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Nam Nguyen, Wanquan Liu and Svetha Venkatesh

Department of Computing, Curtin University)

{Thanh.Nguyen,W.Liu,S.Venkatesh}@curtin.edu.au

Abstract

Two Dimensional Locality Preserving Projection (2D-

LPP) is a recent extension of LPP, a popular face recog-

nition algorithm. It has been shown that 2D-LPP per-

forms better than PCA, 2D-PCA and LPP. However, the

computational cost of 2D-LPP is high. This paper pro-

poses a novel algorithm called Ridge Regression for

Two Dimensional Locality Preserving Projection (RR-

2DLPP), which is an extension of 2D-LPP with the use

of ridge regression. RR-2DLPP is comparable to 2D-

LPP in performance whilst having a lower computa-

tional cost. The experimental results on three benchmark

face data sets − the ORL, Yale and FERET databases

− demonstrate the effectiveness and efficiency of RR-

2DLPP compared with other face recognition algorithms

such as PCA, LPP, SR, 2D-PCA and 2D-LPP.

1 Introduction

Face recognition has attracted much research effort in

recent years. Well-known algorithms in face recogni-

tion include Eigenface [14] and Fisherface [1]. Eigen-

face is an unsupervised method based on Principal Com-

ponent Analysis (PCA) [6], which uses the Karhunen-

Loeve transform to project images onto a lower dimen-

sion subspace for maximizing the variance of training

images. Extensions of Eigenface include Nonlinear PCA

[10] and Kernel PCA [17]. Fisherface is a supervised

method based on PCA and Linear Discriminant Analy-

sis (LDA) [6], and intends to find a linear transform to

maximize the ratio of the between-class and within-class

distances. Extensions of Fisherface include Kernel Fish-

erface [16] and Null Space LDA [4].

All the above algorithms work on a vector representa-

tion of images and need to compute the eigenvectors of

a high-dimensional covariance matrix in order to find the

optimal linear transformation. When the size of the im-

age is large, these algorithms may have computing prob-

lems in eigen-decomposition. To avoid this, a few al-

gorithms have been proposed to work directly on matrix

representation of images such as Two Dimensional PCA

(2D-PCA) [15], 2D-LDA [18] and 2D-LPP [9]. 2D-LPP

has been shown to be extension of 2D-PCA and 2D-LDA

[9]. However, the computational cost of 2D-LPP is high

because it involves dense matrix eigen-decomposition

and operations on Kronecker products of matrices

In this paper, we propose a novel algorithm called

Ridge Regression for Two Dimensional Locality Preserv-

ing Projections (RR-2DLPP). RR-2DLPP is an exten-

sion of 2D-LPP with the use of ridge regression [13].

The motivation for RR-2DLPP is from Cai et al. [3],

who demonstrate the advantages of ridge regression in

boosting the recognition accuracy in the case of vector-

ized images. For 2D images, direct combination of 2D-

LPP and ridge regression involves eigen-decomposition

of the Kronecker products of high-dimensional matri-

ces and is computationally expensive. We propose two

theorems to help RR-2DLPP avoid dense matrix eigen-

decompositions and operations on Kronecker products

of matrices, making RR-2DLPP less computationally

expensive than 2D-LPP. We conducted experiments on

three benchmark face data sets: ORL, Yale, and FERET

databases. The experimental results show that RR-

2DLPP is comparable not only to 2D-LPP but also other

face recognition algorithms such as PCA, LPP, SR [3]

and 2D-PCA.

The contributions of this paper are as follows: (1) pro-

posal of a novel framework, which integrates ridge re-

gression into 2D-LPP, (2) proposal of two theorems on

relations among eigenvalues and eigenvectors of general-

ized eigenvalues problems, (3) application of these the-

orems in a new framework to reduce the computational

cost, and (4) extensive experiments to demonstrate the

effectiveness and efficiency of the proposed framework.

The remaining of the paper is structured as follows.

Section 2 describes 2D-LPP. The proposed algorithm,

RR-2DLPP, is presented in Section 3. The experimental

results are shown in Section 4, followed by some conclu-

sion remarks in Section 5.

2 2D-LPP

2D-LPP was proposed by Hu et al. [9] as an exten-

sion of LPP [8] that works directly on 2D images. As-

sume that X1, . . . ,Xm are the matrix representations of

training images and Xi ∈ R
n1×n2 (∀i = 1, . . . ,m).
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2D-LPP aims to find an optimal matrix A ∈ R
n2×d to

project a face image X to f(X) = XA ∈ R
n1×d, where

d is the reduced width of the image (d ≤ n2). De-

note W = {wij}m×m is the similarity matrix defined

by X1, . . . ,Xm. 2D-LPP aims to preserve the similarity

matrix in the projection space by solving the following

optimization problem

A = arg min
A

m∑

i,j

‖ f(Xi) − f(Xj) ‖
2
F ×wij (1)

where ‖ . ‖F is Frobenius norm [7], and a suitable con-

straint is applied to f(Xi) in order to remove an arbitrary

scaling factor.

Let D = {dij}m×m, where dij = 0 if i 6= j, other-

wise dii =
∑

j wij . Also define L = D − W, which

is the Laplacian of the graph formed by X1, . . . ,Xm [5].

From Eq. 1 and according to derivations in [9], we have

A = arg min
A

(trace(AT
X

T (L ⊗ In1
)XA)) (2)

where X is an (m × n1) × n2 matrix generated by

arranging X1, . . . ,Xm in column, In1
is an n1 × n1

identity matrix, and L ⊗ In1
is the Kronecker prod-

uct of L and In1
. Choosing the constraint for f(X) as

AT
X

T (D ⊗ In1
)XA = Id and replacing L = D − W

in Eq. 2, we have

A = arg max
A

trace(AT
X

T (W ⊗ In1
)XA)

trace(AT XT (D ⊗ In1
)XA)

(3)

The solution A for the above optimization problem

can be obtained by solving the following generalized

eigenvalue (GE) problem

X
T (W ⊗ In1

)XA = λX
T (D ⊗ In1

)XA (4)

Theoretically, 2D-LPP first computes X
T (W⊗In1

)X
and X

T (D ⊗ In1
)X, then chooses A as the eigenvectors

associated with the largest eigenvalues λ in Eq. 4. In

practice, there are different ways of choosing the sim-

ilarity matrix W. In what follows, W is chosen as:

wij =‖ Xi −Xj ‖2
F if Xj is among the k nearest neigh-

bors of Xi, otherwise wij = 0.

The disadvantage of 2D-LPP is its high computa-

tional complexity. The main computational cost of 2D-

LPP is due to the calculation of X
T (W ⊗ In1

)X and

X
T (D ⊗ In1

)X, which has computational complexity of

O(n4m3), where n = max(n1, n2).

3 Ridge Regression for 2D-LPP

RR-2DLPP is an extension of 2D-LPP with the use of

ridge regression [13]. The motivation for RR-2DLPP is

that we want to solve the GE problem in Eq. 4 via a re-

gression technique; thus we can avoid the computation of

X
T (W ⊗ In1

)X and X
T (D ⊗ In1

)X, which are compu-

tationally expensive. In order to achieve this reduction in

computation, we make use of the following theorem:

Theorem 1: Assume that λ is an eigenvalue and y is

the corresponding eigenvector of the GE problem

(W ⊗ In1
)y = λ(D ⊗ In1

)y, λ 6= 0 (5)

If y = Xa, then λ and a will be the eigenvalue and

corresponding eigenvector of the GE problem in Eq. 4.

Proof: Actually, one can derive

X
T (W⊗ In1

)Xa = X
T (W⊗ In1

)y = X
T λ(D⊗ In1

)y

= λX
T (D ⊗ In1

)Xa

Thus, λ is an eigenvalue and a is an corresponding
eigenvector of the GE problem in Eq. 4�

By Theorem 1, instead of solving the GE problem in

Eq. 4, we can solve the GE problem in Eq. 5, then find

a such that y = Xa. However, directly solving the GE

problem in Eq. 5 is still computationally expensive due

to the eigen-decomposition of a high-dimensional matrix.

The following theorem helps us reduce the cost of this

task.

Theorem 2: Assume that λ is the eigenvalue and z is

the corresponding eigenvector of the GE problem

Wz = λDz, λ 6= 0 (6)

Let v be any non-zero unit vector in R
n1 and y =

z⊗v, then λ and y are the eigenvalue and corresponding

eigenvector of the GE problem in Eq. 5.

Proof: One can observe that

(W ⊗ In1
)y = (W ⊗ In1

)(z ⊗ v) = (Wz) ⊗ (In1
v)

= λ(Dz)⊗(In1
v) = λ(D⊗In1

)(z⊗v) = λ(D⊗In1
)y

Thus, λ is an eigenvalue and y is an corresponding
eigenvector of the GE problem in Eq. 5�

By Theorem 2, instead of solving the GE problem in

Eq. 5, we can solve the GE problem in Eq. 6. We can

obtain λ and z from Eq. 6 with lower computational cost

because D is a diagonal matrix and the sizes of D and

W are smaller than the matrices in Eq. 4 and 5.

Based on the above observations, we propose RR-

2DLPP algorithm, in which the transformation matrix A

is obtained as follows:

1. Solve Eq. 6 to obtain the largest eigenvalue λ and

the corresponding eigenvector z.

2. Select v1, . . . ,vd are d mutually orthogonal unit

vectors in space R
n1 . There are many ways to se-

lect v1, . . . ,vd satisfied that condition. In practice,

v1, . . . ,vd are defined as follows. First, we select

v1 = [1, 1, . . . , 1]T ,vi = [0, 0, . . . , 0, 1, 0, . . . , 0]T

for all 2 ≤ i ≤ d (all elements of viare zero, except

the ith element is one). Then, the Gram-Schmidt

process is used to orthogonalize v1,v2, . . . ,vd.



Algorithm 1 RR-2DLPP

Input: m training images X1, . . . , Xm∈ R
n1×n2 , reduced width d , regu-

larized parameters α.

Output: transformation matrix A, f(X1), . . . , f(Xm).

Algorithm:

1. Compute the similarity matrix W of X1, . . . , Xm. Let D =
{dij}m×m, where dij = 0 if i 6= j, otherwise dii =

∑
j

wij .

2. Obtain the largest eigenvalue λ and the corresponding eigenvector z from

Eq. 6.

3. Select v1, . . . , vd being d mutually orthogonal unit vectors in R
n1 .

4. Obtain y1, . . . , yd as yi = z ⊗ vi (i = 1, . . . , d).

5. Let Y = [y1 y2 . . . yd] and X = [XT
1

XT
2

. . . XT
m]T .

6. Obtain A from Eq. 8 and compute f(Xi) = XiA, ∀i = 1, . . . , m.

Testing: A test image X is matched to training images as follows:

1. Compute: f(X)=XA.

2. Compare f(X) with f(X1), . . . , f(Xm) to find the best match of

f(X) using the nearest neighborhood classifier.

3. Obtain y1, . . . ,yd as yi = z ⊗ vi (i = 1, . . . , d).
By Theorem 2, y1, . . . ,yd are eigenvectors corre-

sponding to eigenvalue λ in Eq. 5.

4. Let Y = [y1 y2 . . . yd]. We want to obtain A =
[a1 a2 . . . ad] such that XA = Y, and thus by The-

orem 1, each column ai of A will be an eigenvector

corresponding to eigenvalue λ in Eq. 4. In reality,

such A might not exist. A possible way is to find A

from the following ridge regression problem

A = arg min
A

(

m×n1∑

i=1

‖ x̄iA − ȳi ‖
2
2 + α ‖ A ‖2

F )

(7)

where x̄i is the ith row of X, ȳi is the ith row of Y,

and α is the regularization parameter. We can derive

from Eq. 7 that

A = (XT
X + αIn2

)−1
X

T
Y (8)

Details of RR-2DLPP are shown in Algorithm 1. The

main computational cost of RR-2DLPP is due to the cal-

culation of A in Eq. 8. RR-2DLPP has computational

complexity of O(n4m2), which is significantly less ex-

pensive than 2D-LPP with computational complexity of

O(n4m3).

4 Experimental results

We undertook experiments on the following three

benchmark face data sets: ORL, Yale and FERET

databases. The training images were unlabeled in all

Table 1. Recognition accuracy (%) of RR-
2DLPP on the ORL database

1-train 2-train 3-train 4-train 5-train

PCA [14] 65.6±2.6 80.0±2.5 86.0±2.4 88.8±2.2 92.0±1.5

LPP [8] 57.0RR-

2DLPP±3.6

71.6±3.3 78.4±3.6 82.0±3.0 87.4±2.5

SR [3] 60.0±2.8 74.6±3.1 82.0±3.0 86.9±2.6 91.6±1.8

2D-PCA [15] 67.1±3.2 80.6±2.8 86.9±2.4 89.7±2.4 92.5±1.6

2D-LPP [9] 70.1±2.8 83.3±2.5 88.3±1.9 91.7±1.6 94.2±1.1

RR-2DLPP 74.4±2.5 85.5±2.6 89.5±2.3 91.9±2.0 94.4±1.2

experiments. Our proposed algorithm, RR-2DLPP, was

compared with 2D-LPP [9] and other well-known algo-

rithms: PCA [14], LPP [8], SR [3] and 2D-PCA [15].

RR-2DLPP was run with the LPP neighborhood size

k = 5, dimension reduction parameter d = 15, and regu-

larization parameter α = 0.01. These values were chosen

by practice, and used for all face database.

4.1 Experiments on the ORL

The ORL database1 has 400 face images of 40 peo-

ple, each has 10 face images. The images were resized to

64 × 64. Five experiments (1-train, 2-train, . . . , 5-train)

were considered, where i−train experiment corresponds

to i images of each person being used for training and

the remaining images for testing. For each experiment,

20 random splits (train images, test images) of the ORL

database were created. We ran RR-2DLPP on these ran-

dom splits of the ORL database and average the results.

The experiments were conducted on a Pentium 4 3.2GHz

Desktop PC.

Table 1 shows the recognition accuracy of RR-2DLPP

compared with the top recognition accuracy of PCA, LPP,

SR, 2D-PCA and 2D-LPP. The results show that RR-

2DLPP is superior to the other algorithms in all exper-

iments. Table 2 shows the training time of RR-2DLPP

compared with PCA, LPP and 2D-LPP. The table shows

that RR-2DLPP is much faster than LPP and 2D-LPP in

all experiments. Although 2D-LPP is not faster than the

PCA and SR in the 1-train and 2-train experiments, it is

faster than these algorithms in the 3-train, 4-train and 5-

train experiments.

4.2 Experiments on the Yale face database

The Yale face database2 has 165 face images of 15
people with each person having 11 images. These images

were resized to 64×64. We again tested the performance

of RR-2DLPP in five experiments: 1-train, 2-train,. . . , 5-

train. In each i−train experiment, RR-2DLPP was tested

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2http://vismod.media.mit.edu/vismod/classes/mas622-00/datasets/



Table 2. Computational cost (in second) of
RR-2DLPP on the ORL database.

1-train 2-train 3-train 4-train 5-train

PCA 0.026 0.071 0.136 0.213 0.317

LPP 0.045 0.095 0.162 0.268 0.347

SR 0.043 0.084 0.139 0.241 0.309

2D-PCA 0.019 0.033 0.047 0.063 0.073

2D-LPP 0.100 0.156 0.241 0.331 0.386

RR-2DLPP

(d = 15)

0.044 0.084 0.123 0.193 0.229

Table 3. Recognition accuracy (%) of RR-

2DLPP on the Yale database.
1-train 2-train 3-train 4-train 5-train

PCA 60.4±7.4 77.6±3.0 80.1±3.3 81.1±2.2 83.1±3.1

LPP 53.0±8.9 74.4±4.4 79.5±3.7 83.3±2.4 87.7±2.9

SR 60.4±7.5 79.5±3.2 80.1±3.5 82.6±2.0 84.9±2.9

2D-PCA 62.9±7.1 80.5±3.2 82.8±3.3 83.5±2.5 86.7±3.5

2D-LPP 65.8±5.4 80.9±3.9 84.3±3.8 86.6±3.3 88.1±4.0

RR-2DLPP 70.0±5.3 83.3±3.0 85.9±2.9 87.7±2.4 88.7±2.2

on 20 random splits of the Yale database. Table 3 shows

the recognition accuracy of RR-2DLPP compared with

the top recognition accuracy of other algorithms. The ta-

ble shows that in all experiments RR-2DLPP performs

better than PCA, LPP, SR, 2D-PCA and 2D-LPP.

4.3 Experiments on the FERET database

We also used the FERET database [11, 12] to test

the performance of RR-2DLPP. We selected people in

FERET having at least four frontal images as in [2]. In

total, 1433 images of 240 people were selected. The im-

ages were pre-processed using the CSU Face Identifica-

tion Evaluation System [2], then resized to 64 × 64. We

considered three experiments: 1-train, 2-train and 3-train.

For each experiment, 20 random splits (training images,

test images) of the database were created. Table 4 shows

the recognition accuracy of RR-2DLPP compared with

the top recognition accuracy of other algorithms. One

can observe that RR-2DLPP is comparable to PCA, LPP,

SR, 2D-PCA and 2D-LPP in all experiments.

5 Conclusions

In this paper we have presented a novel algorithm for

face recognition, Ridge Regression for Two Dimensional

Locality Preserving Projection (RR-2DLPP), which is an

extension of 2D-LPP with the use of ridge regression.

The recognition accuracy of RR-2DLPP is comparable

to 2D-LPP whilst RR-2DLPP have a lower computa-

tional cost. Experimental results on the ORL, Yale and

Table 4. Recognition accuracy (%) of RR-
2DLPP on the FERET face database.

1-train 2-train 3-train

PCA 56.9±1.9 71.6±1.5 80.2±2.0

LPP 44.6±2.4 59.7±1.4 71.4±2.0

SR 44.7±2.0 59.9±1.8 71.3±2.2

2D-PCA 57.5±1.8 72.1±1.5 80.6±1.8

2D-LPP 48.1±1.4 64.5±1.6 79.1±2.2

RR-2DLPP 53.7±1.3 68.6±1.9 77.7±2.0

FERET databases demonstrate the effectiveness and effi-

ciency of RR-2DLPP compared with other unsupervised

face recognition algorithms such as PCA, LPP, SR, 2D-

PCA and 2D-LPP.
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