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Abstract. The aim of this paper is to consider strictly hyperbolic quasi-linear systems

of conservation laws which appear in the form A(u)ux+B(u)uy = 0. If one of the matrices

A(u), B(u) is invertible, then this system is in fact in the form of evolution equations.

However, it may happen that traveling along characteristics one moves from the “chart”

where A(u) is invertible to another “chart” where B(u) is invertible. We propose a new

condition of richness or semi-Hamiltonicity for such a system that is “chart”-independent.

This new condition enables one to perform the blow-up analysis along characteristic

curves for all times, not passing from one “chart” to another. This opens a possibility

to use this theory for geometric problems as well as for stationary solutions of 2D+1

systems. We apply the results to the problem of polynomial integral for geodesic flows

on the 2-torus.

1. Motivation and the result. Consider a quasi-linear system for a vector function

u(x, y) = (u1, ..., un) that has the following form:

A(u)ux +B(u)uy = 0. (1)

It may happen in practice that one of the matrices A(u) or B(u) can degenerate some-

where (and even both of them can degenerate somewhere). Such situations appear in

geometric problems as well as for stationary solutions of quasi-linear systems with two

space variables x, y.

Throughout this paper, our main assumption on these matrices is that the homoge-

neous polynomial P in α, β is not a zero polynomial at any point (x, y) :

P = det(αB − βA), deg(P ) = n. (P )
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788 MISHA BIALY

This assumption is obviously satisfied if one of the matrices A(u) or B(u) is non-

degenerate; however, we shall assume everywhere the weaker version: (P ). We shall

see in the example of the last section that (P ) is in fact the correct assumption.

Moreover, we shall assume in the following that the system is strictly hyperbolic; that

is, the polynomial P has n distinct roots [βi : αi]. We define unit characteristic vector

fields on the plane R2(x, y) by

vi = cosφi∂x + sinφi∂y,

where the angles φi, which we shall call characteristic angles, are such that [sinφi :

cosφi] = [βi : αi], φi �= φj (mod π).

One can use a regular change of variables and multiplication from the left on an

invertible matrix in order to transform system (1) to an equivalent one. Namely, if

u = Φ(w) is a regular change of variables and C(w) is an invertible matrix, then system

(1) takes the form

C(w)A(Φ(w))DΦ(w)wx + C(w)B(Φ(w))DΦ(w)wy = 0,

where D is the differential. Obviously such a transformation preserves the roots of P .

Notice that if one of the matrices, say A, is non-degenerate, then the system is equiv-

alent to one in the evolution form. Recall the notion of the evolution system to be rich

or semi-Hamiltonian (see [13], [5], [11], [12] and also [9]), we shall call them rich for the

sake of brevity. A strictly hyperbolic evolution system is called rich if it can be written

in Riemann invariants (diagonal form):

(ri)x + λi(r1, ..., rn)(ri)y = 0, i = 1, ..., n,

and, moreover, the eigenvalues λi = βi/αi of A
−1B satisfy the following identities:

∂rk

(

∂riλj

λi − λj

)

= ∂ri

(

∂rkλj

λk − λj

)

. (R)

This condition allows one to perform blow-up analysis along characteristics as it is shown

in [11] and applied to a mechanical example in [1]. It was proved by B. Sevennec [12]

(see also the differential-geometric interpretation in [7]) that a strictly hyperbolic system

in evolution form that is written in Riemann invariants is rich if and only if there are

local coordinates in which the system takes the form of conservation laws.

The unsatisfactory thing, however, with the condition (R) for the system (1) is the

fact that characteristic curves can rotate in the plane and pass from the chart where A is

non-degenerate to the chart where B is non-degenerate or even reach those points where

both matrices degenerate. For understanding the local solutions, this does not play a

role, and this does not allow one to analyze the long-time behavior of the solutions,

either, since one cannot write the Riccati equations for all times.

We propose the following generalization of the richness condition whose naturality we

shall justify below:

Definition 1.1. We call the strictly hyperbolic system (1) rich if it can be written

in the diagonal form

Lviri = cosφi(ri)x + sinφi(ri)y = 0, i = 1, ..., n, φi �= φj (mod π) (2)
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for a regular change of variables (u1, ..., un) → (r1, ..., rn) and the following conditions

on the characteristic angles φi(r1, ..., rn) hold true:

∂rk

(

∂riφj

tan(φi − φj)

)

= ∂ri

(

∂rkφj

tan(φk − φj)

)

. (Φ)

It is an important fact that this definition is invariant with respect to rotations of the

plane. We shall continue to call ri in (2) by Riemann invariants. Our first result is the

following

Theorem 1.2. If a strictly hyperbolic system (1) satisfying (P) is rich according to

Definition 1.1 so that the conditions (2),(Φ) hold true, then the derivatives of the i-th

Riemann invariant wi = Lv⊥

i
ri in the orthogonal direction to those characteristics satisfy

the following Riccati equation:

Lvi(exp (−Gi)wi) + exp (Gi)∂ri(φi)(exp(−Gi)wi)
2 = 0,

for any i = 1, ..., n, where Gj is a function of Riemann invariants satisfying

∂riGj =
∂riφj

tan(φi − φj)
.

Here v⊥ stands for the vector field rotated from v by 90◦ counterclockwise.

We shall see in the lemma below that the conditions (R) and (Φ) are almost equivalent.

This lemma enables us to prove the following theorem, which is a generalization to our

case of the result of [12].

Theorem 1.3. Given any strictly hyperbolic diagonal system

cosφi(ri)x + sinφi(ri)y = 0, i = 1, ..., n,

the condition (Φ) is satisfied if and only if the system can be written in the form of n

conservation laws

(gi)x + (hi)y = 0, i = 1, ..., n.

We prove the main theorems in sections 2 and 3. The last section contains a geometric

example originating from classical mechanics.

2. Derivation along characteristics. Proof of Theorem 1.2. Differentiate the

j-th equation of (2) with respect to the field v⊥j . We have

0 = Lv⊥

j
Lvjrj = LvjLv⊥

j
rj − L[vj ,v⊥

j
]rj . (3)
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Compute now the derivative along the commutator:

L[vj ,v⊥

j
]rj = LvjLv⊥

j
rj − Lv⊥

j
Lvjrj

= Lvj (− sinφj(rj)x + cosφj(rj)y)− Lv⊥

j
(cosφj(rj)x + sinφj(rj)y)

= (rj)x(− cos2 φj(φj)x − cosφj sinφj(φj)y)

+ (rj)y(− sinφj cosφj(φj)x − sin2 φj(φj)y)

+ (rj)x(− sin2 φj(φj)x + sinφj cosφj(φj)y)

+ (rj)y(sinφj cosφj(φj)x − cos2 φj(φj)y)

= −(rj)x(φj)x − (rj)y(φj)y. (4)

Notice that the derivatives (rj)x, (rj)y can be expressed by the following two identities:

cosφj(rj)x + sinφj(rj)y = 0,

− sinφj(rj)x + cosφj(rj)y = Lv⊥

j
rj .

Therefore

(rj)x = − sinφjLv⊥

j
rj ,

(rj)x = cosφjLv⊥

j
rj . (5)

Substituting back to (4), we get

L[vj ,v⊥

j
]rj = (Lv⊥

j
rj)(sinφj(φj)x − cosφj(φj)y) = −(Lv⊥

j
rj)(Lv⊥

j
φj). (6)

By the chain rule for Lv⊥

j
φj , the last equation can be rewritten as follows:

L[vj ,v⊥

j
]rj = −Lv⊥

j
rj

n
∑

i=1

(∂riφj)(Lv⊥

j
ri)

= −(Lv⊥

j
rj)

2(∂rjφj)− (Lv⊥

j
rj)

∑

i �=j

(∂riφj)(Lv⊥

j
ri). (7)

Let us express now the derivative

Lv⊥

j
ri = − sinφj(ri)x + cosφj(ri)y (8)

via Lvjri as follows. Write

cosφi(ri)x + sinφi(ri)y = 0,

cosφj(ri)x + sinφj(ri)y = Lvjri. (9)

From these two identities we have

(ri)x =
sinφi

sin(φi − φj)
Lvjri, (rj)y = − cosφi

sin(φi − φj)
Lvjri. (10)

Substitute expressions (10) into (8) to get

Lv⊥

j
ri = − Lvjri

tan(φi − φj)
. (11)

Denote by

wi := Lv⊥

i
ri.
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Plug this together with (11) into equation (7) and then to (3):

Lvj (wj) + (∂rjφj)(wj)
2 − wj

∑

i �=j

(∂riφj)
1

tan(φi − φj)
Lvjri = 0. (12)

By richness (Φ), we have that for all j = 1, ..., n there exist functions

Gj(r1, ..., rn) : ∂riGj =
(∂riφj)

tan(φi − φj)
, i �= j. (13)

By (13) we can rewrite (12) as

Lvj (wj) + (∂rjφj)(wj)
2 − wj

∑

i �=j

(∂riGj)Lvjri = 0,

which is the same as

Lvj (wj) + (∂rjφj)(wj)
2 − wjLvjGj = 0. (14)

Multiplying (14) by exp(−Gj), we get the Riccati equation of the first theorem for j

instead of i. This completes the proof of Theorem 1.2.

3. Conservation laws. Proof of Theorem 1.3. We shall need the following key

observation.

Lemma 3.1. Given two sets of functions λi(r1, ..., rn); φi(r1, ...rn), i = 1, ..., n such that

λi �= λj , φi �= π/2 (mod π), λi = tanφi,

the conditions (R) and (Φ) are equivalent.

The proof is computational. It would be interesting to find a more conceptual proof.

Proof. Let us prove first that (R) implies (Φ).

Denote by

aij :=
∂riλj

λi − λj

.

Then aij satisfy the following identities ([11]):

∂riakj = ∂rkaij = akiaij + aikakj − akjaij . (15)

In order to prove them, differentiate the identity ∂riλj = aij(λi −λj) with respect to rk,

then interchange the order of i, k, subtract one from the other and divide by λi − λk.

Denote by

bij :=
∂riφj

tan(φi − φj)
=

∂riλj

λi − λj

1 + λiλj

1 + λ2
j

= aij
1 + λiλj

1 + λ2
j

. (16)

To prove (Φ), we have to verify that the difference

d = ∂rkbij − ∂ribkj
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vanishes. Let us compute d explicitly:

d = (∂rkaij)
1 + λiλj

1 + λ2
j

− (∂riakj)
1 + λkλj

1 + λ2
j

+ aij∂rk

(

1 + λiλj

1 + λ2
j

)

− akj∂ri

(

1 + λkλj

1 + λ2
j

)

.

By the identities (15) and the condition (R) we have

d = (akiaij + aikakj − akjaij)
λj(λi − λk)

1 + λ2
j

+aij
∂rk(λiλj)(1 + λ2

j)− (1 + λiλj)2λj∂rk(λj)

(1 + λ2
j)

2

−akj
∂ri(λkλj)(1 + λ2

j)− (1 + λkλj)2λj∂ri(λj)

(1 + λ2
j)

2
. (17)

Substitute now into the nominators of (17) the following expressions for the derivatives

of λj from the definition of aij :

∂riλj = aij(λi − λj).

Then one has

d = (akiaij + aikakj − akjaij)
λj(λi − λk)

1 + λ2
j

+aij
akj(λk − λj)λi + λjaki(λk − λi)

1 + λ2
j

− akj
aij(λi − λj)λk + λjaik(λi − λk)

1 + λ2
j

−2aij
(1 + λiλj)λjakj(λk − λj)

(1 + λ2
j)

2
+ 2akj

(1 + λkλj)λjaij(λi − λj)

(1 + λ2
j )

2
. (18)

Notice that the identity (18) is a quadratic expression in aij ’s. Collecting the coefficients

of aijakj , aikakj , akiaij , one comes to d = 0. This proves the lemma in one direction.

Proof of the converse statement is very much analogous but with even harder com-

putations. We shall give a sketch. Assume the identities (Φ) are satisfied. First, one

can obtain the identity analogous to (15) for the derivatives ∂rkbij in the following way.

Write

∂riφj = bij tan(φi − φj) = bij
λi − λj

1 + λiλj

, ∂riλj = bij
(1 + λ2

j)(λi − λj)

1 + λiλj

. (19)

Differentiating the first equality of (19) with respect to rk, using the identities (19) again

and taking into account (16), one has

∂rk∂riφj = ∂rk(bij)
(λi − λj)

1 + λiλj

+bij

(

1 +
(λi − λj)

2

(1 + λiλj)2

)(

bki
λk − λi

1 + λkλi

− bkj
λk − λj

1 + λkλj

)

.
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Interchanging the order of indexes i and k in this identity and using ∂rkbij = ∂ribkj , one

has the identity

∂rk(bij)
(λi − λk)(1 + λ2

j )

(1 + λiλj)(1 + λkλj)

= bkj

(

1 +
(λk − λj)

2

(1 + λkλj)2

)(

bik
λi − λk

1 + λiλk

− bij
λi − λj

1 + λiλj

)

−bij

(

1 +
(λi − λj)

2

(1 + λiλj)2

)(

bki
λk − λi

1 + λiλk

− bkj
λk − λj

1 + λkλj

)

. (20)

In order to verify (R), one computes

∂rkaij − ∂riakj = ∂rkbij
λj(λk − λi)(1 + λ2

j)

(1 + λiλj)(1 + λkλj)

+bij∂rk

(

1 + λ2
j

1 + λiλj

)

− bkj∂ri

(

1 + λ2
j

1 + λkλj

)

. (21)

The last step is to plug the expression (20) into (21) and also to differentiate the last

two brackets of (21) using the expression for the derivatives (19). Then one finally gets

a quadratic expression in bijs. Collecting similar terms, one verifies that the right-hand

side of (21) vanishes. Therefore (R) holds true. This proves the lemma. �

It is easy now to prove Theorem 1.3.

Proof. Notice first of all that the statement of the second theorem is local. Given a

system that is strictly hyperbolic and written in the diagonal form

cosφi(ri)x + sinφi(ri)y = 0, i = 1, ..., n,

let us give a proof first in one direction; namely, assume that the system can be written

in the form of conservation laws

(gi)x + (hi)y = 0, i = 1, ..., n.

Let me explain that then it must satisfy condition (Φ). If among φi there is one with

cosφi = 0, then one can apply a small rotation of the plane R2(x, y) to get a new system

that has all angles different from ±π/2, φi �= φj (mod π). Notice that the rotated system

remains in the form of conservation laws and, in addition, the differential Dg becomes a

non-singular matrix, since otherwise α = 1, β = 0 would be the root of (P), but this is

impossible by φi �= ±π/2. Denote

λi := tanφi.

Use now Sevennec’s theorem saying that the diagonal system

(ri)x + λi(ri)y = 0,

which can be written in the form of conservation laws

(gi)x + (hi)y = 0, i = 1, ..., n

with the non-singular Jacobi matrix
(

∂rjgi
)

, must satisfy (R). But by the lemma in this

case, (R) and (Φ) are equivalent. So we get condition (Φ) for the rotated system. But this

condition is obviously rotationally invariant. Thus it holds also for the original system.
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The proof in the opposite direction is analogous. First rotate the plane exactly as

above. Condition (Φ) remains valid since it is rotationally invariant. Then by the lemma,

(R) is valid as well, and then by Sevennec’s theorem the rotated system can be written in

the form of conservation laws. Obviously, the original one can be as well. This completes

the proof. �

4. Geometric example. In this section we give a geometric example originating

from classical mechanics where the results of the previous sections apply.

Let ρ be a Riemannian metric on the 2-torus T2 = R
2/Γ; ρt denotes the geodesic flow.

Assume that ρ is written in a conformal way:

ds2 = Λ(x, y)(dx2 + dy2).

Let F : T ∗
T
2 be a function on the cotangent bundle that is homogeneous polynomial of

degree n with respect to the fibre:

F =

n
∑

k=0

ak(x, y)p
n−k
1 pk2 .

We are looking for such an F which is an integral of motion for the geodesic flow ρt, i.e.

F ◦ ρt = F . We shall also assume that this F is irreducible, i.e., of minimal possible

degree. Let us mention that this problem is classical; there are very well-studied examples

of the geodesic flows on the 2-torus that have integrals F of degree one and two. We

refer to the books [4] and [10] for the history and discussion of this classical question

with references therein. In our recent papers with A. E. Mironov, we used the so-called

semi-geodesic coordinates. In these coordinates one arrives at a remarkably rich quasi-

linear system of equations in evolution form on the coefficients of the integral F ([2], [3]).

However, it is very natural to be able to work in conformal coordinates as well. In this

case, the quasi-linear system on the coefficients no longer has evolution form but looks

like:

A(U)Ux +B(U)Uy = 0.

Let me write down explicitly the matrices for the case n = 3 (this case is already very

interesting and not trivial; see, for example, [6]).

A(U) =

⎛

⎝

1 0 3a

0 1 3b

Λ 0 u

⎞

⎠ , B(U) =

⎛

⎝

0 −1 3b

1 0 −3a

0 Λ v

⎞

⎠ , U =

⎛

⎝

u

v

Λ

⎞

⎠ . (22)

Here a, b, u, v are related to the coefficients of the integral ai by the following:

a0 = a+
u

Λ
, a1 = 3b+

v

Λ
, a2 = −3a+

u

Λ
, a3 = −b+

v

Λ
.

It was noticed in [8] that a, b are in fact constants. Computing polynomial P = det(αB−
βA), one has:

P = α3(v + 3bΛ) + α2β(−u− 9aΛ) + αβ2(v − 9bΛ) + β3(−u+ 3aΛ).

Let us remark that it may happen at some points that both matrices A,B are degenerate;

however, polynomial P for any point cannot vanish identically. This is because otherwise

both constants a, b vanish, but then one checks that in such a case the integral F is a
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product of the Hamiltonian with an integral of degree one in momenta, and is therefore

reducible.

Notice that quasi-linear system (22) is written in the form of conservation laws:

(gi)x + (hi)y = 0,

g1 = u+ 3aΛ, g2 = v + 3bΛ, g3 = uΛ,

h1 = −v + 3bΛ, h2 = u− 3aλ, h3 = vΛ.

Moreover, by a very general argument, in the hyperbolic region, this system can be

written in the diagonal form of (2). Indeed, introduce an angular coordinate φ on the

fibres of the energy level

{ 1
Λ
(p21 + p22) = 1} : p1 =

√
Λcosφ, p2 =

√
Λ sinφ.

Then one can verify that the condition on a function F to be an integral of the flow reads

Fx cosφ+ Fy sinφ+ Fφ

(

Λy

2Λ
cosφ− Λx

2Λ
sinφ

)

= 0.

At the points where Fφ vanishes, this equation takes a particularly nice form:

Fx cosφ+ Fy sinφ = 0.

Therefore, critical values of F on the fibre are Riemann invariants. One can check also

that the polynomial P is proportional in fact to the derivative of F in the direction

of the fibre. Moreover, one can check, as we did in [2], that in the hyperbolic region

Riemann invariants form a regular change of variables. As a consequence of Theorem

1.3, one concludes that in the hyperbolic region the system of this example is rich in

our generalized sense. And therefore Theorem 1.2 tells us that the Riccati equation

along characteristics applies. This result is in fact general and is not restricted to the

case n = 3. For any n, the quasi-linear system (1) on the coefficients of the polynomial

integral of motion is rich in the generalized sense. The details will appear elsewhere.

5. Questions. Several questions are very natural:

1. It would be interesting to find a more conceptual proof of the lemma in the frame-

work of the differential-geometric approach by Dubrovin-Novikov [5].

2. How does the generalized hodograph method by Tsarev [13] work in our case?

3. How does one analyze the behavior of the Riccati equation for the example of the

previous section? It seems that a genuine non-linearity condition cannot be expected for

all eigenvalues.
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