let K,X, Y be sets, and let F : K×X→Y be a family of keyed functions. We say that F is a pseudorandom
function (PRF) if for all efficient adversaries A, Advprf

F,A is negligible, where

Advprf
F,A = Pr[AF (k,·) = 1]− Pr[Af(·) = 1]

where the probability is over the randomness of A, k
$← K, and f

$← Fun(X,Y ).

As a corollary of lemma 6 we get the following, where [q] stands for the set of integers {1, . . . , q}:
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Corollary 2. If the q-DDH assumption holds in G, if FG : K1 ×X→G and Fp : K2 × Y →Z∗p are PRF’s

then F : (K1 ×K2)× (X × Y × [q])→G where F ((k1, k2)(x, y, i)) = (FG(k1, x))(Fp(k2,y))
i

is a non-adaptive
PRF.

We will also use the following well-known fact:

Lemma 7. Under the DDH assumption on G, for any set X, if H is a hash function mapping X to G then
under the DDH assumption function F : Z∗p ×X→G defined as F (k, x) = H(x)k for k uniform in Z∗p , is a
PRF in the random oracle model (ROM) for H.

Proof of Theorem 4 from Section 5. Let DB be any text strings database and q be any sequence of
Q queries to it as described above. Let (N, s,SP,DP,RP, IP) ← LE(DB,q) (note that algorithm LE is de-
terministic). Let A be an efficient algorithm which plays the role of E , i.e. receives the (TSet,XSet) input
generated by Setup(DB) and input (stag, ∆1, xtoken[1], xtoken[2], . . .) generated by the client C on input q[τ ]
(and K = (KS ,KX ,KT ) generated in the same Setup(DB) procedure). We will first make several modifica-
tions in the way we look at this information, at some point involving the simulator SIMT for the underlying
T-set implementation, arguing that A’s view remains indistinguishable between each consecutive modifica-
tion. Finally we show a simulator which generates this modified view given only input (N, s,SP,DP,RP, IP),
which will complete the proof.

(1) First, we replace strap = H(w)s values generated in Setup and GenToken with random elements in group
G. This modification results in an indistinguishable change in A’s view because by Lemma 7, H(w)s is a
PRF (since q-DDH implies DDH), and key s is never exposed to A. We will denote strap and stag values
generated for keyword w1 as strapw1

and stagw1
.

(2) Secondly, we replace each (Kz,Ke,Ku) triple generated for a given strapw1
with random τ -bit strings.

This modification results in an indistinguishable change in A’s view because Fτ is a PRF and strapw1
values

are never exposed toA. We will denote the key triple generated for a particular strapw1
as (Kw1,z,Kw1,e,Kw1,u).

(3) Third, we replace each (zc, uc) pair generated for a given (Kw1,z,Kw1,u) key and counter c, with random
values in Z∗p . This modification results in an indistinguishable change in A’s view because (Kw1,z,Kw1,u)
keys are not exposed to A, and Fp is a PRF. Let us denote the tuple (zc, uc) generated for counter c from
keys (Kw1,z,Kw1,u) as (zw1,c, uw1,c).

(4) Next, we replace generation of ciphertext e in a (e, y, [u]) tuple with e ← Enc(Kw1,e(0
2λ)) instead of

Enc(Kw1,e, (ind|rdk)) (since ind and rdk are both λ-long bit strings). This modification results in an in-
distinguishable change in A’s view because (Enc,Dec) is a CPA secure encryption, and the keys Kw1,e

are never exposed to A. We will denote the tuple (e, y, u) generated for s-term w1 and counter c as
(ew1,c, yw1,c, uw1,c). We will also designate ind, pos, xind values corresponding to the c-th position in T(stagw1

)
as indw1,c, posw1,c, xindw1,c.

For convenience of notation, we will denote the pair of keys (KX ,KI) as KXI . Define function Fxtag :
(((Z∗p )m×{0, 1}λ)×({0, 1}λ×{0, 1}λ×[q]))→G as Fxtag(KXI , (w, ind, pos)) = (FG(KX , w))(Fp(KI ,ind))

pos

. Note
that XSet consists of values Fxtag(KXI , (w, ind, pos)) computed for every (w, ind, pos) tuple s.t. (ind, pos) ∈
DB(w). Observe that values xtokenkg[c, i] sent by C in the Search are of the form

xtokenkg[c, i] = xtag

(
(yw1,c)

(∆i)·vw1,c

)−1

(3)

for xtag = Fxtag(KXI , (wi, indw1,c, posw1,c +∆i)).

(5) Since the value satisfying this equation is unique, we will have Charlie generate the xtokenkg[c, i] values
by equation (3).

(6) The next modification is that we change the way Setup generates yw1,c and vw1,c elements in each
T[stagw1

] tuple, by choosing both of them at random in Z∗p , and then defining zw1,c and uw1,c generated by
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C in Search as xind/yw1,c and xindpos/vw1,c, respectively. This modification does not change A’s view because
either way yw1,c, vw1,c are random elements in Z∗p . Note that after the above modification xtokenkg[c, i]
elements C sends depend only on yw1,c, vw1,c, and no longer on zw1,c, uw1,c.

(7) Therefore, after this modification C will skip generating zw1,c, uw1,c in the Search procedure. In fact,
these values will not be generated anywhere in the game.

Let us look closer now at where the Setup procedure, at this point in our series of modifications, needs the
key KXI = (KX ,KI) and the ind, xind, pos values. Note that Setup no longer uses ind, xind, and xindpos to
generate the (ew1,c, yw1,c, vw1,c) tuples in T[stagw1

], and therefore in particular it does not use the KI key
at this point either. The only place key KXI = (KX ,KI) (and value xind) is used is in the generation of
the xtag value inserted into XSet, i.e. in the generation of Fxtag(KXI , (w, ind, pos)). Note that by Lemma 7,
function FG : Z∗p × {0, 1}λ→G where FG(KX , w) = H(w)ei is a PRF, for i = I(w) and KX = (e1, . . . , em)
is chosen uniformly in (Z∗p )m. Therefore, by Corollary 2, assuming q-DDH, ROM, and the fact that Fp is a
PRF, function Fxtag is a PRF.

(8) Consequently, in the next modification we replace Fxtag(KXI , ·) with a random function Fxtag(·), which
assigns a random element in G to every (w, ind, pos) triple. Since, as we discussed above, key KXI = (KX ,KI)
is not used anywhere else at this point except in the computation of Fxtag, and A’s view can be generated
using black-box access to Fxtag, this modification results in an indistinguishable change in A’s view.

Let us reassess what A’s view consists of at this point. First, recall that by Lemma 7, function FG : Z∗p ×
{0, 1}λ→G where FG(KT , w) = H(w)ki is a PRF, for i = I(w) and KT = (k1, . . . , km) is chosen uniformly
in (Z∗p )m. Using this notation, T-set tuples (e, y, v) are formed as an encryption of 02λ (e) and random
Z∗p nonces (y and v), and inserted into TSet with an stag handle computed as stagw = FG(KT , w), while
X-set is populated with values of Fxtag(ind, w, pos) for all w ∈ KG and all (ind, pos) ∈ DB(w). Then, for each
query q[i], tokenized as (s[i], (x[i],∆[i])), procedure Search sends to A a singleton (∆2[i]) (since we assume
that each query tokenizes into two k-grams, we have h = 2), value stags[i] = FG(KT , s[i]), and a stream of
xtokenkg[c, 2] values (again, recall that h = 2) for c = 1, 2, . . .. In the i-th query we will denote these values as
xtokenkg[c, 2][i]. These values are computed as in equation (3), but modified by replacing Fxtag(KXI , ·) with
Fxtag(·), and with (w1, w2, ∆2) terms set to the corresponding values in query q[i], i.e., they are computed
as:

xtokenkg[c, 2][i] = xtag

(
(ys[i],c)

(∆[i])·vs[i],c

)−1

(4)

for xtag = Fxtag(KXI , (x[i], inds[i],c, poss[i],c + ∆[i])).

Therefore, since function FG(KT , ·) is a PRF and the T-set implementation is secure, in the next change
(9) we will use simulator SIMT instead of the T-set implementation. In other words, we compute T[s[i]] for
each i = 1, . . . , Q as the set of SP[i] = |DB(s[i])| triples (e, y, v) computed as above, and we run SIMT (N,T)
to generate the TSet datastructure and the search handles stags[i] for i = 1, . . . , Q. By the security of the
T-set implementation, this modification results in an indistinguishable change in A’s view.

(10) Finally, we change the generation of the xtag values in XSet and the xtokenkg generated in Search as
follows: To generate xtag’s in XSet we simply chose N random elements in G. We also keep a table XT
indexed by (w2, ind, pos) triples to which we assign some elements in G as the game progresses. Then, we
generate xtokenkg[c, 2][i] as follows.

1. First we check if XT (x[i], inds[i],c, poss[i],c + ∆[i]) is already defined. If it is, we move to the second step,
but if it is not then we first define this entry in the XT table as follows:
(a) If (inds[i],c, poss[i],c) is in DB(w) then we assign to this entry in the XT table to a random un-used

value in XSet (i.e. to a random value which is not yet assigned to any other entry in the XT table).
(b) Otherwise, i.e. if (inds[i],c, poss[i],c) is not in DB(w) then we assign a random element in G to this

entry in the XT table.
2. Secondly, we take xtag ← XT (x[i], inds[i],c, poss[i],c + ∆[i]) and we compute xtokenkg[c, 2][i] as xtag

exponentiated to
(
(ys[i],c)

(∆[i]) · vs[i],c
)−1

.
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It follows by the randomness of Fxtag and by equation (4) that the above modification does not change A’s
view: The xtag values remain random and the only thing that A can observe is whether or not the xtag’s
computed for each [c, 2, i] hit some previously observed xtag value, and whether this value is in XSet or not.

We will argue that the above view can be generated given only leakage (N, s,SP,DP,RP, IP) generated by
(DB,q). By the security of the T-set implementation A’s views of TSet, of the stags[i] values, and hence
also of the T[s[i]] vectors of (e, y, v) tuples retrieved from TSet via stags[i]’s, is simulated correctly on input
(N, s,SP). Leakage DP[i] is used directly as ∆[i]. The result pattern RP[i] is used to assign some random
positions c for each T[s[i]] to the (ind, pos) values in RP[i], and to decide whether the xtag computed for this
position should be from XSet or not. Finally, the IP leakage is used to detect repetitions in the xtag values, i.e.
to simulate the view from step (10) above without the XT table. (Note that the XT table keeps all the xtag’s
which A sees/computes during Search not only for values (x[i], ind, pos +∆) corresponding to (ind, pos +∆)
in DB(x[i]) and (ind, pos) in DB(s[i]), which the simulator can simulate using RP[i], but also for values which
are not in DB. Here is where IP table is necessary: For every q[i],q[j] pair, IP gives to the simulator the set
of ind’s with the corresponding positions posi, posj , s.t. x[i] = x[j] and posi + ∆[i] = posj + ∆[j], which is
precisely the information needed to detect when some xtag value (i.e. some entry in the XT table) should
repeat. Since this simulated view is identical to the view in step (10), the theorem follows.
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