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Ridge Regression in Practice* 
DONALD W. MARQUARDT AND RONALD D. SNEE** 

SUMMARY 

The use of biased estimation in data analysis and model 
building is discussed. A review of the theory of ridge regression 
and its relation to generalized inverse regression is presented along 
with the results of a simulation experiment and three examples 
of the use of ridge regression in practice. Comments on variable 
selection procedures, model validation, and ridge and generalized 
inverse regression computation procedures are included. The 
examples studied here show that when the predictor variables are 
highly correlated, ridge regression produces coefficients which 
predict and extrapolate better than least squares and is a safe 
procedure for selecting variables. 

I. Theory and Illustrative Exacmples 

Part I of this paper focuses on the theory of biased 
estimation: not so much the algebraic details as the 
concepts involved. Several illustrative examples help 
clarify the concepts. While we emphasize ridge re- 
gression, we also discuss its relationship to generalized 
inverse regression. The second part of the paper dis- 
cusses two larger examples where one can see ridge 
regression at work in data analysis in a realistic setting. 

The types of data sets to which we are addressing our- 
selves can be messy for a variety of reasons. The 
predictor variables may be correlated because historical 
data were collected without the aid of an experimental 
design. Physical and mathematical constraints may 
necessitate correlated predictor variables, even when an 
experimental design is used. The presence of gross 
errors, missing values, correlated errors, split plotting, 
nonconstant variance, and other problems can create 
nonsense results, even when we employ sophisticated 
regression techniques to deal with the correlation 
problem. For purposes of this paper we assume that 
none of these other problems is present. 

We emphasize that biased estimation is only one of 
the tools one uses in the analysis of a set of data. One 
starts by understanding the technical background of 
the problem and the candidate variable definitions. 
Next, the form of the model and the nieed for trans- 
formations are considered. Then, the data are examined 
for- abnormal values, scatter plots are constructed to 
look for relationships, and subsequently the residuals 
are examined for randomness. If the variance inflation 
factors (VIF) [18, 22] of the least squares estimates are 
large, then it is appropriate to consider a biased esti- 
mation procedure such as ridge regression in order to 

minimize the effects of the predictor variable correla- 
tions and develop a set of stable coefficients. These 
initial steps often consume as much as 75% or more of 
the total effort expended in solving the problem. In this 
paper the emphasis will be on coefficient estimation; 
however, we do not want to leave the impression that 
we do not believe the other steps are important. In 
many instances these aspects are the most important 
part of the problem. 

Comments on Some Common Practices 

As we survey the literature and reflect upon the state 
of the art of regression analysis with large numbers of 
predictor variables, we have identified a number of 
practices about which we would like to comment before 
discussing ridge regression, per se. 

Onie common practice we note is failure to remove 
nonessential ill conditioning through the use of stand- 
ardized predictor variables. Standardizing of the 
predictors is appropriate whenever a constant term is 
present in the model. The ill conditioning that iesults 
from failure to standardize is all the more insidious be- 
cause it is not due to any real defect in the data, but 
only to the arbitrary origins of the scales on which the 
predictor variables are expressed. In standardizing the 
predictor variables, the mean is subtracted from each 
variable ("centering") and then the centered variable 
is divided by its standard deviation ("scaling"). 
Centering removes the nonessential ill-conditioniing, 
thus reducing the variance inflation in the coefficient 
estimates. In a linear model centering removes the cor- 
relation between the constant term and all linear terms. 
In addition, in a quadratic model centering reduces, 
and in certain situations completely removes, the cor- 
relation between the linear and quadratic terms. Scaling 
expresses the equation in a form that lends itself to 
more straight-forward interpretation and use. 

The Acetylene data [7, 13] shown in Table 1 is the 

Table 1 

ACETYLENE DATA 

xl X2 3 Y 
Reactor Ratio of H2 Contact Conversion of 

Temperature to n-heptane Time n-heptone to 
IC) (mole ratia) (sec) Acetylene (%) 

1300 7.5 0.0120 49.0 
1300 9.0 0.0 120 50.2 
1300 11.0 0.0115 50.5 
1300 13.5 0.0130 48.5 
1300 17,0 0.0135 47,5 
1300 23.0 0.0 120 44.5 

120 5, 3 0,0400 28.0 
1300 7.5 0.0380 31.5 
1200 11.0 0.0320 34.5 
1200 13.5 0.0260 35.0 
1200 17.0 0.0340 38.0 
1200 23.0 0.0410 38.5 

1100 5.3 0.0840 15.0 
1100 7.5 0.0980 17.0 
1100 11.0 0.0920 20.5 
1 100 17.0 0.0860 29.5 

* This paper is based on a presentation by the authors at the 
University of Kentucky Conference on Regression with a Large 
Number of Predictor Variables, Lexington, Kentucky, October 
1973. 

** Engineering Dept., E. I. du Pont de Nemours & Co., Inc., 
Wilmington, DE 19898. 
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first example w-e will discuss. This is a typical set of 
response surface data for which a full quadratic model 
in x1, X2, X3 is an appropriate candidate. 

In Figure 1 tw-o of the predictor variables are plotted 
against each other. Correlations like this cause inflation 

.10 
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Lu .06 

t.04 - 

z 
0 

.02 

0 
1100 1200 1300 

REACTOR TEMPERATURE 0C 
Figure 1. 

of the variance of the estimated coefficients in the least 
squares model. The variance inflation factor [18, 22] 
for each term in the model measures the collective 
impact of these simple correlations on the variance of 
the coefficient of that term. The variance inflation 
factors are the diagonal elements of the inverse of the 
simple correlation matrix. As the multiple correlation 
of any predictor with the other predictors approaches 
unity, the corresponding VIF becomes infinite. 

The variance inflation factors for the acetylene data 
are shown in Table 2. The maximum variance inflation 
factor is the best single measure of the conditioning of 
the data. For any predictor orthogonal to all other 

predictors, the inflation factor is 1.0. The inflation 
factors for the standardized model are in the second 
column. Scaling does not affect the VIF's, but centering 
does. A maximum factor of six thousand is horrible but 
two million is unthinkable and unnecessary. Now the 
question remains: Once we have standardized, how do 
we carry out a meaningful analysis of data with an 
inflation factor of over six thousand? 

There are serious limitations of classical method- 
ologies wi-hen they are employed for the analysis of ill- 
conditioned data. The first of these classic method- 
ologies is least squares. It does not provide good 
estimators when the data are ill conditioned. In achiev- 
ing optimum fit to the estimation data, least squares 
often destroys good prediction of new data (possibly 
outside the region covered by the estimation data). 

The second classical methodology is variable selec- 
tion as a technique for reducing the degree of ill con- 
ditioning. Variable selection implies a simplisitic two- 
valued classification logic wherein any predictor vari- 
able must either be important or unimportant. Large 
prediction biases can result from elimination of "non- 
significant" predictors. It is better to use a little bit of 
all the variables than all of some variables and none of 
the remaining ones. This is what biased estimators do. 
We will show how biased estimators can alleviate both 
of these limitations. 

Finally, in our comments on current practices, we ob- 
serve that most statisticians restrict themselves to 
models linear in the parameters. Frequently the known 
background of the problem suggests a function non- 
linear in the parameters, one that may provide a simpler 
and more natural model. We wvill illustrate this with 
one of our examples. 

Formulation of the Problemit 

In linear estimation one postulates a model of the 

Table 2 

ACETYLENE DATA REGRESSION RESULTS 
Ten-Coefficient Quadratic Model 

Correlation Basis Coefficient 
Least Squares - VI F Ridge Generalized 

Term Unstandardized Standardized Least Squares k = .01 k= .05 Inverse (r=3.8) 

x I Temperature 2,856,748.93 375.25 .336 .589 .522 .507 

x 2 = H 2 / n-Heptane 10,956.14 1.74 .233 .216 .209 .180 

x3 = Contact Time 2,017,162.52 680.28 -.676 -.327 - .379 -.414 

x 2 9,802.90 31.04 -.480 -.326 -.202 -.095 

x1x3 1,428,091.88 6,563.35 - 2.034 - .094 - .061 -.051 

x2x3 240.36 35.61 -.266 -.083 .042 .123 

x2 2,501,944.59 1,762.58 -.835 .126 .125 .165 

x2 65.73 3.16 -.093 -.054 -.047 -.063 
2 

x 2 112,667. 10 1,156.77 -1 .001 - .069 -.024 -.053 
3 

Maximum VIF 6,563.35 12.38 2.63 .46 

R 2 .994 .990 .983 .973 
A 

4 ( The American Statistician, February 1975, Vol. 29, No. 1 
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form 
Y = X~ + t 1 

The n X p matrix X con-tains the values of p predictor 
variables at each of n data points, Y is the vector of 
observed values, 0 is the p X 1 vector of population val- 
ues of the parameters, and ?, is an n X 1 vector of experi- 
mental errors having the properties E (*) = 0 and 
E (c/) = lY,. For convenience, we assume that the x 
variables are scaled so that X'X has the form of a 
correlation matrix. 

The conventional estimator for 0 is the least squares 
estimator, ~, where 0 is chosen to minimize the sum of 
squares of residuals 1 (A): 

4(A) = (Y- X)'(Y - X) 

= (X'X)-X'Y = (xX)-X'g 

Note that g is the gradient of (. 
The two key properties of 

A 

are that it is unbiased, 
that is, E (A) = 0, and that it has minimum variance 
among all linear unbiased estimators. The covariance 
matrix is 

V (A) = 07,(X,X)- 

In their development of ridge regression [10, 11], 
Hoerl and Kennard focus attention on the eigenvalues 
of (X'X). A seriously non-orthogonal (or "ill-con- 
ditioned") problem is characterized by the fact that the 
smallest eigenvalue, Xmi,, is very much smaller than 
unity. For example, the smallest eigenvalues of the 
X'X matrices for the acetylene data (p = 9 and 5), 
and the Laird and Cady (p = 33), and GC-ASTM 
(p = 15) examples to be discussed later are 0.00010, 
0.01005, 0.00207, and .00027, respectively. It should 
also be noted that the variance inflation factor (VIF) 
mentioned earlier is a measure of how close the smallest 
eigenvalues are to zero [18, 22]. Hoerl and Kennard 
have summarized the dramatic inadequacy of least 
squares for nonorthogonal problems by noting that the 
expected squared length of the coefficient vector is 

E (A, ) = '0+ a2 Tr (X'X) -1 

> + 2/n 

Thus, 0, the least squares coefficient vector, is much too 
long, on the average, for ill-conditioned data, since 
Xrnin 1<<. The least squares solution yields coefficients 
whose absolute values are too large and whose signs 
may actually reverse with negligible changes in the 
data. 

The "fly in the ointment" with least squares is its 
requirement of unbiasedness. Figure 2, top, illustrates 
the situation where an estimator ,B is unbiased but is 
plagued by a large variance. Typical confidence limits 
for this estimator would be nearly half the width of the 
figure. At the bottom is the corresponding frequency 
function for a biased estimator with much smaller 
variance. Statistical limits for this situlation would be 
perhaps twenty percent of the width of the figure. Thus, 
it is meaningful to focus on the achievement of small 

VARIANCE AND BIAS IN AN ESTIMATOR 

Zero Bias E(A) 
Large Variance 

I Non-zero Bias E ( # 
l Small Variance 

IJ A 

MSE - Mean Square Error = Variance + (Bias) 

Figure 2. 

mean square error as the relevant criterion, if a major 
reduction in variance can be obtained as a result of 
allowing a little bias. This is precisely what the ridge 
and generalized inverse solutions accomplish. 

Ridge Solution 

The ridge estimator is obtained by solving 

(X'X + kl) A* = g 

to give 
= (X'X + kI)-g 

for k > 0. Values of k between zero and 1.0 should be 
explored. In general, there is an "optimum" value of k 
for any problem, but it is desirable to examine the 
ridge solution for a range of admissible values of k. 
"Admissible" means having smaller mean square error 
in the parameters than the least squares solution. The 
mean square error in future predictions is also reduced 
correspondingly. 

Hoerl gave the name "ridge regression" [9] to his 
procedure because of the similarity of its mathematics 
to methods he used earlier [8], i.e., "ridge analysis," for 
graphically depicting the characteristics of second order 
response surface equations in many predictor variables. 

Key properties applicable to ridge regression are 
E10, 11, 18]: 

* If * is the solution of (X'X + kI) * = g, then 
0* minimizes the sum of squares of residuals on the 
sphere centered at the origin whose radius is the 
length of A*. The sum of squares of residuals is an 
increasing function of k. 

. The length of * is a decreasing function of k. 

. The angle y between the ridge solution A* and the 
gradient vector g is a decreasing function of A. 

In Figure 3 we illustrate the geometry of ridge re- 
gression for a hypothetical problem involving only two 
parameters f31 and j2. The point A at the center of the 
ellipses is the least squares solution. At A the sum of 
squares of residuals, 4, achieves its minimum. The 
small ellipse is the locus of points in the /3k, p32-plane 
where the sum of squares 1 is constant at some value 
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GEOMETRY OF RIDGE REGRESSION 

0- 

Figure 3. 

larger than the minimum value. The circle about the 
origin is tangent to the small ellipse at *. Note that 
the ridge estimate * is the shortest vector that will 
give a residual sum of squares as small as the 1 value 
anyw here on the small ellipse. Thus, the ridge estimate 
gives the smallest regression coefficients consistent 
with a given degree of increase in the residual sum of 
squares. The gradient g is perpendicular to the b- 
contour through the origin. The ridge estimate * is 
always between 0 and g, the angle -y getting steadily 
smaller as the quantity k added to the diagonal in- 
creases. 

Other key properties are: 

* is a linear transform of 0: 

5*= Zk = (X'X + kI) (X'X)X 

Thus, 
A 

is a biased estimator E(A*) = Zk5 

V(A*) = u2[X'X + kl]-'(X'X)LX'X + k1j- 

. ESD = Tr[V( *)] + 0'(Zk -I)'(Zk -I) 

= Variance + (Bias)2 

where ESD denotes the expected squared distance to O. 
This has two crucially important corollaries: 

1. The variance term is a decreasing function of k. 
2. The bias term is an increasing function of k. 

. If 5'5 is bounded, there exists a k > 0 such that 
ESD (g)< ESD () A 

We note in passing that the ridge estimator also has 
an important Bayesian interpretation. In this connec- 
tion, R. W. Kennard has frequently emphasized the 
fact that least squares implies an assumption of an 
unbounded uniform prior distribution on the coefficient 
vector. This unboundedness assumption can be used in 
place of the unbiasedness requirement in deriving least 
squares estimators. When selecting the amount of bias 
we work with predictor variables and response variable 
both scaled to correlation form. In this scaling, it is 

exceedingly rare for the population value of any re- 
gression coefficient to be larger than three in a real 
problem. In any case, the regression coefficient vector 
is surely finite. The ridge estimate is equivalent to 
placing mild boundedness requirements on the coef- 
ficient vector. 

In a recent paper Theobald [23] generalizes the con- 
ditions under which ridge is known to produce a smaller 
expected squared distance than least squares. It is also 
klnown that the expected improvement of ridge over 
least squares depends on the orientation of the true 
regression vector relative to the principal axes defined 
by the eigenvectors of the X'X matrix, the expected 
improvement being greatest when the orientation of 5 
coincides with the ceigenvector associated with the 
largest eigenvalue of X'X. Other results appear in 
References 1, 15, 16, 19, and 20. 

A complete sequence of corresponding properties of 
the generalized inverse solution is developed in a 
previous paper [18]. An illustrative example in that 
paper demonstrates the close geometric similarity be- 
tween the generalized inverse solution expressed as a 
function of the rank r assigned to the matrix X'X, 
and the ridge solution, expressed as a-function of the 
bias parameter k added to the diagonal elements of 
X'X. In [18] it is emphasized that for this purpose the 
assigned rank is best defined as a piecewise continuous 
variable, 

Analysis of the Acetylene Data 

We return now to the Acetylene Data example. The 
standardized full quadratic model is 

3 3 3 

E (y) = do + Z /jxj + Z /jj3XjXj + E/3jjxj2 
j=1 j-l 

wvhere y - % conversion, xi = (Temperature - 
1212.50) /80.623, x2 = [H2/ (n-Heptane) - 12.44]/ 
5.662, and X3 = (Contact time - 0.0403)/0.03164. 

We recommend that a polynomial model be reported 
to (and used by) the ultimate consumer in this form. 
Note that each predictor variable is standardized, but 
the expansion terms (squares and cross-products) are 
created directly from the standardized linear terms. 
The model is not standardized with respect to y. 
Numerical evaluation in this form is accurate, and 
interpretation of the coefficients is straightforward. 

However, for selection of the amount of bias it is 
necessary to examine the equation and its fit with all 
variables scaled to correlation form, including y, the 
linear predictors, and the expansion predictor variables. 
We refer to the regression coefficients so obtained as the 
"correlation basis" regression coefficients. In regular 
use of ridge regression we display the correlation basis 
regression coefficients in tables and/or graphs for about 
25 valules of k, spaced approximately logarithmically 
over the interval [0, 1]. Table 2 shows the correlation- 
basis regression coefficients by least squares, and by 
ridge with two values of k. Both X'X and X'Y are in 
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Table 3 
ACETYLENE DATA REGRESSION RESULTS 

Five-Coefficient Reduced Quadratic Model 

VIF Correlation Basis Coefficient 
Ridge Generalized Inverse 

Least Squares Least Squares k =.O1 k =.05 ( r = 4.0) 

x= Temperature 43.11 .602 .557 .514 .518 

x 2 = H / n-Heptane 1.07 .194 .192 .187 .193 

X3 = Contact Time 53.52 -.323 -o368 -.391 -.417 

x 1X 2 1.09 -.273 -.270 -.258 -.272 

x2 4.68 .173 .180 .169 .197 x 

Maximum VIF 53.52 13.63 1.72 1.15 

R 2 .991 .99 0 .989 
A 

correlatioll form. Hence, the correlation-basis coef- 
ficient b is the expected change in y, measured in y- 
standard deviations, given an increase in x of one 
standard deviation (i.e. b = 0.5 implies that y increases 
0.5 standard deviations when x is increased one standard 
deviation). In this problem the coefficients have 
stabilized by k = .05 (see the section on ridge tracew 
interpretation), and the variance inflation factor is also 

ACETYLENE DATA 
PREDICTIONS WITHIN DATA 

.12 
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16.1 - Ridge (I< = . 05) 9 Term Model 

.10 _ 16.0 Least Squares 5 Term Model 
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.04 

47.3 
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.02- 47.2 
36. 5 
35. 7 50. 0 

48.9 
0 149.2 

1100 1200 1300 
REACTOR TEMPERATURE ?C 

Figure 4. 

reasonable there. Note that the large least squares 
coefficients for the x1x3 interaction and for x32 have all 
but disappeared in the ridge model. Also, x2x3 and x22 
have small coefficients. Similar results are obtained with 
the generalized inverse model, shown for a' = 3.8, for 
which the regression vector length is about the same as 
the ridge model. Suppose these four terms are elimin- 
ated. Variable selection is a safer strategy here, since 
the bias has removed most of the ill conditioning. For a 
nearly orthogonal nmodel in the correlation-basis scaling, 
all coefficients will have nearly equal variances; hence, 
variable selection can be made on the basis of absolute 
values of the coefficients. The mild bias component of 
the mean square errors of the coefficients is ignored for 
this purpose. Table 3 shows that further biasing of the 
five-term model doesn't change the coefficients nmuch. 

Figure 4 shows the predictions for the least squares 
nine-term full quadratic, the ridge nine-term model, 
and the least squares five-term model. The prediction 
points shown are the extreme points of the data; they 
define the boundary of the region covered by the data. 
For practical purposes all three mlodels predict equally 
well here. 

Figure 5 shows predictions outside the data. Notice 
that we are not extrapolating beyond the ranges covered 
by the predictor variables individually. We are only 
extrapolating to the corners of the region. Consider the 
upper right corner. The least squares nine-term mnodel 
predicts minus 86.2% conversion. This is physically 
impossible. The other models predict 32.9% and 38.0% 
conversion, a much more realistic prediction. A similar 
situation holds at the lower left corner. 

What do we conclude from this example? Well, first 
of all, we conclude that the nine-term full quadratic 
given by least squares is not a good model, even though 
it is the one that fits the estimation data most closely. 

7 

This content downloaded from 129.186.1.55 on Thu, 29 Aug 2013 11:04:11 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ACETYLENE DATA 
PREDICTIONS OUTSIDE DATA 
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Figure 5. 

Secondlv, we find that biased regression, routinely 
applied, produces a much better model, still using all 
nine terms. Finally, we have been guided by the ridge 
results to a subset model that also does a good job. 
In this case, Snee [22] arrived at the same subset model 
by plotting the raw data. 

When Is Variable Selection A Good Strategy? 

At this point, it may be appropriate to put forth the 
conditions under which variable selection is, or is not, a 
good strategy. Variable selection is a good strategy 
wThen the candidate variables already are mutually 
orthogonal, or nearly so. It is also a good strategy when 
the variables have been made effectively orthogonal, 
or nearly so, by introducing bias in the estimator. The 
only other condition is when the selection of the 
candidate subsets can be strongly guided by knowledge 
of the background of the problem and the definitions/ 
properties of the variables. This means information 
external to the numerical values of the data. 

Variable selection is a poor strategy when the candi- 
date variables are highly correlated. In essence, the 
extreme variance inflation completely unstabilizes all 
the criteria one can compute from the least squares 
estimates, leading to highly unstable subset selection. 
It is also a poor stragegy when the candidate variables 
include curvilinear effects (for example, squares) of 
other candidate variables. This is illustrated in Figure 
6. 

Consider the two candidate models A and B. Both 
can represent the quadratic curve that passes smoothly 
through the solid dot data, with y = a0 at x = 0. 
Both models can also represent the open circle data, 

VARIABLE SELECTION WITH CURVILINEAR MODELS 

A. y a a x + ax 2 

-2 B. y=b0 bI (x -x) +b (x -x) 

bo 

y 

a0 
a~~~~~~~~~~~~~~~~~~~~~ I O ! l l 

x 

x 

THUS, VARIABLE SELECTION IS NOT INVARIANT 
WITH THE CHOICE OF COMPUTING ORIGIN. 

Figure 6. 

with minimum at x = x, where y = bo. Now, consider 
what happens if the linear terms are dropped or not 
selected by the subset procedure. Then if the data are 
like the open circles, model A is a total disaster, while 
model B does a great job. The converse holds for data 
like the solid dots. Thus, the operational behavior of 
all subset-selection procedures is not invariant with the 
arbitrary choice of computing origin. 

Now, in most situations where quadratic or higher 
polynomials are applied, the model is really functioning 
like a series expansion of some function in the region of 
the data. There are normally oily two appropriate 
points in the predictor variable space about which the 
expansion could be natural. These are the mean point of 
the predictor data and the origin of the predictor data 
space. This implies that any variable selection pro- 
cedure should be done at least twice with curvilinear 
models, once computing about the mean point, and once 
computing about the origini in order to find out which, 
if either, gives a simple, well behaved model. 

A Simulation Experiment 

The final example of Part I is a synthetic one. It il- 
lustrates how both ridge and generalized inverse 
estimators do better than either least squares or any 
subset. It also illustrates the mechanics of using the 
biased estimation procedures. 

For this "three-predictor example", the data struc- 
ture is as shown in Figure 7. There are eight estimation 
data points shown by the open circles. If the parameter 
oe is zero, the design is a classical 23 factorial. As oe 
approaches 1.0, four of the points move, in the direc- 
tions of the arrows. The correlation of x1 and x2 be- 
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THREE - PREDICTOR EXAMPLE 
DATA STRUCTURE 
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Figure 7. 

comes progressively larger, with unit correlation as the 
limit. 

We generated data at three values of a. Note that X3 
is orthogonal to xi and x2 for all values of a. The solid 
dots are prediction points. The true model is E (y) = 
X1 + X2 + X3; that is, all coefficients are unity, and the 
regression constant is zero. We have introduced additive 
errors selected randomly from a standard normal 
distribution with mean zero and standard deviation 
=f - 0.8. 
The actual data are as follows: 

i X1 x2 X3 E(y) ei 
1 -1 -1 -1 -3 -0.305 
2 1 1 -1 1 -0.321 
3 -1 -1 1 -1 1.900 
4 1 1 1 3 -0.778 
5 -1 (1-22a) -1 -1-2a 0.617 
6 1 -(I -2a) -1 -1 + 2a -1.430 
7 -(1-2c2) 1 1 1+2a 0.267 
8 (1-2a) -1 1 1 -2a 0.978 

The correlation between xi and x2 is 7'12 

a/ (1 - a + a 2). Thus r12 = 0.110, 0.667, 0.989 for 
a = 0.1, 0.5, 0.9 respectively. 

The regression model is y = bo + bix1 + b2x2 + 
b3x3. In all cases we included a constant term on the 
hypothetical assumption that the data analyst does not 
know in advance that the true value of the regression 
constant is zero. The criterion by which we judge the 
quality of our regression models is the prediction stand- 
ard error at the eight corners of the cube. 

Table 4 shows the ridge regression results for T - 

0.8 for several values of k and for three values of a. 
The quantities tabulated are 

Se = residual standard error fromn the estimation 
data 

RA2 = adjusted R2 - 1 -Se2 Sy2, where 

S = variance of yt 

Yi = E(yi) + E- 

VIF = maximum variance inflation factor 
Sp= prediction standard deviation at the eight 

prediction points 

8LQi~E(yi)]28 ) 1/2 
A 

Y E (yi) ]2/8) 
E=1 

Let us start by examining results for a = 0.9. Note 
how the estimation residual error, which is 0.537 
when k = 0, increases as the bias k is increased. As a 
consequence, the adjusted RI decreases. However, 
note the reduction in the variance inflation as ki is 
increased. Finally, the proof of the pudding is the 
composite effect of these two opposing trends. This is 
seen in the prediction residual error Si,, which goes 
through a minimum at k = 0.2. This tells us that a 
ridge estimator with bias of A; = 0.2 gives predictions 
at the corners of the cube with a standard error only 
0.536 (circled in the table) compared with the least 
squares prediction residual error S- 1.972. Note that 
similar but less dramatic results occur for the smaller 
values of a. 

At the bottom of the table is an extra line of numbers. 
These are the variance inflation factors for orthogonal 
predictors, as a function of ki. Note that the minimum 
prediction residual error here occurs for values of k at 
or just beyond the value where the mnaximum variance 
inflation factor is about the same size as if the factors 
were orthogonal. 

Table 5 showNs the corresponding results using gen- 
eralized inverse regression. Again focusing first on 
a = 0.9, note how the regression residual gets larger as 
the assigned rank of the X'X matrix is decreased. Again 
the adjusted R2 decreases, and so does the maximum 
variance inflation factor. Again the prediction residual 
error goes through a minimum. The minimum occurs at 
assigned rank 1.5, which, note, is not an integer. In this 
example the minimum prediction residual by gen- 
eralized inverse is smaller even than by ridge regression. 
We do not interpret this as a general result, but only as 
an indication that either type of biased estimator can 
give results substantially better than least squares. 

Finally, for complete,ness, we show in Table 6 the 
corresponding results for all possible subset models. 
Focusing again on a = 0.9, we note that the prediction 
residual error varies between 1.15 minimum and 2.18 
maximum. The two best subset models are, not un- 
expectedly, the ones involving xi with x3 and X2 with X3. 

Both do better than the full least squares model whose 
residual prediction error was 1.972; but all of these 
least squares models are much poorer than the ridge or 
generalized inverse models. 

Model Validatbion 

iAfter we have developed a prediction equation, it is 
imnperative that a mzeasure of the accuracy of the model 
coefficients anld predictions be obtained. One way to 
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Table 4 

THREE-PREDICTOR EXAMPLE (c= 0.80) 

Ridge k 

a 0 0.1 0.2 0.4 0.8 

Se .729 .759 .828 .995 1.286 

R 2 .856 .843 .813 .730 .55D 
0.1 A 

VIF 1.012 .833 .698 .511 .309 

Sp .609 C .598 ) .619 .702 .878 

Se .591 .626 .701 .876 1.173 

R 2 .906 .895 .868 .794 .630 
0.5 A 

VIF 1.800 1.155 .825 .510 .309 

SP .713 .651 ( .674 .817 

Se .537 .621 .699 .878 1.189 

.936 .914 .89 1 .829 .685 
A 

0.9 | VIF 45.751 .826 .694 .510 .309 

SP 1.972 .560 ( 53 .583 .738 

(VIF)o 1.00 .826 .694 .510 .309 

accomplish this is a study of the physical nature and 
theoretical basis of the system being studied. For ex- 
ample, in the acetylene data discussed earlier, negative 
percent conversion was predicted in some parts of the 
factor space by the 10-coefficient least squares quad- 
ratic model. Negative conversion is physically im- 
possible and clearly indicates the associated model 
does not give an accurate description of the system 
which generated the data. 

Another method of model validation is to collect 
additional data and see how well the model predicts the 
new data. This often is not possible. One way to simu- 
late the collection of new data is to split the data in 
hand into two subsets. One subset, called the "estima- 
tion data", is used to estimate the coefficients in the 
model. The remaining subset, called the "prediction 
data", is used to measure the prediction accuracy of the 
model. When data are ordered with respect to time, 

some point in time can be used to split the data. For 
example, the Laird and Cady corn yield data [14], to 
be discussed later, were collected over a four-year 
period. Laird and Cady used the first three years of data 
as the estimation data and the fourth year as the pre- 
diction data. Kennard and Stone's CADEX Pro- 
cedure [12] is another way of splitting the data and 
will be used in the analysis of the GC-ASTM Data. 

Still another validation method is comparison with a 
theoretical model. This approach also is used with the 
GC-ASTM Data. 

II. Use of Biased Estimation in Data Analysis 

In the first part of this paper we reviewed the theory 
underlying ridge regression and biased estimation, 
presented the results of a little simulation experiment, 
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Table 5 

THREE-PREDICTOR EXAMPLE (cr = 0.80) 

Generalized Inverse r 
a 3.0 2.5 2.0 1.5 1.0 

So .729 .741 .776 1.247 2.101 

R2 .856 .851 .836 .577 .000 

0.1 VIF 1.012 1.000 1.000 .500 .450 

S .609 .581 .571 ( .5D ) 1.087 

so .591 .606 .649 1.172 2.057 

R 2 .906 .901 .887 .630 .000 
0.5 A 

VIF 1.800 1.050 1.000 .500 .300 

t SP .713 .634 .605 (.6 ) 1.105 

So .537 .553 .599 1.146 2.042 

R 2 .936 .932 .920 .708 .072 A 
0.9 

VIF 45.751 23. 001 1.000 .500 .251 

s ~~~1.972 1.100 .563 C 58)1.083 

and illustrated the use of "Ridge" in developing a 
model for the acetylene data. The remainder of this 
paper will describe two data sets which illustrate the 
use of biased estimation in problems with a large num- 
ber of variables. 

Interpreting the Ridge Trace 

When the predictor variable correlation matrix 
contains several large correlation coefficients, it is dif- 
ficult to untangle the relationships among the pre- 
dictor variables by inspection of the simple correlation 
coefficients. Some automatic procedures, such as step- 
wise, best subsets, and PRESS regression, attempt to 
untangle the variables by selecting some "best" subset 
of the predictors. However, these methods do not 
really give an insight into the structure of the factor 
space and the sensitivity of the results to the particular 
set of data at hand. In the Gorman and Toman ten- 
factor problem, Hoerl and Kiennard [11] showed that 
a "best subsets" procedure does not necessarily reduce 
predictor variable correlations. The correlations may be 

greater than those among the original variables. 
One of the big advantages of ridge regression is that a 

graphical display, called the "Ridge Trace", can help 
the analyst to see which coefficients are sensitive to the 
data. Thus, sensitivity analysis is an aim of ridge re- 
gression. The ridge trace is a plot of the value of each 
coefficient versus k. The trace will have one curve, or 
trace, per coefficient. For clarity we recommend that 
not more than ten coefficient traces be plotted on a given 
graph. It was noted earlier that the variance of a coef- 
ficient is a decreasing function of k and the bias is an 
increasing function of kc. Thus, as k increases, the coef- 
ficient mean square error (variance plus squared bias) 
decreases to a minimum and then increases. The ob- 
jective is to find a value of k which gives a set of coef- 
ficients with smaller MSE than the least squares 
solution. Of course, as k increases, the residual sum of 
squares will also increase. This should not be of great 
concern, because the obj ective is not to obtain the 
closest possible fit to the estimation data, but to de- 
velop a "stable" set of coefficients which will do a good 
job of predicting future observations. By stable we mean 
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Table 6 

THREE-PREDICTOR EXAMPLE (o= 0.80) 

a Subset Model 

xl x2 x 3 x1,x 2 x1,x 3 2, xx2x 3 

f Se 1942 1.807 1.320 1.864 1.214 .934 

R2 .000 .110 .525 .054 .598 .763 
0.1 

VI F 1.00 1.00 1.00 1.01 1.00 1.00 

Sp 1.46 1.42 1.47 1.11 1.13 ( 1.08 ) 

S e 1.807 1.693 1.340 1.825 .933 .624 

R R2 .121 .229 .517 .104 .766 .895 
A 

0.5 VIF 1.000 1.000 1.000 1.80 1.00 1.00 

sp 1.42 1.43 1.47 1.17 ( .0 1.09 

Se 1.687 1.656 1.643 1.811 .603 .492 

2 
R 2 .367 .389 .399 .270 .919 .946 

A 

0.9 VIF 1.00 1.00 1.00 45.75 1.00 1.00 

S 1.47 1.48 1.47 2.18 ( 1.15 ) 1.16 

that the coefficients are not sensitive to small changes in 
the estimation data. If the predictor variables are 
highly correlated, the coefficients will change rapidly 
for small values of k and gradually stabilize (change 
little) at larger values of k. The value of k at which the 
coefficients have stabilized gives the desired set of 
coefficients. If the predictor variables are orthogonal, 
then the coefficients would change very little (i.e. the 
coefficients are already stable) indicating the least 
squares solution is a good set of coefficients. 

Many statisticians have expressed concern about the 
selection of k. It is the authors' experience that this is 
not a problem in practice. As will be pointed out later 
in the examples, the plot of prediction standard devi- 
ation of new data versus k usually has a flat minimum; 
hence, there is a range of k-values which give equiv- 
alent results from a practical point of view. We have 
also observed that the ridge trace is easy for experi- 
menters to interpret. They respond quickly to graphical 
output, and after observing two or three examples 
they can usually interpret the trace readily. 

The k selected via the ridge trace is, technically 
speaking, a random variable. Even though that fact is 

not a practical concern in selecting the regression 
estimates, it does complicate the theory of confidence 
limits and hypothesis tests, due to the introduction of 
bias. Because of the bias, the mean square errors are all 
mildly dependent upon the true coefficient vector 5, 
which is unknown. This is a fertile area for continued 
research. 

On the practical side it should be noted that models 
with no constant term (3o = 0) typically require a 
smaller value of k (often < .01) than models with a 
constant term (Oo # 0). Also, models with low RA2 
statistics usually require larger values of k than models 
with high RA2. Increasing k indefinitely will ultimately 
drive all coefficients to zero, but for smaller values of k 
it is not uncommon to see a coefficient (perhaps after 
an initial sign change) increase in absolute value as k 
increases. In this situation we have often found that 
good results are obtained by using a value of k about 
where the coefficient passes through the maximum 
absolute value. This procedure was used to select the 
value of k for the GC-ASTM model to be discussed 
later. 

Plots of the generalized inverse coefficients can be 
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Table 7 

LAIRD AND CADY CORN YIELD DATA 

33-TERM MODEL COEFFICIENTS 

Ridge Generalized Ridge Generalized 
Rank Variable Regression (k =.3) Inverse (r = 9.5) Rank Variable Regression Inverse 

I *N .249 .179 18 A2 .035 .040 

2 BN .188 .166 19 JN .033 -.009 
3 AN .182 .181 20 BL .031 .000 
4 * -.119 -.113 21 AL .027 .017 

5 *AC -.112 -.096 22 A .026 .042 
6 AJ -.101 -.108 23 G2 .025 .039 

7 AH -.099 -.069 24 BH -.017 -.078 
8 *DN -.096 .028 25 HN .017 .008 

9 BJ -.091 -.109 26 LN .015 .086 
10 *N2 .091 .175 27 *B2 -.014 .011 

11 C -.082 -.095 28 D -.013 -.062 
12 *H -.074 -.069 29 CN -.007 -.006 
13 *F -.072 -.066 30 L -.005 .006 
14 BD -.069 -.057 31 AD -.005 -.053 

15 *AB .056 .050 32 E .003 .054 

16 BC -.050 -.088 33 B .002 .013 

17 G .043 .036 Vector Length .239 .236 

* Variables selected by PRESS 

constructed and interpreted in the same manner as the 
ridge trace by using the assigned rank r as the abscissa 
of the trace in place of k. 

Laird and Cady Corn Yield Data 

Our first example of a large data set is the corn yield 
data published by Laird and Cady [14]. Cady and 
Allen [3] later used these data to illustrate the PRESS 
procedure. The response is the corn yield, in tons per 
hectar, measured at each of four applied nitrogen levels 
in each of 72 experimental sites. This resulted in 288 
data points over a four-year period. 

There are 1t predictor variables 

Applied Nitrogen N Soil Slope F 
Soil Nitrogen A Soil Texture G 
Previous Crop B Hail H 
Excess Moisture C Blight J 
Drought D Weeds L 
Rootiiig Zone Depth E 

Four of these are measured (N, A, E, F); one is ex- 
pressed as an index (D), and the remaining variables 
have been assigned a value on a subjective scale. The 
nonnitrogen variables will be referred to as "site 
variables". 

The model used by Cady and Allen to describe these 
data was a subset of the full quadratic containing a 
constant term, 11 linear terms, 18 cross-product or 
interaction terms, and 4 squared terms for a total of 

33 terms (Table 7). We will note here for later reference 
that 13 out of the 18 interaction terms involve the two 
nitrogen variables (N and A). 

Cady and Allen chose to divide the data into two 
sets. The 228 data points collected in the first three 
years were used to estimate the coefficients in the 
model. The 60 observations obtained in the fourth 
year are used to test the predictability of the model. 
These data sets will be called the "estiination data" 
(n = 228) and "prediction data" (n = 60), respec- 
tively. 

Cady and Allen found the residual standard deviationi 
of the fits of the full, stepwise, and PRESS models to 
be 0.59, 0.62, and 0.65 for the estimation data and 1.03, 
0.84, 0.72 for the predictiorl data. The PRESS model did 
the best job of predicting. This might be expected since 
the variables in the full and stepwise models are highly 
correlated, with maximum VIF of 180 and 122, re- 
spectively, while the, variables in the PRESS model are 
less correlated, with maximumii VIF 12. 

What does ridge do with this problem? We found 
that the ridge trace computed from the first three years 
of data stabilized around kc = 0.3. 

The prediction standard deviation for the fourth year 
of data is plotted in Figure 8 versus the value of k used 
in developing the ridge model. As shown there, the 
prediction standard deviation decreases as k increases, 
reaching a very flat minimum of 0.71 at k = 0.6. A 
bias of only k = 0.01 reduced the prediction standard 
deviation from 1.03 to 0.82. At k = 0.3, which we 
selected from the ridge trace, the prediction standard 
deviation is 0.72, which is identical to the prediction 
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standard deviation of the PRESS model. The k = 0.3 
ridge coefficients ranked in order of absolute value are 
shown in Table 7. 

The three largest coefficients are N, BN and AN, all 
involving applied nitrogen (N). The nine terms in the 
PRESS model, denoted by an (*), rank from the 
largest to 27th out of 33-8 being in the top 15 and the 
ninth, B2, ranking 27th. It is even more interesting 
that out of the top 15 ridge coefficients, nine are inter- 
actions and 9 out of 15 involve either applied nitrogen 
(N) or soil nitrogen (A). 

What is this telling us? Applied nitrogen and soil 
nitrogen ("nitrogen" for short) is the dominantt variable. 
When nitrogen is absent (i.e. = 0) there cannot be any 
corn yield. This would suggest a zero intercept with 
respect to nitrogen. However, the other variables do 
not have a zero intercept. From this we conjectured 
that a multiplicative model would be most natural for 
these data. This is consistent with the dominance of the 
many interaction terms involving nitrogen in the 33- 
term model. Our postulated multiplicative model is 

E (y) (applied nitrogen + soil nitrogen) X 
(site variables) 

Z1Z2, 
where Z= (N + 02A) + 12 (N + 02A) 2, 

and Z2 =1 + 03B + 04C + * - + 11L. 

Schematically, corn yield is modeled as a product of two 
factors. The first is applied nitrogen plus soil nitrogen, 
which we denote by Zi. The second factor contains the 
site variables, denoted by Z2. Factor Z, is a quadratic 
function of (N + 32A) and Z2 is a linear function of the 
nonnitrogen site variables. The 02 coefficient is needed 
because applied nitrogen (N) and soil nitrogen (A) 
are measured in different units. The model contains 
twelve coefficients, as compared to ten coefficients in the 
PRESS model. 

The ten coefficient PRESS model fit the estimation 
and prediction data with residual standard deviations 
of 0.65 and 0.72 respectively (Table 8). The twelve 
coefficient multiplicative model, fitted by nonlinear 
least squares, [17], had residual standard deviations 
of 0.72 and 0.75 for the estimation and prediction data 
which are in the same ballpark as the PRESS model. 

An examination of the coefficient confidence limits 
suggested the three coefficients corresponding to previ- 
ous crop (B), root depth (E), and weeds (L) were not 
significant. When these variables were deleted, the 
resulting nine-coefficient multiplicative model fit the 
estimation and prediction data with residual standard 
deviations of 0.73 and 0.64, respectively, giving a 
somewhat better fit to the prediction data than the 
PRESS model (Table 8). 

There are other differences between the PRESS and 
multiplicative models which should be noted: 

(i) The PRESS model contains a constant term- 
the multiplicative model does not. 

(ii) Previous crop (B) is included in the PRESS 
model but not in the multiplicative, and 

Table 8 

LAIRD AND CADY CORN YIELD DATA 

FIT OF PRESS AND MULTIPLICATIVE MODELS 

Number of Residual Standard Deviation 
Model Coefficients Estimation (n = 228) Pred. (n = 60) 

PRESS 10 .65 .72 

Multiplicative 12 .72 .75 

Multipl icative 9 .73 .64 
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Table 9 

MODEL FOR 1580 ASTM DATA 

THEORETICAL 
COEFFICIENTS ESTIMATED FROM DATA DISTILLATION 

GC TEMPERATURE LEAST RIDGE GENERALIZED LEAST SQUARES 
CUT RANGE OF SQUARES (k = .006) INVERSE (r =7) COEFFICIENTS 

1 0- 15 224 126 120 125 
2 15- 40 87 94 105 132 
3 40 - 87 110 104 109 102 
4 87-126 116 75 74 84 
5 126 - 145 -92 45 46 42 
6 145 - 175 80 26 45 20 
7 175 -198 96 38 21 0 
8 198 - 220 54 14 -8 -9 
9 220 - 237 -125 - 62 -45 -15 
10 237 - 285 - 30 -15 -20 -21 
11 285 - 303 -65 -19 1 -29 
12 300 - 333 21 6 -4 -25 
13 333 - 376 181 36 5 -25 
14 376 - 414 -217 25 24 -25 
15 414 - 487 22 -40 -10 -24 

Vector Length .36 .37 
Prediction Data Std. Dev. 1.28 1.01 .96 

(iii) Soil texture (G) is included in the multiplica- 
tive model and not in the PRESS model. 

To summarize this problem, we feel that by keeping 
all the terms in the model and reducing the variable 
correlations with Ridge we were able to 

(i) Obtain a model which predicts well, and 
(ii) Learn more about the roles of all the variables 

in the model. 

In this case the ridge results suggested a nonlinear 
alternative model. While this may niot be the ultimate 
model, it is consistent with the physical background of 
the problem as described in the Laird and Cady paper, 
and gives the scientist a different way to think about 
the mechanism under study. 

GC-ASTM Model 

The second example concerns the relationship be- 
tween the ASTM and gas chromatograph, or GC for 
short, distillation of a gasoline sample. One of the 
properties which determines the quality of a gasoline is 
volatility as measured by the percent of the blend 
evaporated at various temperatures (?F). The standard 
method of measuring volatility is an ASTM distilla- 
tion, in which the gasoline sample is heated and 
the vapors pass through an ice bath and condense. The 
cumulative percent evaporated at various temperatures 
is recorded. In the ASTM distillation some of the 
higher boiling components "hold back" the lower 

boiling components. The GC distillation is much more 
accurate and each component "comes off" at its true 
boiling point. 

ASTM and GC distillation curves are not identical, 
and gasoline volatility specifications are written in 
terms of ASTM. In order for a refinery to use the GC 
for on-line control of volatility, a model is needed to 
predict the ASTM distillation of a blend from a GC 
distillation of the blend. This example is typical of those 
situations where a property of a material is measured 
by a series of points which form a curve. It is important 
to use a sufficient number of points to describe the 
curve, but one should be careful not to overdefine the 
curve. The use of too many points results in redundant 
information. In this example, the points on the GC 
curve were selected by the engineer to give a proper 
description of the curve. The points on the ASTM 
curve to be predicted corresponded to specifications of 
various gasolines. 

The GC temperature range was divided into fifteen 
cuts: 0-15, 15-40, . . . , 414-4780F (Table 9). The 
fifteen predictor variables in the model, xi, . . ., x15, are 
the volume fraction of the blend evaporated in each of 
the cuts. The responses to be predicted, yl, . .. y14, 
are the cumulative percent of the blend evaporated at 
each of the 14 ASTM temperatures. While a model was 
developed for each of the 14 ASTM temperatures, we 
will concentrate our attention on the three most 
important specifications: Y4 = ASTM 158, Y6 
ASTM 212, and yio = ASTM 302. 

The postulated model is 
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E (y) = lXl + 02X2 + * * * + 015X15, 

where y is the cumulative percent evaporated at a 
given ASTM temperature and xj is the fraction evapor- 
ated in the jt" GC cut. The constant term (:0) has been 
deleted because the xj's sum to 1.0, and produce a 
singular X'X matrix if Oo were included. 

The main uses of the model would be prediction of 
gasoline blend ASTM distillations, for which the 
prediction standard deviation had to be <1.5%, and 
as input to linear programming calculations to de- 
termine optimum volatility blending procedures. Hence, 
it w-as imperative that the ASTM predictions also be 
responsive to changes to the GC curve in any temper- 
ature range, and that the estimated coefficients in 
the model be "realistic" in light of the available en- 
gineering knowvledge. Part of the prior history on this 
problem wvas that coefficients developed by least 

squares and stepwise regression were unacceptable 
from a physical viewpoint. 

GC and ASTM distillation data were available on 59 
blends. It was felt that it would be advantageous to 
have an independent estimate of the model prediction 
standard deviation. We used Kennard and Stone's 
CADEX algorithm [12] to split the data into two 
sets-29 estimation blends and 30 prediction blends. 
While we do not claim that this is necessarily the best 
way to split the data, we are describing the analysis 
the way it was actually conducted. As in the Laird 
and Cady corn yield example, the coefficients will be 
estimated from the 29 estimation blends. The 30 
prediction blends will be used to obtain a measure of the 
model prediction standard deviation. 

The ridge trace for Y4 = ASTM 158 is shown in 
Figure 9 where the x axis is k X 10-1. The traces for the 
first 10 coefficients are shown on the top and the traces 
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for the last five coefficients are shown on the bottom. 
The system stabilizes quickly around k = .005 or .01. 
We decided to use the coefficients at k = .006. Before 
studying these coefficients further, let us look at a plot 
of the prediction standard deviation of the 30 pre- 
diction blends versus k shown in Figure 10. 

For Y4 = ASTM 158, the prediction standard devi- 
ation has a value of 1.28 at the least squares solution, 
decreases as k increases, and reaches a minimum near 
k = .006, the value of k we chose from the ridge trace! 
The ASTM 212 curve follows a similar pattern, reach- 
ing a minimum around k = .003. At the 302 and 375 
temperatures the experimental error is smaller. The 
prediction standard deviation increases as k increases, 
although the ASTM 375 curve is flat until k = .006. 
We now turn our attention to the coefficients in the 
ASTM 158 model shown in Table 9. 

First, note the standard error of prediction at the 
bottom of the columns. As we noted previously, the 
ridge regression model is a better predictor. It has a 
standard error of 1.01% compared to a standard error 
of 1.28% for the least squares model. Again, these two 
numbers were computed from the 30 blends not used in 
computing the coefficients. An examination of the 
models reveals that the coefficients in the least squares 
model are in general larger than the coefficients in the 
ridge regression model. In the least squares model, the 
largest coefficients are around 200 in absolute value 
(in cuts 1, 13 and 14), while the largest coefficients in 
the ridge regression model are around 100 in absolute 
value (in cuts 1 and 3). In addition, the least squares 
coefficients are not well behaved with respect to sign. 
These points can be seen easily when the models are 
compared graphically. 
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In Figure 11 the coefficients are plotted versus GC 
cut temperature. The top graph shows the least squares 
coefficients, and the second graph shows the ridge re- 
gression coefficients. Note that coefficients 5, 14 and 15 
have changed sign and coefficients 1, 4, 9, and 13 are 
considerably smaller. 

Previous knowledge indicated that all the co- 
efficients at the higher temperatures should be 
negative. To gain greater insight into this prob- 
lem, we designed a theoretical distillation experi- 
ment centered around the 59 blends. The amounts of 
each of the 15 GC cuts were varied according to a 
pseudocomponent simplex design for mixtures com- 
prised of 15 pure component and 105 binary blends. 
The distillations for these 120 blends were calculated 
using Raoult's Law with activity coefficients of unity 
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Figure 11. 

and atmospheric pressure. The 15 GC cuts were treated 
as pure hydrocarbons, having true boiling points at the 
midpoint of the cut. This theoretical distllation is 
similar to the ASTM distillation and can provide 
corollary information concerning the relationship 
between the model coefficients and GC temperature. 
The models developed for the theoretical distillation 
data confirmed our previous theories. At the bottom of 
Figure 11 we see that the theoretical distillation coef- 
ficients decrease in size with increasing temperature 
and finally go negative at the higher temperatures. It is 
immediately obvious from this graph that the ridge 
coefficients bear a closer resemblance to the theoretical 
distillation coefficients than the least squares coef- 
ficients. The ridge regression coefficients and theoretical 
distillation coefficients follow a smooth pattern as the 
GC temperature increases; however, the least squares 
coefficients do not follow this nice relationship. 

Ridge regression gave equally meaningful coefficients 
in the models at the other ASTM temperatures as 
evidenced by the coefficients in the ASTM 212, 302, 
and 375?F models shown in Figure 12. As the scientific 
background of the problem indicated, the number of 
large positive coefficients in the model increases as the 
ASTM temperature increases. 

We can summarize this example by saying that the 
project goals were met and on-line process control of 
volatility went into operation on schedule. Both the 
ridge model and, the theoretical distillation model 
worked in practice, whereas the least-squares and step- 
wise regression models had not. 

Generalized Inverse Results 

In our discussion of the Laird and Cady Corn Yield 
Data and the GC-ASTM Distillation Model, we have 
focused on the ridge estimators. The corresponding 
results for the generalized inverse estimators are shown 
similtaneously in Tables 7 and 9. The generalized in- 
verse results shown correspond to a value of r for which 
the regression vector length is approximately equal to 
the length for the selected ridge bias k. Detailed ex- 
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Table 10 
CORRELATION BETWEEN RIDGE AND GENERALIZED INVERSE REGRESSION COEFFICIENTS 

Ridge Generalized Inverse 
Number of Vector Vector Correlation 

Data Set Coefficients Bias (k) Length ((3/,) Bias ( r) Length ( '/M) Coefficient * 

Acetylene Data (7) 9 .05 .524 3.8 .522 .98 

Gorman & Toman (6) 10 .26 .373 6.6 .384 .92 

Laird & Cady (14) 33 .30 .239 9.5 .236 .89 

GC - ASTM 1580 15 .006 .358 7.0 .374 .96 

Steam Data (5) 8 .30 .329 3.5 .318 .96 

Rocket Engine (5) 13 .10 .817 9.0 .811 .90 

McDonald & Schwing (21) 15 .18 .376 8.5 .384 .91 

Liver Cirrhosis (2) 4 .30 .239 1.0 .262 .98 

Linear Correlation Coefficient 

amination of the coefficients shows that the ridge and 
generalized inverse coefficients are remarkably similar. 
Table 9 shows that the generalized inverse model 
achieves a reduction of the prediction standard devi- 
ation coifmparable to the ridge model. 

Table 10 shows the correlation coefficients betwAeen 
ridge regression coefficients and generalized inverse 
coefficients (chosen to have the same approximate 
vector length) for eight sets of data, including the three 
sets discussed in this paper. The correlation coefficients 
are all very high. 

Computing Ridge Regression and Generalized Inverse 
Coefficiertts 

One of the advantages of the ridge and generalized' 
inverse estimators is ease of computation. The X'X 
and X'Y matrices are computed once and scaled to form 
the correlation matrix. For ridge regression, 10-30 
inversions of (X'X + kI), one for each value of lv, 
are usually sufficient to determine where the ridge trace 
stabilizes. The generalized inverse coefficients are 
computed from the eigenvalues and eigenvectors of the 
correlation matrix. Numerical analysis is not a problem, 
nor is it a problem in the case of the ridge estimates 
where the addition of k to the diagonal of the correla- 
tion matrix reduces the nonorthogonality and thereby 
improves the numerical analysis. Furthermore, a 
separate matrix inversion is calculated for each value of 
k and roundoff errors cannot accumulate as in some 
stepwise algorithms. With the biased estimators, the 
same inverse matrix, for a given k or rank r, can be used 
to calculate the coefficients in the models for all re- 
sponses. The best subset and stepwise algorithms re- 
quire a separate computer run for each response. 
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P-values: Interpretation and Methodology* 
JEAN D. GIBBONS** AND JOHN W. PRATT*** 

1. Introduction 

The most common traditional method of carrying 
out any hypothesis test is to select a region for re- 
jection and form a rejection rule such that the 
probability of committing a Type I error does not 
exceed some preselected number called the level of 
the test. Then the investigator reports whether or not 
the observations are "significant" at the chosen 
level. This procedure probably stems from the use of 
the Neyman-Pearson theory in classical statistics, 
where the decision function for the test is de- 
termined such that the probability of a Type II error 
is a minimum subject to the conditions imposed by 
the level selected. This method of test construction 
circumvents the problem of interrelationship 
between the probabilities of the Type I and Type II 
error. However, in many cases the choice of a sig- 
nificance level is completely arbitrary. In non- 
parametric statistics particularly, but also in 
parametric statistics when the null distribution is 
discrete, the chosen level may not even be at- 
tainable. Further, in nonparametric statistics, there 
is usually not sufficient information about al- 
ternative distributions so that the probability of a 
Type II error can even be discussed in general. 
Rather, the decision function is selected by logical 
reasoning, or according to the research hypothesis, or 
sometimes even by the data. 

Another approach to hypothesis testing is cur- 
rently attaining wide acceptance. This is the practice 
of reporting the smallest level at which the observa- 
tions are significant in a particular direction. This 

quantity, which is herein called the P-value, is some- 
times called the "critical level" or "significance 
level" (e.g., in Birnbaum, [3, p. 289]), the "observed 
level of significance" (e.g., in Kraft and Van Eeden, 
[8, p. 63]), the "prob-value" (e.g., in Wonnacott and 
Wonnacott, [12, p. 190]), or the "associated 
probability" (e.g. in Siegel, [11, p. 11]). Many ele- 
mentary textbooks are now introducing this 
procedure, in addition to or instead of the more 
traditional one, for one sided tests based on both 
parametric and nonparametric methods. However, 
little attention has been paid to the proper in- 
terpretation of a P-value, nor to the inherent 
problem of defining P-values for two sided tests, 
particularly when the null distribution is not sym- 
metric. These questions will be discussed in this 
paper, along with some comments about the need for 
making a clear distinction between statistical signifi- 
cance and practical significance in decision making. 

2. Methodology and Advantages of One Sided 
P-values 

Consider any hypothesis testing situation where 
the appropriate critical region for the test clearly lies 
in one particular tail of the sampling distribution of 
the test statistic. Then the observed value of the test 
criterion can be used to compute a tail probability 
which we call the P-value. The P-value is defined as 
the probability under null distributions of a sample 
outcome equal to or more extreme than that ob- 
served. In well-behaved problems, which include al- 
most all one sided tests commonly used, the possible 
outcomes can be ordered according to how 
"extreme" they are in one direction relative to the 
outcome expected under the null hypothesis, and the 
values of the test statistic are also ordered in a cor- 
responding manner. Then the P-value is a well de- 
fined quantity, because the meaning of extreme is 
clear. 

* This paper was written by Gibbons, but its content overlaps 
parts of Chapter 1 of a forthcoming book, Concepts of Non- 
parametric Theory, written by both authors. The first draft of 
Chapter 1 was prepared by Pratt. 

** Dept. of Statistics, Univ. of Alabama, University, AL 35486. 
*** Grad. School of Bus. Admin., Harvard Univ., Boston, MA 

02163. 

20 ? The American Statistician, February 1975, Vol. 29, No. 1 

This content downloaded from 129.186.1.55 on Thu, 29 Aug 2013 11:04:11 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 3
	p. 4
	p. 5
	p. 6
	p. 7
	p. 8
	p. 9
	p. 10
	p. 11
	p. 12
	p. 13
	p. 14
	p. 15
	p. 16
	p. 17
	p. 18
	p. 19
	p. 20

	Issue Table of Contents
	The American Statistician, Vol. 29, No. 1 (Feb., 1975), pp. 1-72
	The Teacher's Corner
	Statistical Computing



