Jialiang Li, Jingao Liu, Di- Cheng Zhu, Bruce K. Nelson, and Ruohan Gao, 2022, Ridge subduction and episodes of crustal growth in accretionary belts: Evidence from late Paleozoic felsic igneous rocks in the southeastern Central Asian Orogenic Belt, Inner Mongolia, China: GSA Bulletin, https://doi.org/10.1130/B35986.1.

Supplemental Material

Table S1. Zircon U-Pb analytical results for samples from the felsic igneous rocks in northern Inner Mongolia.

Table S2. Major (wt%) and trace-element (ppm) concentrations of the felsic igneous rocks in northern Inner Mongolia.

Table S3. Whole-rock Sr-Nd isotopic compositions of the felsic igneous rocks in northern Inner Mongolia.

Table S4. Zircon Hf isotopic compositions of the felsic igneous rocks in northern Inner

 Mongolia.

Table S5. Summary of zircon U-Pb age data of granitic rocks in XIMOB.

Table S6. Summary of whole-rock Nd isotope data of granitic rocks in XIMOB.

Table S7. Summary of zircons Hf isotopic data of granitic rocks in XMOB.

Analysis spot No.	Pb	Th	U	Th/U	Isotopic ratios							A	pparent ag	es (N	Ia)	
					²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ
XWQQ-TW7 (Gra	nodior	ite, 319=	±2 Ma)													
18XWQQ-TW7 01	9.01	44.73	74.59	0.60	0.05089	0.00052	0.36663	0.01049	0.05256	0.00156	320	3	317	8	310	47
18XWQQ-TW7 02	8.81	39.89	88.53	0.45	0.05093	0.00078	0.36593	0.01182	0.05248	0.0017	320	5	317	9	307	46
18XWQQ-TW7 03	9.53	43.58	89.42	0.49	0.05093	0.00047	0.37719	0.00956	0.05375	0.00132	320	3	325	7	360	40
18XWQQ-TW7 04	5.35	19.12	60.41	0.32	0.05136	0.00067	0.39453	0.01346	0.05653	0.0022	323	4	338	10	473	52
18XWQQ-TW7 05	11.16	56.33	92.25	0.61	0.05082	0.00047	0.36951	0.01012	0.05281	0.00144	320	3	319	8	321	45
18XWQQ-TW7 06	16.36	30.04	65.57	0.46	0.05243	0.00155	0.46319	0.15365	0.06407	0.02134	329	9	386	107	744	669
18XWQQ-TW7 07	6.00	24.55	63.47	0.39	0.05092	0.00063	0.37094	0.0101	0.05314	0.00149	320	4	320	7	335	39
18XWQQ-TW7 08	4.47	17.49	48.92	0.36	0.05073	0.00064	0.39398	0.01638	0.05689	0.00241	319	4	337	12	487	69
18XWQQ-TW7 09	7.09	31.78	68.16	0.47	0.05073	0.00064	0.36315	0.01171	0.05225	0.00167	319	4	315	9	297	51
18XWQQ-TW7 10	11.88	51.74	120.02	0.43	0.05066	0.00053	0.3654	0.00916	0.05235	0.00129	319	3	316	7	301	38
18XWQQ-TW7 11	9.49	38.02	82.16	0.46	0.05185	0.00073	0.42332	0.01496	0.05916	0.00189	326	4	358	11	573	52
18XWQQ-TW7 12	17.75	85.92	148.94	0.58	0.05109	0.00049	0.38027	0.00817	0.05409	0.00116	321	3	327	6	375	31
18XWQQ-TW7 13	11.37	52.64	96.71	0.54	0.05164	0.00062	0.36708	0.01353	0.05155	0.00179	325	4	317	10	265	63
18XWQQ-TW7 14	8.11	32.17	79.20	0.41	0.05075	0.00059	0.38177	0.01027	0.055	0.00155	319	4	328	8	412	39
18XWQQ-TW7 15	7.30	30.52	83.30	0.37	0.05102	0.00058	0.39231	0.0115	0.05598	0.00162	321	4	336	8	451	45
18XWQQ-TW7 16	6.66	26.83	64.66	0.41	0.05049	0.00063	0.36899	0.01529	0.05301	0.00229	318	4	319	11	329	101
18XWQQ-TW7 17	13.63	70.48	105.75	0.67	0.05032	0.00047	0.35384	0.00828	0.0511	0.00121	316	3	308	6	245	36
18XWQQ-TW7 18	18.45	82.96	153.92	0.54	0.05058	0.00046	0.38075	0.0136	0.05459	0.00201	318	3	328	10	396	85
XLHT-TW3 (Alka	li-felds	par gra	nite, 279	9±1 Ma	a)											
18XLHT-TW3 01	14.47	68.28	140.20	0.49	0.04399	0.00046	0.36603	0.01166	0.06032	0.00186	277	3	317	9	615	50
18XLHT-TW3 02	24.24	129.25	233.77	0.55	0.04451	0.00055	0.31863	0.00791	0.05225	0.0014	281	3	281	6	296	34

Table S1- Zircon U-Pb analytical results for samples from the felsic igneous rocks in northern Inner Mongolia.

18XLHT-TW3 03	109.35	715.79	692.35	1.03	0.04445	0.0004	0.33721	0.00459	0.05511	0.00075	280	2	295	3	417	15
18XLHT-TW3 04	32.31	167.10	342.22	0.49	0.04448	0.00038	0.3301	0.00577	0.05389	0.00095	281	2	290	4	367	24
18XLHT-TW3 05	24.50	113.34	286.69	0.40	0.04418	0.00036	0.31735	0.00865	0.0521	0.00148	279	2	280	7	290	67
18XLHT-TW3 06	28.82	115.37	254.98	0.45	0.04186	0.00057	0.35903	0.05784	0.06221	0.01006	264	4	311	43	681	362
18XLHT-TW3 07	63.67	274.55	465.98	0.59	0.04133	0.00099	0.41264	0.08536	0.07242	0.01508	261	6	351	61	998	462
18XLHT-TW3 08	33.06	173.83	317.81	0.55	0.04441	0.00031	0.34134	0.00587	0.05574	0.00095	280	2	298	4	442	26
18XLHT-TW3 09	32.54	133.40	314.57	0.42	0.04352	0.00045	0.31829	0.01429	0.05305	0.00245	275	3	281	11	331	107
18XLHT-TW3 10	75.02	392.91	543.85	0.72	0.04309	0.00038	0.35604	0.0177	0.05993	0.00303	272	2	309	13	601	112
18XLHT-TW3 11	61.90	350.32	461.78	0.76	0.04411	0.00045	0.31339	0.01404	0.05153	0.00237	278	3	277	11	264	108
18XLHT-TW3 12	53.25	314.99	427.82	0.74	0.04447	0.0003	0.34258	0.00513	0.05588	0.00082	280	2	299	4	447	21
18XLHT-TW3 13	54.00	295.65	520.59	0.57	0.04406	0.00037	0.31501	0.00921	0.05186	0.00158	278	2	278	7	279	71
18XLHT-TW3 14	11.03	54.77	112.15	0.49	0.04365	0.00065	0.32528	0.01032	0.05474	0.00193	275	4	286	8	402	44
18XLHT-TW3 15	58.24	348.70	461.08	0.76	0.0431	0.0003	0.31047	0.00893	0.05225	0.00154	272	2	275	7	296	69
18XLHT-TW3 16	40.13	200.25	454.41	0.44	0.04483	0.00044	0.31579	0.00505	0.05129	0.00084	283	3	279	4	254	20
18XLHT-TW3 17	49.20	212.92	354.08	0.60	0.0411	0.00028	0.38229	0.02156	0.06747	0.00383	260	2	329	16	852	121
18XLHT-TW3 18	41.76	137.91	264.39	0.52	0.04189	0.00058	0.35848	0.04428	0.06207	0.00771	265	4	311	33	677	278
18XLHT-TW3 19	53.30	333.42	424.65	0.79	0.04468	0.00031	0.33034	0.00505	0.05365	0.00082	282	2	290	4	356	22
18XLHT-TW3 20	36.69	202.97	327.19	0.62	0.04441	0.00037	0.3224	0.00965	0.05265	0.00164	280	2	284	7	314	72
18XLHT-TW3 21	21.16	102.25	249.61	0.41	0.04446	0.00029	0.32701	0.00648	0.05343	0.00111	280	2	287	5	347	33
18XLHT-TW3 22	27.82	143.51	274.55	0.52	0.04422	0.00053	0.35398	0.0076	0.05811	0.0012	279	3	308	6	534	27
18XLHT-TW3 23	41.33	218.18	404.60	0.54	0.04418	0.00044	0.33665	0.01025	0.05526	0.00177	279	3	295	8	423	73
18XLHT-TW3 24	63.59	336.11	538.80	0.62	0.04386	0.00026	0.32843	0.00874	0.05431	0.00148	277	2	288	7	384	63
18XLHT-TW3 25	28.69	141.08	308.64	0.46	0.04399	0.00028	0.33423	0.0097	0.05511	0.00164	278	2	293	7	417	68
18XLHT-TW3 26	40.14	195.23	385.36	0.51	0.04393	0.00028	0.35098	0.00876	0.05795	0.00149	277	2	305	7	528	58
18XLHT-TW3 27	34.74	166.55	349.44	0.48	0.04391	0.0003	0.33135	0.00921	0.05473	0.00157	277	2	291	7	401	66
XWQ-TW3 (Rhyo	lite, 279	0±1 Ma)														
18XWQ-TW3 01	10.68	52.24	128.10	0.41	0.04526	0.00047	0.3332	0.00799	0.05364	0.00137	285	3	292	6	356	36

18XWQ-TW3 02	12.57	61.04	148.15	0.41	0.0447	0.00044	0.32576	0.00771	0.05297	0.00127	282	3	286	6	328	36
18XWQ-TW3 03	13.94	72.84	152.87	0.48	0.04459	0.00042	0.32531	0.00656	0.05302	0.00112	281	3	286	5	330	29
18XWQ-TW3 04	11.48	56.78	130.09	0.44	0.04374	0.00037	0.32249	0.01104	0.05348	0.00189	276	2	284	8	349	82
18XWQ-TW3 05	10.78	52.56	128.12	0.41	0.04466	0.00041	0.32457	0.00775	0.05288	0.00131	282	3	285	6	324	37
18XWQ-TW3 06	13.44	68.61	156.95	0.44	0.04424	0.00036	0.32253	0.00832	0.05291	0.00142	279	2	284	6	325	44
18XWQ-TW3 07	17.27	71.13	149.16	0.48	0.04487	0.00049	0.3191	0.0219	0.05158	0.00358	283	3	281	17	267	160
18XWQ-TW3 08	14.08	69.73	145.71	0.48	0.04593	0.00053	0.36777	0.01089	0.05818	0.00175	289	3	318	8	537	45
18XWQ-TW3 09	10.02	49.49	121.75	0.41	0.04448	0.00044	0.32311	0.0074	0.05282	0.00127	281	3	284	6	321	34
18XWQ-TW3 10	15.43	76.12	155.93	0.49	0.04473	0.00046	0.33057	0.01249	0.0536	0.0021	282	3	290	10	354	91
18XWQ-TW3 11	10.97	54.82	126.74	0.43	0.04431	0.00042	0.32265	0.00807	0.05284	0.00135	279	3	284	6	322	39
18XWQ-TW3 12	11.56	59.76	135.40	0.44	0.04445	0.00037	0.32222	0.00751	0.05251	0.00122	280	2	284	6	308	38
18XWQ-TW3 13	10.69	55.50	130.12	0.43	0.04367	0.00053	0.31254	0.00802	0.05181	0.00126	276	3	276	6	277	37
18XWQ-TW3 14	11.79	57.97	132.79	0.44	0.04429	0.00042	0.31606	0.01175	0.05175	0.00199	279	3	279	9	274	90
18XWQ-TW3 15	8.63	38.99	101.39	0.38	0.04422	0.00051	0.32334	0.01371	0.05303	0.00233	279	3	284	11	330	102
18XWQ-TW3 16	10.42	49.08	118.52	0.41	0.04476	0.00045	0.33367	0.01235	0.05406	0.00207	282	3	292	9	374	88
18XWQ-TW3 17	12.61	61.87	138.97	0.45	0.04393	0.0004	0.34628	0.01272	0.05717	0.00216	277	2	302	10	498	85
18XWQ-TW3 18	217.06	53.95	125.92	0.43	0.06035	0.01884	2.28336	2.09015	0.27441	0.26539	378	115	1207	646	3331	322 1

Samples	18XLHT-	18XLHT-	18XLHT-	18XLHT-	18XLHT-	18XWQQ-	18XWQQ-	18XWQQ-	18XWQQ	18XWQ-	18XWQ-	18XWQ-	18XWQ-
SiO2	74 34	75.83	75 79	76.07	77 10	69.67	68 15	67 35	67 16	76.26	74.89	74.62	75 15
TiO2	0 12	0.11	0.11	0 12	0.11	0 54	0.54	0.56	0.56	0.22	0.20	0.20	0.21
AI2O3	13.07	12 75	12 95	12 94	12 66	13 43	14 04	14.38	14.38	12.38	12 17	12 21	12 23
Fe203T	1 82	1 43	1 12	1 58	1 16	4 52	4 69	4 42	4 63	1 26	2 77	2 84	2 58
MnO	0.02	0.01	0.01	0.02	0.01	0.12	0.10	0.11	0.11	0.01	0.02	0.02	0.02
MaQ	0.22	0.14	0.15	0.15	0.10	2 03	1.93	1 76	1 95	0.09	0.28	0.24	0.16
CaO	0.21	0.19	0.18	0.20	0.17	2.68	2 85	2 61	3.03	0.00	0.22	0.21	0.24
Na2O	4.18	4.69	3.99	4.35	5.01	3.91	4.41	4.94	4.74	3.81	3.27	3.21	3.48
K20	3.82	3.03	3.72	3.79	2.79	1.37	0.89	1.82	1.16	4.72	4.82	5.10	4.98
P2O5	0.05	0.04	0.03	0.06	0.03	0.09	0.11	0.13	0.11	0.05	0.07	0.08	0.04
LOI	1.26	0.96	1.26	1.10	0.77	1.79	1.87	1.61	1.76	0.39	0.68	0.57	0.60
Total	99.10	99.19	99.31	100.37	99.91	100.14	99.59	99.69	99.59	99.36	99.38	99.31	99.69
Mg#	21.7	18.6	23.8	18.2	16.8	51.1	49.0	48.1	49.5	14.3	19.1	16.5	12.6
Li	13.78	8.82	9.62	9.53	5.37	12.00	13.03	7.80	8.65	9.27	12.10	10.11	9.75
Be	1.98	2.15	1.93	1.87	1.68	0.50	0.49	0.54	0.51	1.17	2.38	2.23	1.33
Y	40.5	41.6	41.9	57.8	40.0	24.9	19.1	25.8	24.1	37.9	83.3	47.6	46.4
Zr	244	238	241	253	215	61	50	58	61	392	392	391	405
Nb	6.92	6.39	6.61	6.25	5.50	1.39	1.25	1.30	1.23	10.64	10.48	10.38	10.82
Cs	10.81	16.12	11.95	7.67	6.07	0.97	0.89	0.90	0.73	3.30	12.98	9.09	4.93
La	23.7	15.1	18.4	30.8	22.5	7.5	6.6	8.6	7.5	25.7	33.0	28.9	13.6
Ce	63.1	40.6	50.5	70.2	54.0	21.3	17.8	21.5	19.9	60.9	76.6	76.4	32.0
Pr	6.4	4.3	5.3	9.1	6.7	3.1	2.5	3.1	2.9	7.1	9.2	7.7	4.5
Nd	24.2	16.2	20.3	36.9	26.8	13.8	11.2	13.8	13.0	27.7	35.9	29.1	17.7
Sm	5.17	3.72	4.46	8.74	6.18	3.74	2.93	3.59	3.42	5.88	7.77	5.95	4.34
Eu	0.59	0.47	0.55	0.89	0.65	0.90	0.73	0.98	0.96	0.60	0.77	0.55	0.54
Gd	4.43	4.34	3.66	8.14	5.91	3.51	2.74	3.63	3.46	4.47	7.61	4.81	4.01
Tb	1.10	0.98	0.97	1.75	1.25	0.74	0.57	0.71	0.68	1.02	1.91	1.13	1.00

Table S2- Major (wt.%) and trace-element (ppm) concentrations of the felsic igneous rocks in northern Inner Mongolia.

Dy	7.27	7.33	6.94	10.68	7.98	4.69	3.57	4.44	4.21	6.81	13.55	8.08	7.55
Ho	1.58	1.68	1.57	2.20	1.70	0.98	0.76	0.94	0.91	1.59	3.01	1.89	1.81
Er	4.85	5.23	4.98	6.47	5.08	2.99	2.30	2.86	2.72	5.27	9.13	6.26	6.09
Tm	0.76	0.82	0.78	0.98	0.78	0.46	0.35	0.44	0.42	0.87	1.35	1.01	0.99
Yb	5.01	5.44	5.16	6.35	5.14	3.08	2.38	2.92	2.73	5.98	8.57	6.88	6.58
Lu	0.76	0.81	0.78	0.96	0.77	0.48	0.38	0.46	0.43	0.93	1.28	1.07	1.01
Hf	7.9	7.9	8.0	7.9	7.2	2.2	1.8	2.0	2.0	11.1	10.8	10.7	7.9
Pb	12.72	9.33	5.83	8.26	8.73	4.51	2.90	2.57	2.92	17.40	15.06	17.01	16.90
Та	0.62	0.62	0.62	0.56	0.57	0.13	0.14	0.14	0.13	0.75	0.75	0.75	0.78
Th	11.25	10.66	10.86	11.40	9.76	3.74	2.37	2.89	2.49	13.82	13.41	13.15	13.26
U	3.10	3.08	2.63	4.35	3.73	1.18	0.87	0.93	0.85	2.83	3.01	2.81	2.57
Sc	3.2	3.3	2.9	2.9	2.3	14.2	13.1	12.5	13.6	2.3	2.6	2.4	2.8
V	4	4	5	5	3	91	90	96	96	2	3	1	3
Cr	2	2	2	4	2	18	16	15	18	3	4	4	4
Co	2.2	0.6	0.7	0.9	0.6	11.1	9.9	10.0	11.3	0.6	0.6	0.7	0.8
Ni	4	3	3	4	2	10	10	8	9	4	4	4	4
Cu	16.9	15.3	8.9	12.2	10.9	14.3	10.7	7.4	13.8	11.0	5.7	6.7	4.6
Zn	53.4	32.5	34.5	50.5	28.1	80.8	62.0	66.2	76.6	27.3	112.9	106.9	36.5
Ga	21.3	20.1	21.7	20.3	16.9	14.4	14.1	13.4	13.4	18.6	23.9	22.2	19.1
Rb	127	94	117	115	74	26	18	33	18	117	154	152	134
Sr	31	29	29	33	27	171	148	114	147	33	38	36	36
Ва	339	341	344	399	299	264	141	292	197	604	615	663	667
A/CNK	1.15	1.12	1.19	1.11	1.09	1.05	1.05	0.97	0.99	1.06	1.11	1.09	1.06
A/NK	1.19	1.16	1.22	1.15	1.12	1.70	1.71	1.42	1.59	1.09	1.15	1.13	1.10
Eu/Eu*	0.38	0.36	0.41	0.32	0.33	0.76	0.79	0.83	0.85	0.36	0.31	0.32	0.39
LaN/YbN	3.40	1.99	2.56	3.48	3.15	1.75	2.00	2.10	1.97	3.08	2.76	3.01	1.49
La/Sm	4.60	4.06	4.13	3.53	3.65	2.02	2.26	2.38	2.20	4.36	4.24	4.86	3.15
Ga/Al	3.07	2.97	3.16	2.97	2.53	2.03	1.89	1.76	1.76	2.83	3.71	3.43	2.95

							initial							s (t)	f	T_{DM}	T _{DM2}
Sample	t(Ma)	Rb(ppm)	Sr(ppm)	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	$\pm 2\sigma$	⁸⁷ Sr/ ⁸⁶ Sr	Sm(ppm)	Nd(ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	$\pm 2\sigma$	¹⁴³ Nd/ ¹⁴⁴ Nd	Initial Nd	$\mathcal{E}_{Nd}(t)$	¹ Sm/Nd	(Ma)	(Ma)
18XLHT-																	
QY7	279	126.81	30.75	11.976	0.744255	7	0.6967	5.17	24.21	0.129111	14	0.512841	0.512605	6.36	-0.34	558	531
18XLHT-																	
QY8	279	93.58	28.62	9.485	0.735370	10	0.6977	3.72	16.16	0.139178	6	0.512852	0.512598	6.23	-0.29	610	542
18XLHT-																	
QY9	279	117.14	28.50	11.932	0.742568	12	0.6952	4.46	20.27	0.133031	11	0.512858	0.512615	6.57	-0.32	552	514
18XLHT-																	
QY10	279	115.28	33.45	10.000	0.737843	8	0.6981	8.74	36.87	0.143322	18	0.512829	0.512568	5.64	-0.27	695	591
18XLHT-																	
QY11	279	73.95	26.55	8.077	0.731586	9	0.6995	6.18	26.78	0.139565	10	0.512834	0.512580	5.87	-0.29	650	572
18XWQQ																	
-QY21	319	25.80	170.76	0.437	0.705558	6	0.7036	3.74	13.83	0.163476	12	0.512953	0.512611	7.49	-0.17	600	469
18XWQQ																	
-QY22	319	18.09	148.28	0.353	0.705314	5	0.7037	2.93	11.22	0.158079	11	0.512963	0.512633	7.92	-0.20	512	434
18XWQQ																	
-QY24	319	32.79	114.05	0.832	0.707045	8	0.7033	3.59	13.77	0.157678	7	0.512965	0.512636	7.97	-0.20	504	430
18XWQQ																	
-QY25	319	18.29	146.51	0.361	0.705307	9	0.7037	3.42	12.97	0.159473	4	0.512961	0.512627	7.81	-0.19	533	443
18XWQ-																	
QY6	279	117.16	33.25	10.231	0.745387	9	0.7048	5.88	27.66	0.128645	8	0.512674	0.512439	3.13	-0.35	853	800
18XWQ-																	
QY7	279	153.71	38.10	11.720	0.750298	9	0.7038	7.77	35.90	0.130935	6	0.512682	0.512443	3.21	-0.33	862	794
18XWQ-																	
QY10	279	151.61	36.43	12.093	0.751735	10	0.7037	5.95	29.11	0.123610	8	0.512690	0.512464	3.61	-0.37	779	760
18XWQ-																	
QY11	279	133.72	36.09	10.761	0.746753	13	0.7040	4.34	17.65	0.148576	13	0.512721	0.512449	3.32	-0.24	1005	784

Table S3- Whole-rock Sr-Nd isotopic compositions of the felsic igneous rocks in northern Inner Mongolia.

Note: $f_{Sm/Nd} = ({}^{147}Sm/{}^{144}Nd)_{sample}/({}^{147}Sm/{}^{144}Nd)_{CHUR}-1$; $T_{DM} = 1/\lambda \times \ln \{1 + [({}^{143}Nd/{}^{144}Nd)_{sample} - ({}^{143}Nd/{}^{144}Nd)_{DM}]/[({}^{147}Sm/{}^{144}Nd)_{sample} - ({}^{147}Sm/{}^{144}Nd)_{DM}]\}$. The ${}^{143}Nd/{}^{144}Nd$ and ${}^{147}Sm/{}^{144}Nd$ ratios of chondrite and depleted mantle at present day are 0.512638 and 0.1967, 0.51315 and 0.2137, respectively (Jacobsen and Wasserburg, 1980). **References**

Jacobsen, S.B., and Wasserburg, G.J. (1980). Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters. 50, 139-155

Spot no.	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2σ	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	t(Ma)	$\epsilon_{\rm Hf}(0)$	$\epsilon_{\rm Hf}(t)$	Hfi	$f_{Lu/Hf}^{}$	T _{DM} (Ma)	T _{DM} ^C (Ma)
XWQQ-TW7-1	0.03307	0.00033	0.001308	0.000018	0.283018	0.000018	319	8.7	15.4	0.283010	-0.96	334	343
XWQQ-TW7-2	0.03070	0.00110	0.001222	0.000032	0.283016	0.000018	319	8.6	15.4	0.283009	-0.96	336	346
XWQQ-TW7-3	0.05196	0.00057	0.001987	0.000021	0.283042	0.000018	319	9.5	16.1	0.283030	-0.94	305	298
XWQQ-TW7-4	0.03417	0.00092	0.001323	0.000037	0.283021	0.000016	319	8.8	15.5	0.283013	-0.96	330	336
XWQQ-TW7-5	0.03348	0.00021	0.001320	0.000016	0.283024	0.000016	319	8.9	15.7	0.283016	-0.96	325	329
XWQQ-TW7-06	0.03117	0.00036	0.001233	0.000009	0.282998	0.000016	319	8.0	14.7	0.282991	-0.96	362	387
XWQQ-TW7-07	0.02030	0.00005	0.000811	0.000002	0.283021	0.000018	319	8.8	15.7	0.283016	-0.98	325	329
XWQQ-TW7-08	0.03833	0.00020	0.001499	0.000006	0.283018	0.000013	319	8.7	15.4	0.283009	-0.95	336	345
XWQQ-TW7-09	0.05870	0.00140	0.002252	0.000060	0.283033	0.000017	319	9.2	15.8	0.283020	-0.93	321	321
XWQQ-TW7-10	0.02632	0.00007	0.001079	0.000004	0.283014	0.000015	319	8.6	15.3	0.283008	-0.97	338	348
XWQQ-TW7-11	0.02530	0.00008	0.000994	0.000003	0.283012	0.000012	319	8.5	15.3	0.283006	-0.97	340	352
XWQQ-TW7-12	0.03130	0.00062	0.001239	0.000020	0.283022	0.000016	319	8.8	15.6	0.283015	-0.96	328	333
XWQQ-TW7-13	0.03697	0.00071	0.001444	0.000030	0.283023	0.000016	319	8.9	15.6	0.283014	-0.96	328	333
XWQQ-TW7-14	0.04185	0.00075	0.001642	0.000032	0.283036	0.000016	319	9.3	16.0	0.283026	-0.95	311	306
XWQQ-TW7-15	0.05635	0.00012	0.002175	0.000010	0.28302	0.000016	319	8.8	15.3	0.283007	-0.93	339	350
XLHT-TW3-1	0.09211	0.00074	0.003199	0.000015	0.283025	0.000019	280	8.9	14.5	0.283008	-0.90	341	371
XLHT-TW3-2	0.1083	0.0039	0.00374	0.00014	0.283058	0.000023	282	10.1	15.6	0.283038	-0.89	296	302
XLHT-TW3-3	0.03927	0.00019	0.001428	0.000005	0.283003	0.000016	280	8.2	14.1	0.282996	-0.96	357	400
XLHT-TW3-4	0.0951	0.0077	0.00290	0.00018	0.283045	0.000023	279	9.7	15.3	0.283030	-0.91	308	323
XLHT-TW3-5	0.0827	0.0014	0.002981	0.000044	0.283006	0.000023	277	8.3	13.8	0.282991	-0.91	368	413
XLHT-TW3-6	0.11789	0.00067	0.004021	0.000011	0.283023	0.000022	279	8.9	14.3	0.283002	-0.88	352	386
XLHT-TW3-7	0.04909	0.00018	0.001762	0.000005	0.283021	0.000020	279	8.8	14.6	0.283012	-0.95	334	364
XLHT-TW3-8	0.06462	0.00057	0.002231	0.000021	0.283026	0.000020	279	9.0	14.7	0.283014	-0.93	331	358
XLHT-TW3-9	0.1195	0.0016	0.004153	0.000046	0.283072	0.000021	279	10.6	16.0	0.283050	-0.87	278	277

Table S4- Zircon Hf isotopic compositions of the felsic igneous rocks in northern Inner Mongolia.

XLHT-TW3-10	0.06979	0.00068	0.002499	0.000025	0.283031	0.000023	279	9.2	14.8	0.283018	-0.92	326	350
XLHT-TW3-11	0.04949	0.00021	0.001810	0.0000069	0.283018	0.000018	279	8.7	14.5	0.283009	-0.95	339	371
XLHT-TW3-12	0.0638	0.0012	0.002318	0.000041	0.283054	0.000025	279	10.0	15.7	0.283042	-0.93	290	296
XLHT-TW3-13	0.05068	0.00018	0.001792	0.000007	0.283037	0.000018	279	9.4	15.2	0.283028	-0.95	311	328
XLHT-TW3-14	0.05134	0.00078	0.001838	0.000029	0.282997	0.000017	279	8.0	13.8	0.282987	-0.94	369	419
XLHT-TW3-15	0.0724	0.0015	0.002593	0.000058	0.283008	0.000022	279	8.3	14.0	0.282994	-0.92	361	403
XLHT-TW3-16	0.1184	0.0014	0.004109	0.000048	0.283066	0.000020	279	10.4	15.8	0.283045	-0.88	287	290
XLHT-TW3-17	0.06905	0.00038	0.002430	0.000009	0.283034	0.000019	279	9.3	15.0	0.283021	-0.93	321	343
XLHT-TW3-18	0.05483	0.00059	0.002005	0.000021	0.283029	0.000020	279	9.1	14.9	0.283019	-0.94	324	349
XLHT-TW3-19	0.0829	0.0028	0.002820	0.000075	0.283017	0.000022	279	8.7	14.3	0.283002	-0.92	350	386
XLHT-TW3-20	0.05189	0.00025	0.001837	0.000009	0.283039	0.000015	279	9.4	15.2	0.283029	-0.94	308	324
XWQ-TW3-01	0.02441	0.00022	0.000858	0.000003	0.282872	0.000019	279	3.5	9.5	0.282868	-0.97	537	689
XWQ-TW3-02	0.04386	0.00069	0.001493	0.000016	0.282872	0.00002	279	3.5	9.4	0.282864	-0.96	546	697
XWQ-TW3-03	0.04298	0.00056	0.001525	0.000016	0.282915	0.000018	279	5.1	10.9	0.282907	-0.95	484	600
XWQ-TW3-04	0.0564	0.0023	0.001847	0.000066	0.282896	0.000018	279	4.4	10.2	0.282886	-0.94	516	647
XWQ-TW3-05	0.02400	0.00006	0.000868	0.000002	0.282883	0.000019	279	3.9	9.9	0.282878	-0.97	521	665
XWQ-TW3-06	0.03420	0.00009	0.001214	0.000005	0.282853	0.000018	279	2.9	8.8	0.282847	-0.96	569	736
XWQ-TW3-07	0.03963	0.00097	0.001400	0.000031	0.282866	0.000018	279	3.3	9.2	0.282859	-0.96	553	709
XWQ-TW3-08	0.0467	0.0030	0.001510	0.000077	0.282822	0.000018	279	1.8	7.6	0.282814	-0.95	618	809
XWQ-TW3-09	0.02704	0.00037	0.000959	0.000009	0.282856	0.000017	279	3.0	8.9	0.282851	-0.97	561	726
XWQ-TW3-10	0.03916	0.00024	0.001397	0.000006	0.282881	0.000019	279	3.9	9.7	0.282874	-0.96	531	675
XWQ-TW3-11	0.01943	0.00024	0.000723	0.000008	0.282861	0.000019	279	3.1	9.1	0.282857	-0.98	550	712
XWQ-TW3-12	0.04316	0.0005	0.001498	0.000014	0.282887	0.000022	279	4.1	9.9	0.282879	-0.95	524	663
XWQ-TW3-13	0.02656	0.00012	0.000972	0.000006	0.282893	0.000019	279	4.3	10.2	0.282888	-0.97	508	643
XWQ-TW3-14	0.03089	0.00019	0.001103	0.000005	0.282882	0.000019	279	3.9	9.8	0.282876	-0.97	526	670
XWQ-TW3-15	0.0316	0.0010	0.001126	0.000031	0.282886	0.000026	279	4.0	10.0	0.282880	-0.97	521	661
XWQ-TW3-16	0.03065	0.00070	0.001085	0.000023	0.282898	0.000017	279	4.5	10.4	0.282892	-0.97	503	633

Note: ¹⁷⁶Lu decay constant: $\lambda = 1.867 \times 10-11$ yr⁻¹ (Söderlund et al., 2004); Chondritic values: (¹⁷⁶Lu/¹⁷⁷Hf)_{CHUR} = 0.0332±0.0002, (¹⁷⁶Hf/¹⁷⁷Hf)_{CHUR} = 0.282772±0.000029 (Blichert-Toft and Albarede, 1998); depleted mantle values: (¹⁷⁶Lu/¹⁷⁷Hf)_{DM}== 0.0384, (¹⁷⁶Hf/¹⁷⁷Hf)_{DM}== 0.28325 (Griffin et al., 2000); Hf_i: initial Hf isotope composition for U-Pb age; $f_{Lu/Hf} = (^{176}Lu/^{177}Hf)_{sample}/(^{176}Lu/^{177}Hf)_{CHUR}-1$; $T_{DM} = 1/\lambda \times \ln\{1+[(^{176}Lu/^{177}Hf)_{DM}]/[(^{176}Lu/^{177}Hf)_{sample}-(^{176}Lu/^{177}Hf)_{DM}]\}$; $T_{DM}^{C} = 1/\lambda \times \ln\{1+[(^{176}Hf/^{177}Hf)_{sample}, (^{176}Hf/^{177}Hf)_{DM,i}]/[(^{176}Lu/^{177}Hf)_{DM,i}]/[(^{176}Lu/^{177}Hf)_{DM,i}]\}$ +; (¹⁷⁶Lu/¹⁷⁷Hf)_C=0.015; t=crystallization time of zircon.

References:

Blichert-Toft, J., and Albarede, F. (1998). The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters. 148, 243–258.

Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O'Reilly, S.Y., and Shee, S.R. (2000). The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta. 64, 133–147.

Söderlund, U., Patchett, P.J., Vervoort, J.D., and Isachsen, C.E. (2004). The ¹⁷⁶Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters. 219, 311–324.

1						
	Sample	Lithology	Pluton	Age	σ	References
		Alkaline granite	Baiyinwula	286	3	Hong et al., 1994
		Alkaline granite	Zuhengdeleng	284	2	Hong et al., 1994
		Alkaline granite	Zuhengdeleng	276	7	Hong et al., 1994
		Alkaline granite	Zhanawula	277	3	Hong et al., 1994
	ro	Quarz diorite	Sonid Zuoqi	490	8	Chen et al., 2000
	93SS-2	Quarz diorite	Sonid Zuoqi	309	8	Chen et al., 2000
		Diorite	Sonid Zuoqi	309	8	Chen et al., 2001
	9843-1/-6	Alkaline granite	Daheishan	292	4	Wu et al., 2002
	9801-2	Aluminous A-type	Xiaoshantun	285	2	Wu et al., 2002
	9806-3	Aluminous A-type	Guguhe	264	6	Wu et al., 2002
	9849-1	Aluminous A-type	Songmushan	260	3	Wu et al., 2002
	9805-2	Aluminous A-type	Sizhanlinchang	282	4	Wu et al., 2002
		Granite	Xilinhot	316	3	Shi et al., 2003
	MS02-5	Quarz diorite	Sonid Zuoqi	457	6	Shi et al., 2004
	MS02-5	Tonalite	Sonid Zuoqi	479	8	Shi et al., 2004
	MS3-5	Tonalite	Sonid Zuoqi	464	8	Shi et al., 2004
	MS3-3	Granite	Sonid Zuoqi	423	8	Shi et al., 2004
	MS3-4	Granite	Sonid Zuoqi	424	10	Shi et al., 2004
	MS3-1	Granite	Sonid Zuoqi	222	6	Shi et al., 2004
	MS3-2	Granite	Sonid Zuoqi	204	12	Shi et al., 2004
	MS4-1	Granite	Sonid Zuoqi	222	4	Shi et al., 2004
		A-type granite	Xilinhot	276	2	G.H. Shi et aL., 2004
	2002MB06	granodiorite		430	7	Miao et al., 2007
	GW05049	Monzogranite	Shibazhan	499	1	Ge et al., 2007

Table S5- Summary of zircon U-Pb age data of granitic rocks in XIMOB.

GW050104	Granodiorite	Neihe	500	1	Ge et al., 2007
GW05056	Granodiorite	Baiyinna	460	1	Ge et al., 2007
GW05037	Monzogranite	Chalabanhe	481	3	Ge et al., 2007
GW05039	Granodiorite	Chalabanhe	475	2	Ge et al., 2007
GW05044	Granodiorite	Chalabanhe	465	1	Ge et al., 2007
	Quarz diorite	Meilin	313	5	Bao et al., 2007
	Quarz diorite	Meilin	323	4	Bao et al., 2007
	Quarz diorite	Meilin	315	4	Bao et al., 2007
X4119TW	Monzogranite	Qianjingchang	281	4	Bao et al., 2007
XP51TW3	Monzogranite	Daqing	282	1	Bao et al., 2007
X4159TW	Syenogranite	Wulantaolegai	260	1	Bao et al., 2007
	Syenogranite	Wulantaolegai	240	1	Bao et al., 2007
X4004TW	Monzogranite	Yangjiaolingaole	217	1	Bao et al., 2007
JHS3-1	High-Mg dacite	Seluohe	252	5	Li et al., 2007
MT1-2	Albitite	Tulinkai	425	2	Jian et al., 2008
MT1-1	Quarz diorite	Tulinkai	454	3	Jian et al., 2008
MT1-11	Dacite	Tulinkai	458	3	Jian et al., 2008
MT1-8	Tonalite	Tulinkai	490	7	Jian et al., 2008
BRAB01	Tonalite	Bater	417	2	Jian et al., 2008
BYH01	Quarz diorite	Bater	440	2	Jian et al., 2008
BYH02	diorite	Bater	452	3	Jian et al., 2008
MS3-3	Two feldspar granite	Sonid Zuoqi	423	2	Jian et al., 2008
MS3-4	Two feldspar granite	Sonid Zuoqi	427	2	Jian et al., 2008
MS3-5	Quarz diorite	Sonid Zuoqi	464	3	Jian et al., 2008
MS2-7	Quarz diorite	Sonid Zuoqi	481	2	Jian et al., 2008
MS2-4	Tonalite	Sonid Zuoqi	471	2	Jian et al., 2008
MS2-5	Quarz diorite	Sonid Zuoqi	480	2	Jian et al., 2008

MS2-1	Cumulate gabbro	Sonid Zuoqi	483	2	Jian et al., 2008
	Quarz diorite	Chaganaobao	237	6	W.Zhang et al., 2008
BYH03	Quarz diorite	Damaoqi	446	2	W.Zhang et al., 2008
BYH01	Granodiorite	Damaoqi	440	2	W.Zhang et al., 2008
DRAB01	Diorite	Damaoqi	417	2	W.Zhang et al., 2008
	Monzogranite	Damiao	265	7	Zhang et al., 2009
	K-spar granite	Shierzhan	298	2	Sui et al., 2009
	Alkaline granite	Jingesitai	285	1	Zhang et al., 2009
	Diorite	Sonid Zuoqi	310	5	Chen et al., 2009
	Quarz diorite	Xi Ujimqin Qi	319	2	Liu et al., 2009
	Granite		295	3	Liu et al., 2009
42-79	Quarz diorite	Xi Ujimqin Qi	322	3	Liu et al., 2009
38-72	Quarz diorite	Xi Ujimqin Qi	325	3	Liu et al., 2009
ZK0302-1	Diorite	Weilasitu	310	2	Xue et al., 2010
ZK0707-2	Quarz diorite	Weilasitu	311	2	Xue et al., 2010
7079-2	Granodiorite	Bairendaba	319	2	Xue et al., 2010
CGHDM02	Plagiogranite	Hugiert- Chaganhadamiao	288	6	Jian et al., 2010
SLS01	Gabbro-Diorite	Mandula	292	2	Jian et al., 2010
SLS02	Granite	Mandula	313	2	Jian et al., 2010
SLS05	Granite	Mandula	314	3	Jian et al., 2010
SLS06	Diabase dike	Mandula	274	3	Jian et al., 2010
SLS04	Diabase dike	Mandula	253	2	Jian et al., 2010
MSL13-2	High-Mg diorite	Mongolian Soloner	252	1	Jian et al., 2010
MSL13-1	Anorthosite	Mongolian Soloner	252	2	Jian et al., 2010
MSL02	Tonalite		295	2	Jian et al., 2010
MSL03	Trondjhemite		324	3	Jian et al., 2010

WE14-1	Granodiorite	Wuerqihanzhen	331	4	Zhao et al., 2010
	Diorite	Bairendaba	327	2	Liu et al., 2010
SMZG-01	Granite	Dunmi	263	1	Liu et al., 2010
	Syenogranite	Banshantu	283	2	Wu et al., 2011
	Monzogranite	Telegute	280	3	Wu et al., 2011
BYTG03	Monzogranite	Moruogeqin	312	4	Yun et al., 2011
	Granite	Xilingol	421	7	Ge et al., 2011
HG-1	Granite	Xilingol	458	1	Ge et al., 2011
PM33TW1	Granodiorite		263	3	Jiang et al., 2011
TW5532-1	Quarz Monzonite		264	2	Jiang et al., 2011
HDL4-1	Diorite	Shuangguanglinchang	450	6	Wang et al., 2012
HDL10-4	Monzogranite	Shuangguanglinchang	425	3	Wang et al., 2012
HDL11-1	Monzogranite	Shuangguanglinchang	424	2	Wang et al., 2012
1020-1	Monzogranite	Dong Ujimqin Qi	307	2	Cheng et al., 2012
0058-1	Syenogranite	Dong Ujimqin Qi	300	6	Cheng et al., 2012
	Granite	Zhunsuji	298	3	Liu et al., 2012
GS3374	Monzogranite	Erenbuge	308	2	Xu et al., 2012
GS2397	Granite	Erenbuge	317	2	Xu et al., 2012
	Granite	Jingsongqiaodong	288	2	She et al., 2012
	Granite	Boketu-Zhalantun	295	1	She et al., 2012
	Biotite granite	Mianduhelinchang	295	1	She et al., 2012
	granite	Zhalantun	295	1	She et al., 2012
	Biotite granite	Honghuaerjierdaoqiao	277	3	She et al., 2012
	porphyritic granite	Honghuaerjierdaoqiao	289	2	She et al., 2012
	granite	Mianduhelinchang	295	1	She et al., 2012
	Monzonitic granite	Xinganlingding	299	3	She et al., 2012
u0024-9-1	K-spar granite	Xilinhot	330	2	Zhou, 2012

	Monzogranite	Xilinhot	323	2	Zhou, 2012
	Granodiorite	Xilinhot	318	1	Zhou, 2012
	Granodiorite	Xilinhot	278	2	Zhou, 2012
	Diorite	Xilinhot	275	2	Zhou, 2012
	Syenogranite	Adela Gawula	273	2	Zhang et al., 2013
BP9B1	Quarz diorite	Tugurige	453	5	Xu et al., 2013
BP5B1	Quarz diorite	Tugurige	425	3	Xu et al., 2013
	K-spar granite (A-type)	Wudaogou	272	4	Tong et al., 2015
	K-spar granite (A-type)	Wudaogou	292	4	Tong et al., 2015
SZK2-TW1	Granite	Dong Ujimqin Qi	319	4	Liang et al.,2013
WB08-N4	Monzogranite	Zhengxiaobaiqi	457	11	Qin et al., 2013
WB08-N5	Monzogranite	Zhengxiaobaiqi	423	10	Qin et al., 2013
	Monzonitic granite	Zhalantun	289	3	T. Qin, 2013
	Monzonitic granite	Zhalantun	282	6	T. Qin, 2013
	Monzonitic granite	Zhalantun	292	5	T. Qin, 2013
	Monzonitic granite	Zhalantun	282	5	T. Qin, 2013
	Monzonitic granite	Zhalantun	284	2	T. Qin, 2013
	Monzonitic granite		314	2	He al., 2013
	Syenogranite (I-type)	Quansheng	295	2	Cui et al., 2013
LK12-1	Monzogranite	Fangniugou	270	1	Cao et al., 2013
LK36-1	Syenogranite	Youyi	259	2	Cao et al., 2013
LK24-1	Granodiorite	Sanmenmojia	255	2	Cao et al., 2013
LK04-2	Monzogranite	Jianpingzhen	249	1	Cao et al., 2013
LK16-1	Harzburgite	Bakeshu	222	3	Cao et al., 2013
NM12-128	Granite	Baolige	287	1	Li et al., 2014
NM12-122	Granodiorite	Baolige	312	1	Li et al., 2014
	Monzogranite	Zhalantun	289	3	Qin, 2014

	Alkali feldspar granite	Zhalantun	282	6	Qin, 2014
	Granodiorite	Zhalantun	284	2	Qin, 2014
	Granodiorite	Zhalantun	292	2	Qin, 2014
NM10-72	Plagiogranite	Eastern Erenhot	345	6	Zhang et al., 2015
E925-7	Peralkaline granite	Hongol	276	1	Tong et al., 2015
E930-1	Peralkaline granite	Saiyinwusu	279	1	Tong et al., 2015
E101-1.1	Peralkaline granite	Baolag	285	1	Tong et al., 2015
E101-2	Peralkaline granite	Baiyinwula	285	1	Tong et al., 2015
	Peralkaline granite	Baiyinwula	290	3	Tong et al., 2015
SN10-2	Peralkaline granite	Zuhengdeleng	289	2	Zhang et al., 2015
SN10-3	Peralkaline granite	Zuhengdeleng	288	2	Zhang et al., 2015
SN10-9	Peralkaline granite	Zuhengdeleng	290	2	Zhang et al., 2015
	K-spar granite	Wudaogou	272	4	Tong et al., 2015
	K-spar granite	Wudaogou	292	4	Tong et al., 2015
BNM-3	Granodiorite porphyry	Bainiaomiao	455	6	Li et al., 2016
	Syenogranite	Huolongmen	295	2	Li et al., 2017
HJY01	Diorite	Xinglong	523	2	Feng et al., 2017
HJY02	Monzogranite	Xinglong	473	2	Feng et al., 2017
HJY03	Diorite	Xinglong	483	2	Feng et al., 2017
DBS01	Ultramafic intrusion	Duobaoshan	497	6	Feng et al., 2017
2014GA-262	Granite	Southern Mongolia	312	5	Zhu et al., 2017
TW20	Alkaline granite	Moguqi	300	3	Ma et al., 2019
TW32	Granodiorite	Moguqi	293	2	Ma et al., 2019
	Andesite	Sonid Zuoqi	281	1	Gao et al., 1998
HBQ12	Rhyolite	Laotudingzi	263	2	Meng et al., 2008
HBQ13	Dacite	Erlongshan	263	5	Meng et al., 2008
HM4-1	Rhyolite	Yanggang	264	7	Meng et al., 2008

HM6	Rhyolite		268	2	Meng et al., 2008
	Rhyolite	Xi Ujimqin Qi	279	3	X.H Zhang et al., 2008
	Rhyolite		276	10	Nie et al.,2009
	Rhyolite		271	8	Nie et al.,2009
SLS03	Andesite	Mandula	250	2	Jian et al., 2010
BY04-20	Basaltic andesite		289	3	Zhang et al., 2011
BY04-1	Rhyolite		287	3	Zhang et al., 2011
HBQ1-1	Rhyolite	Hejiatun	291	2	Meng et al., 2011
HBQ3-1	Dacite	Dongshan	286	3	Meng et al., 2011
HBQ4	Dacite	Dongshan	288	2	Meng et al., 2011
	Rhyolite	Dong Ujimqin Qi	303	7	Xin et al., 2011
	Tonalite	Dong Ujimqin Qi	305	3	Xin et al., 2011
	Andesite	Dong Ujimqin Qi	320	7	Xin et al., 2011
HB1-1	Rhyolite	Bin county	294	3	Meng et al., 2011
HB14-1	Basaltic andesite	Yuquan	293	2	Meng et al., 2011
HB17-1	Basaltic andesite	Fanshentun	293	2	Meng et al., 2011
HMD4-1	Dacite	Weihu Mountain	286	2	Meng et al., 2011
HYS1-1	Rhyolite	Taiantun	291	4	Meng et al., 2011
HYS2-1	Rhyolite	Taiantun	291	3	Meng et al., 2011
HNA3-1	Rhyolite	Xiaobeihulinchang	451	2	Wang et al., 2012
HYC11-1	Rhyolite	Fuyuhelinchang	451	2	Wang et al., 2012
HDL10-2	Tonalite	Shuangguanglinchang	443	3	Wang et al., 2012
	Rhyolite	Wunuerhedong	287	1	She et al., 2012
310.9	Trachyte	Delewula	310	1	Fu et al., 2014
215-19	Trachyte	Delewula	302	2	Fu et al., 2014
HSW10-1	Rhyolite	Heihe	351	3	Yu Li et al., 2014
HSW4-1	Rhyolite	Heihe	335	2	Yu Li et al., 2014
HSW5-5	Rhyolite	Sunwu	319	2	Yu Li et al., 2014

12HSW4	Rhyolite	Sunwu	295	2	Yu Li et al., 2014
HSW8	Rhyolite	Heihe	293	2	Yu Li et al., 2014
NM12-124	Andesite	Baolige	310	1	Li et al., 2014
	Rhyolite	Baolige	309	2	Li et al., 2014
	Rhyolite	Baolige	307	6	Li et al., 2014
NM08-171	Rhyolite	Xi Ujimqin Qi	279	4	Chen et al., 2014
NM08-10	Rhyolite	Bayanwula	307	6	Li et al., 2014
NM10-25	Rhyolite	Bayanwula	309	2	Li et al., 2014
NM08-113	Andesite	Eastern Erenhot	314	3	Zhang et al., 2015
XL04-35	Basaltic andesite	Xilinhot	281	3	Zhang et al., 2015
XW04-40	Rhyolite	Xi Ujimqin Qi	279	3	Zhang et al., 2015
PM018-3TW	Andesitic tuff	Xi Ujimqin Qi	282	2	Li et al., 2016
PM001-32TW	Dacite	Xi Ujimqin Qi	286	1	Li et al., 2016
PM030-19TW	Rhyolite	Xi Ujimqin Qi	287	1	Li et al., 2016
PM005-4TW	Andesite	Xi Ujimqin Qi	311	2	Li et al., 2016
D1020-TW	Rhyolite	Xi Ujimqin Qi	275	1	Li et al., 2016
4031	Andesite	Zhalahade	322	4	Fu et al., 2016
1016-2	Andesite	Zhalahade	320	2	Fu et al., 2016
213-5	Rhyolite	Zhalahade	318	4	Fu et al., 2016
219-6	Trachyte	Aotegentaolegai	317	2	Fu et al., 2016
5335	Trachyte	Delewula	310	2	Fu et al., 2016
211-2	Trachytic tuff	Delewula	300	2	Fu et al., 2016
11X03-4	Andesite	Xi Ujimqin Qi	253	3	Gao et al., 2016
11X04-1	Andesite	Xi Ujimqin Qi	252	1	Gao et al., 2016
11X07-1	Andesite	Xi Ujimqin Qi	251	2	Gao et al., 2016
KY13-12/4	Basaltic andesite	Northern Liaoning	250	4	Yuan et al., 2016
KY12-33/4	Andesite	Northern Liaoning	235	4	Yuan et al., 2016
NM14-50	Rhyolite	Sonid Zuoqi	439	2	Chen et al., 2016

NM14-53	Rhyolite	Sonid Zuoqi	441	5	Chen et al., 2016
NM14-59	Rhyolite	Sonid Zuoqi	445	3	Chen et al., 2016
P13-27-1	high-Si Rhyolite	Baoligaomiao	326	6	Wei et al., 2017
D027-1	Basaltic andesite	Baoligaomiao	319	6	Wei et al., 2017
P13-12-1	Dacite	Baoligaomiao	317	3	Wei et al., 2017
P04-22-1	Andesite	Baoligaomiao	314	6	Wei et al., 2017
P041-7-2	Rhyolite	Baoligaomiao	307	4	Wei et al., 2017
P14-13-1	high-Si Rhyolite	Baoligaomiao	305	6	Wei et al., 2017
DBS02	Rhyolitic tuff	Duobaoshan	491	5	Feng et al., 2017
2014GA-241	Rhyolite	Southern Mongolia	314	5	Zhu et al., 2017
DS005	Rhyolitic tuff	northern margin of the Songmen terrane	292	2	Yu et al., 2017
DS019	Rhyolite	northern margin of the Songmen terrane	284	3	Yu et al., 2017
DS042	Rhyolite	northern margin of the Songmen terrane	290	2	Yu et al., 2017
DS070	Rhyolitic tuff	northern margin of the Songmen terrane	283	3	Yu et al., 2017
DS079	Rhyolite	northern margin of the Songmen terrane	295	4	Yu et al., 2017
12GW107	Alkali feldspar granite	Dongwuqi	301	3	Tian et al., 2018
13GW443	Alkali feldspar granite	Dongwuqi	315	3	Tian et al., 2018
13GW450	Alkali feldspar granite	Dongwuqi	306	2	Tian et al., 2018
13GW447	Alkali feldspar granite	Dongwuqi	312	2	Tian et al., 2018
13GW460	Alkali feldspar granite	Dongwuqi	309	2	Tian et al., 2018
11XL-5.2	Granodiorite	Beidashan	277	3	Li et al., 2016
11SH-3	Granodiorite	Shahutong	275	3	Li et al., 2016
DM210	Gabbri diorite	Bainaimiao	475	4	Zhou et al., 2018
DM232	diorite	Bainaimiao	458	2	Zhou et al., 2018

DM132	diorite	Baimaimaio	428	2	Zhou et al., 2018
FK04-19	Ganodiorite	Fuke	261	2	Zhang et al., 2010
FK04-24	Quartz monzonite	Fuke	249	2	Zhang et al., 2010
FX09-11	monzogranite	northern Liaoning	221	3	Zhang et al., 2012
HDB2-12	Ganodiorite	Duobaoshan	479	2	Wu et al., 2015
TW29	Rhyolite	Moguqi	293	3	Ma et al., 2019
DWQ-TW2	Rhyolite	Dong Ujimqin	316	2	Li et al., 2021
DWQ-TW5	Alkali-feldspar granite	Dong Ujimqin	300	1	Li et al., 2021
MD-TW1	Dacite	Maodeng	305	2	Li et al., 2021
XWQ-TW6	Andeiste	Xi Ujimqin	262	5	Li et al., 2021
SZQ-02	Monzogranite	Xi Ujimqin	323	2	Liu et al., 2020
MD-03	Monzogranite	Xi Ujimqin	322	1	Liu et al., 2020
D3020	Diorite	Xi Ujimqin	329	1	Liu et al., 2020
PM105-19	Plagiogranite	Sunidzuoqi	325	2	Liu et al., 2020
NM16-15	Granodiorite	Hudugetu	436	2	Chen et al., 2020
NM16-16	Granite	Hudugetu	440	2	Chen et al., 2020
NM16-24	Granodiorite	Gutaole	441	4	Chen et al., 2020
NM16-27	Granite	Gutaole	444	2	Chen et al., 2020
XWQQ-TW7	Granodiorite	Xi Ujimqin	319	2	This study
XLHT-TW3	Alkali feldspar granite	Xilinhot	279	1	This study
XWQ-TW3	Rhyolite	Xi Ujimqin	279	1	This study

References

- Bao, Q.Z., Zhang, C.J., Wu, Z.L., Wang, H., Li, W., Sang, J.H., Liu, Y.S., 2007. SHRIMP U-Pb zircon geochronology of a Carboniferous quartzdiorite in Baiyingaole area, Inner Mongolia and its implications. Journal of Jinlin University. 37, 15–23 (in Chinese with English abstract).
- Cao, H.H., Xu, W.L., Pei, F.P., Wang, Z.W., Wang, Z.W., Wang, F., Wang, Z.J., 2013. Zircon U-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block. Lithos. 170–171, 191–207.
- Chen, B., Jahn, B.M., Simon, W., Xu, B., 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectonophysics. 328, 157–182.

- Chen, B., Jahn, B.M., Tian, W., 2009. Evolution of the Solonker suture zone: constraints from zircon U–Pb ages, Hf isotopic ratios and whole-rock Nd–Sr isotope compositions of subduction and collision-related magmas and forearc sediments. J. Asian Earth Sci. 34, 245–257.
- Chen, Y., Zhang, Z.C., Li, K., Yu, H.F., Wu, T.R., 2016. Detrital zircon U-Pb ages and Hf isotopes of Permo-Carboniferous sandstones in central Inner Mongolia, China: Implications for provenance and tectonic evolution of the southeastern Central Asian Orogenic Belt. Tectonophysics. 671, 183–201.
- Cheng, Y.H., Teng, X.J., Xin, H.T., Yang, J.Q., Ji, S.P., Zhang, Y., Li, Y.F., 2012. SHRIMP zircon U–Pb dating of granites in Mahonondor area, East Ujimqin Banner, Inner Mongolia. Acta Petrol. Miner 31(3):323–334 (in Chinese with English abstract).
- Chen, C., Zhang, Z.C., Li, K., Chen, Y., Tang, W.H., Li, J.F., 2014. Geochronology, geochemistry, and its geological significance of the Damaoqi Permian volcanic sequences on the northern margin of the North China Block. Journal of Asian Earth Sciences. 97, 307–319.
- Chen, C., Zhang, Z.C., Guo, Z.J., Li, J.F., Feng, Z.S., Tang, W.H., 2012. Geochronology, geochemistry, and its geological significance of the Permian Mandula mafic rocks in Damaoqi, Inner Mongolia. Sci. Chin. Earth Sci. 55, 39–52 (in Chinese with English abstract).
- Chen, Y., Zhang, Z.C., Qian, X.Y., Li, J.F., Ji, Z.J., Wu, T.R., 2020. Early to mid-Paleozoic magmatic and sedimentary records in the Bainaimiao Arc: An advancing subduction-induced terrane accretion along the northern margin of the North China Craton. Gondwana Research. 79, 263–282. https://doi.org/10.1016/j.gr.2019.08.012.
- Feng, Z.Q., Liu, Y.Q., Li, Y.R., Li, W.M., Wen, Q.B., Liu, B.Q., Zhou, J.P., Zhao, Y.L., 2017. Ages, geochemistry and tectonic implications of the Cambrian igneous rocks in the northern Great Xing'an Range, NE China. Journal of Asian Earth Sciences. 144, 5–21.
- Fu, D., Ge, M., Huang, B., Zhou, W., Zheng, Z., 2014. Establishment and tectonic environment of the Delewula formation in East-Ujimqin, InnerMongolia. Geological Science and Technology Information. 33, 75–85 (in Chinese with English abstract).
- Fu, D., Huang, B., Peng, S.B., Kusky, T.M., Zhou, W.X., Ge, M.C. 2016. Geochronology and geochemistry of late Carboniferous volcanic rocks from northern Inner Mongolia, North China: Petrogenesis and tectonic implications. Gondwana Research. 36, 545–560.
- Gao, D.Z., Jiang, G.Q., 1998. Revision of the stratigraphic division of the Permian and tectonic evolution in the Sonid Left Banner, Inner Mongolia. Regional geology of China. 17(4), 401–411 (in Chinese with English abstract).
- Ge, M.C., Zhou, W.X., Yu, Y., Sun, J.J., Bao, J.Q., Wang, S.H., 2011. Dissoluction and supracrustal rocks dating of Xilin Gol Complex, Inner Mongolia, China. Earth Sci. Front. 18 (5), 182–195 (in Chinese with English abstract).
- Ge, W.C., Sui, Z.M., Wu, F.Y., Zhang, J.H., Xu, X.C., Cheng, R.Y., 2007. Zircon U-Pb ages, Hf isotopic characteristics, and their implications of the Early Paleozoic granites in the northeastern Da Hinggan Mountains, northeastern China. Acta Petrol. Sinica 23, 423–440 (in Chinese with English abstract).
- Guo, F., Fan, W.M., Li, C.W., Miao, L.C. and Zhao, L., 2009. Early Paleozoic subduction of the Paleo-Asian Ocean: Geochronological and geochemical evidence from the Dashizhai basalts, Inner Mongolia. Science in China (Series D). 52(7), 940–951.
- Gao, X.F., Guo, F., Xiao, P.X., Kang, L., Xi, P.G. 2016. Geochemical and Sr–Nd–Pb isotopic evidence for ancient lower continental crust beneath the Xi Ujimqin area of NE China. Lithos. 252–253, 173–184.
- He, F.B., Xu, J.X., Gu, X.D., Cheng, X.B., Wei, B. Li, Z., Liang, Y.N., Wang, Z.L., Huang, Q., 2013. Ages, origin and geological implication of the Amuguleng composite granite in East Ujimqin Banner, Inner Mongolia. Geological Review. 59(6), 1150–1164 (in Chinese with English abstract).

- Hong, D.W., Huang, H.Z., Xiao, Y.J., Xu, H.M., Jin, M.Y., 1994. Permian alkaline granites in central Inner Mongolia and their geodynamic significance. Acta Geol. Sin. 8, 27–39.
- Jian, P., Liu, D.Y., Kröner, A., Windley, B.F., Shi, Y.N., Zhang, F.Q., Shi, G.H., Miao, L.C., Zhang, W., Zhang, Q., Zhang, L.Q., Ren, J.S., 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth, Lithos. 101, 233–259.
- Jian, P., Liu, D., Kröner, A., Windley, B.F., Shi, Y., Zhang, W., Zhang, F., Miao, L., Zhang, L., Tomurhuu D., 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos. 118, 169–190.
- Jiang, X.J., Liu, Y.Q., Pang, N., Shi, Y.R., Xu, Huan, Wei, W.T., Liu, Z.X., Zhao, H.P., Yao, B.G., 2011. Geochemistry and SHRIMP U-Pb Dating of the Guangxingyuan Composite Pluton in HexigtenQi, Inner Mongolia and Its Geological Implication. Acta Geologica Sinica. 85(1), 114–128 (in Chinese with English abstract).
- Li, C.D., Zhang, F.Q., Miao, L.C., Xie, H.Q., Xu, Y.W. 2007. Zircon SHRIMP geochronology and geochemistry of Late Permian High-Mg andesites in Seluohe aera, Jilinprovince, China. Acta Potrotgica Sinica. 23(4), 767–776.
- Li, S., Wilde, S.A., Wang, T., Xiao, W.J., Guo, Q.Q., 2016. Latest Early Permian granitic magmatism in southern Inner Mongolia, China: Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt. Gondwana Research. 29, 168–180.
- Li, Y., Xu, W.L., Wang, F., Tang, J., Pei, F, P., Wang, Z.J., 2014. Geochronology and geochemistry of late Paleozoic volcanic rocks on the western margin of the Songnen-Zhangguangcai Range Massif, NE China: Implications for the amalgamation history of the Xing'an and Songnen-Zhangguangcai Range massifs. Lithos. 205, 394–410
- Li, J.Y., 2006. Permian geodynamic setting of northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J. Asian Earth Sci. 26, 207–224.
- Li, J.Y., Gao, L.M., Sun, G.H., Li, Y.P., Wang, Y.B., 2007. Shuangjingzi Middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleoplates. Acta Petrol. Sinica 23 (3), 565–582 (in Chinese with English abstract).
- Li J L, Liu J G, Wang Y J, Zhu D C, Wu C. 2021. Late Carboniferous to Early Permian ridge subduction identified in the southeastern Central Asian Orogenic Belt: Implications for the architecture and growth of continental crust in accretionary orogens. Lithos, https://doi.org/10.1016/j.lithos.2021.105969.
- Li, H.Y., Zhou, Z.G., Li, P.J., Zhang, D., Liu, C.F., Cheng, C., Cheng, L.Z., Gu, C.N., 2016. A Late Carboniferous-Early Permian Extensional Event in Xi Ujimqin Qi, Inner Mongolia—Evidence from Volcanic Rocks of Dashizhai Formation. Geotectonica et Metallogenia. 5, 996–1013 (in Chinese with English abstract).
- Li, K., Zhang, Z.C., Feng, Z.S., Li, J.F., Tang, W.H., Luo, Z.W., 2014. Zircon SHRIMP U-Pb dating and its geological significance of the Late-Carboniferous to Early-Permian volcanic rocks in Bayanwula area, the central of Inner Mongolia. Acta Petrol. Sinica. 30, 2041–2054 (in Chinese with English abstract).
- Liu, Y.F., Jiang, S.H., Zhang, Y., 2010. The SHRIMP zircon U–Pb dating and geological features of Bairendaba diorite in the Xilinhaote area, Inner Mongolia, China. Geological Bulletin of China 29 (5), 688–696 (in Chinese with English abstract).

- Liu, J.F., Chi, X.G., Zhang, X.Z., Ma, Z.H., Zhao, Z., Wang, T.F., Hu, Z.C., Zhao, X.Y., 2009. ZhaoGeochemical characteristic of Carboniferous quartz-diorite in the southern Xiwuqi area, Inner Mongolia and its tectonic significance Acta Geologica Sinica. 83 (3), 365–376 (in Chinese with English abstract).
- Liu, C., Zhou, Z.G., Wang, G., et al., 2020. Carboniferous ridge subduction in the Xingmeng Orogenic Belt: Constraints from geochronological, geochemical, and Sr-Nd-Hf isotopic analysis of strongly peraluminous granites and gabbro-diorites in the Xilinhot micro-continent, https://doi.org/10.1016/j.gsf.2020.10.008.
- Liang, Y.W., Yu, C.L., Shen, G.Z., Sun, Q.R., Li, J.W., Yang, Y.C., She, H.Q., Zhang, B., Tan, G., 2013. Geochemical characteristics of granites in the Suonaga Pb-Zn-Ag deposit of Dong Ujimqin Banner, Inner Mongolia, and their tectonic and ore-forming implications. Geology in China. 40(3), 767–779 (in Chinese with English abstract).
- Liu, Y.F., Nie, F.J., Jiang, S.H., Hou, W.R., Liang, Q.L., Zhang, Ke., Liu, Y., 2012. Geochronology of Zhunsujihua molybdenum deposit in Sonid Lift Banner, Inner Mongolia, and its geological significance. Mineral deposits. 31(1), 119–128 (in Chinese with English abstract).
- Ma, Y.F., Liu, Y.J., Wang, Y., Qian, C., Si, Q.L., Tang, Z., Qin, T., 2019. Geochronology, petrogenesis, and tectonic implications of Permian felsic rocks of the Central Great Xing'an Range, NE China. International Journal of Earth Sciences. 108, 427–453.
- Miao, L., Zhang, F., Fan, W.M., Liu, D., 2007. Phanerozoic evolution of the Inner Mongolia–Daxinganling orogenic belt in North China: Constraints from geochronology of ophiolites and associated formations, Geol. Soc. London, Spec. Publ. 280, 223–237.
- Meng, E., Xu, W.L., Pei, F.P., Yang, D.B., Wang, F., Zhang, X.Z., 2011. Permian bimodal volcanism in the Zhangguangcai Range of eastern Heilongjiang Province, NE China: Zircon U-Pb-Hf isotopes and geochemical evidence. Journal of Asian Earth Sciences. 41, 119–132.
- Meng, E., Xu, W.L., Pei, F.P., Yang, D.B., Ji, W.Q., Yu, Y., Zhang, X.Z., 2008. Chronology of Late Paleozoic volcanism in eastern and southeastern margin of Jiamusi Massif and its tectonic implications. Chinese Sciences Bulletin 53, 1231–1245.
- Nie, F.J., Xu, D.Q., Jiang, S.H., Hu, P., 2009. Zircon SHRIMP U-Pb dating on rhyolite samples from the Xilimiao Group occurring in the Su-Cha (Sumoqagan Obo) Fluorite District, Inner Mongolia. Acta Geol. Sin. 83, 496–504 (in Chinese with English abstract).
- Qin, T., 2014. Geochemistry, geochronology and tectonic setting of Permain intrusive rocks in Zhalantun area, Inner Mongolia. A dissertation for Masters degree, Jilin University, Changchun, China, pp1–50 (in Chinese with English abstract).
- Qin, Y., Liang, Y.H., Xing, J.L., 2013. The identification of Early Paleozoic O-type adakitic rocks in Zhengxiangbaiqi Area, Inner Mongolia and its significance. Earth Science Frontiers. 20(50), 106–114 (in Chinese with English abstract).
- Qin, T., 2014. Geochemistry, chronology and tectonic significance of the Permian rock mass in the Zhalantun area, Inner Mongolia. A Dissertation Submitted to Jilin University for the Master Degree of Geochemistry (in Chinese with English abstract).
- She, H.Q., Li, J.W., Xiang, A.P., Guan, J.D., Zhang, D.Q., Yang, Y.C., Zhang, D.Q., Tan, G., Zhang, B., 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrol Sin. 28, 571–594 (in Chinese with English abstract).
- Shi, G.H., Liu, D.Y., Zhang, F.Q., Jian, P., Miao, L.C., Shi, Y.R., Tao, H., 2003. SHRIMP zircon U-Pb geochronology and significance of Xilin Gol complex in Inner Mongolia, China. Chinese Science Bulletin. 48(20), 2187–2192 (in Chinese with English abstract).
- Shi, Y.R., Liu, D.Y., Zhang, Q., Jian, P., Zhang, F.Q., Miao, L.C., Shi, G.H., Zhang, L.Q., Tao, H., 2004. SHRIMP dating of diorites and granites in southern Suzuoqi, Inner Mongolia. Acta Geologica Sinica. 78, 789–799.

- Shi, G.H., Miao L.C., Zhang, F.Q., Jian, P., Fan, W.M., Liu, D.Y., 2004. Emplacement age and tectonic implications of the Xilinhot A-type granite in Inner Mongolia, China. Chinese Science Bulletin 49(7), 723–729.
- Sui, Z.M., Ge, W.C., Xu, X.C., Zhang, J.H., 2009. Characteristics and geological implications of the Late Paleozoic Post-orogenic Shierzhan granite in the Great Xing'an Range. Acta Petrol Sin 25(10), 2679–2686.
- Tian, D.X., Yang, H., Ge, W.C., Zhang, Y.L., Chen, J.S., Chen, H.J., Yun, X.Y., 2018. Petrogenesis and tectonic implications of Late Carboniferous continental arc high-K granites in the Dongwuqi area, central Inner Mongolia, North China. Journal of Asian Earth Sciences. 167, 82–102.
- Tong, Y., Jahn, B.M., Wang, T., Hong, D.W., Smith, E.I., Sun, M., Gao, J.F., Yang, Q.D., Huang, W., 2015. Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance. Journal of Asian Earth Sciences. 97, 320–336.
- Wei, R.H., Gao, Y.F., Xu, S.c., Xin, H.T., Santosh, M., Liu, Y.F., Lei, S.H., 2017. The volcanic succession of Baoligaomiao, central Inner Mongolia: Evidence for Carboniferous continental arc in the central Asian orogenic belt. Gondwana Research. 51, 234–254.
- Wang, F., Xu, W.L., Meng, E., Cao, H.H., Gao, F.H., 2012. Early Paleozoic amalgamation of the Songnen-Zhangguangcai Range and Jiamusi massifs in the eastern segment of the Central Asian Orogenic Belt: Geochronological and geochemical evidence from granitoids and rhyolites. Journal of Asian Earth Sciences. 49, 234–248.
- Wu, F.Y., Sun, D.Y., Ge,W.C., Zhang, Y.B., Grant, M.L., Wilde, S.A., Jahn, B.M., 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences 41, 1–30.
- Wu, F.Y., Sun, D.Y., Li, H.M., Jahn, B.M., Wilde, S.A., 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem. Geol. 187, 143–173.
- Wu, G., Chen, Y.C., Sun, F.Y., Liu, J., Wang, G.R., Xu, B., 2015. Geochronology, geochemistry, and Sr-Nd-Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance. Journal of Asian Earth Sciences 97, 229-250.
- Xue, H.M., Guo, L.J., Hou, Z.Q., Tong, Y., Pan, X.F., Zhou, X.W., 2010. SHRIMP zircon U-Pb ages of the middle Neopaleozoic unmetamorphosed magmatic rocks in the southwestern slope of the Da Hinggan Mountains, Inner Mongolia. Acta petrologica et mineralogica. 29(6), 811–823 (in Chinese with English abstract).
- Xu, B., Charvet, J., Chen, Y., Zhao, P., Shi, G.Z., 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research. 23, 1342–1364
- Xin, H.T., Teng, X.J., Cheng, Y.H., 2011. Stratigraphic Subdivision and Isotope Geochronology Study on the Baoligaomiao Formation in the East Ujimqin County, Inner Mongolia. Geological survey and research. 34(1), 1–9 (in Chinese with English abstract).
- Xu, W.L., Wang, F., Meng, En, Gao, F.H., Pei, F.P., Yu, J.J., Tang, J., 2012. Paleozoic-EarlyMesozoic tectonic evolution in the eastern Heilongjiang province, NE China: evidence from igneous rock association and U-Pb geochronology of detrital zircons. Journal of Jilin University (Earth Science Edition) 42, 1378–1389 (in Chinese with English abstract).
- Yu, Q., Ge, W.C., Zhang, J., Zhao, G.C., Zhang, Y.L., Yang, H., 2017. Geochronology, petrogenesis and tectonic implication of Late Paleozoic volcanic rocks from the Dashizhai Formation in Inner Mongolia, NE China. Gondwana Research. 43, 164–177.

- Yuan, L.L., Zhang, X.H., Xue, F.H., Lu, Y.H., Zong, K.Q., 2016. Late Permian high-Mg andesite and basalt association from northern Liaoning, North China: Insights into the final closure of the Paleo-Asian ocean and the orogen-craton boundary. Lithos. 258–259, 58–76
- Yun, F., Nie, F.J., Jiang, S.H., Liu, Y., Zhang, W.Y., 2011. Zircon SHRIMP U-Pb age of Monuogechin monzodiorite of Inner Mongolia and its geological significance. Mineral Deposits. 30(3), 504-511 (in Chinese with English abstract).
- Zhao, Z., Chi, X.G., Liu, J.F., Wang, T.F., Hu, Z.C., 2010, Late Paleozoic arc related magmatism in Yakeshi region, Inner Mongolia: Chronological and geochemical evidence. Acta Petrologica Sinica. 26(11), 3245–3258.
- Zhang, Y.Q., Zhang, J., Qu, Q., Gao, Q.X., 2013. U-Pb Age of zircon from the syenogranite in Adelagawula Inner Mongolia. Geol. Resour. 22 (4), 308–312 (in Chinese with English abstract).
- Zhang, X.H., Mao, Q., Zhang, H.F., Zhai, M.G., Yang, Y., Hu, Z., 2011. Mafic and felsic magma interaction during the construction of high-K calcalkaline plutons within a metacratonic passivemargin: the Early Permian Guyang batholith from the northern North China Craton. Lithos 125, 569–591.
- Zhang, X.H., Zhang, H.F., Wilde, S.A., Yang, Y.H., Chen, H.H., 2010. Late Permian to Early Triassic mafic to felsic intrusive rocks from North Liaoning, North China: petrogenesis and implications for Phanerozoic continental crustal growth. Lithos 117, 283–306.
- Zhang, Z.C., Li, K., Li, J.F., Tang, W.H., Chen, Y., Luo, Z.W., 2015a. Geochronology and geochemistry of the Eastern Erenhot ophiolitic complex: Implications for the tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt. Journal of Asian Earth Sciences. 97, 279–293.
- Zhang, X.H., Zhang, H.F., Tang, Y.J., Wilde, S.A., Hu, Z.C., 2008. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology. 249, 262– 281.
- Zhang, X.H., Yuan, L.L., Xue, F.H., Zhang, Y.B., 2012. Contrasting Triassic ferroan granitoids from northwestern Liaoning, North China: magmatic monitor of Mesozoic decratonization and a craton-orogen boundary. Lithos 144-145, 12–23.
- Zhang, X., Yuan, L., Xue, F., Yan, X., Mao, Q., 2015b. Early Permian A-type granites from central Inner Mongolia, North China: magmatic tracer of post-collisional tectonics and oceanic crustal recycling. Gondwana Research. 28, 311–327.
- Zhang, W., Jian, P., 2008. SHRIMP Dating of Early Paleozoic Granites from North Damaoqi, Inner Mongolia. Acta geologica sinica. 82(6), 778–787 (in Chinese with English abstract).
- Zhou, W.X., 2012. Studies of geochronology and geochemistry of Paleozoic Magmatism in Xilinhot area, Inner Mongolia. A Dissertation Submitted to China University of Geosciences for the Doctor Degree of Geochemistry (in Chinese with English abstract).
- Zhou, H., Zhao, G.C., Han, Y.G., Wang, B., 2018. Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic intrusive rocks in the Damao area in Inner Mongolia, northern China: Implications for the tectonic evolution of the Bainaimiao arc. Lithos 314–315, 119–139.
- Zhu, W.P., Tian, W., Wei, C.J., Shao, J.A., Fu, B., Fanning, C.M., Chen, M.M., Wang, B., 2017. Late Paleozoic rift-related basalts from central Inner Mongolia, China. Journal of Asian Earth Sciences. 144, 155–170.
- Zhu, M.S., Zhang, F.C., Fan, J.J., Miao, L.C., Baatar, m., Anaad, C., Yang, S.H., Li, X.B., Ganbat, A., 2017. Late Carboniferous bimodal volcanic rocks and coeval A-type granite in the Suman Khad area, Southwest Mongolia: Implications for the tectonic evolution. Journal of Asian Earth Sciences. 144, 54–68.

Sample	Lithology	Pluton	t (Ma)	Sm (ppm)	Nd (ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	2σ	$\epsilon_{\rm Nd}(0)$	$\epsilon_{\rm Nd}(t)$	f _{Sm/Nd}	TDM (Ma)	TDM2 (Ma)	References	Fmantle (%)
TW-14	Granite	Tongshan	300	2.10	11.05	0.1151	0.51266	1	0.4	3.6	-0.41	760	774	Liu, 1994	85.38
TW-16	Granite	Tongshan	300	2.52	13.12	0.1164	0.51268	1	0.8	3.9	-0.41	739	746	Liu, 1994	86.57
XF-5	Granite	Tongshan	300	2.02	12.68	0.1193	0.51285	6	4.1	7.1	-0.39	487	485	Liu, 1994	97.28
XT-21	Granite	Duobaoshan	300	0.90	5.27	0.1028	0.51259	2	-0.9	2.7	-0.48	772	847	Liu, 1994	82.06
XT-7	Granite	Zhanzigou	240	3.54	24.38	0.0878	0.51281	2	3.4	6.7	-0.55	414	469	Liu, 1994	95.96
XT-9	Granite	Duobaoshan	300	2.50	13.18	0.1144	0.51266	1	0.4	3.6	-0.42	755	772	Liu, 1994	85.45
93SS-2	Quartzdiorite	Baolidao	310	3.16	12.94	0.1470	0.512527	7	-2.2	-0.2	-0.25	1426	1088	Chen et al., 2000	70.62
93YS-2	Tonalite	Baolidao	310	2.07	8.56	0.1450	0.512542	7	-1.9	0.2	-0.26	1351	1058	Chen et al., 2000	72.19
BP30-11	Quartzdiorite	Baolidao	310	2.10	8.11	0.1560	0.512579	4	-1.2	0.5	-0.21	1511	1035	Chen et al., 2000	73.32
BP30-9	Granodiorite	Baolidao	310	1.56	7.21	0.1300	0.512539	7	-1.9	0.7	-0.34	1115	1014	Chen et al., 2000	74.4
BP35-3	Tonalite	Baolidao	310	2.12	8.30	0.1540	0.512563	7	-1.5	0.2	-0.22	1501	1054	Chen et al., 2000	72.36
1-49	Alkaligranite	Songmushan	260	8.68	35.73	0.1469	0.512660	6	0.4	2.1	-0.25	1121	862	Wu et al., 2002	79.85
9801-2	Alkali- feldspargranite	Xiaoshantun	285	12.71	47.18	0.1629	0.512709	10	1.4	2.6	-0.17	1327	839	Wu et al., 2002	81.91
9806-3	Alkali- feldspargranite	Guguhe	264	11.93	53.70	0.1343	0.512631	9	-0.1	2	-0.32	999	874	Wu et al., 2002	79.43
9843-1	Alkaligranite	Daheishan	292	12.42	68.66	0.1094	0.512716	9	1.5	4.8	-0.44	637	668	Wu et al., 2002	89.68
9843-6	Alkaligranite	Daheishan	292	11.36	65.40	0.1050	0.512680	6	0.8	4.2	-0.47	662	712	Wu et al., 2002	87.8
99-29	Granite	Sunitezuoqi	252	2.85	11.36	0.1517	0.512478	9	-3.1	-1.7	-0.23	1653	1161	Xiao et al., 2008	64.03
99-30	Granite	Sunitezuoqi	252	2.38	12.30	0.1172	0.512384	11	-5	-2.4	-0.4	1212	1220	Xiao et al., 2008	60.65
99-31	Granite	Sunitezuoqi	252	6.01	21.23	0.1712	0.512520	7	-2.3	-1.5	-0.13	2259	1145	Xiao et al., 2008	64.95
B-19	Granite	Baiyinwula	286	7.96	31.99	0.1506	0.512824		3.6	5.3	-0.23	792	619	Xiao et al., 2008	91.47
B-3	Granite	Baiyinwula	286	6.46	25.35	0.1541	0.512853		4.2	5.7	-0.22	764	584	Xiao et al., 2008	92.9
H-1	Granite	Shaerhada	277	17.00	83.39	0.1233	0.512760		2.4	5	-0.37	661	639	Xiao et al., 2008	90.32
L-17	Granite	Zhanawula	277	9.97	41.36	0.1458	0.512842		4	5.8	-0.26	695	574	Xiao et al., 2008	93.06
L-4	Granite	Zhanawula	277	12.20	59.17	0.1247	0.512824		3.6	6.2	-0.37	561	541	Xiao et al., 2008	94.33
L-6	Granite	Zhanawula	277	3.58	15.80	0.1370	0.512773		2.6	4.8	-0.3	753	658	Xiao et al., 2008	89.61

Table S6- Summary of whole-rock Nd isotope data of granitic rocks in XIMOB.

N-3	Granite	Narenbaolige	277	8.34	41.89	0.1204	0.512860		4.3	7	-0.39	477	472	Xiao et al., 2008	97.06
N-5	Granite	Narenbaolige	277	8.60	42.06	0.1236	0.512896		5	7.6	-0.37	433	424	Xiao et al., 2008	98.88
N-6	Granite	Narenbaolige	277	9.03	38.20	0.1429	0.512779		2.8	4.7	-0.27	802	666	Xiao et al., 2008	89.26
N-7	Granite	Narenbaolige	277	10.24	49.23	0.1258	0.512858		4.3	6.8	-0.36	509	490	Xiao et al., 2008	96.34
Z-13	Granite	Zuhengdalen g	284	3.67	16.81	0.1320	0.512818		3.5	5.9	-0.33	623	573	Xiao et al., 2008	93.33
Z-14	Granite	Zuhengdalen	284	7.32	31.01	0.1428	0.512811		3.4	5.3	-0.27	733	616	Xiao et al., 2008	91.57
Z-43	Granite	Zuhengdalen	284	5.96	21.60	0.1668	0.512915		5.4	6.5	-0.15	769	522	Xiao et al., 2008	95.33
Z-6	Granite	Zhanawula	277	6.18	30.13	0.1241	0.512563		-1.5	1.1	-0.37	1001	955	Xiao et al., 2008	76.03
WL-04	Granite	Weilasituo	323	2.36	23.63	0.0603	0.512190	9	-8.7	-3.1	-0.69	956	1336	Wang, 2009	57.1
WL-08	Biotitegranite	Weilasituo	323	0.58	4.66	0.0748	0.512117	6	-10.2	-5.1	-0.62	1135	1500	Wang, 2009	46.53
WL-09	Biotitegranite	Weilasituo	323	4.45	41.29	0.0652	0.512193	6	-8.7	-3.3	-0.67	984	1348	Wang, 2009	56.4
WL-104	Biotitegranite	Weilasituo	323	3.67	40.69	0.0545	0.512189	7	-8.8	-2.9	-0.72	922	1318	Wang, 2009	58.23
WL-106	Biotitegranite	Weilasituo	323	1.36	11.25	0.0733	0.512183	7	-8.9	-3.8	-0.63	1051	1391	Wang, 2009	53.72
WL-11	Biotitegranite	Weilasituo	323	2.56	21.50	0.0719	0.512200	5	-8.5	-3.4	-0.63	1023	1359	Wang, 2009	55.7
WL-127	Quartzdiorite	Weilasituo	298	2.85	17.98	0.0959	0.512435	7	-4	-0.1	-0.51	927	1072	Wang, 2009	70.92
WL-130	Quartzdiorite	Weilasituo	298	2.99	15.32	0.1181	0.512441	7	-3.8	-0.8	-0.4	1133	1132	Wang, 2009	67.78
WL-183	Diorite	Weilasituo	298	3.16	18.61	0.1026	0.512403	8	-4.6	-1	-0.48	1027	1144	Wang, 2009	67.07
WL-28	Granodiorite	Weilasituo	298	3.60	20.83	0.1045	0.512444	7	-3.8	-0.3	-0.47	988	1085	Wang,2009	70.23
WL-48	Biotiticmonzon ite-granite	Weilasituo	323	2.24	16.81	0.0807	0.512230	6	-8	-3.2	-0.59	1056	1341	Wang, 2009	56.8
WL-51	Granodiorite	Weilasituo	298	2.86	18.87	0.0917	0.512479	6	-3.1	0.9	-0.53	841	990	Wang, 2009	75.13
WL-58	Quartzdiorite	Weilasituo	298	3.98	28.89	0.0833	0.512368	6	-5.3	-1	-0.58	916	1140	Wang, 2009	67.25
WL-60	Biotiticmonzon ite-granite	Weilasituo	323	5.70	63.60	0.0542	0.512233	5	-7.9	-2	-0.72	878	1247	Wang, 2009	62.36
WL-69	Granodiorite	Weilasituo	298	9.37	37.22	0.1522	0.512475	5	-3.2	-1.5	-0.23	1674	1183	Wang, 2009	64.86
W1-73	Biotitegranite	Weilasituo	323	2.75	29.85	0.0557	0.512200	5	-8.5	-2.7	-0.72	918	1305	Wang, 2009	59.01
WL-94	Biotiticmonzon ite-granite	Weilasituo	323	2.91	24.62	0.0716	0.512153	5	-9.5	-4.3	-0.64	1071	1433	Wang, 2009	51.06
SLS02	Granite	Mandula	313			0.1000	0.512410	1	-4.4	-0.6	-0.49	994	1122	Jian et al., 2010	68.93
SLS05	Granite	Mandula	314			0.1000	0.512420	1	-4.3	-0.4	-0.49	981	1106	Jian et al., 2010	69.8

BK13	Diorite	Bairendaba	327	3.11	19.07	0.0987	0.512237	14	-7.8	-3.7	-0.5	1212	1389	Liu et al., 2010	54.02
BK14	Diorite	Bairendaba	327	2.75	16.39	0.1015	0.512464	6	-3.4	0.6	-0.48	934	1039	Liu et al., 2010	73.9
BK16	Diorite	Bairendaba	327	5.79	34.33	0.1020	0.512264	11	-7.3	-3.3	-0.48	1210	1358	Liu et al., 2010	56
BS-13	Diorite	Bairendaba	327	4.84	33.30	0.0877	0.512351	7	-5.6	-1.1	-0.55	969	1171	Liu et al., 2010	66.85
YS-02	Diorite	Bairendaba	327	2.04	17.90	0.0688	0.512250	6	-7.6	-2.2	-0.65	948	1267	Liu et al., 2010	61.46
YS-03	Diorite	Bairendaba	327	2.56	17.20	0.0898	0.512200	5	-8.5	-4.1	-0.54	1170	1418	Liu et al., 2010	52.22
YS-04	Diorite	Bairendaba	327	3.14	18.30	0.1041	0.512224	7	-8.1	-4.2	-0.47		1428	Liu et al., 2010	51.53
YS-05	Diorite	Bairendaba	327	4.37	19.10	0.1380	0.512380	7	-5	-2.6	-0.3	1551	1296	Liu et al., 2010	59.79
S-10	Adamellite	Bayinsuhetu	296			0.1456	0.512609		-0.6	1.4	-0.26	1214	949	Shen et al., 2012	77.07
S-11	Adamellite	Bayinsuhetu	296			0.1317	0.512578		-1.2	1.3	-0.33	1066	956	Shen et al., 2012	76.75
S-12	Adamellite	Bayinsuhetu	296			0.1136	0.512549		-1.7	1.4	-0.42	918	946	Shen et al., 2012	77.23
S-2	Adamellite	Bayinsuhetu	296			0.1200	0.512537		-2	0.9	-0.39	1000	985	Shen et al., 2012	75.26
S-6	Adamellite	Bayinsuhetu	296			0.1205	0.512569		-1.3	1.6	-0.39	953	936	Shen et al., 2012	77.78
S-9	Adamellite	Bayinsuhetu	296			0.1201	0.512551		-1.7	1.2	-0.39	978	963	Shen et al., 2012	76.35
DW-113	Adamellite	Xidunhuanao te	297	2.77	8.56	0.1957	0.512821		3.6	3.6	-0.01	2793	768	Wang et al., 2013	85.6
DW-114	Adamellite	Xidunhuanao te	297	8.43	322.08	0.1582	0.512770		2.6	4	-0.2	1048	733	Wang et al., 2013	87.06
DW-131	Adamellite	Xidunhuanao te	297	7.75	39.71	0.1181	0.512717		1.5	4.5	-0.4	693	693	Wang et al., 2013	88.78
DW-132	Adamellite	Xidunhuanao te	297	8.70	43.85	0.1200	0.512720		1.6	4.5	-0.39	702	694	Wang et al., 2013	88.78
DW-133	Adamellite	Xidunhuanao te	297	6.25	23.98	0.1575	0.512772		2.6	4.1	-0.2	1030	727	Wang et al., 2013	87.35
DW-81	Adamellite	Xidunhuanao te	297	5.54	27.98	0.1197	0.512645		0.1	3.1	-0.39	822	812	Wang et al., 2013	83.52
DW-83	Adamellite	Xidunhuanao te	297	6.92	34.24	0.1221	0.512648		0.2	3	-0.38	838	815	Wang et al., 2013	83.44
DW-84	Adamellite	Xidunhuanao te	297	0.56	1.67	0.2042	0.512673		0.7	0.4	0.04	7584	1029	Wang et al., 2013	73.11
DW-86	Adamellite	Xidunhuanao te	297	5.71	28.44	0.1213	0.512647		0.2	3	-0.38	833	814	Wang et al., 2013	83.44
DW-87	Adamellite	Xidunhuanao te	297	2.67	15.14	0.1064	0.512629		-0.2	3.3	-0.46	743	797	Wang et al., 2013	84.25
11SH-2.1	Granodiorite	Shahutong	275	4.72	21.50	0.1323	0.512504	8	-2.6	-0.4	-0.33	1212	1072	Li et al., 2014	69.93
11SH-3	Granodiorite	Shahutong	275	5.89	26.90	0.1322	0.512561	8	-1.5	0.8	-0.33	1104	981	Li et al., 2014	74.6
11XL-5.2	Granodiorite	Beidashan	277	7.06	30.30	0.1409	0.512695	10	1.1	3.1	-0.28	956	794	Li et al., 2014	83.7

11XL-5.4	Granodiorite	Beidashan	277	6.97	30.90	0.1364	0.512689	6	1	3.1	-0.31	912	790	Li et al., 2014	83.85
E101-1.1	Alkalinegranite	Baolag	285	7.35	30.00	0.1483	0.512862	11	4.4	6.1	-0.25	675	552	Tong et al., 2015	94.17
E101-1.2	Alkalinegranite	Baolag	285	5.24	24.90	0.1272	0.512835	10	3.8	6.4	-0.35	558	532	Tong et al., 2015	94.98
E101-1.3	Alkalinegranite	Baolag	285	7.96	31.99	0.1506	0.512824	3	3.6	5.3	-0.23	792	619	Tong et al., 2015	91.47
E925-7	Alkalinegranite	Hongol	276	4.83	23.43	0.1248	0.512695	9	1.1	3.7	-0.37	783	747	Tong et al., 2015	85.74
E925-7.1	Alkalinegranite	Hongol	276	5.44	23.82	0.1381	0.512839	1	3.9	6	-0.3	631	556	Tong et al., 2015	93.68
E930-1	Alkalinegranite	Saiyinwusu	279	6.92	26.78	0.1562	0.512881	2	4.7	6.2	-0.21	718	542	Tong et al., 2015	94.37
E930-1.1	Alkalinegranite	Saiyinwusu	279	5.52	23.89	0.1397	0.512716	6	1.5	3.6	-0.29	897	757	Tong et al., 2015	85.38
E930-1.2	Alkalinegranite	Saiyinwusu	279	6.41	25.82	0.1500	0.512664	1	0.5	2.2	-0.24	1166	870	Tong et al., 2015	80.2
SN10-2-1	Alkalinegranite	Baiyinwula	289	12.93	67.58	0.1158	0.512795	10	3.1	6.1	-0.41	556	562	Zhang et al., 2015	93.91
SN10-2-3	Alkalinegranite	Baiyinwula	289	11.11	56.19	0.1197	0.512775	14	2.7	5.5	-0.39	611	605	Zhang et al., 2015	92.2
SN10-3-1	Alkalinegranite	Baiyinwula	288	12.51	63.18	0.1199	0.512795	12	3.1	5.9	-0.39	580	574	Zhang et al., 2015	93.39
SN10-7-1	Alkalinegranite	Baiyinwula	288	8.95	37.00	0.1465	0.512794	12	3	4.9	-0.26	811	656	Zhang et al., 2015	90.09
SN10-7-3	Alkalinegranite	Baiyinwula	288	8.37	40.14	0.1263	0.512786	14	2.9	5.5	-0.36	638	608	Zhang et al., 2015	92.04
SN10-7-4	Alkalinegranite	Baiyinwula	288	11.85	52.87	0.1356	0.512779	15	2.8	5	-0.31	728	647	Zhang et al., 2015	90.39
SN10-8-1	Alkalinegranite	Baiyinwula	290	10.82	45.63	0.1435	0.512755	14	2.3	4.3	-0.27	861	709	Zhang et al., 2015	87.87
SN10-9-1	Alkalinegranite	Baiyinwula	290	9.81	46.37	0.1280	0.512767	12	2.5	5.1	-0.35	684	643	Zhang et al., 2015	90.63
SN10-10- 1	Alkalinegranite	Baiyinwula	290	9.65	41.69	0.1402	0.512806	13	3.3	5.4	-0.29	717	618	Zhang et al., 2015	91.71
SN10-10- 2	Alkalinegranite	Baiyinwula	290	9.51	41.53	0.1386	0.512762	12	2.4	4.6	-0.3	791	683	Zhang et al., 2015	88.99
SN10-11- 1	Alkalinegranite	Baiyinwula	290	8.48	34.47	0.1490	0.512824	12	3.6	5.4	-0.24	772	616	Zhang et al., 2015	91.77
SN10-12- 1	Alkalinegranite	Baiyinwula	290	7.96	35.81	0.1345	0.512788	12	2.9	5.2	-0.32	700	629	Zhang et al., 2015	91.24
AHGY- 36	Adamellite	Aqinchulu	296	1.89	9.71	0.1177	0.512702		1.2	4.2	-0.4	714	715	Wang et al., 2015	87.8
AHGY- 37	Adamellite	Aqinchulu	297	1.49	7.64	0.1176	0.512702		1.2	4.2	-0.4	713	715	Wang et al., 2015	87.8
AHGY- 43	Adamellite	Aqinchulu	298	2.17	10.41	0.1261	0.512714		1.5	4.2	-0.36	762	723	Wang et al., 2015	87.52
AHGY- 44	Adamellite	Aqinchulu	299	1.94	9.82	0.1191	0.512704		1.3	4.2	-0.39	722	717	Wang et al., 2015	87.73
AHGY- 46	Adamellite	Aqinchulu	300	2.22	10.90	0.1230	0.512709		1.4	4.2	-0.37	744	721	Wang et al., 2015	87.59
E10101-2	Alkaligranite	Baiyinwula	285	6.25	25.51	0.1482	0.512828	8	3.7	5.5	-0.25	753	606	Yang et al., 2017	92.04

2014GA- 264 A-Granite SumanKhad 312 6.06 2.6.7 0.51280 9 5.7 680 570 Zhu et al. 2017 92.77 2014GA- 265 A-Granite SumanKhad 312 8.93 49.19 0.11 0.51277 10 6.2 550 500 Zhu et al. 2017 94.4 BSN800 Granodiorite 420 2.00 0.12 0.51275 8 -3.2 Nic et al. 1995 55.19 BK800 Granodiorite 420 2.00 0.10 0.512257 6 -3.5 Nic et al. 1995 55.19 BOS05 Granodiorite 420 2.00 1.00 0.12 0.512257 6 -3.5 Nic et al. 1995 55.19 BOS06 Granodiorite 420 2.00 1.00 0.13 0.512351 8 -3.2 Nic et al. 1995 56.7 BOS06 Granodiorite 420 3.10 0.105 0.512351 8 -7.9 -1.6 -5.8 10.4 1301	E10925-5	Syengranite	Baruntuolanh uduge	274	2.77	14.33	0.1170	0.512749	13	2.2	5	-0.41	635	639	Yang et al., 2017	90.26
201452 A-Granite SumanKhad 312 8,93 49,19 0.11 0.51277 10 6.2 550 590 Zhu et al, 2017 94,4 BNS803 Granodiorite 420 4.00 2.00 0.12 0.512250 5 -3.2 Nic et al, 1995 55.7 BK806 Granodiorite 420 2.00 9.00 0.14 0.51230 5 -3.5 Nic et al, 1995 55.19 BK806 Granodiorite 420 2.00 11.00 0.12 0.512251 6 -3.2 Nic et al, 1995 55.7 BOS06 Granodiorite 420 2.30 11.00 0.14 0.512251 6 -3.2 Nic et al, 1995 56.7 BOS06 Granodiorite 420 2.30 11.00 0.14 0.512231 8 -3.2 Nic et al, 1995 56.7 BOS06 Granodiorite 420 2.30 0.512 0.51233 8 -3.2 Nic et al, 1995 Mic et al, 2003 15.9 <	2014GA- 264	A-Granite	SumanKhad	312	6.06	26.71	0.1371	0.512808	9		5.7		680	570	Zhu et al., 2017	92.77
BSN803Granodiorite4204.1022.000.120.5122505-3.2Nie et al., 199555.7BK806Granodiorite4202.209.900.140.5123508-3.4Nie et al., 199555.7BK806Granodiorite4202.009.100.140.5123505-3.5Nie et al., 199555.19BK806Granodiorite4202.0015000.120.5122516-3.5Nie et al., 199555.7BK807Granodiorite4202.001.000.140.5122556-3.5Nie et al., 199556.7BK808Granodiorite4203.101.000.140.5122576-3.5Nie et al., 199556.7BK808Granodiorite4203.101.000.140.51225712-8-3.2Nie et al., 199556.7BK808GranodioriteTafeng4305.462.720.1170.5122712-8-3.5-0.421450Wu et al., 200354.999825-14QuartzioroteTafeng4305.462.720.1170.5122712-8-3.4-0.4313.80144Wu et al., 200358.97HDB2-10GranodioriteDuobashan4792.640.11420.51264970.35.4-0.427.637.4Wu et al., 20159.17HDB2-10GranodioriteDuobashan4792.5213.300.1142 <td>2014GA- 265</td> <td>A-Granite</td> <td>SumanKhad</td> <td>312</td> <td>8.93</td> <td>49.19</td> <td>0.11</td> <td>0.512777</td> <td>10</td> <td></td> <td>6.2</td> <td></td> <td>550</td> <td>590</td> <td>Zhu et al., 2017</td> <td>94.4</td>	2014GA- 265	A-Granite	SumanKhad	312	8.93	49.19	0.11	0.512777	10		6.2		550	590	Zhu et al., 2017	94.4
BK802Granodiorite4202.209.900.140.5123058-3.4Nic et al., 199555.7BK806Granodiorite4202.109.100.140.5123055-3.5Nic et al., 199555.19BOS05Granodiorite4202.9015.000.120.5122516-3.5Nic et al., 199555.7BOS07Granodiorite4202.9011.000.130.5122556-3.5Nic et al., 199556.2BOS08Granodiorite4202.9012.000.150.5123518-3.2Nic et al., 199556.2BOS08Granodiorite4202.9012.000.150.5123518-3.2Nic et al., 199556.2BOS08GranodioriteTafeng4305.2138.360.08210.5123518-3.4-0.41301Wu et al., 200364.369825-14QuartzdioroteTafeng4305.462.7.70.11170.51227712-8-3.4-0.431301403Wu et al., 200351.8Jun-25DioroteTafeng4305.462.7.70.11170.5124077-7.8-6.4-7.7-0.34150140Wu et al., 200351.8Jun-25DioroteTafeng4305.4141.400.51265770.35.4-0.427637.4Wu et al., 201591.7HDB2-1GranodioriteDuobaoshan4	BSN8803	Granodiorite		420	4.10	22.00	0.12	0.512250	5		-3.2				Nie et al., 1995	56.7
BK8806Granodiorite4202.109.100.140.512305-3.5Nic et al., 199555.19BOS06Granodiorite4202.3015.000.120.5122516-3.5Nic et al., 199555.19BOS06Granodiorite4202.3011.000.130.5122556-3.2Nic et al., 199556.2BOS07Granodiorite4202.3011.000.140.5122556-3.3Nic et al., 199556.2BOS08Granodiorite4202.3012.000.150.5122518-3.2Nic et al., 199556.2BOS07Granodiorite4203.001.200.150.51223712-8-3.5-0.4214251457Wue et al., 200364.369825-14QuartzdioroteTafeng4305.402.720.1110.5122712-8-3.4-0.4313801443Wue et al., 200355.99825-14QuartzdioroteTafeng4304.202.3316.120.51224712-8-3.4-0.4313801443Wue et al., 200355.99825-14QuartzdioroteTafeng4306.392.9890.1220.5122888-6.4-2.7-0.341509Wue et al., 200591.3791021GranodioriteDuobaosha4792.5713.500.11420.5126770.45.4-0.42761771Wue et al., 2015<	BK8802	Granodiorite		420	2.20	9.90	0.14	0.512395	8		-3.4				Nie et al., 1995	55.7
BOS05Granodiorite4202.9015.000.120.5122516-3.5Nice et al., 199555.19BOS06Granodiorite4202.3011.000.130.5122855-3.2Nice et al., 199556.7BOS07Granodiorite4203.1012.000.140.5122356-3.3Nice et al., 199556.7BOS08Granodiorite4202.9012.000.120.5122318-3.2Nice et al., 199556.7BOS08OgranodioriteTafeng4305.218.850.08210.51223712-8-3.6-0.681041301Wet et al., 200364.369825-13QuartzdioroteTafeng4305.462.8730.1140.51223712-8-3.6-0.4214251457Wut et al., 200355.9Apr-25DioroteTafeng4305.3316.620.13110.51224712-8-3.4-0.4313801443Wut et al., 200355.9Apr-25DioroteTafeng4306.392.9990.1220.51264770.35.4-0.4270374Wut et al., 200358.97HDB2-10GranodioriteDuobaoshan4792.5213.300.11420.51264770.35.4-0.4276171Wut et al., 201591.67HDB2-12GranodioriteDuobaoshan4792.5213.000.11520.512647 <td>BK8806</td> <td>Granodiorite</td> <td></td> <td>420</td> <td>2.10</td> <td>9.10</td> <td>0.14</td> <td>0.512303</td> <td>5</td> <td></td> <td>-3.5</td> <td></td> <td></td> <td></td> <td>Nie et al., 1995</td> <td>55.19</td>	BK8806	Granodiorite		420	2.10	9.10	0.14	0.512303	5		-3.5				Nie et al., 1995	55.19
B0806 Granodiorite 420 2.30 11.00 0.13 0.512285 5 -3.2 Nie et al., 1995 56.7 B0507 Granodiorite 420 2.00 12.00 0.14 0.512325 6 -3.2 Nie et al., 1995 56.7 B0508 Granodiorite 420 2.00 12.00 0.15 0.512351 8 -3.2 Nie et al., 1995 56.7 B0508 Granodiorite Tafeng 430 5.21 38.36 0.021 0.512237 12 -8 -3.5 -0.42 1427 Mue t al., 2003 55.9 9825-14 Quartzdiorote Tafeng 430 5.30 0.62 0.72 0.111 0.51227 12 -8 -3.5 -0.42 1425 $Mue t al., 2003 55.9 Apr-25 Diorote Tafeng 430 6.39 2.87 0.1142 0.51227 12 -8.3 -6.4 -2.7 -0.34 1520 1392 Wue t al., 2015 91.7 Jun-25 Diorote Tafeng 430 $	BOS05	Granodiorite		420	2.90	15.00	0.12	0.512251	6		-3.5				Nie et al., 1995	55.19
BOS07 Granodiorite 420 3.10 13.00 0.14 0.512325 6 -3.3 Nie et al., 1995 56.2 BOS08 Granodiorite 420 2.90 12.00 0.15 0.512351 8 -3.2 Nie et al., 1995 65.2 Dec-25 Diorote Tafeng 430 5.21 38.36 0.821 0.51233 8 -7.9 -1.6 -0.58 10.64 1301 Wuet al., 2003 64.36 9825-13 Quartzdiorote Tafeng 430 5.46 28.73 0.119 0.51227 12 -8 -3.5 -0.42 1430 Wuet al., 2003 65.39 9825-14 Quartzdiorote Tafeng 430 6.39 22.72 0.1117 0.51227 12 -8 -3.4 -0.33 16.43 Wuet al., 2003 65.89 Jun-25 Diorote Tafeng 430 6.39 29.89 0.129 0.51268 8 -6.4 2.7 -0.34 1520 1392 Wuet al., 2015 91.67 HDB2-10 Granodiorite Duobaoshan 479 </td <td>BOS06</td> <td>Granodiorite</td> <td></td> <td>420</td> <td>2.30</td> <td>11.00</td> <td>0.13</td> <td>0.512285</td> <td>5</td> <td></td> <td>-3.2</td> <td></td> <td></td> <td></td> <td>Nie et al., 1995</td> <td>56.7</td>	BOS06	Granodiorite		420	2.30	11.00	0.13	0.512285	5		-3.2				Nie et al., 1995	56.7
BOS08Granodiorite4202.9012.000.150.5123518-3.2Nie et al. 19955.67Dec-25DioroteTafeng4305.2138.360.08210.512338-7.9-1.6-0.5810641301Wu et al. 200364.369825-13QuartzdioroteTafeng4305.4628.730.11490.51222712-8-3.4-0.4313801443Wu et al. 200355.99825-14QuartzdioroteTafeng4304.2022.720.11170.51222712-8-3.4-0.4313801443Wu et al. 200355.9Apr-25DioroteTafeng4306.3929.890.12920.512649-7.8-4.2-0.3316791509Wu et al. 200358.97HDB2-10GranodioriteDuobaoshan4792.6414.000.11420.51265770.35.4-0.42763774Wu et al. 201591.67HDB2-12GranodioriteDuobaoshan4792.6614.000.11460.51265770.55.5-0.41758766Wu et al. 201592.01Jul-25DioroteTafeng4304.712.5130.11320.5124670.55.5-0.41758766Wu et al. 201592.01Jul-25DioroteTafeng4304.712.5130.11320.5124670.55.5-0.41758<	BOS07	Granodiorite		420	3.10	13.00	0.14	0.512325	6		-3.3				Nie et al., 1995	56.2
Dec-25 Diorote Tafeng 430 5.21 38.36 0.0821 0.512233 8 -7.9 -1.6 -0.58 1064 1301 Wu et al., 2003 64.36 9825-13 Quartzdiorote Tafeng 430 5.46 28.73 0.1149 0.51227 12 -8 -3.5 -0.42 1425 1457 Wu et al., 2003 55.9 9825-14 Quartzdiorote Tafeng 430 5.35 0.117 0.51227 12 -8 -3.4 -0.43 1380 1443 Wu et al., 2003 55.9 Apr-25 Diorote Tafeng 430 6.39 29.89 0.122 0.512308 8 -6.4 -2.7 -0.33 1520 Wu et al., 2003 58.97 HDB2-1 Granodiorite Duobaoshan 479 2.64 14.00 0.1142 0.512657 7 0.3 5.4 -0.42 761 771 Wu et al., 2015 91.74 HDB2-12 Granodiorite Duobaoshan 479<	BOS08	Granodiorite		420	2.90	12.00	0.15	0.512351	8		-3.2				Nie et al., 1995	56.7
9825-13 Quartzdiorote Tafeng 430 5.46 28.73 0.1149 0.51227 12 -8 -3.5 -0.42 1425 1457 Wu et al., 2003 55.9 9825-14 Quartzdiorote Tafeng 430 4.20 22.72 0.1117 0.512277 12 -8 -3.4 -0.43 1380 1443 Wu et al., 2003 55.9 Apr-25 Diorote Tafeng 430 6.39 29.89 0.1292 0.512308 8 -6.4 -2.7 -0.34 1520 1392 Wu et al., 2003 58.97 HDB2-10 Granodiorite Duobaoshan 479 2.64 1400 0.1142 0.512649 14 0.2 5.3 -0.42 763 774 Wu et al., 2015 91.67 HDB2-10 Granodiorite Duobaoshan 479 2.52 13.30 0.1142 0.512657 7 0.4 5.4 -0.42 761 771 Wu et al., 2015 91.67 HDB2-12 Granodiorite Duobaoshan 479 2.57 13.50 0.1152 0.512652 7	Dec-25	Diorote	Tafeng	430	5.21	38.36	0.0821	0.512233	8	-7.9	-1.6	-0.58	1064	1301	Wu et al., 2003	64.36
9825-14 Quartzdiorote Tafeng 430 4.20 22.72 0.1117 0.512227 12 8 3.4 -0.43 1380 1443 Wu et al., 2003 55.9 Apr-25 Diorote Tafeng 430 3.53 16.26 0.1311 0.51220 9 -7.8 -4.2 -0.33 16.79 1509 Wu et al., 2003 55.9 Jun-25 Diorote Tafeng 430 6.39 29.89 0.1292 0.512308 8 -6.4 -2.7 -0.34 1520 1392 Wu et al., 2003 55.9 HDB2-10 Granodiorite Duobaoshan 479 2.64 14.00 0.1142 0.512657 7 0.3 5.4 -0.42 761 771 Wu et al., 2015 91.74 HDB2-12 Granodiorite Duobaoshan 479 2.57 13.50 0.1152 0.512657 7 0.4 5.4 -0.42 761 771 Wu et al., 2015 91.74 HDB2-4 Granodiorite Duobaoshan 479 2.57 13.50 0.1152 0.512662 7	9825-13	Quartzdiorote	Tafeng	430	5.46	28.73	0.1149	0.512227	12	-8	-3.5	-0.42	1425	1457	Wu et al., 2003	54.99
Apr-25 Diorote Tafeng 430 3.53 16.26 0.1311 0.512240 9 -7.8 -4.2 -0.33 1679 1509 Wu et al., 2003 51.8 Jun-25 Diorote Tafeng 430 6.39 29.89 0.1292 0.512308 8 -6.4 -2.7 -0.34 1520 1392 Wu et al., 2003 58.97 HDB2-10 Granodiorite Duobaoshan 479 2.64 14.00 0.1142 0.512649 14 0.2 5.3 -0.42 763 774 Wu et al., 2015 91.37 HDB2-10 Granodiorite Duobaoshan 479 2.52 13.30 0.1142 0.512657 7 0.4 5.4 -0.42 761 771 Wu et al., 2015 91.74 HDB2-12 Granodiorite Duobaoshan 479 2.57 13.50 0.1152 0.512657 7 0.4 5.4 -0.42 761 771 Wu et al., 2015 92.01 Jul-25 Diorote Tafeng 430 4.71 2.5.1 0.1152 0.512662 7 <	9825-14	Quartzdiorote	Tafeng	430	4.20	22.72	0.1117	0.512227	12	-8	-3.4	-0.43	1380	1443	Wu et al., 2003	55.9
Jun-25 Diorote Tafeng 430 6.39 29.89 0.1292 0.512308 8 -6.4 -2.7 -0.34 1520 1392 Wu et al., 2003 58.97 HDB2-1 Granodiorite Duobaoshan 479 2.64 14.00 0.1142 0.512654 7 0.3 5.4 -0.42 763 774 Wu et al., 2015 91.67 HDB2-10 Granodiorite Duobaoshan 479 2.52 13.30 0.1142 0.512657 7 0.3 5.4 -0.42 761 771 Wu et al., 2015 91.67 HDB2-4 Granodiorite Duobaoshan 479 2.57 13.50 0.1152 0.512662 7 0.5 5.5 -0.41 758 766 Wu et al., 2015 92.01 Jul-25 Diorote Tafeng 430 4.71 25.13 0.1132 0.51215 7 -8.3 -3.7 -0.42 1420 Wu et al., 2003 91.77 MT1-7 Tonalite Tulinkai <td>Apr-25</td> <td>Diorote</td> <td>Tafeng</td> <td>430</td> <td>3.53</td> <td>16.26</td> <td>0.1311</td> <td>0.512240</td> <td>9</td> <td>-7.8</td> <td>-4.2</td> <td>-0.33</td> <td>1679</td> <td>1509</td> <td>Wu et al., 2003</td> <td>51.8</td>	Apr-25	Diorote	Tafeng	430	3.53	16.26	0.1311	0.512240	9	-7.8	-4.2	-0.33	1679	1509	Wu et al., 2003	51.8
HDB2-1 Granodiorite Duobaoshan 479 2.64 14.00 0.1142 0.512649 14 0.2 5.3 -0.42 770 782 Wu et al., 2015 91.37 HDB2-10 Granodiorite Duobaoshan 479 2.52 13.30 0.1142 0.512654 7 0.3 5.4 -0.42 763 774 Wu et al., 2015 91.77 HDB2-12 Granodiorite Duobaoshan 479 2.66 14.00 0.1146 0.512657 7 0.4 5.4 -0.42 761 771 Wu et al., 2015 91.74 HDB2-4 Granodiorite Duobaoshan 479 2.57 13.50 0.1152 0.512662 7 0.5 5.5 -0.41 758 766 Wu et al., 2015 92.01 Jul-25 Diorote Tafeng 430 4.71 25.13 0.1133 0.512215 7 -8.3 -3.7 -0.42 1469 Wu et al., 2008 54.33 MT1-7 Tonalite Tulinkai 453.7 1.34 8.27 0.0976 0.512440 6 2	Jun-25	Diorote	Tafeng	430	6.39	29.89	0.1292	0.512308	8	-6.4	-2.7	-0.34	1520	1392	Wu et al., 2003	58.97
HDB2-10 Granodiorite Duobaoshan 479 2.52 13.30 0.1142 0.512654 7 0.3 5.4 -0.42 763 774 Wu et al., 2015 91.67 HDB2-12 Granodiorite Duobaoshan 479 2.66 14.00 0.1146 0.512657 7 0.4 5.4 -0.42 761 771 Wu et al., 2015 91.74 HDB2-4 Granodiorite Duobaoshan 479 2.57 13.50 0.1152 0.512662 7 0.5 5.5 -0.41 758 766 Wu et al., 2015 92.01 Jul-25 Diorote Tafeng 430 4.71 25.13 0.1133 0.512215 7 -8.3 -3.7 -0.42 1420 1469 Wu et al., 2003 54.33 MT1-7 Tonalite Tulinkai 490.1 3.40 10.42 0.1976 0.512410 6 2 1420 1469 Wu et al., 2008 79.55 MT1-1 Quartzdiorite Tulinkai 457.9 1.16 7.34 0.0953 0.512700 8 7.1 1an et al.,	HDB2-1	Granodiorite	Duobaoshan	479	2.64	14.00	0.1142	0.512649	14	0.2	5.3	-0.42	770	782	Wu et al., 2015	91.37
HDB2-12GranodioriteDuobaoshan4792.6614.000.11460.51265770.45.4-0.42761771Wu et al., 201591.74HDB2-4GranodioriteDuobaoshan4792.5713.500.11520.51266270.55.5-0.41758766Wu et al., 201592.01Jul-25DioroteTafeng4304.7125.130.11330.5122157-8.3-3.7-0.4214201469Wu et al., 200354.33MT1-7TonaliteTulinkai490.13.4010.420.19760.51291885.4Jian et al., 200891.77MT1-1QuartzdioriteTulinkai453.71.348.270.09760.51244062Jian et al., 200879.55MT1-11DaciteTulinkai457.91.167.340.09530.51270087.1Jian et al., 200897.25MT1-2AlbititeTulinkai490.13.0311.630.15760.51278965.2Jian et al., 200891.1MT1-2AlbititeTulinkai425.30.090.730.07190.5125518-0.8Jian et al., 200867.96MS2-3QuartzdioriteShatui471.31.608.090.11970.51255063Jian et al., 200883.33MS2-4TonaliteShatui479.70.874.81 <td< td=""><td>HDB2-10</td><td>Granodiorite</td><td>Duobaoshan</td><td>479</td><td>2.52</td><td>13.30</td><td>0.1142</td><td>0.512654</td><td>7</td><td>0.3</td><td>5.4</td><td>-0.42</td><td>763</td><td>774</td><td>Wu et al., 2015</td><td>91.67</td></td<>	HDB2-10	Granodiorite	Duobaoshan	479	2.52	13.30	0.1142	0.512654	7	0.3	5.4	-0.42	763	774	Wu et al., 2015	91.67
HDB2-4GranodioriteDuobaoshan4792.5713.500.11520.51266270.55.5-0.41758766Wu et al., 201592.01Jul-25DioroteTafeng4304.7125.130.11330.5122157-8.3-3.7-0.4214201469Wu et al., 200354.33MT1-7TonaliteTulinkai490.13.4010.420.19760.51291885.4Image: Constrained and the alter and the alt	HDB2-12	Granodiorite	Duobaoshan	479	2.66	14.00	0.1146	0.512657	7	0.4	5.4	-0.42	761	771	Wu et al., 2015	91.74
Jul-25DioroteTafeng4304.7125.130.11330.5122157-8.3-3.7-0.4214201469Wu et al., 200354.33MT1-7TonaliteTulinkai490.13.4010.420.19760.51291885.4Jian et al., 200891.77MT1-1QuartzdioriteTulinkai453.71.348.270.09760.51244062Jian et al., 200879.55MT1-11DaciteTulinkai457.91.167.340.09530.51270087.1Jian et al., 200897.25MT1-8TonaliteTulinkai490.13.0311.630.15760.51278965.2Jian et al., 200891.1MT1-2AlbititeTulinkai425.30.090.730.07190.5122518-0.8Jian et al., 200891.1MS2-3QuartzdioriteShatui471.31.608.090.11970.51255063Jian et al., 200883.33MS2-4TonaliteShatui479.70.874.810.11010.51259484.4Jian et al., 200888.36MS2-5QuartzdioriteShatui479.72.8011.200.15100.51255363.3Jian et al., 200884.44	HDB2-4	Granodiorite	Duobaoshan	479	2.57	13.50	0.1152	0.512662	7	0.5	5.5	-0.41	758	766	Wu et al., 2015	92.01
MT1-7TonaliteTulinkai490.13.4010.420.19760.51291885.4Jian et al., 200891.77MT1-1QuartzdioriteTulinkai453.71.348.270.09760.51291862Jian et al., 200879.55MT1-11DaciteTulinkai457.91.167.340.09530.51270087.1Jian et al., 200897.25MT1-8TonaliteTulinkai490.13.0311.630.15760.51278965.2Jian et al., 200891.17MT1-2AlbititeTulinkai425.30.090.730.07190.5122518-0.8Jian et al., 200867.96MS2-3QuartzdioriteShatui471.31.608.090.11970.51255063Jian et al., 200888.33MS2-4TonaliteShatui479.70.874.810.11010.51259484.4Jian et al., 200888.36MS2-5QuartzdioriteShatui479.72.8011.200.15100.51255363.3Jian et al., 200884.44	Jul-25	Diorote	Tafeng	430	4.71	25.13	0.1133	0.512215	7	-8.3	-3.7	-0.42	1420	1469	Wu et al., 2003	54.33
MT1-1 Quartzdiorite Tulinkai 453.7 1.34 8.27 0.0976 0.512440 6 2 Jian et al., 2008 79.55 MT1-11 Dacite Tulinkai 457.9 1.16 7.34 0.0953 0.512700 8 7.1 Jian et al., 2008 97.25 MT1-8 Tonalite Tulinkai 490.1 3.03 11.63 0.1576 0.512789 6 5.2 Jian et al., 2008 91.1 MT1-2 Albitite Tulinkai 425.3 0.09 0.73 0.0719 0.512251 8 -0.8 Jian et al., 2008 67.96 MS2-3 Quartzdiorite Shatui 471.3 1.60 8.09 0.1197 0.512550 6 3 Jian et al., 2008 83.33 MS2-4 Tonalite Shatui 479.7 0.87 4.81 0.1101 0.512594 8 4.4 Jian et al., 2008 88.36 MS2-5 Quartzdiorite Shatui 479.7 2.80 11.20 0.1510 0.512553 6 3.3 Jian et al., 2008 84.44	MT1-7	Tonalite	Tulinkai	490.1	3.40	10.42	0.1976	0.512918	8		5.4				Jian et al., 2008	91.77
MT1-11 Dacite Tulinkai 457.9 1.16 7.34 0.0953 0.512700 8 7.1 Jian et al., 2008 97.25 MT1-8 Tonalite Tulinkai 490.1 3.03 11.63 0.1576 0.512789 6 5.2 Jian et al., 2008 91.1 MT1-2 Albitite Tulinkai 425.3 0.09 0.73 0.0719 0.512251 8 -0.8 Jian et al., 2008 67.96 MS2-3 Quartzdiorite Shatui 471.3 1.60 8.09 0.1197 0.512550 6 3 Jian et al., 2008 83.33 MS2-4 Tonalite Shatui 479.7 0.87 4.81 0.1101 0.512594 8 4.4 Jian et al., 2008 88.36 MS2-5 Quartzdiorite Shatui 479.7 2.80 11.20 0.512553 6 3.3 Jian et al., 2008 84.44	MT1-1	Quartzdiorite	Tulinkai	453.7	1.34	8.27	0.0976	0.512440	6		2				Jian et al., 2008	79.55
MT1-8 Tonalite Tulinkai 490.1 3.03 11.63 0.1576 0.512789 6 5.2 Jian et al., 2008 91.1 MT1-2 Albitite Tulinkai 425.3 0.09 0.73 0.0719 0.512251 8 -0.8 Jian et al., 2008 67.96 MS2-3 Quartzdiorite Shatui 471.3 1.60 8.09 0.1197 0.512550 6 3 Jian et al., 2008 83.33 MS2-4 Tonalite Shatui 479.7 0.87 4.81 0.1101 0.512594 8 4.4 Jian et al., 2008 88.36 MS2-5 Quartzdiorite Shatui 479.7 2.80 11.20 0.512553 6 3.3 Jian et al., 2008 84.44	MT1-11	Dacite	Tulinkai	457.9	1.16	7.34	0.0953	0.512700	8		7.1				Jian et al., 2008	97.25
MT1-2 Albitite Tulinkai 425.3 0.09 0.73 0.0719 0.512251 8 -0.8 Jian et al., 2008 67.96 MS2-3 Quartzdiorite Shatui 471.3 1.60 8.09 0.1197 0.512550 6 3 Jian et al., 2008 83.33 MS2-4 Tonalite Shatui 479.7 0.87 4.81 0.1101 0.512594 8 4.4 Jian et al., 2008 88.36 MS2-5 Quartzdiorite Shatui 479.7 2.80 11.20 0.1510 0.512553 6 3.3 Jian et al., 2008 84.44	MT1-8	Tonalite	Tulinkai	490.1	3.03	11.63	0.1576	0.512789	6		5.2				Jian et al., 2008	91.1
MS2-3 Quartzdiorite Shatui 471.3 1.60 8.09 0.1197 0.512550 6 3 Jian et al., 2008 83.33 MS2-4 Tonalite Shatui 479.7 0.87 4.81 0.1101 0.512594 8 4.4 Jian et al., 2008 88.36 MS2-5 Quartzdiorite Shatui 479.7 2.80 11.20 0.1510 0.512553 6 3.3 Jian et al., 2008 84.44	MT1-2	Albitite	Tulinkai	425.3	0.09	0.73	0.0719	0.512251	8		-0.8				Jian et al., 2008	67.96
MS2-4 Tonalite Shatui 479.7 0.87 4.81 0.1101 0.512594 8 4.4 Jian et al., 2008 88.36 MS2-5 Quartzdiorite Shatui 479.7 2.80 11.20 0.512593 6 3.3 Jian et al., 2008 88.44	MS2-3	Quartzdiorite	Shatui	471.3	1.60	8.09	0.1197	0.512550	6		3				Jian et al., 2008	83.33
MS2-5 Quartzdiorite Shatui 479.7 2.80 11.20 0.1510 0.512553 6 3.3 Jian et al., 2008 84.44	MS2-4	Tonalite	Shatui	479.7	0.87	4.81	0.1101	0.512594	8		4.4				Jian et al., 2008	88.36
	MS2-5	Quartzdiorite	Shatui	479.7	2.80	11.20	0.1510	0.512553	6		3.3				Jian et al., 2008	84.44

MS2-7	Quartzdiorite	Baiyanbaolid ao	481.3	2.71	11.37	0.1013	0.512553	10		1.5				Jian et al., 2008	77.59
MS3-5	Quartzdiorite	Baiyanbaolid ao	463.6	2.31	8.94	0.1566	0.512590	6		1.4				Jian et al., 2008	77.19
MS3-3	Twofeldspargra nite	Zurihetu	422.8	1.26	11.53	0.0661	0.512143	8		-2.6				Jian et al., 2008	59.64
MS3-4	Twofeldspargra nite	Zurihetu	427.3	1.16	9.37	0.0750	0.512467	8		3.2				Jian et al., 2008	84.07
G-10	Adamellite	SoutheastMo ngolia	453	8.07	36.46	0.1339	0.512463	11	-3.4	0.2	-0.32	1314	1171	Guo et al., 2013	72.4
G-4	Adamellite	SoutheastMo ngolia	453	2.78	13.81	0.1219	0.512480	20	-3.1	1.2	-0.38	1115	1088	Guo et al., 2013	76.55
G-5	Adamellite	SoutheastMo ngolia	453	6.06	28.28	0.1297	0.512486	12	-3	0.9	-0.34	1207	1115	Guo et al., 2013	75.22
G-7	Adamellite	SoutheastMo ngolia	453	4.18	17.10	0.1480	0.512507	11	-2.6	0.3	-0.25	1494	1168	Guo et al., 2013	72.57
G-8	Adamellite	SoutheastMo ngolia	453	5.44	24.99	0.1318	0.512476	13	-3.2	0.6	-0.33	1257	1141	Guo et al., 2013	73.94
G-9	Adamellite	SoutheastMo ngolia	453	9.78	47.83	0.1238	0.512449	11	-3.7	0.5	-0.37	1191	1146	Guo et al., 2014	73.7
BNM01	Dacite		436	0.60	2.70	0.1300	0.512464	10		0.4				Zhang et al., 2013	73.11
BNM02	Dacite		453	3.00	16.00	0.1100	0.512460	5		1.5				Zhang et al., 2013	77.59
BNM05	Diorite		419	5.40	22.00	0.1500	0.512279	10		-4.4				Zhang et al., 2013	50.53
07130-1	Quartzdiorite	BayanObo– Damaoqi	453	1.42	8.55	0.1008	0.512395	13	-4.7	0.8	-0.5	1019		Zhang et al., 2014	74.77
08480-1	Quartzdiorite	BayanObo– Damaoqi	436	3.85	22.79	0.1023	0.512147	15	-9.6	-4.3	-0.5	1370		Zhang et al., 2014	51.06
08487-1	Alkalifeldsparg ranite	BayanObo– Damaoqi	429	5.65	21.55	0.1587	0.512283	20	-6.9	-4.9	-0.2	2393		Zhang et al., 2014	47.84
08502-1	Tonalite	BayanObo– Damaoqi	470	2.44	12.26	0.1206	0.512406	12	-4.5	0	-0.4	1218		Zhang et al., 2014	71.43
08504-1	Andesite	BayanObo– Damaoqi	474	2.59	11.16	0.1403	0.512416	12	-4.3	-0.9	-0.3	1521		Zhang et al., 2014	67.52
08505-1	Dacite	BayanObo– Damaoqi	518	6.42	33.14	0.1173	0.511952	14	-13.4	-8.1	-0.4	1888		Zhang et al., 2014	28.76
08515-2	Tonalite	BayanObo– Damaoqi	433	0.65	2.40	0.1629	0.512120	15	-10.1	-8.2	-0.2	3069		Zhang et al., 2014	28.11
08556-1	Dacite	BayanObo– Damaoqi	445	2.34	16.96	0.0834	0.512384	12	-5	1.5	-0.6	897		Zhang et al., 2014	77.59
070813-7	Quartzdiorite	Bainaimiao	421	3.79	15.38	0.1490	0.512390	12	-4.8	-2.3	-0.2	1785		Zhang et al., 2014	61.08
08404-1	Quartzdiorite	Bainaimiao	439	2.09	12.59	0.1006	0.512398	12	-4.7	0.7	-0.5	1013		Zhang et al., 2014	74.36
08417-1	Tonalite	Bainaimiao	430	3.57	16.31	0.1327	0.512335	13	-5.9	-2.4	-0.3	1530		Zhang et al., 2014	60.61
09341-2	Tonalite	Gongzhuling,	446	4.43	21.60	0.1240	0.512691	12	1	5.2	-0.4	780		Zhang et al., 2014	91.1

		NEChina													
09344-1	Quartzdiorite	Gongzhuling, NEChina	438	4.35	22.50	0.1170	0.512472	8	-3.2	1.2	-0.4	1068		Zhang et al., 2014	76.39
11XL-5.2	granodiorite	Beidashan	277	7.06	30.3	0.1409	0.512695	10	1.1	3.1	-0.28	955	793	Li et al., 2016	84
11XL-5.4	granodiorite	Beidashan	277	6.97	30.9	0.1364	0.512689	6	1.0	3.1	-0.31	911	789	Li et al., 2016	84
11SH-2.1	granodiorite	Shahutong	275	4.72	21.5	0.1323	0.512504	8	-2.6	-0.4	-0.33	1211	1071	Li et al., 2016	70
11SH-3	granodiorite	Shahutong	275	5.89	26.9	0.1322	0.512561	8	-1.5	0.8	-0.33	1103	980	Li et al., 2016	75
H30-19	Diorite	Hadamiao	267	3.89	20.1	0.1171	0.512313	6	-6.3	-3.64	-0.4	1322	1332	Liu et al., 2014	54
H30-7	Diorite	Hadamiao	267	2.52	11.02	0.1386	0.512502	6	-2.7	-0.67	-0.3	1317	1092	Liu et al., 2014	69
H4-186	Diorite Granite-	Hadamiao	267	4.31	23.78	0.1097	0.512539	5	-1.9	1.03	-0.44	898	953	Liu et al., 2014	76
HK1	porphyry Granite-	Hadamiao	271	4.73	28.57	0.1002	0.512266	5	-7.3	-3.92	-0.49	1189	1359	Liu et al., 2014	53
HK3	porphyry Quartz diorite	Hadamiao	271	3.15	18.27	0.1045	0.512327	5	-6.1	-2.87	-0.47	1151	1274	Liu et al., 2014	58
007-136	porphyry Quartz diorite	Bilihe	261	4.017	19.947	0.1218	0.512516	8	-2.4	0.12	-0.38	1054	1022	Yang et al., 2015	72
007-146	porphyry Quartz diorite	Bilihe	261	3.98	16.312	0.126	0.512426	7	-4.1	-1.78	-0.36	1260	1176	Yang et al., 2015	64
007-217	porphyry Quartz diorita	Bilihe	261	3.62	18.13	0.1208	0.512383	10	-5.0	-2.44	-0.39	1260	1231	Yang et al., 2015	60
48-2-381	porphyry	Bilihe	261	3.713	17.836	0.1259	0.512429	9	-4.1	-1.72	-0.36	1254	1172	Yang et al., 2015	64
48-2-484	porphyry Ouartz diorite	Bilihe	261	3.841	19.324	0.1202	0.512425	8	-4.2	-1.6	-0.39	1184	1163	Yang et al., 2015	64
48-2-697	porphyry Quartz diorite	Bilihe	261	3.917	19.921	0.1189	0.512429	6	-4.1	-1.48	-0.4	1161	1153	Yang et al., 2015	65
8-6-184	porphyry Svenogranite	Bilihe	261	3.821	19.434	0.1189	0.512429	6	-4.1	-1.48	-0.4	1161	1153	Yang et al., 2015	65
BLH08-1	porphyry Svenogranite	Bilihe	253	1.827	10.239	0.108	0.512561	10	-1.5	1.36	-0.45	852	915	Yang et al., 2015	77
BLH08-2	porphyry Svenogranite	Bilihe	253	4.029	22.935	0.1063	0.51256	10	-1.5	1.4	-0.46	840	912	Yang et al., 2015	77
BLH08-3	porphyry Svenogranite	Bilihe	253	5.057	28.909	0.1058	0.512564	9	-1.4	1.5	-0.46	830	904	Yang et al., 2015	78
BLH08-4	porphyry	Bilihe	253	3.664	20.764	0.1067	0.512558	8	-1.6	1.34	-0.46	846	916	Yang et al., 2015	77
FK04-11	Granite	Faku	250	6.186	31.94	0.1172	0.512625	13	-0.3	2.28	-0.4	832	837	Zhang et al., 2010	81
FK04-12	Monzonite	Faku	260	6.728	37.09	0.1098	0.512503	16	-2.6	0.25	-0.44	952	1011	Zhang et al., 2010	72
FK04-16	Monzonite	Faku	260	6.324	34.21	0.1119	0.512528	11	-2.1	0.68	-0.43	934	977	Zhang et al., 2010	74
FK04-18	Granite	Faku	260	3.487	17.52	0.1207	0.512648	11	0.2	2.73	-0.39	826	810	Zhang et al., 2010	82

FK04-19	Monzodiorite	Faku	260	4.507	20.27	0.1346	0.512662	14	0.5	2.53	-0.32	944	825	Zhang et al., 2010	82
FK04-23	Granite	Faku	250	3.187	18.48	0.1043	0.512518	18	-2.3	0.6	-0.47	883	973	Zhang et al., 2010	74
FK04-24	Granite	Faku	250	3.129	19.71	0.0961	0.512483	12	-3.0	0.19	-0.51	867	1008	Zhang et al., 2010	72
FK04-3	Granite	Faku	250	2.42	7.147	0.2049	0.512721	13	1.6	1.36	0.04	7377	912	Zhang et al., 2010	77
FK04-37	Granite	Faku	250	5.172	24.58	0.1275	0.512587	12	-1.0	1.21	-0.35	998	924	Zhang et al., 2010	76
FK04-52	Granite	Faku	250	4.633	30.64	0.0915	0.512495	14	-2.8	0.56	-0.53	819	977	Zhang et al., 2010	74
FK04-53	Granite	Faku	250	3.34	15.7	0.1287	0.512574	12	-1.2	0.91	-0.35	1036	948	Zhang et al., 2010	75
FK06-18	Granite	Faku	250	11.65	55.23	0.1275	0.512497	14	-2.8	-0.55	-0.35	1157	1067	Zhang et al., 2010	69
FK06-24	Granite	Faku	260	6.445	34.31	0.1136	0.512468	13	-3.3	-0.55	-0.42	1041	1077	Zhang et al., 2010	69
FK06-31	Monzodiorite	Faku	260	6.034	30.8	0.1185	0.512415	9	-4.4	-1.76	-0.4	1179	1174	Zhang et al., 2010	64
FK06-32	Monzodiorite	Faku	260	6.235	31.51	0.1196	0.512413	15	-4.4	-1.84	-0.39	1196	1180	Zhang et al., 2010	63
FK06-35	Monzodiorite	Faku	260	6.209	31.53	0.119	0.512429	14	-4.1	-1.51	-0.4	1163	1153	Zhang et al., 2010	65
FK06-39	Granite	Faku	250	8.711	49.72	0.1059	0.512579	12	-1.2	1.75	-0.46	810	881	Zhang et al., 2010	79
FK06-40	Granite	Faku	250	13.516	59.7	0.1369	0.512575	13	-1.2	0.68	-0.3	1144	968	Zhang et al., 2010	74
FK06-44	Granite	Faku	250	21.086	118.22	0.1078	0.512548	13	-1.8	1.09	-0.45	869	935	Zhang et al., 2010	76
FK06-45 DSL09-	Monzonite	Faku	260	5.254	32.17	0.0987	0.512452	13	-3.6	-0.38	-0.5	927	1062	Zhang et al., 2010	70
13	Monzodiorite	Dashaoleng	220	4.68	29.5	0.0961	0.512168	12	-9.2	-6.34	-0.51	1274	1514	Zhang et al., 2012	40
DSL09-4	Monzodiorite	Dashaoleng	220	6.08	40	0.092	0.512238	15	-7.8	-4.86	-0.53	1144	1394	Zhang et al., 2012	48
DSL09-5	Monzodiorite	Dashaoleng	220	4.81	29.9	0.0972	0.512195	15	-8.6	-5.85	-0.51	1251	1474	Zhang et al., 2012	43
DSL09-7	Monzodiorite	Dashaoleng	220	5.34	30.8	0.1049	0.51226	12	-7.4	-4.8	-0.47	1248	1389	Zhang et al., 2012	48
98105	Mica-schist	HLJ Group	500	1.771	8.351	0.1282	0.512453	7	-3.6	-1.86	-0.35	1241	1162	Wu et al., 2000	63
98107 97SW30(Tonalite	HLJ Group	500	10.12	49.84	0.1227	0.512144	7	-9.6	-7.75	-0.38	1682	1623	Wu et al., 2000	31
4) 97SW34(Adamellite	MS Group	500	6.579	27.49	0.1447	0.512203	9	-8.5	-7.16	-0.26	2083	1642	Wu et al., 2000	35
6) 97SW43(Gt-granite	MS Group	500	5.076	22.28	0.1377	0.512373	9	-5.2	-3.67	-0.30	1556	1338	Wu et al., 2000	54
8)	Granulite	MS Group	500	17.12	98.11	0.1055	0.512025	7	-12.0	-9.63	-0.46	1581	1723	Wu et al., 2000	18
HDB2-1	Granodiorite	Duobaoshan	479	2.64	14	0.1142	0.512649	14	0.2	5.28	-0.42	770	782	Wu et al., 2015	91
HDB2-10	Granodiorite	Duobaoshan	479	2.52	13.3	0.1142	0.512654	7	0.3	5.37	-0.42	763	774	Wu et al., 2015	92
HDB2-12	Granodiorite	Duobaoshan	479	2.66	14	0.1146	0.512657	7	0.4	5.39	-0.42	761	771	Wu et al., 2015	92
HDB2-4	Granodiorite	Duobaoshan	479	2.57	13.5	0.1152	0.512662	7	0.5	5.47	-0.41	758	766	Wu et al., 2015	92

18DWQ- OY6	rhyolite	Dong Uiimain	316	5.07	26.07	0.1177	0.512574	10	-1.2	1.9	-0.40	916	918	Li et al., 2021	79.31
18DWQ-	rhyolite	Dong	316	4.43	23.17	0.1155	0.512569	10	-1.3	1.9	-0.41	903	918	Li et al., 2021	79.30
18DWQ-	rhyolite	Dong	316	5.04	26.05	0.1170	0.512560	5	-1.5	1.7	-0.41	931	938	Li et al., 2021	78.36
18DWQ-	rhyolite	Dong	316	5.25	26.90	0.1180	0.512571	6	-1.3	1.9	-0.40	925	925	Li et al., 2021	78.99
18DWQ-	dacite	Dong	322	4.11	21.25	0.1170	0.512525	9	-2.2	1.1	-0.41	986	993	Li et al., 2021	75.88
18DWQ-	dacite	Dong	322	3.65	18.31	0.1204	0.512538	10	-2.0	1.2	-0.39	1001	984	Li et al., 2021	76.32
18DWQ-	dacite	Dong	322	4.17	20.59	0.1224	0.512531	11	-2.1	1.0	-0.38	1034	1002	Li et al., 2021	75.44
18DWQ-	dacite	Dong	322	4.51	22.86	0.1193	0.512544	8	-1.8	1.3	-0.39	980	971	Li et al., 2021	76.97
18DWQ-	alkaline granite	Dong	300	10.41	46.18	0.1363	0.512753	9	2.2	4.5	-0.31	785	693	Li et al., 2021	88.87
18DWQ- 0Y17	alkaline granite	Dong	300	5.92	25.28	0.1417	0.512757	7	2.3	4.4	-0.28	835	703	Li et al., 2021	88.44
18DWQ- 0Y18	alkaline granite	Dong Ujimajn	300	6.95	30.08	0.1397	0.512710	5	1.4	3.6	-0.29	908	771	Li et al., 2021	85.49
18XWQ- 0Y17	andesite	Xi Ujimqin	262	10.74	64.34	0.1009	0.512032	14	-11.8	-8.6	-0.49	1509	1731	Li et al., 2021	25.32
18XWQ- 0Y18	andesite	Xi Ujimqin	262	12.48	74.66	0.1010	0.512032	8	-11.8	-8.6	-0.49	1511	1732	Li et al., 2021	25.23
18XWQ- 0Y20	andesite	Xi Ujimqin	262	12.71	75.78	0.1014	0.512050	12	-11.5	-8.3	-0.48	1492	1705	Li et al., 2021	27.45
18XWQ- 0Y21	andesite	Xi Ujimqin	262	12.37	75.10	0.0996	0.512027	5	-11.9	-8.7	-0.49	1499	1736	Li et al., 2021	24.87
18MD-1	dacite	Xi Ujimqin	305	8.60	33.94	0.1532	0.512879	7	4.7	6.4	-0.22	685	546	Li et al., 2021	95.04
18MD-2	dacite	Xi Ujimqin	305	8.41	32.11	0.15840 8	0.512893	8	5.0	6.5	-0.19	711	539	Li et al., 2021	95.28
18MD-3	dacite	Xi Ujimqin	305	9.31	35.65	0.15792 9	0.512908	9	5.3	6.8	-0.20	665	515	Li et al., 2021	96.23
18MD-4	dacite	Xi Ujimqin	305	9.89	37.60	0.15906 4	0.512889	8.24	4.90	6.36	-0.19	731	549	Li et al., 2021	94.92
18MD-5	dacite	Xi Ujimqin	305	7.12	27.74	0.15527 6	0.512843	12.40	3.99	5.61	-0.21	805	610	Li et al., 2021	92.46
SZQ02.1	monzogranite	Sunidzuoqi	323			0.08915 6	0.512466		-3.36	1.07	-0.55	839	995	Liu et al., 2020	75.86
SZQ02.3	monzogranite	Sunidzuoqi	323			0.07928 1	0.512508		-2.54	2.30	-0.60	730	895	Liu et al., 2020	80.70
MD02.1	monzogranite	Xi Ujimqin	325			0.08782 9	0.512552		-1.68	2.84	-0.55	727	853	Liu et al., 2020	82.74

MD02.2	monzogranite	Xi Ujimqin	325			0.10730	0.512571	-1	1.31	2.41	-0.45	832	889	Liu et al., 2020	81.12
MD03.1	monzogranite	Xi Ujimqin	322			0.11314 2	0.512592	-(0.90	2.55	-0.42	848	875	Liu et al., 2020	81.65
MD0.2	monzogranite	Xi Ujimqin	322			0.11416 8	0.512591	-(0.91	2.49	-0.42	858	880	Liu et al., 2020	81.42
DQ01.1	diorite	Xi Ujimqin	333			0.13099 1	0.512482	-3	3.04	-0.32	-0.33	1233	1110	Liu et al., 2020	70.06
DQ01.2	diorite	Xi Ujimqin	325			0.10818 2	0.512467	-3	3.33	0.34	-0.45	988	1056	Liu et al., 2020	72.86
18XLHT- QY7	Alkalifeldsparg ranite	Xilinhot	279	5.17	24.21	0.1291	0.512841			6.36	-0.34	558	531	This study	94.91
18XLHT- QY8	Alkalifeldsparg ranite	Xilinhot	279	3.72	16.16	0.1392	0.512852			6.23	-0.29	610	542	This study	94.48
18XLHT- QY9	Alkalifeldsparg ranite	Xilinhot	279	4.46	20.27	0.1330	0.512858			6.57	-0.32	552	514	This study	95.58
18XLHT- QY10	Alkalifeldsparg ranite	Xilinhot	279	8.74	36.87	0.1433	0.512829			5.64	-0.27	695	591	This study	92.56
18XLHT- QY11	Alkalifeldsparg ranite	Xilinhot	279	6.18	26.78	0.1396	0.512834			5.87	-0.29	650	572	This study	93.32
18XWQ Q-QY21	Granodiorite	XiUjimqin	319	3.74	13.83	0.1635	0.512953			7.49	-0.17	600	469	This study	98.46
18XWQ Q-QY22	Granodiorite	XiUjimqin	319	2.93	11.22	0.1581	0.512963			7.92	-0.2	512	434	This study	99.77
18XWQ Q-QY24	Granodiorite	XiUjimqin	319	3.59	13.77	0.1577	0.512965			7.97	-0.2	504	430	This study	99.92
18XWQ Q-QY25	Granodiorite	XiUjimqin	319	3.42	12.97	0.1595	0.512961			7.81	-0.19	533	443	This study	99.43
18XWQ- QY6	Rhyolite	XiUjimqin	279	5.88	27.66	0.1286	0.512674			3.13	-0.35	853	800	This study	83.83
18XWQ- QY7	Rhyolite	XiUjimqin	279	7.77	35.90	0.1309	0.512682			3.21	-0.33	862	794	This study	84.09
18XWQ- QY10	Rhyolite	XiUjimqin	279	5.95	29.11	0.1236	0.512690			3.61	-0.37	779	760	This study	85.57
18XWQ- QY11	Rhyolite	Xi-Ujimqin	279	4.34	17.65	0.1486	0.512721			3.32	-0.24	1005	784	This study	84.53

References:

Chen, B., Jahn, B.M., Simon, W., Xu, B., 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectonophysics. 328, 157–182.

- Guo, Z.J., Li, J.W., Huang, G.J., Guan, J.D., Dong, X.Z., Tian, J., Yang, Y.C., She, H.Q., Xiang, A.P., Kang, Y.J., 2014. Sr-Nd-Pb-Hf isotopic characteristics of orebearing granites in the Honghuaerji scheelite deposit, Inner Mongolia. Geology in China 41 (4), 1226–1241 (in Chinese with English abstract).
- Guo, Z.H., Zhang, B.L., Shen, X.L., Jia, W.C., Huang, X.F., 2013. Discussion on the geochemical characteristics and mechanism of rock formation of the giant phenocryst adamallite in southeast Mongolia. Journal of Jilin University (Earth Science Edition) 43 (3), 776–787 (in Chinese with English abstract).
- Jian, P., Liu, D.Y., Kröner, A., Windley, B.F., Shi, Y.N., Zhang, F.Q., Shi, G.H., Miao, L.C., Zhang, W., Zhang, Q., Zhang, L.Q., Ren, J.S., 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth, Lithos. 101, 233–259.
- Jian, P., Liu, D., Kröner, A., Windley, B.F., Shi, Y., Zhang, W., Zhang, F., Miao, L., Zhang, L., Tomurhuu D., 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos. 118, 169–190.
- Liu, Y.F., Jiang, S.H., Zhang, Y., 2010. The SHRIMP zircon U-Pb dating and geological features of Bairendaba diorite in the Xilinhaote area, Inner Mongolia, China. Geological Bulletin of China 29 (5), 688-696 (in Chinese with English abstract).
- Liu, J., Wu, G., Li, T.G., Wang, G.R., Wu, H., 2014. SHRIMP zircon U-Pb dating, geochemistry, Sr-Nd isotopic analysis of the Late Paleozoic intermediate-acidic intrusive rocks in the Hadamiao area, Xianghuang Banner, Inner Mongolia and its geological significances. Acta Petrologica Sinica 30 (1), 95–108 (in Chinese with English abstract).
- Li, S., Wilde, S.A., Wang, T., Xiao, W.J., Guo, Q.Q., 2016. Latest Early Permian granitic magmatism in southern Inner Mongolia, China: Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt. Gondwana Research. 29, 168–180.
- Li, Y.L., Zhou, H.W., Brouwer, F.M., Xiao, W.J., Wijbrans, J.R., Zhong, Z.Q., 2014a. Early Paleozoic to Middle Triassic bivergent accretion in the Central Asian Orogenic Belt: insights from zircon U-Pb dating of ductile shear zones in central Inner Mongolia, China. Lithos 205, 84–111.
- Li J L, Liu J G, Wang Y J, Zhu D C, Wu C. 2021. Late Carboniferous to Early Permian ridge subduction identified in the southeastern Central Asian Orogenic Belt: Implications for the architecture and growth of continental crust in accretionary orogens. Lithos, https://doi.org/10.1016/j.lithos.2021.105969.
- Nie, F.J., Pei, R.F., Wu, L.S., Arne, B., 1995. Nd- and Sr-isotope study on greenschist and granodiorite of the Bainaimiao district, Inner Mongolia, China. Acta Geoscientia Sinica 1, 36–44 (in Chinese with English abstract).
- Shen, X.L., Zhang, B.L., Jia,W.C., Guo, Z.H., Huang, X.F., Cui, M.L., 2012. Geochemical characteristics of Late Paleozoic-Early Mesozoic Bayinsukhtu monzonitic granite and its constraints on tectonic setting in southeastern Mongolia. Journal of Jilin University (Earth Science Edition) 42 (1), 281–295 (in Chinese with English abstract).
- Tong, Y., Jahn, B.M., Wang, T., Hong, D.W., Smith, E.I., Sun, M., Gao, J.F., Yang, Q.D., Huang, W., 2015. Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance. Journal of Asian Earth Sciences. 97, 320– 336.
- Xiao, Q.H., Wang, T., Deng, J.F., Mo, X.X., Lu, X.X., Hong, D.W., Xie, C.F., Luo, Z.H., Qiu, R.Z., Wang, X.X., 2008. Granitoids and Continent Growth of Key Orogene Belts in China. Geological Publishing House, Beijing, pp. 1–528 (in Chinese).
- Wang, Z.H., Sun, L., Huang, Z.X., Chang, C.J., Cong, R.X., Wang, L., Zhang, H.Y., Kong, Y.Y., 2013. Zircon SHRIMP U-Pb geochronology and geochemical characteristics of monzonitic granite in the 1017 Gaodi Ag-polymetallic mining field, Inner Mongolia, China. Journal of Mineralogy and Petrology 33 (2), 72– 84 (in Chinese with English abstract).
- Wang, J., 2009. Chronology and Geochemistry of Granitoid for the Weilasituo Cupper Polymetal Deposit in Inner Mongolia. Master Dissertation. China University of Geosciences, Beijing, pp. 1–59 (in Chinese with English abstract).
- Wu, F.Y., Jahn, B.M., Wilde, S.A., Sun, D.Y., 2000. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics. 328, 89–113.
- Wu, F.Y., Sun, D.Y., Li, H.M., Jahn, B.M., Wilde, S.A., 2002. A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem. Geol. 187, 143–173.
- Wu, G., Chen, Y.C., Sun, F.Y., Liu, J., Wang, G.R., Xu, B., 2015. Geochronology, geochemistry, and Sr-Nd-Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance. Journal of Asian Earth Sciences 97, 229–250.
- Wang, Z.H., Chang, C.J., Cong, R.X., Wang, L., Ma, D.X., Wang, X.J., 2015. SHRIMP zircon U-Pb age and geochemical characteristics of the Achieng Qulu monzogranite in Inner Mongolia. Journal of Jilin University (Earth Science Edition) 45 (1), 166–187 (in Chinese with English abstract).
- Yang, Z.M., Chang, Z.S., Hou, Z.Q., Meffre, S., 2015. Age, igneous petrogenesis, and tectonic setting of the Bilihe gold deposit, China, and implications for regional metallogeny. Gondwana Research http://dx.doi.org/10.1016/j.gr.2015.04.003.
- Yang, Q.D., Ying, L.G., Zhang, L., Zhang, J.J., Hou, Z.Q., 2017. Nd isotopic variation of Paleozoic-Mesozoic granitoids from the Da Hinggan Mountains and adjacent areas, NE Asia: Implications for the architecture and growth of continental crust. Lithos 272–273, 164–184.
- Wu, G., Sun, F.Y., Zhao, C.S., Li, Z.T., Zhao, A.L., Pang, Q.B., Li, G.Y., 2005. Discovery of the Early Paleozoic post-collisional granites in northern margin of the Erguna massif and its geological significance. Chinese Science Bulletin 50 (23), 2733–2743 (in Chinese with English abstract).
- Wu, F.Y., Jahn, B.M., Wilde, S.A., Lo, C.H., Yu, T.F., Lin, Q., Ge, W.C., Sun, D.Y., 2003. Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos 67, 191–204.
- Zhu, M.S., Zhang, F.C., Fan, J.J., Miao, L.C., Baatar, m., Anaad, C., Yang, S.H., Li, X.B., Ganbat, A., 2017. Late Carboniferous bimodal volcanic rocks and coeval A-type granite in the Suman Khad area, Southwest Mongolia: Implications for the tectonic evolution. Journal of Asian Earth Sciences. 144, 54–68.
- Zhang, X.H., Zhang, H.F., Wilde, S.A., Yang, Y.H., Chen, H.H., 2010. Late Permian to Early Triassic mafic to felsic intrusive rocks from North Liaoning, North China: petrogenesis and implications for Phanerozoic continental crustal growth. Lithos 117, 283–306.
- Zhang, X.H., Yuan, L.L., Xue, F.H., Zhang, Y.B., 2012. Contrasting Triassic ferroan granitoids from northwestern Liaoning, North China: magmatic monitor of Mesozoic decratonization and a craton-orogen boundary. Lithos 144-145, 12-23.
- Zhang, W., Jian, P., Kröner, A., Shi, Y.R., 2013. Magmatic and metamorphic development of an early to mid-Paleozoic continental margin arc in the southernmost Central Asian Orogenic Belt, Inner Mongolia, China. Journal of Asian Earth Sciences. 72, 63–74.

- Zhang, S.H., Zhao, Y., Ye, H., Liu, J.M., Hu, Z.C., 2014. Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt. Geological Society of America Bulletin. 126, 1275–1230.
- Zhang, X., Yuan, L., Xue, F., Yan, X., Mao, Q., 2015. Early Permian A-type granites from central Inner Mongolia, North China: magmatic tracer of post-collisional tectonics and oceanic crustal recycling. Gondwana Research. 28, 311–327.

Sample no.	t (Ma)	¹⁷⁶ Yb/ ¹⁷⁷ Hf	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	$\epsilon_{\rm Hf}(0)$	$\epsilon_{\rm Hf}\!(t)$	2σ	T _{DM} (Ma)	T _{DM} ^C (Ma)	$f_{Lu/Hf} \\$	Hf_{i}	References
SN10-2/01	289	0.047547	0.001798	0.282963	17	6.8	12.8		418	492		0.282953	Zhang et al., 2015
SN10-2/02	289	0.098654	0.003443	0.282968	22	6.9	12.6		430	500		0.282949	Zhang et al., 2015
SN10-2/03	289	0.086416	0.003048	0.282972	22	7.1	12.9		419	486		0.282956	Zhang et al., 2015
SN10-2/04	289	0.089310	0.003189	0.282954	21	6.5	12.2		448	529		0.282937	Zhang et al., 2015
SN10-2/05	289	0.104236	0.003698	0.282998	23	8	13.6		388	436		0.282978	Zhang et al., 2015
SN10-2/06	289	0.086636	0.003045	0.282984	24	7.5	13.3		401	460		0.282968	Zhang et al., 2015
SN10-2/07	289	0.080438	0.002800	0.283007	23	8.3	14.1		364	404		0.282992	Zhang et al., 2015
SN10-2/09	289	0.056914	0.002034	0.283010	22	8.4	14.4		353	388		0.282999	Zhang et al., 2015
SN10-2/10	289	0.080526	0.002929	0.282993	25	7.8	13.6		387	438		0.282977	Zhang et al., 2015
SN10-2/11	289	0.107148	0.003710	0.283074	24	10.7	16.3		270	261		0.283054	Zhang et al., 2015
SN10-2/12	289	0.100608	0.003580	0.283008	28	8.4	14		370	411		0.282989	Zhang et al., 2015
SN10-2/13	289	0.082280	0.002990	0.282913	21	5	10.8		507	620		0.282897	Zhang et al., 2015
SN10-2/14	289	0.093578	0.003274	0.282985	22	7.5	13.3		403	461		0.282967	Zhang et al., 2015
SN10-2/15	289	0.067415	0.002387	0.282898	24	4.4	10.3		521	648		0.282885	Zhang et al., 2015
SN10-2/16	289	0.099458	0.003507	0.282976	22	7.2	12.9		419	483		0.282957	Zhang et al., 2015
SN10-3/01	288	0.067801	0.002385	0.282922	26	5.3	11.2		486	593		0.282909	Zhang et al., 2015
SN10-3/03	288	0.090085	0.003191	0.282954	25	6.4	12.2		449	531		0.282937	Zhang et al., 2015
SN10-3/04	288	0.106493	0.003764	0.283000	27	8.1	13.7		385	433		0.282980	Zhang et al., 2015
SN10-3/05	288	0.103903	0.003624	0.283000	26	8	13.7		384	432		0.282981	Zhang et al., 2015
SN10-3/06	288	0.093390	0.003375	0.283018	21	8.7	14.4		354	387		0.283000	Zhang et al., 2015
SN10-3/07	288	0.088059	0.003193	0.282955	21	6.5	12.2		447	528		0.282938	Zhang et al., 2015
SN10-3/08	288	0.063639	0.002290	0.282915	22	5.1	11		494	607		0.282903	Zhang et al., 2015
SN10-3/09	288	0.083388	0.002893	0.282926	25	5.4	11.2		487	591		0.282910	Zhang et al., 2015
SN10-3/10	288	0.071472	0.002507	0.282960	26	6.7	12.5		431	508		0.282947	Zhang et al., 2015
SN10-3/11	288	0.076562	0.002672	0.282984	22	7.5	13.3		397	455		0.282970	Zhang et al., 2015
SN10-3/12	288	0.101709	0.003513	0.283013	31	8.5	14.2		363	400		0.282994	Zhang et al., 2015
SN10-3/13	288	0.097421	0.003409	0.283013	27	8.5	14.2		361	398		0.282995	Zhang et al., 2015
SN10-3/14	288	0.090167	0.003222	0.283031	23	9.2	14.9		332	354		0.283014	Zhang et al., 2015

Table S7- Summary of zircons Hf isotopic data of granitic rocks in XMOB.

SN10-3/15	288	0.113030	0.003986	0.283023	24	8.9	14.5	352	383	0.283002	Zhang et al., 2015
SN10-3/16	288	0.200013	0.006863	0.283081	24	10.9	15.9	287	287	0.283044	Zhang et al., 2015
SN10-9/01	290	0.089758	0.003166	0.283040	23	9.5	15.3	318	333	0.283023	Zhang et al., 2015
SN10-9/02	290	0.109150	0.003785	0.282924	26	5.4	11	503	606	0.282904	Zhang et al., 2015
SN10-9/03	290	0.117385	0.004016	0.282969	25	7	12.6	436	506	0.282947	Zhang et al., 2015
SN10-9/04	290	0.084242	0.003011	0.282980	24	7.3	13.1	408	469	0.282964	Zhang et al., 2015
SN10-9/05	290	0.084673	0.002978	0.282968	23	6.9	12.7	425	495	0.282952	Zhang et al., 2015
SN10-9/06	290	0.067436	0.002441	0.282968	22	6.9	12.9	418	487	0.282955	Zhang et al., 2015
SN10-9/07	290	0.086381	0.003022	0.282931	21	5.6	11.4	481	580	0.282915	Zhang et al., 2015
SN10-9/08	290	0.078613	0.002746	0.282960	24	6.7	12.5	434	510	0.282945	Zhang et al., 2015
SN10-9/09	290	0.078250	0.002728	0.282964	26	6.8	12.6	428	501	0.282949	Zhang et al., 2015
SN10-9/10	290	0.074293	0.002644	0.282963	23	6.8	12.6	428	502	0.282949	Zhang et al., 2015
SN10-9/11	290	0.147967	0.005184	0.283013	24	8.5	13.9	381	420	0.282985	Zhang et al., 2015
SN10-9/12	290	0.088805	0.003129	0.283011	26	8.4	14.2	362	399	0.282994	Zhang et al., 2015
SN10-9/13	290	0.099317	0.003412	0.283001	25	8.1	13.8	380	425	0.282983	Zhang et al., 2015
SN10-9/14	290	0.078648	0.002817	0.283059	24	10.1	16	287	285	0.283044	Zhang et al., 2015
SN10-9/15	290	0.102826	0.003619	0.282980	21	7.3	13	415	477	0.282960	Zhang et al., 2015
SN10-9/16	290	0.140092	0.004859	0.282896	26	4.4	9.8	563	682	0.282870	Zhang et al., 2015
SN10-12/01	290	0.101024	0.003771	0.282953	23	6.4	12	458	540	0.282933	Zhang et al., 2015
SN10-12/02	290	0.117436	0.004312	0.282956	25	6.5	12.1	460	539	0.282933	Zhang et al., 2015
SN10-12/05	290	0.102598	0.003858	0.282968	23	6.9	12.6	435	505	0.282947	Zhang et al., 2015
SN10-12/06	290	0.172371	0.006108	0.283059	23	10.2	15.4	316	325	0.283026	Zhang et al., 2015
SN10-12/07	290	0.151878	0.005610	0.282996	27	7.9	13.2	413	463	0.282966	Zhang et al., 2015
SN10-12/08	290	0.114628	0.004211	0.282959	27	6.6	12.2	454	530	0.282936	Zhang et al., 2015
SN10-12/09	290	0.116380	0.004152	0.282954	24	6.4	12	461	542	0.282932	Zhang et al., 2015
SN10-12/10	290	0.149797	0.005234	0.283003	25	8.2	13.5	398	444	0.282975	Zhang et al., 2015
SN10-12/12	290	0.103187	0.003918	0.282906	23	4.7	10.4	532	647	0.282885	Zhang et al., 2015
SN10-12/13	290	0.128188	0.004643	0.282989	23	7.7	13.2	412	468	0.282964	Zhang et al., 2015
SN10-12/14	290	0.172974	0.006197	0.283010	27	8.4	13.6	398	439	0.282977	Zhang et al., 2015
SN10-12/15	290	0.116080	0.004258	0.283032	25	9.2	14.8	341	365	0.283009	Zhang et al., 2015

BLD-1-1	316	0.046957	0.001688	0.282806	56	1.2	7.8		644	830	-0.95	0.282796	Hu et al., 2015
BLD-1-2	316	0.043071	0.001516	0.282923	32	5.3	12		473	564	-0.95	0.282914	Hu et al., 2015
BLD-1-3	316	0.041321	0.001459	0.282883	92	3.9	10.6		530	654	-0.96	0.282874	Hu et al., 2015
BLD-1-5	316	0.050911	0.001836	0.282877	38	3.7	10.3		544	672	-0.94	0.282866	Hu et al., 2015
BLD-1-7	316	0.043267	0.001473	0.282941	64	6	12.6		446	521	-0.96	0.282932	Hu et al., 2015
BLD-1-8	316	0.043957	0.001575	0.282669	88	-3.6	3		839	1138	-0.95	0.282660	Hu et al., 2015
BLD-1-11	316	0.068595	0.002408	0.282729	90	-1.5	4.9		770	1013	-0.93	0.282715	Hu et al., 2015
BLD-3-1	322	0.094289	0.002920	0.282959	20	6.6	13.1		438	497	-0.91	0.282941	Hu et al., 2015
BLD-3-2	322	0.087322	0.002680	0.282907	20	4.8	11.3		512	612	-0.92	0.282891	Hu et al., 2015
BLD-3-3	322	0.069412	0.002156	0.282980	22	7.4	14		397	439	-0.94	0.282967	Hu et al., 2015
BLD-3-4	322	0.082174	0.002555	0.282926	21	5.4	12		483	568	-0.92	0.282911	Hu et al., 2015
BLD-3-5	322	0.102205	0.003023	0.282890	22	4.2	10.6		542	655	-0.91	0.282872	Hu et al., 2015
BLD-3-6	322	0.069953	0.002098	0.282943	22	6.1	12.7		451	522	-0.94	0.282930	Hu et al., 2015
HLT-1-1	233	0.023239	0.000649	0.282786	27	0.5	5.5		654	912	-0.98	0.282783	Hu et al., 2015
HLT-1-2	233	0.052586	0.001464	0.282756	108	-0.6	4.3		712	989	-0.96	0.282750	Hu et al., 2015
HLT-1-3	233	0.033773	0.000903	0.282751	40	-0.7	4.2		709	994	-0.97	0.282747	Hu et al., 2015
HLT-1-4	233	0.057797	0.001505	0.282866	27	3.3	8.2		555	741	-0.95	0.282859	Hu et al., 2015
HLT-1-8	233	0.028901	0.000820	0.282859	24	3.1	8.1		555	749	-0.98	0.282855	Hu et al., 2015
HLT-1-11	233	0.046207	0.001030	0.282738	23	-1.2	3.8		729	1024	-0.97	0.282734	Hu et al., 2015
HLT-1-12	233	0.045010	0.001030	0.282775	20	0.1	5.1		678	942	-0.97	0.282771	Hu et al., 2015
HLT-1-13	233	0.029202	0.000748	0.282841	29	2.5	7.5		579	789	-0.98	0.282838	Hu et al., 2015
HLT-1-14	233	0.063546	0.001320	0.282792	19	0.7	5.6		658	905	-0.96	0.282786	Hu et al., 2015
HLT-1-15	233	0.035936	0.000896	0.282744	21	-1	4		718	1010	-0.97	0.282740	Hu et al., 2015
HLT-2-1	344	0.031235	0.000932	0.282960	19	6.7	14		413	454	-0.97	0.282954	Hu et al., 2015
HLT-2-3	344	0.123494	0.003403	0.282913	27	5	11.8		514	597	-0.9	0.282891	Hu et al., 2015
HLT-2-4	344	0.150235	0.003829	0.282849	33	2.7	9.4		619	750	-0.88	0.282824	Hu et al., 2015
HLT-2-5	215	0.305372	0.007967	0.282761	37	-0.4	3.2		855	1047	-0.76	0.282729	Hu et al., 2015
E925-7-1	276	0.128615	0.002328	0.283040	16	9.5	15.3	0.6	311	326	-0.93	0.283028	Tong et al., 2015
E925-7-2	276	0.140552	0.002575	0.283098	21	11.5	17.1	0.7	227	202	-0.92	0.283085	Tong et al., 2015
E925-7-3	276	0.120112	0.002170	0.282987	17	7.6	13.2	0.6	388	452	-0.93	0.282976	Tong et al., 2015

E925-7-4	276	0.155260	0.003047	0.283016	17	8.6	14.1	0.6	354	394	-0.91	0.283000	Tong et al., 2015
E925-7-5	276	0.151276	0.002624	0.283036	19	9.3	15	0.7	319	341	-0.92	0.283023	Tong et al., 2015
Е925-7-6	276	0.238366	0.005146	0.283046	32	9.7	14.7	1.1	328	352	-0.85	0.283020	Tong et al., 2015
E925-7-7	276	0.157839	0.002758	0.283019	18	8.7	14.4	0.6	346	381	-0.92	0.283005	Tong et al., 2015
E925-7-8	276	0.256833	0.005205	0.283083	34	11	16.2	1.2	269	265	-0.84	0.283056	Tong et al., 2015
E925-7-9	276	0.211782	0.004328	0.283091	24	11.3	16.5	0.8	249	238	-0.87	0.283069	Tong et al., 2015
E925-7-10	276	0.191272	0.003561	0.283086	24	11.1	16.5	0.8	252	240	-0.89	0.283068	Tong et al., 2015
E925-7-11	276	0.136658	0.002435	0.283014	19	8.6	14.2	0.7	351	392	-0.93	0.283001	Tong et al., 2015
E925-7-12	276	0.166339	0.002974	0.283101	24	11.6	17.1	0.9	226	201	-0.91	0.283086	Tong et al., 2015
E925-7-13	276	0.187018	0.003577	0.283073	28	10.6	16.1	1	272	270	-0.89	0.283055	Tong et al., 2015
E925-7-14	276	0.149587	0.003151	0.283016	15	8.6	14	0.5	355	398	-0.91	0.283000	Tong et al., 2015
E925-7-15	276	0.165603	0.003704	0.283023	17	8.9	14.3	0.6	349	384	-0.89	0.283004	Tong et al., 2015
E930-1-1	279	0.190498	0.004297	0.282943	26	6.1	11.3	0.9	480	575	-0.87	0.282921	Tong et al., 2015
E930-1-2	279	0.127727	0.003054	0.282818	25	1.6	7.3	0.9	651	841	-0.91	0.282802	Tong et al., 2015
E930-1-3	279	0.106612	0.002453	0.282874	25	3.6	9.2	0.9	558	711	-0.93	0.282861	Tong et al., 2015
E930-1-4	279	0.096095	0.002139	0.282847	20	2.6	8.5	0.7	593	765	-0.94	0.282836	Tong et al., 2015
E930-1-5	279	0.170593	0.003963	0.282772	30	0	5.4	1.1	739	959	-0.88	0.282751	Tong et al., 2015
E930-1-6	279	0.103480	0.002545	0.282751	32	-0.7	4.9	1.1	741	988	-0.92	0.282738	Tong et al., 2015
E930-1-7	279	0.147624	0.003590	0.282907	29	4.8	10.2	1	526	649	-0.89	0.282888	Tong et al., 2015
E930-1-8	279	0.129867	0.003130	0.282816	31	1.6	7.2	1.1	656	847	-0.91	0.282800	Tong et al., 2015
E930-1-9	279	0.081869	0.002022	0.282769	29	-0.1	5.7	1	704	941	-0.94	0.282759	Tong et al., 2015
E930-1-10	279	0.127912	0.003128	0.282779	28	0.2	5.9	1	711	931	-0.91	0.282763	Tong et al., 2015
E930-1-11	279	0.108043	0.002443	0.282924	22	5.4	11.2	0.8	483	592	-0.93	0.282911	Tong et al., 2015
E930-1-12	279	0.106628	0.002599	0.282882	30	3.9	9.6	1.1	548	690	-0.92	0.282869	Tong et al., 2015
E930-1-13	279	0.125749	0.002910	0.282793	26	0.7	6.4	0.9	687	898	-0.91	0.282778	Tong et al., 2015
E930-1-14	279	0.136231	0.003291	0.282832	28	2.1	7.7	1	634	814	-0.9	0.282815	Tong et al., 2015
E930-1-15	279	0.169044	0.003938	0.282870	30	3.5	8.9	1.1	588	736	-0.88	0.282850	Tong et al., 2015
E930-1-16	279	0.129001	0.003156	0.282897	30	4.4	9.9	1.1	534	667	-0.9	0.282881	Tong et al., 2015
E930-1-17	279	0.202970	0.004475	0.282922	30	5.3	10.5	1.1	516	628	-0.87	0.282899	Tong et al., 2015
E930-1-18	279	0.115583	0.002580	0.282891	23	4.2	9.9	0.8	535	671	-0.92	0.282878	Tong et al., 2015

E930-1-19	279	0.105724	0.002519	0.282824	23	1.8	7.5	0.8	633	824	-0.92	0.282811	Tong et al., 2015
E930-1-20	279	0.086790	0.001977	0.282867	25	3.4	9.1	0.9	561	720	-0.94	0.282857	Tong et al., 2015
E101-1.1-1	285	0.217786	0.004921	0.283027	27	9	14.4	1	356	387	-0.85	0.283001	Tong et al., 2015
E101-1.1-2	285	0.132335	0.002997	0.282915	30	5.1	10.8	1.1	505	617	-0.91	0.282899	Tong et al., 2015
E101-1.1-3	285	0.220371	0.004895	0.282957	30	6.5	11.9	1.1	467	547	-0.85	0.282931	Tong et al., 2015
E101-1.1-4	285	0.216405	0.004960	0.282866	35	3.3	8.6	1.2	612	755	-0.85	0.282840	Tong et al., 2015
E101-1.1-5	285	0.215040	0.004717	0.282815	33	1.5	6.8	1.2	688	869	-0.86	0.282790	Tong et al., 2015
E101-1.1-6	285	0.200936	0.004701	0.282931	35	5.6	11	1.2	505	603	-0.86	0.282906	Tong et al., 2015
E101-1.1-7	285	0.219203	0.004942	0.283076	35	10.8	16.1	1.2	278	275	-0.85	0.283050	Tong et al., 2015
E101-1.1-8	285	0.047371	0.001298	0.282937	30	5.8	11.9	1	450	546	-0.96	0.282930	Tong et al., 2015
E101-1.1-9	285	0.027313	0.000632	0.282851	27	2.8	8.9	1	564	739	-0.98	0.282848	Tong et al., 2015
E101-1.1-10	285	0.282265	0.006923	0.283072	34	10.6	15.6	1.2	302	307	-0.79	0.283035	Tong et al., 2015
E101-1.1-11	285	0.111307	0.002673	0.282924	28	5.4	11.2	1	488	594	-0.92	0.282910	Tong et al., 2015
E101-1.1-12	285	0.224211	0.005363	0.282954	34	6.4	11.7	1.2	478	559	-0.84	0.282926	Tong et al., 2015
E101-1.1-13	285	0.201611	0.004876	0.283005	26	8.2	13.6	0.9	390	437	-0.85	0.282979	Tong et al., 2015
E101-1.1-14	285	0.136827	0.003544	0.282832	29	2.1	7.7	1	639	815	-0.89	0.282813	Tong et al., 2015
E101-1.1-15	285	0.169725	0.004114	0.282921	31	5.3	10.8	1.1	512	619	-0.88	0.282899	Tong et al., 2015
E101-1.1-16	285	0.163067	0.003926	0.282954	29	6.4	11.9	1	459	543	-0.88	0.282933	Tong et al., 2015
E101-1.1-17	285	0.244175	0.005784	0.283019	34	8.7	13.9	1.2	378	416	-0.83	0.282988	Tong et al., 2015
E101-1.1-18	285	0.186018	0.004430	0.282961	25	6.7	12.1	0.9	454	532	-0.87	0.282938	Tong et al., 2015
E101-1.1-19	285	0.203874	0.004868	0.282953	27	6.4	11.7	1	472	556	-0.85	0.282927	Tong et al., 2015
E101-1.1-20	285	0.134773	0.002997	0.282979	35	7.3	13	1.2	408	474	-0.91	0.282963	Tong et al., 2015
DBS01-01	491	0.027900	0.001000	0.282521	30	-8.87	1.6	1.06	1035	1359	-0.97	0.282512	Feng et al., 2017
DBS01-02	505	0.002900	0.000100	0.282329	17	-15.66	-4.6	0.62	1275	1762	-1	0.282328	Feng et al., 2017
DBS01-03	498	0.056900	0.002000	0.282860	21	3.12	13.4	0.74	571	612	-0.94	0.282841	Feng et al., 2017
DBS01-04	492	0.033200	0.001000	0.282409	16	-12.84	-2.3	0.58	1192	1610	-0.97	0.282400	Feng et al., 2017
DBS01-05	496	0.035900	0.001300	0.282900	23	4.51	15	0.81	504	508	-0.96	0.282888	Feng et al., 2017
DBS01-06	475	0.057900	0.001900	0.282416	28	-12.6	-2.7	0.98	1212	1623	-0.94	0.282399	Feng et al., 2017
DBS01-07	493	0.028200	0.001000	0.282355	24	-14.76	-4.2	0.84	1267	1730	-0.97	0.282346	Feng et al., 2017
DBS01-08	500	0.032100	0.001000	0.282481	23	-10.3	0.4	0.82	1093	1445	-0.97	0.282472	Feng et al., 2017

DBS01-09	502	0.098500	0.003400	0.282428	41	-12.15	-2.2	1.46	1243	1610	-0.9	0.282396	Feng et al., 2017
DBS01-10	499	0.094500	0.003200	0.282832	29	2.11	12.1	1.03	634	701	-0.9	0.282802	Feng et al., 2017
DBS01-11	479	0.019400	0.000700	0.282785	26	0.45	10.8	0.91	658	767	-0.98	0.282779	Feng et al., 2017
HJY01-01	521	0.016200	0.000600	0.281988	22	-27.72	-16.5	0.79	1759	2519	-0.98	0.281982	Feng et al., 2017
HJY01-02	532	0.017600	0.000600	0.282058	19	-25.25	-13.8	0.66	1665	2359	-0.98	0.282052	Feng et al., 2017
HJY01-03	519	0.014400	0.000500	0.282008	24	-27.02	-15.8	0.86	1729	2476	-0.99	0.282003	Feng et al., 2017
HJY01-04	522	0.020700	0.000700	0.281995	20	-27.47	-16.2	0.69	1755	2506	-0.98	0.281988	Feng et al., 2017
HJY01-05	522	0.016600	0.000600	0.281996	22	-27.46	-16.2	0.8	1751	2504	-0.98	0.281990	Feng et al., 2017
HJY01-06	527	0.017300	0.000600	0.281983	26	-27.91	-16.5	0.9	1768	2528	-0.98	0.281977	Feng et al., 2017
HJY01-07	521	0.017600	0.000600	0.281991	22	-27.62	-16.4	0.78	1757	2514	-0.98	0.281985	Feng et al., 2017
HJY01-08	520	0.017500	0.000600	0.282021	28	-26.55	-15.3	1.01	1717	2449	-0.98	0.282015	Feng et al., 2017
HJY01-09	523	0.013800	0.000500	0.282018	26	-26.68	-15.3	0.91	1716	2452	-0.99	0.282013	Feng et al., 2017
HJY01-10	525	0.020500	0.000700	0.282022	22	-26.51	-15.2	0.77	1718	2444	-0.98	0.282015	Feng et al., 2017
HJY01-11	521	0.014600	0.000500	0.282016	23	-26.73	-15.4	0.83	1718	2457	-0.98	0.282011	Feng et al., 2017
HJY01-12	527	0.011400	0.000400	0.281978	21	-28.09	-16.6	0.73	1766	2536	-0.99	0.281974	Feng et al., 2017
HJY01-13	523	0.012400	0.000400	0.282035	22	-26.05	-14.7	0.78	1689	2411	-0.99	0.282031	Feng et al., 2017
HJY01-14	525	0.016600	0.000600	0.282011	20	-26.92	-15.6	0.71	1728	2467	-0.98	0.282005	Feng et al., 2017
HJY01-15	521	0.019200	0.000700	0.282008	23	-27.02	-15.8	0.83	1737	2478	-0.98	0.282001	Feng et al., 2017
HJY02-01	475	0.026200	0.000900	0.282414	21	-12.67	-2.5	0.74	1183	1608	-0.97	0.282406	Feng et al., 2017
HJY02-02	470	0.090600	0.002900	0.282418	28	-12.51	-3.1	0.97	1240	1638	-0.91	0.282393	Feng et al., 2017
HJY02-03	470	0.041700	0.001400	0.282463	25	-10.92	-1	0.9	1127	1509	-0.96	0.282451	Feng et al., 2017
HJY02-04	473	0.054600	0.001800	0.282414	26	-12.68	-2.8	0.91	1211	1626	-0.95	0.282398	Feng et al., 2017
HJY02-05	474	0.035900	0.001200	0.282490	23	-9.99	0.1	0.81	1086	1445	-0.96	0.282479	Feng et al., 2017
HJY02-06	469	0.052900	0.001700	0.282512	25	-9.21	0.6	0.87	1068	1407	-0.95	0.282497	Feng et al., 2017
HJY02-07	472	0.052400	0.001800	0.282453	20	-11.27	-1.4	0.7	1153	1537	-0.95	0.282437	Feng et al., 2017
HJY02-08	476	0.031700	0.001100	0.282408	25	-12.86	-2.7	0.87	1196	1622	-0.97	0.282398	Feng et al., 2017
HJY02-09	475	0.077300	0.002100	0.282490	24	-9.99	-0.2	0.87	1113	1462	-0.94	0.282471	Feng et al., 2017
HJY02-10	476	0.046000	0.001600	0.282390	25	-13.51	-3.5	0.88	1238	1673	-0.95	0.282376	Feng et al., 2017
HJY02-11	475	0.053700	0.001700	0.282479	19	-10.37	-0.5	0.69	1116	1478	-0.95	0.282464	Feng et al., 2017
HJY02-12	470	0.043900	0.001500	0.282503	21	-9.51	0.4	0.76	1073	1421	-0.96	0.282490	Feng et al., 2017

HJY02-13	472	0.033400	0.001200	0.282497	25	-9.74	0.3	0.87	1074	1428	-0.97	0.282486	Feng et al., 2017
HJY03-01	488	0.029900	0.001200	0.282476	25	-10.48	-0.1	0.89	1104	1467	-0.96	0.282465	Feng et al., 2017
HJY03-02	482	0.054800	0.002100	0.282465	35	-10.86	-0.9	1.24	1147	1512	-0.94	0.282446	Feng et al., 2017
HJY03-03	482	0.072200	0.002800	0.282446	32	-11.53	-1.8	1.12	1197	1569	-0.92	0.282421	Feng et al., 2017
HJY03-04	483	0.021200	0.000800	0.282444	21	-11.61	-1.2	0.73	1139	1534	-0.97	0.282437	Feng et al., 2017
HJY03-05	481	0.018300	0.000800	0.282493	24	-9.88	0.5	0.86	1068	1424	-0.98	0.282486	Feng et al., 2017
HJY03-06	480	0.026500	0.001100	0.282466	26	-10.84	-0.6	0.91	1115	1491	-0.97	0.282456	Feng et al., 2017
HJY03-07	481	0.035800	0.001400	0.282522	37	-8.85	1.3	1.31	1045	1372	-0.96	0.282509	Feng et al., 2017
HJY03-08	482	0.033500	0.001300	0.282451	21	-11.35	-1.1	0.75	1142	1527	-0.96	0.282439	Feng et al., 2017
HJY03-09	482	0.033700	0.001300	0.282471	25	-10.63	-0.4	0.88	1114	1482	-0.96	0.282459	Feng et al., 2017
HJY03-10	482	0.026600	0.001100	0.282485	23	-10.15	0.1	0.81	1088	1447	-0.97	0.282475	Feng et al., 2017
HJY03-11	485	0.017400	0.000700	0.282410	20	-12.82	-2.4	0.71	1182	1606	-0.98	0.282404	Feng et al., 2017
HJY03-12	482	0.037900	0.001500	0.282503	24	-9.51	0.6	0.86	1075	1415	-0.95	0.282490	Feng et al., 2017
НЈҮ03-13	484	0.076100	0.002800	0.282558	25	-7.57	2.2	0.89	1033	1317	-0.92	0.282533	Feng et al., 2017
HJY03-14	486	0.028200	0.001100	0.282413	22	-12.68	-2.3	0.79	1188	1605	-0.97	0.282403	Feng et al., 2017
HJY03-15	483	0.030400	0.001200	0.282468	26	-10.76	-0.5	0.92	1116	1488	-0.96	0.282457	Feng et al., 2017
HJY03-16	482	0.027200	0.001100	0.282418	22	-12.53	-2.3	0.76	1183	1598	-0.97	0.282408	Feng et al., 2017
HJY03-17	482	0.021500	0.000900	0.282467	20	-10.8	-0.5	0.71	1107	1484	-0.97	0.282459	Feng et al., 2017
HJY03-18	488	0.026600	0.001100	0.282444	18	-11.61	-1.2	0.63	1146	1536	-0.97	0.282434	Feng et al., 2017
HJY03-19	482	0.040800	0.001500	0.282466	20	-10.81	-0.7	0.7	1128	1498	-0.95	0.282453	Feng et al., 2017
HJY03-20	488	0.115600	0.004100	0.282480	26	-10.34	-0.9	0.92	1191	1517	-0.88	0.282443	Feng et al., 2017
HDL4-1.01	484	0.051650	0.001938	0.282513	18	-9	1	0.6	1066	1213	-0.94	0.282496	Wang et al., 2012
HDL4-1.02	484	0.045030	0.001652	0.282484	20	-10.1	0	0.7	1101	1262	-0.95	0.282469	Wang et al., 2012
HDL4-1.03	452	0.032801	0.001228	0.282528	16	-8.5	1.1	0.6	1026	1184	-0.96	0.282518	Wang et al., 2012
HDL4-1.04	451	0.036953	0.001465	0.282540	25	-8.1	1.4	0.9	1014	1165	-0.96	0.282528	Wang et al., 2012
HDL4-1.05	486	0.046370	0.001703	0.282480	16	-10.2	-0.1	0.6	1107	1269	-0.95	0.282465	Wang et al., 2012
HDL4-1.06	486	0.067953	0.002479	0.282515	17	-9	0.9	0.6	1080	1218	-0.93	0.282493	Wang et al., 2012
HDL4-1.07	452	0.061018	0.002299	0.282491	21	-9.8	-0.6	0.7	1110	1267	-0.93	0.282472	Wang et al., 2012
HDL4-1.08	485	0.045752	0.001772	0.282520	19	-8.8	1.3	0.7	1052	1197	-0.95	0.282504	Wang et al., 2012
HDL4-1.09	451	0.038183	0.001367	0.282510	14	-9.2	0.4	0.5	1055	1219	-0.96	0.282499	Wang et al., 2012

HDL4-1.10	485	0.040268	0.001471	0.282493	17	-9.8	0.4	0.6	1082	1242	-0.96	0.282480	Wang et al., 2012
HDL4-1.11	451	0.042605	0.001591	0.282456	23	-11.1	-1.6	0.8	1138	1320	-0.95	0.282443	Wang et al., 2012
HDL4-1.12	450	0.024201	0.000918	0.282475	17	-10.4	-0.8	0.6	1092	1276	-0.97	0.282467	Wang et al., 2012
HDL4-1.13	448	0.065682	0.002403	0.282509	18	-9.2	0	0.6	1086	1237	-0.93	0.282489	Wang et al., 2012
HDL4-1.14	449	0.030255	0.001149	0.282476	17	-10.4	-0.8	0.6	1097	1278	-0.97	0.282466	Wang et al., 2012
HDL4-1.15	447	0.040157	0.001549	0.282544	19	-7.9	1.5	0.7	1011	1160	-0.95	0.282531	Wang et al., 2012
HDL10-4.01	424	0.028941	0.000860	0.282507	17	-9.3	-0.2	0.6	1045	1224	-0.97	0.282500	Wang et al., 2012
HDL10-4.02	456	0.028632	0.000894	0.282516	14	-8.9	0.8	0.5	1033	1198	-0.97	0.282508	Wang et al., 2012
HDL10-4.03	451	0.046025	0.001444	0.282473	16	-10.4	-1	0.6	1109	1286	-0.96	0.282461	Wang et al., 2012
HDL10-4.04	452	0.044599	0.001333	0.282464	16	-10.8	-1.2	0.6	1119	1301	-0.96	0.282453	Wang et al., 2012
HDL10-4.05	503	0.004391	0.000124	0.282494	19	-9.7	1.3	0.7	1043	1213	-1	0.282493	Wang et al., 2012
HDL10-4.06	452	0.035260	0.001192	0.282581	21	-6.6	3	0.7	949	1087	-0.96	0.282571	Wang et al., 2012
HDL10-4.07	503	0.026277	0.000910	0.282574	24	-6.9	3.9	0.8	953	1082	-0.97	0.282565	Wang et al., 2012
HDL10-4.08	540	0.049895	0.001721	0.282528	15	-8.5	2.8	0.5	1039	1168	-0.95	0.282511	Wang et al., 2012
HDL10-4.09	426	0.022470	0.000811	0.282599	26	-6	3.2	0.9	914	1056	-0.98	0.282593	Wang et al., 2012
HDL10-4.10	427	0.038295	0.001353	0.282542	21	-8	1	0.7	1009	1167	-0.96	0.282531	Wang et al., 2012
HDL11-1.01	423	0.028926	0.001043	0.282494	21	-9.7	-0.7	0.7	1069	1251	-0.97	0.282486	Wang et al., 2012
HDL11-1.02	424	0.028218	0.000992	0.282453	20	-11.1	-2.1	0.7	1124	1323	-0.97	0.282445	Wang et al., 2012
HDL11-1.03	424	0.029549	0.000948	0.282427	15	-12.1	-3	0.5	1159	1369	-0.97	0.282420	Wang et al., 2012
HDL11-1.04	455	0.022701	0.000839	0.282501	45	-9.5	0.3	1.6	1052	1225	-0.97	0.282494	Wang et al., 2012
HDL11-1.05	425	0.024657	0.000886	0.282538	42	-8.2	0.9	1.5	1003	1169	-0.97	0.282531	Wang et al., 2012
HDL11-1.06	424	0.035940	0.001253	0.282490	37	-9.8	-0.9	1.3	1079	1259	-0.96	0.282480	Wang et al., 2012
HDL11-1.07	445	0.016507	0.000610	0.282440	25	-11.6	-2	0.9	1131	1335	-0.98	0.282435	Wang et al., 2012
HDL11-1.08	423	0.020902	0.000767	0.282498	34	-9.6	-0.5	1.2	1054	1239	-0.98	0.282492	Wang et al., 2012
HDL11-1.09	446	0.030357	0.000961	0.282445	15	-11.4	-1.9	0.5	1134	1330	-0.97	0.282437	Wang et al., 2012
HDL11-1.10	449	0.025419	0.000927	0.282474	32	-10.4	-0.8	1.1	1093	1278	-0.97	0.282466	Wang et al., 2012
HDL11-1.11	423	0.044717	0.001538	0.282462	21	-10.9	-2	0.8	1128	1316	-0.95	0.282450	Wang et al., 2012
HDL11-1.12	426	0.022876	0.000827	0.282488	25	-9.9	-0.8	0.9	1070	1257	-0.98	0.282481	Wang et al., 2012
HDL11-1.13	424	0.030748	0.001088	0.282446	22	-11.4	-2.4	0.8	1136	1336	-0.97	0.282437	Wang et al., 2012
HDL11-1.14	452	0.035895	0.001206	0.282423	22	-12.2	-2.6	0.8	1173	1373	-0.96	0.282413	Wang et al., 2012

HDL11-1.15	422	0.013041	0.000461	0.282472	24	-10.5	-1.4	0.9	1083	1283	-0.99	0.282468	Wang et al., 2012
HNA3-1.01	485	0.043550	0.001651	0.282684	46	-3	7.1	1.6	814	900	-0.95	0.282669	Wang et al., 2012
HNA3-1.02	484	0.045042	0.001752	0.282595	24	-6.1	4	0.8	943	1062	-0.95	0.282579	Wang et al., 2012
HNA3-1.03	452	0.026711	0.001001	0.282566	18	-7.2	2.5	0.6	966	1112	-0.97	0.282558	Wang et al., 2012
HNA3-1.04	452	0.041967	0.001611	0.282606	23	-5.8	3.7	0.8	925	1049	-0.95	0.282592	Wang et al., 2012
HNA3-1.05	451	0.053791	0.001921	0.282544	22	-7.9	1.4	0.8	1021	1165	-0.94	0.282528	Wang et al., 2012
HNA3-1.06	450	0.031639	0.001164	0.282615	21	-5.4	4.1	0.8	900	1026	-0.96	0.282605	Wang et al., 2012
HNA3-1.07	449	0.022444	0.000841	0.282585	17	-6.5	3.2	0.6	935	1075	-0.97	0.282578	Wang et al., 2012
HNA3-1.08	452	0.024889	0.000980	0.282583	21	-6.6	3.1	0.7	941	1081	-0.97	0.282575	Wang et al., 2012
HNA3-1.09	450	0.051637	0.001917	0.282606	20	-5.7	3.6	0.7	932	1054	-0.94	0.282590	Wang et al., 2012
HNA3-1.10	485	0.037215	0.001403	0.282604	23	-5.8	4.4	0.8	922	1040	-0.96	0.282591	Wang et al., 2012
HNA3-1.11	451	0.029598	0.001142	0.282557	17	-7.5	2.1	0.6	983	1131	-0.97	0.282547	Wang et al., 2012
HNA3-1.12	450	0.047448	0.001828	0.282662	25	-3.8	5.6	0.9	849	951	-0.94	0.282647	Wang et al., 2012
HYC11-1.01	453	0.049461	0.001793	0.282606	23	-5.7	3.7	0	929	1051	-0.95	0.282591	Wang et al., 2012
HYC11-1.02	449	0.051523	0.001637	0.282524	51	-8.6	0.7	0	1042	1198	-0.95	0.282510	Wang et al., 2012
HYC11-1.03	452	0.041208	0.001438	0.282564	19	-7.2	2.3	0	980	1122	-0.96	0.282552	Wang et al., 2012
HYC11-1.04	452	0.067728	0.002471	0.282626	29	-5	4.2	0	917	1025	-0.93	0.282605	Wang et al., 2012
HYC11-1.05	451	0.036901	0.001290	0.282547	21	-7.8	1.7	0	1000	1151	-0.96	0.282536	Wang et al., 2012
HYC11-1.06	449	0.061653	0.002097	0.282545	23	-7.9	1.4	0	1025	1166	-0.94	0.282527	Wang et al., 2012
HYC11-1.07	490	0.044815	0.001620	0.282557	22	-7.5	2.8	0	995	1127	-0.95	0.282542	Wang et al., 2012
HYC11-1.08	454	0.056061	0.001958	0.282576	21	-6.8	2.6	0	976	1108	-0.94	0.282559	Wang et al., 2012
HYC11-1.09	452	0.070317	0.002597	0.282604	45	-5.8	3.4	0	952	1067	-0.92	0.282582	Wang et al., 2012
HYC11-1.10	489	0.036917	0.001398	0.282523	24	-8.7	1.6	0	1037	1185	-0.96	0.282510	Wang et al., 2012
DS005-01	280	0.040217	0.001798	0.282917	24	5.1	11	0.8	485	734	-0.95	0.282908	Yu et al., 2017
DS005-02	280	0.056267	0.002454	0.282914	24	5	10.7	0.8	499	755	-0.93	0.282901	Yu et al., 2017
DS005-03	280	0.046382	0.002015	0.282918	33	5.2	10.9	1.2	487	736	-0.94	0.282907	Yu et al., 2017
DS005-04	280	0.053075	0.002197	0.282864	22	3.3	9	0.8	568	910	-0.93	0.282853	Yu et al., 2017
DS005-05	280	0.024727	0.001108	0.282842	22	2.5	8.4	0.8	584	964	-0.97	0.282836	Yu et al., 2017
DS005-06	280	0.043512	0.001945	0.282936	28	5.8	11.6	1	459	675	-0.94	0.282926	Yu et al., 2017
DS005-07	280	0.049928	0.002228	0.282859	26	3.1	8.8	0.9	576	927	-0.93	0.282848	Yu et al., 2017

DS005-09 280 0.466073 0.002014 0.282830 27 2 7.8 1 616 1018 -0.94 0.282819 Yu et al., 201 DS005-10 280 0.019801 0.00025 0.282840 27 2.4 8.4 1 544 968 -0.97 0.282833 Yu et al., 201 DS005-12 280 0.027844 0.001266 0.282839 25 2.4 8.3 0.9 589 974 -0.96 0.282817 Yu et al., 201 DS005-13 280 0.030698 0.001369 0.282834 26 1.9 7.8 0.9 613 1024 -0.96 0.282817 Yu et al., 201 DS005-15 280 0.061310 0.001751 0.282835 30 4.4 10 1 531 821 -0.92 0.282838 Yu et al., 201 DS005-16 280 0.051591 0.002352 0.282871 33 52 12 445 643 -0.94 0.282585 Yu et	DS005-08	280	0.041315	0.001802	0.282881	23	3.9	9.7	0.8	537	849	-0.95	0.282872	Yu et al., 2017
DS005-10 280 0.019801 0.000925 0.282840 27 2.4 8.4 1 584 968 -0.97 0.282835 Yu et al., 201 DS005-11 280 0.027844 0.001266 0.282839 25 2.4 8.3 0.9 589 974 -0.96 0.282833 Yu et al., 201 DS005-13 280 0.037011 0.001752 0.282843 24 6 1.9 7.8 0.9 613 1024 -0.96 0.282813 Yu et al., 201 DS005-15 280 0.037011 0.001751 0.282845 30 4.4 10 1 531 821 -0.92 0.282818 Yu et al., 201 DS005-16 280 0.0451591 0.002325 0.282847 33 6.2 12 1.2 445 643 -0.94 0.282858 Yu et al., 201 DS005-17 280 0.047521 0.00059 0.282847 333 6.2 12 1.2 445 643 -0.94 <td>DS005-09</td> <td>280</td> <td>0.046073</td> <td>0.002014</td> <td>0.282830</td> <td>27</td> <td>2</td> <td>7.8</td> <td>1</td> <td>616</td> <td>1018</td> <td>-0.94</td> <td>0.282819</td> <td>Yu et al., 2017</td>	DS005-09	280	0.046073	0.002014	0.282830	27	2	7.8	1	616	1018	-0.94	0.282819	Yu et al., 2017
DS005-11 280 0.028804 0.001264 0.282917 24 5.1 11.1 0.9 478 725 -0.96 0.282911 Yu et al., 201 DS005-12 280 0.027844 0.001266 0.282839 25 2.4 8.3 0.9 589 974 -0.96 0.282831 Yu et al., 201 DS005-14 280 0.030698 0.001752 0.282847 26 1.9 7.8 0.9 613 1024 -0.96 0.282818 Yu et al., 201 DS005-15 280 0.064310 0.002751 0.282895 30 4.4 10 1 531 821 -0.92 0.282858 Yu et al., 201 DS005-16 280 0.04752 0.000159 0.282861 22 3.2 9.1 0.8 57 903 -0.97 0.282858 Yu et al., 201 DM210-02 458 0.04752 0.00054 0.282581 19 -5.4 3.3 0.7 1215 -0.98 0.282581 <t< td=""><td>DS005-10</td><td>280</td><td>0.019801</td><td>0.000925</td><td>0.282840</td><td>27</td><td>2.4</td><td>8.4</td><td>1</td><td>584</td><td>968</td><td>-0.97</td><td>0.282835</td><td>Yu et al., 2017</td></t<>	DS005-10	280	0.019801	0.000925	0.282840	27	2.4	8.4	1	584	968	-0.97	0.282835	Yu et al., 2017
DS005-12 280 0.027844 0.001266 0.282839 25 2.4 8.3 0.9 589 974 -0.96 0.282833 Yu et al., 201 DS005-13 280 0.030698 0.001752 0.282844 26 1.9 7.8 0.9 613 1024 -0.96 0.282817 Yu et al., 201 DS005-15 280 0.064310 0.001752 0.282895 30 4.4 10 1 531 821 -0.92 0.282885 Yu et al., 201 DS005-16 280 0.061591 0.002325 0.282861 22 3.2 9.1 0.8 557 903 -0.97 0.282855 Yu et al., 201 DS005-18 280 0.047521 0.000560 0.282592 19 -4.4 3.3 0.7 1067 -0.97 0.282581 Zhou et al., 20 DM210-02 458 0.03314 0.00054 0.282581 19 -5.0 4.9 0.7 1125 -0.98 0.282514 Zhou et al., 20	DS005-11	280	0.028804	0.001264	0.282917	24	5.1	11.1	0.9	478	725	-0.96	0.282911	Yu et al., 2017
DS005-13 280 0.030698 0.001369 0.282824 26 1.9 7.8 0.9 613 1024 -0.96 0.282817 Yu et al., 20 DS005-14 280 0.037011 0.001752 0.282943 34 6 11.9 1.2 448 652 -0.95 0.282933 Yu et al., 20 DS005-15 280 0.064310 0.002751 0.282870 30 3.5 9.2 1 562 895 -0.93 0.282858 Yu et al., 20 DS005-17 280 0.026329 0.02159 0.282861 22 3.2 9.1 0.8 557 903 -0.97 0.282857 Zhu et al., 20 DM210-02 458 0.02312 0.00056 0.282592 19 -6.4 3.3 0.7 1215 -0.98 0.282651 Zhu et al., 20 DM210-04 458 0.043511 0.00054 0.282651 19 -3.1 6.7 0.7 1008 -0.97 0.28264 Zhou et al., 20	DS005-12	280	0.027844	0.001206	0.282839	25	2.4	8.3	0.9	589	974	-0.96	0.282833	Yu et al., 2017
DS005-14 280 0.037011 0.001752 0.282943 34 6 11.9 1.2 448 652 -0.95 0.282933 Yu et al., 20 DS005-15 280 0.064310 0.002325 0.282875 30 4.4 10 1 531 821 -0.92 0.282881 Yu et al., 20 DS005-16 280 0.051591 0.02325 0.282870 30 3.5 9.2 1 562 895 -0.93 0.282855 Yu et al., 20 DS005-17 280 0.026329 0.00259 0.282547 33 6.2 12 1.2 445 643 -0.94 0.282587 Zhu et al., 20 DM210-02 458 0.02356 0.00954 0.282569 19 -4.0 5.8 0.7 1067 -0.97 0.28261 Zhou et al., 20 DM210-04 458 0.02366 0.00074 0.282581 19 -3.1 6.7 0.7 1028 -0.97 0.28264 Zhou et al., 20 <td>DS005-13</td> <td>280</td> <td>0.030698</td> <td>0.001369</td> <td>0.282824</td> <td>26</td> <td>1.9</td> <td>7.8</td> <td>0.9</td> <td>613</td> <td>1024</td> <td>-0.96</td> <td>0.282817</td> <td>Yu et al., 2017</td>	DS005-13	280	0.030698	0.001369	0.282824	26	1.9	7.8	0.9	613	1024	-0.96	0.282817	Yu et al., 2017
DS005-15 280 0.064310 0.002751 0.282895 30 4.4 10 1 531 821 -0.92 0.282881 Yu et al., 200 DS005-16 280 0.051591 0.002325 0.282870 30 3.5 9.2 1 562 895 -0.93 0.282855 Yu et al., 200 DS005-17 280 0.047521 0.002059 0.282847 33 6.2 12 1.2 445 643 -0.94 0.282936 Yu et al., 200 DM210-02 458 0.047521 0.00042 0.282569 19 -4.0 5.8 0.7 1067 -0.97 0.282651 Zhou et al., 20 DM210-04 458 0.035119 0.00074 0.282581 16 -6.6 3.4 0.6 1220 -0.98 0.282671 Zhou et al., 20 DM210-10 458 0.04798 0.000989 0.282651 19 -3.1 6.7 0.7 1108 -0.97 0.282591 Zhou et al., 20 <tr< td=""><td>DS005-14</td><td>280</td><td>0.037011</td><td>0.001752</td><td>0.282943</td><td>34</td><td>6</td><td>11.9</td><td>1.2</td><td>448</td><td>652</td><td>-0.95</td><td>0.282933</td><td>Yu et al., 2017</td></tr<>	DS005-14	280	0.037011	0.001752	0.282943	34	6	11.9	1.2	448	652	-0.95	0.282933	Yu et al., 2017
DS005-16 280 0.051591 0.002325 0.282870 30 3.5 9.2 1 562 895 -0.93 0.282858 Yu et al., 200 DS005-17 280 0.026329 0.001159 0.282861 22 3.2 9.1 0.8 557 903 -0.97 0.282855 Yu et al., 200 DS005-18 280 0.047511 0.000506 0.282592 19 -6.4 3.3 0.7 1215 -0.98 0.282587 Zhou et al., 20 DM210-02 458 0.043312 0.000942 0.282586 16 -6.6 3.4 0.6 1220 -0.98 0.282581 Zhou et al., 20 DM210-04 458 0.035119 0.000794 0.282651 19 -3.1 6.7 0.7 1008 -0.97 0.282671 Zhou et al., 20 DM210-10 458 0.04729 0.001056 0.282651 18 -7.7 2.2 0.6 1295 -0.97 0.282592 Zhou et al., 20 <t< td=""><td>DS005-15</td><td>280</td><td>0.064310</td><td>0.002751</td><td>0.282895</td><td>30</td><td>4.4</td><td>10</td><td>1</td><td>531</td><td>821</td><td>-0.92</td><td>0.282881</td><td>Yu et al., 2017</td></t<>	DS005-15	280	0.064310	0.002751	0.282895	30	4.4	10	1	531	821	-0.92	0.282881	Yu et al., 2017
DS005-17 280 0.026329 0.001159 0.282861 22 3.2 9.1 0.8 557 903 -0.97 0.282855 Yu et al., 200 DS005-18 280 0.047521 0.002059 0.282947 33 6.2 12 1.2 445 643 -0.94 0.282936 Yu et al., 200 DM210-02 458 0.025174 0.00056 0.282592 19 -6.4 3.3 0.7 1215 -0.98 0.282581 Zhou et al., 20 DM210-04 458 0.023866 0.00054 0.282651 19 -6.6 3.4 0.6 1220 -0.98 0.282621 Zhou et al., 20 DM210-10 458 0.035119 0.000794 0.282681 19 -5.1 6.7 0.7 1008 -0.97 0.282672 Zhou et al., 20 DM210-11 458 0.04729 0.01056 0.28261 20 -6.0 3.7 0.7 1198 -0.97 0.282592 Zhou et al., 20 D	DS005-16	280	0.051591	0.002325	0.282870	30	3.5	9.2	1	562	895	-0.93	0.282858	Yu et al., 2017
DS005-18 280 0.047521 0.002059 0.282947 33 6.2 12 1.2 445 643 -0.94 0.282936 Yu et al., 200 DM210-02 458 0.025174 0.000566 0.282592 19 -6.4 3.3 0.7 1215 -0.98 0.282587 Zhou et al., 20 DM210-04 458 0.023866 0.00054 0.282586 16 -6.6 3.4 0.6 1220 -0.98 0.282581 Zhou et al., 20 DM210-09 458 0.035119 0.000794 0.282631 19 -5.0 4.9 0.7 1125 -0.98 0.282647 Zhou et al., 20 DM210-10 458 0.044798 0.000989 0.282654 18 -7.7 2.2 0.6 1295 -0.98 0.282677 Zhou et al., 20 DM210-11 458 0.047229 0.00156 0.282641 21 -6.1 3.9 0.7 1188 -0.98 0.282592 Zhou et al., 20 DM210-15	DS005-17	280	0.026329	0.001159	0.282861	22	3.2	9.1	0.8	557	903	-0.97	0.282855	Yu et al., 2017
DM210-02 458 0.025174 0.000566 0.282592 19 -6.4 3.3 0.7 1215 -0.98 0.282587 Zhou et al., 20 DM210-04 458 0.043312 0.000942 0.282659 19 -4.0 5.8 0.7 1067 -0.97 0.282651 Zhou et al., 20 DM210-06 458 0.023866 0.00054 0.282586 16 -6.6 3.4 0.6 1220 -0.98 0.282612 Zhou et al., 20 DM210-09 458 0.035119 0.000794 0.282631 19 -5.0 4.9 0.7 1125 -0.98 0.282647 Zhou et al., 20 DM210-10 458 0.044798 0.000989 0.282654 18 -7.7 2.2 0.6 1295 -0.98 0.282549 Zhou et al., 20 DM210-13 458 0.047229 0.001056 0.282601 20 -6.1 3.9 0.7 1188 -0.98 0.282596 Zhou et al., 20 DM210-14 458 0.042187 0.000518 0.282642 2.4 -5.9 4.0 0.9 <td>DS005-18</td> <td>280</td> <td>0.047521</td> <td>0.002059</td> <td>0.282947</td> <td>33</td> <td>6.2</td> <td>12</td> <td>1.2</td> <td>445</td> <td>643</td> <td>-0.94</td> <td>0.282936</td> <td>Yu et al., 2017</td>	DS005-18	280	0.047521	0.002059	0.282947	33	6.2	12	1.2	445	643	-0.94	0.282936	Yu et al., 2017
DM210-04 458 0.043312 0.000942 0.282659 19 -4.0 5.8 0.7 1067 -0.97 0.282651 Zhou et al., 20 DM210-06 458 0.023866 0.00054 0.282586 16 -6.6 3.4 0.6 1220 -0.98 0.282581 Zhou et al., 20 DM210-09 458 0.035119 0.000794 0.282631 19 -5.0 4.9 0.7 1125 -0.98 0.282624 Zhou et al., 20 DM210-10 458 0.044798 0.000989 0.282685 19 -3.1 6.7 0.7 1008 -0.97 0.282677 Zhou et al., 20 DM210-11 458 0.02306 0.000526 0.282691 20 -6.0 3.7 0.7 1198 -0.97 0.282592 Zhou et al., 20 DM210-14 458 0.02306 0.000516 0.282601 20 -5.6 4.0 0.9 1185 -0.97 0.282596 Zhou et al., 20 DM210-15 458 0.025901 0.000603 0.282612 20 -5.7 4.3 0.6	DM210-02	458	0.025174	0.000566	0.282592	19	-6.4	3.3	0.7	1215		-0.98	0.282587	Zhou et al., 2018
DM210-06 458 0.023866 0.00054 0.282586 16 -6.6 3.4 0.6 1220 -0.98 0.282581 Zhou et al., 20 DM210-09 458 0.035119 0.000794 0.282631 19 -5.0 4.9 0.7 1125 -0.98 0.282624 Zhou et al., 20 DM210-10 458 0.044798 0.000989 0.282655 19 -3.1 6.7 0.7 1008 -0.97 0.282677 Zhou et al., 20 DM210-11 458 0.02306 0.000526 0.282554 18 -7.7 2.2 0.6 1295 -0.98 0.282592 Zhou et al., 20 DM210-14 458 0.022306 0.000516 0.28260 20 -6.0 3.7 0.7 1198 -0.97 0.282596 Zhou et al., 20 DM210-15 458 0.042187 0.000918 0.282612 24 -5.9 4.0 0.9 1185 -0.97 0.282596 Zhou et al., 20 DM210-18 458 0.02765 0.000603 0.282612 20 -5.7 4.3 0.7	DM210-04	458	0.043312	0.000942	0.282659	19	-4.0	5.8	0.7	1067		-0.97	0.282651	Zhou et al., 2018
DM210-09 458 0.035119 0.000794 0.282631 19 -5.0 4.9 0.7 1125 -0.98 0.282624 Zhou et al., 20 DM210-10 458 0.044798 0.000989 0.282685 19 -3.1 6.7 0.7 1008 -0.97 0.282677 Zhou et al., 20 DM210-11 458 0.02306 0.000526 0.282554 18 -7.7 2.2 0.6 1295 -0.98 0.282692 Zhou et al., 20 DM210-13 458 0.047229 0.001056 0.282601 20 -6.0 3.7 0.7 1188 -0.97 0.282592 Zhou et al., 20 DM210-14 458 0.022306 0.000516 0.282604 24 -5.9 4.0 0.9 1185 -0.97 0.282596 Zhou et al., 20 DM210-18 458 0.027665 0.00063 0.282612 23 -5.6 4.6 0.8 1154 -0.98 0.282607 Zhou et al., 20 DM232-1 475 0.027665 0.00063 0.282612 20 -5.7 4.3 0.7	DM210-06	458	0.023866	0.00054	0.282586	16	-6.6	3.4	0.6	1220		-0.98	0.282581	Zhou et al., 2018
DM210-10 458 0.044798 0.000989 0.282685 19 -3.1 6.7 0.7 1008 -0.97 0.282677 Zhou et al., 20 DM210-11 458 0.02306 0.000526 0.282554 18 -7.7 2.2 0.6 1295 -0.98 0.282549 Zhou et al., 20 DM210-13 458 0.047229 0.001056 0.282601 20 -6.0 3.7 0.7 1198 -0.97 0.282592 Zhou et al., 20 DM210-14 458 0.02306 0.000516 0.28260 21 -6.1 3.9 0.7 1188 -0.98 0.282596 Zhou et al., 20 DM210-15 458 0.042187 0.000918 0.282604 24 -5.9 4.0 0.9 1185 -0.97 0.282596 Zhou et al., 20 DM210-18 458 0.025901 0.000603 0.282612 23 -5.6 4.6 0.8 1154 -0.98 0.282607 Zhou et al., 20 DM232-3 475 0.02461 0.00529 0.282612 20 -5.7 4.3 0.7	DM210-09	458	0.035119	0.000794	0.282631	19	-5.0	4.9	0.7	1125		-0.98	0.282624	Zhou et al., 2018
DM210-11 458 0.02306 0.000526 0.282554 18 -7.7 2.2 0.6 1295 -0.98 0.282549 Zhou et al., 20 DM210-13 458 0.047229 0.001056 0.282601 20 -6.0 3.7 0.7 1198 -0.97 0.282592 Zhou et al., 20 DM210-14 458 0.022306 0.000516 0.2826 21 -6.1 3.9 0.7 1188 -0.98 0.282596 Zhou et al., 20 DM210-15 458 0.042187 0.000918 0.282604 24 -5.9 4.0 0.9 1185 -0.97 0.282596 Zhou et al., 20 DM210-18 458 0.025901 0.000603 0.282612 23 -5.6 4.6 0.8 1154 -0.98 0.282607 Zhou et al., 20 DM232-1 475 0.014925 0.000406 0.282612 20 -5.7 4.3 0.7 1163 -0.98 0.282607 Zhou et al., 20 DM232-7 475 0.020461 0.00529 0.282644 23 -4.5 5.5 0.8	DM210-10	458	0.044798	0.000989	0.282685	19	-3.1	6.7	0.7	1008		-0.97	0.282677	Zhou et al., 2018
DM210-134580.0472290.0010560.28260120-6.03.70.71198-0.970.282592Zhou et al., 20DM210-144580.0223060.0005160.2826621-6.13.90.71188-0.980.282596Zhou et al., 20DM210-154580.0421870.0009180.28260424-5.94.00.91185-0.970.282596Zhou et al., 20DM210-184580.0259010.0006030.28265218-4.25.80.61073-0.980.282607Zhou et al., 20DM232-14750.0276650.0006950.28261323-5.64.60.81154-0.980.282607Zhou et al., 20DM232-34750.0149250.0004660.28261220-5.74.30.71163-0.990.282608Zhou et al., 20DM232-74750.0204610.005290.28264423-4.55.50.81089-0.980.282639Zhou et al., 20DM232-94750.0274750.0007040.28259119-6.43.90.71202-0.980.282585Zhou et al., 20DM232-134750.0244830.0006190.2826621-6.13.90.81191-0.980.282585Zhou et al., 20DM232-154750.0203170.005020.28261920-5.44.60.71146-0.980.282615Zhou et al., 20<	DM210-11	458	0.02306	0.000526	0.282554	18	-7.7	2.2	0.6	1295		-0.98	0.282549	Zhou et al., 2018
DM210-144580.0223060.0005160.282621-6.13.90.71188-0.980.282596Zhou et al., 20DM210-154580.0421870.0009180.28260424-5.94.00.91185-0.970.282596Zhou et al., 20DM210-184580.0259010.0006030.28265218-4.25.80.61073-0.980.282647Zhou et al., 20DM232-14750.0276650.0006950.28261323-5.64.60.81154-0.980.282607Zhou et al., 20DM232-34750.0149250.0004060.28261220-5.74.30.71163-0.990.282608Zhou et al., 20DM232-74750.0204610.005290.28264423-4.55.50.81089-0.980.282639Zhou et al., 20DM232-94750.0274750.0007040.28259119-6.43.90.71202-0.980.282585Zhou et al., 20DM232-134750.0244830.0006190.2826622-3.06.80.81000-0.980.282594Zhou et al., 20DM232-154750.023170.005020.28261920-5.44.60.71146-0.980.282615Zhou et al., 20DM232-194750.0166790.0004250.28253720-5.34.50.71334-0.990.282615Zhou et al., 20 <td>DM210-13</td> <td>458</td> <td>0.047229</td> <td>0.001056</td> <td>0.282601</td> <td>20</td> <td>-6.0</td> <td>3.7</td> <td>0.7</td> <td>1198</td> <td></td> <td>-0.97</td> <td>0.282592</td> <td>Zhou et al., 2018</td>	DM210-13	458	0.047229	0.001056	0.282601	20	-6.0	3.7	0.7	1198		-0.97	0.282592	Zhou et al., 2018
DM210-15 458 0.042187 0.000918 0.282604 24 -5.9 4.0 0.9 1185 -0.97 0.282596 Zhou et al., 20 DM210-18 458 0.025901 0.000603 0.282652 18 -4.2 5.8 0.6 1073 -0.98 0.282647 Zhou et al., 20 DM232-1 475 0.027665 0.000695 0.282613 23 -5.6 4.6 0.8 1154 -0.98 0.282607 Zhou et al., 20 DM232-3 475 0.014925 0.000406 0.282612 20 -5.7 4.3 0.7 1163 -0.99 0.282608 Zhou et al., 20 DM232-7 475 0.020461 0.00529 0.282644 23 -4.5 5.5 0.8 1089 -0.98 0.282639 Zhou et al., 20 DM232-9 475 0.027475 0.000704 0.282591 19 -6.4 3.9 0.7 1202 -0.98 0.282639 Zhou et al., 20 DM232-13 475 0.024483 0.000619 0.28266 22 -3.0 6.8 0.8	DM210-14	458	0.022306	0.000516	0.2826	21	-6.1	3.9	0.7	1188		-0.98	0.282596	Zhou et al., 2018
DM210-184580.0259010.0006030.28265218-4.25.80.61073-0.980.282647Zhou et al., 20DM232-14750.0276650.0006950.28261323-5.64.60.81154-0.980.282607Zhou et al., 20DM232-34750.0149250.0004060.28261220-5.74.30.71163-0.990.282608Zhou et al., 20DM232-74750.0204610.0005290.28264423-4.55.50.81089-0.980.282639Zhou et al., 20DM232-94750.0274750.0007040.28259119-6.43.90.71202-0.980.282585Zhou et al., 20DM232-134750.0244830.0006190.282621-6.13.90.81191-0.980.282594Zhou et al., 20DM232-154750.0203170.0005020.28268622-3.06.80.81000-0.980.282615Zhou et al., 20DM232-174750.0203170.0005020.28261920-5.44.60.71146-0.980.282615Zhou et al., 20DM232-194750.0166790.0004250.28253720-5.34.50.71134-0.990.282533Zhou et al., 20DM232-204750.0261850.006430.28262320-5.34.50.71144-0.980.282617Zhou et al., 20	DM210-15	458	0.042187	0.000918	0.282604	24	-5.9	4.0	0.9	1185		-0.97	0.282596	Zhou et al., 2018
DM232-14750.0276650.0006950.28261323-5.64.60.81154-0.980.282607Zhou et al., 20DM232-34750.0149250.0004060.28261220-5.74.30.71163-0.990.282608Zhou et al., 20DM232-74750.0204610.0005290.28264423-4.55.50.81089-0.980.282639Zhou et al., 20DM232-94750.0274750.0007040.28259119-6.43.90.71202-0.980.282585Zhou et al., 20DM232-134750.0244830.0006190.282621-6.13.90.81191-0.980.282594Zhou et al., 20DM232-154750.0203170.0005020.28261920-5.44.60.71146-0.980.282615Zhou et al., 20DM232-194750.0166790.0004250.28253720-5.34.50.71134-0.990.282533Zhou et al., 20DM232-204750.0261850.0006430.28262320-5.34.50.71144-0.980.282617Zhou et al., 20	DM210-18	458	0.025901	0.000603	0.282652	18	-4.2	5.8	0.6	1073		-0.98	0.282647	Zhou et al., 2018
DM232-34750.0149250.0004060.28261220-5.74.30.71163-0.990.282608Zhou et al., 20DM232-74750.0204610.0005290.28264423-4.55.50.81089-0.980.282639Zhou et al., 20DM232-94750.0274750.0007040.28259119-6.43.90.71202-0.980.282585Zhou et al., 20DM232-134750.0244830.0006190.282621-6.13.90.81191-0.980.282594Zhou et al., 20DM232-154750.0259230.0006230.28268622-3.06.80.81000-0.980.28268Zhou et al., 20DM232-174750.0203170.0005020.28261920-5.44.60.71146-0.980.282615Zhou et al., 20DM232-194750.0166790.0004250.28253720-8.31.50.71334-0.990.282617Zhou et al., 20DM232-204750.0261850.0006430.28262320-5.34.50.71144-0.980.282617Zhou et al., 20	DM232-1	475	0.027665	0.000695	0.282613	23	-5.6	4.6	0.8	1154		-0.98	0.282607	Zhou et al., 2018
DM232-74750.0204610.0005290.28264423-4.55.50.81089-0.980.282639Zhou et al., 20DM232-94750.0274750.0007040.28259119-6.43.90.71202-0.980.282585Zhou et al., 20DM232-134750.0244830.0006190.282621-6.13.90.81191-0.980.282594Zhou et al., 20DM232-154750.0259230.0006230.28268622-3.06.80.81000-0.980.28268Zhou et al., 20DM232-174750.0203170.0005020.28261920-5.44.60.71146-0.980.282615Zhou et al., 20DM232-194750.0166790.0004250.28253720-8.31.50.71334-0.990.282533Zhou et al., 20DM232-204750.0261850.0006430.28262320-5.34.50.71144-0.980.282617Zhou et al., 20	DM232-3	475	0.014925	0.000406	0.282612	20	-5.7	4.3	0.7	1163		-0.99	0.282608	Zhou et al., 2018
DM232-94750.0274750.0007040.28259119-6.43.90.71202-0.980.282585Zhou et al., 20DM232-134750.0244830.0006190.282621-6.13.90.81191-0.980.282594Zhou et al., 20DM232-154750.0259230.0006230.28268622-3.06.80.81000-0.980.28268Zhou et al., 20DM232-174750.0203170.0005020.28261920-5.44.60.71146-0.980.282615Zhou et al., 20DM232-194750.0166790.0004250.28253720-8.31.50.71334-0.990.282533Zhou et al., 20DM232-204750.0261850.0006430.28262320-5.34.50.71144-0.980.282617Zhou et al., 20	DM232-7	475	0.020461	0.000529	0.282644	23	-4.5	5.5	0.8	1089		-0.98	0.282639	Zhou et al., 2018
DM232-134750.0244830.0006190.282621-6.13.90.81191-0.980.282594Zhou et al., 20DM232-154750.0259230.0006230.28268622-3.06.80.81000-0.980.28268Zhou et al., 20DM232-174750.0203170.0005020.28261920-5.44.60.71146-0.980.282615Zhou et al., 20DM232-194750.0166790.0004250.28253720-8.31.50.71334-0.990.282533Zhou et al., 20DM232-204750.0261850.0006430.28262320-5.34.50.71144-0.980.282617Zhou et al., 20	DM232–9	475	0.027475	0.000704	0.282591	19	-6.4	3.9	0.7	1202		-0.98	0.282585	Zhou et al., 2018
DM232-154750.0259230.0006230.28268622-3.06.80.81000-0.980.28268Zhou et al., 20DM232-174750.0203170.0005020.28261920-5.44.60.71146-0.980.282615Zhou et al., 20DM232-194750.0166790.0004250.28253720-8.31.50.71334-0.990.282533Zhou et al., 20DM232-204750.0261850.0006430.28262320-5.34.50.71144-0.980.282617Zhou et al., 20	DM232-13	475	0.024483	0.000619	0.2826	21	-6.1	3.9	0.8	1191		-0.98	0.282594	Zhou et al., 2018
DM232-17 475 0.020317 0.000502 0.282619 20 -5.4 4.6 0.7 1146 -0.98 0.282615 Zhou et al., 20 DM232-19 475 0.016679 0.000425 0.282537 20 -8.3 1.5 0.7 1334 -0.99 0.282533 Zhou et al., 20 DM232-20 475 0.026185 0.000643 0.282623 20 -5.3 4.5 0.7 1144 -0.98 0.282617 Zhou et al., 20	DM232-15	475	0.025923	0.000623	0.282686	22	-3.0	6.8	0.8	1000		-0.98	0.28268	Zhou et al., 2018
DM232-19 475 0.016679 0.000425 0.282537 20 -8.3 1.5 0.7 1334 -0.99 0.282533 Zhou et al., 20 DM232-20 475 0.026185 0.000643 0.282623 20 -5.3 4.5 0.7 1144 -0.98 0.282617 Zhou et al., 20	DM232-17	475	0.020317	0.000502	0.282619	20	-5.4	4.6	0.7	1146		-0.98	0.282615	Zhou et al., 2018
DM232-20 475 0.026185 0.000643 0.282623 20 -5.3 4.5 0.7 1144 -0.98 0.282617 Zhou et al., 20	DM232–19	475	0.016679	0.000425	0.282537	20	-8.3	1.5	0.7	1334		-0.99	0.282533	Zhou et al., 2018
	DM232-20	475	0.026185	0.000643	0.282623	20	-5.3	4.5	0.7	1144		-0.98	0.282617	Zhou et al., 2018

DM232–23 DM232–24 DM132–2 DM132–4 DM132–5 DM132–6 DM132–7 DM132–8	475 475 428 428 428	0.022036 0.029815 0.024276 0.018374	0.000563 0.000731 0.000656	0.282557 0.282587	22	-7.6	2.2	0.8	1290		-0.98	0 282552	Zhou et al. 2018
DM232–24 DM132–2 DM132–4 DM132–5 DM132–6 DM132–7 DM132–8	475 428 428 428	0.029815 0.024276 0.018374	0.000731 0.000656	0.282587	10				12/0		0.90	0.202332	Zilou et al., 2018
DM132-2 DM132-4 DM132-5 DM132-6 DM132-7 DM132-8	428 428 428	0.024276 0.018374	0.000656		19	-6.5	3.4	0.7	1222		-0.98	0.28258	Zhou et al., 2018
DM132-4 DM132-5 DM132-6 DM132-7 DM132-8	428 428	0.018374		0.282351	17	-14.9	-5.7	0.6	1768		-0.98	0.282346	Zhou et al., 2018
DM132–5 DM132–6 DM132–7 DM132–8	428		0.000485	0.282428	18	-12.2	-2.8	0.6	1590		-0.99	0.282424	Zhou et al., 2018
DM132-6 DM132-7 DM132-8		0.041633	0.001026	0.282343	23	-15.2	-6.1	0.8	1793		-0.97	0.282335	Zhou et al., 2018
DM132-7 DM132-8	428	0.027057	0.000712	0.282394	18	-13.4	-3.7	0.7	1658		-0.98	0.282388	Zhou et al., 2018
DM132-8	428	0.019591	0.000507	0.28242	19	-12.4	-0.9	0.7	1546		-0.98	0.282416	Zhou et al., 2018
	428	0.033308	0.000852	0.282338	19	-15.3	-5.6	0.7	1784		-0.97	0.282331	Zhou et al., 2018
DM132-10	428	0.045313	0.001018	0.282477	19	-10.4	-1.3	0.7	1492		-0.97	0.282469	Zhou et al., 2018
DM132-11	428	0.046114	0.00119	0.282491	21	-9.9	-0.9	0.7	1466		-0.96	0.282481	Zhou et al., 2018
DM132-12	428	0.018211	0.000491	0.282412	14	-12.7	-3.4	0.5	1627		-0.99	0.282408	Zhou et al., 2018
DM132-13	428	0.028468	0.00076	0.282386	18	-13.7	-4.6	0.6	1695		-0.98	0.28238	Zhou et al., 2018
DM132-15	428	0.018363	0.000506	0.282397	18	-13.3	-4.1	0.7	1665		-0.98	0.282393	Zhou et al., 2018
DM132-16	428	0.026184	0.000694	0.282396	17	-13.3	-4.2	0.6	1670		-0.98	0.28239	Zhou et al., 2018
DM132-17	428	0.017069	0.00046	0.282404	15	-13.0	-3.8	0.5	1647		-0.99	0.2824	Zhou et al., 2018
DM132–19	428	0.025578	0.000645	0.282375	17	-14.0	-4.0	0.6	1693		-0.98	0.28237	Zhou et al., 2018
DM132-20	428	0.015216	0.000409	0.282434	19	-12.0	-2.4	0.7	1570		-0.99	0.282431	Zhou et al., 2018
13GW436-1	307	0.035664	0.00137	0.282934	31	5.7	8.8	1.1	455	635	-0.96	0.282926	Tian et al., 2018
13GW436-2	307	0.02122	0.00084	0.28292	35	5.2	11.8	1.2	469	566	-0.97	0.282915	Tian et al., 2018
13GW436-3	307	0.047782	0.001784	0.282956	30	6.5	12.9	1.1	429	497	-0.95	0.282946	Tian et al., 2018
13GW436-4	307	0.04025	0.001584	0.282916	29	5.1	11.5	1	484	585	-0.95	0.282907	Tian et al., 2018
13GW436-5	307	0.031875	0.001238	0.282965	27	6.8	13.3	0.9	409	469	-0.96	0.282958	Tian et al., 2018
13GW436-6	307	0.045132	0.001729	0.282896	31	4.4	10.8	1.1	515	632	-0.95	0.282886	Tian et al., 2018
13GW436-7	307	0.044305	0.00175	0.282888	30	4.1	10.5	1.1	527	651	-0.95	0.282878	Tian et al., 2018
13GW436-8	307	0.031934	0.001261	0.282886	32	4	10.5	1.1	522	648	-0.96	0.282879	Tian et al., 2018
13GW436-9	307	0.056063	0.002129	0.282912	32	4.9	11.3	1.1	497	602	-0.94	0.2829	Tian et al., 2018
13GW436-10	307	0.032946	0.001275	0.282885	26	4	10.5	0.9	525	653	-0.96	0.282878	Tian et al., 2018
13GW436-11	307	0.02986	0.001209	0.282889	26	4.1	10.6	0.9	518	642	-0.96	0.282882	Tian et al., 2018
13GW436-12	207	0.035235	0.001387	0.282909	27	4.9	11.3	1	491	598	-0.96	0.282901	Tian et al., 2018

13GW436-13	307	0.033459	0.001306	0.282891	28	4.2	10.7	1	516	638	-0.96	0.282884	Tian et al., 2018
13GW436-14	307	0.03611	0.001453	0.282866	30	3.3	9.8	1.1	554	696	-0.96	0.282858	Tian et al., 2018
13GW436-15	307	0.027633	0.001115	0.282883	26	3.9	10.5	0.9	525	653	-0.97	0.282877	Tian et al., 2018
13GW436-16	307	0.020137	0.000834	0.28289	31	4.2	10.8	1.1	511	635	-0.97	0.282885	Tian et al., 2018
13GW436-17	307	0.030166	0.001226	0.282922	30	5.3	11.8	1.1	471	567	-0.96	0.282915	Tian et al., 2018
13GW436-18	307	0.027284	0.001131	0.282868	26	3.4	9.9	0.9	546	688	-0.97	0.282862	Tian et al., 2018
13GW436-19	307	0.03031	0.001242	0.282936	31	5.8	12.3	1.1	451	535	-0.96	0.282929	Tian et al., 2018
13GW436-20	307	0.047133	0.001766	0.282981	28	7.4	13.8	1	392	440	-0.95	0.282971	Tian et al., 2018
13GW443-1	314	0.044015	0.001722	0.282966	35	6.9	13.3	1.3	414	474	-0.95	0.282956	Tian et al., 2018
13GW443-2	314	0.071774	0.002651	0.282916	34	5.1	11.4	1.2	499	596	-0.92	0.2829	Tian et al., 2018
13GW443-3	314	0.080191	0.003002	0.28302	34	8.8	15	1.2	348	365	-0.91	0.283002	Tian et al., 2018
13GW443-4	314	0.063757	0.002363	0.282919	34	5.2	11.6	1.2	490	585	-0.93	0.282905	Tian et al., 2018
13GW443-5	314	0.092769	0.003325	0.282907	35	4.8	11	1.3	522	625	-0.9	0.282887	Tian et al., 2018
13GW443-6	314	0.073845	0.002815	0.282893	38	4.3	10.6	1.3	535	650	-0.92	0.282876	Tian et al., 2018
13GW443-7	314	0.103976	0.003848	0.282917	31	5.1	11.2	1.1	515	610	-0.88	0.282894	Tian et al., 2018
13GW443-8	314	0.119492	0.00443	0.283029	30	9.1	15.1	1.1	348	364	-0.87	0.283003	Tian et al., 2018
13GW443-9	314	0.071131	0.002687	0.282928	33	5.5	11.9	1.2	481	568	-0.92	0.282912	Tian et al., 2018
13GW443-10	314	0.071572	0.002679	0.282915	34	5.1	11.4	1.2	500	598	-0.92	0.282899	Tian et al., 2018
13GW443-11	314	0.092812	0.003338	0.282895	33	4.3	10.5	1.2	541	653	-0.9	0.282875	Tian et al., 2018
13GW443-12	314	0.098556	0.003678	0.282892	34	4.3	10.4	1.2	550	663	-0.89	0.28287	Tian et al., 2018
13GW443-13	314	0.049359	0.001932	0.282909	29	4.9	11.4	1	499	601	-0.94	0.282898	Tian et al., 2018
13GW443-14	314	0.091642	0.003468	0.282883	36	3.9	10.1	1.3	561	682	-0.9	0.282863	Tian et al., 2018
13GW443-15	314	0.072754	0.002547	0.282948	34	6.2	12.6	1.2	450	522	-0.92	0.282933	Tian et al., 2018
13GW443-16	314	0.062752	0.002419	0.282939	36	5.9	12.3	1.3	461	540	-0.93	0.282925	Tian et al., 2018
13GW443-17	314	0.073601	0.002786	0.282962	37	6.7	13	1.3	432	494	-0.92	0.282946	Tian et al., 2018
13GW443-18	314	0.075066	0.002909	0.282992	32	7.8	14.1	1.1	388	426	-0.91	0.282975	Tian et al., 2018
13GW443-19	314	0.047456	0.001848	0.282898	26	4.5	11	0.9	514	625	-0.94	0.282887	Tian et al., 2018
13GW443-20	314	0.060893	0.002312	0.28292	29	5.2	11.7	1	488	582	-0.93	0.282906	Tian et al., 2018
13GW450-1	306	0.053411	0.002009	0.282911	32	4.9	11.4	1.1	497	598	-0.94	0.2829	Tian et al., 2018
13GW450-2	306	0.044754	0.001724	0.28283	33	2	8.4	1.2	611	783	-0.95	0.28282	Tian et al., 2018

13GW450-3	306	0.036824	0.00146	0.282933	33	5.7	12.1	1.2	458	546	-0.96	0.282925	Tian et al., 2018
13GW450-4	306	0.064115	0.002446	0.282865	29	3.3	9.5	1	571	713	-0.93	0.282851	Tian et al., 2018
13GW450-5	306	0.04671	0.001691	0.282953	30	6.4	12.8	1.1	432	503	-0.95	0.282943	Tian et al., 2018
13GW450-6	306	0.037997	0.001442	0.282923	31	5.3	11.8	1.1	473	569	-0.96	0.282915	Tian et al., 2018
13GW450-7	306	0.040758	0.001638	0.282908	34	4.8	11.2	1.2	496	604	-0.95	0.282899	Tian et al., 2018
13GW450-8	306	0.04399	0.001737	0.28292	33	5.2	11.6	1.2	481	579	-0.95	0.28291	Tian et al., 2018
13GW450-9	306	0.047437	0.001848	0.282896	32	4.4	10.7	1.1	517	635	-0.94	0.282885	Tian et al., 2018
13GW450-10	306	0.061466	0.002406	0.282977	33	7.3	13.5	1.2	405	458	-0.93	0.282963	Tian et al., 2018
13GW450-11	306	0.04292	0.001657	0.282919	30	5.2	11.6	1.1	481	581	-0.95	0.28291	Tian et al., 2018
13GW450-12	306	0.047093	0.001886	0.282834	34	2.2	8.5	1.2	608	776	-0.94	0.282823	Tian et al., 2018
13GW450-13	306	0.043695	0.001701	0.28292	30	5.2	11.6	1	480	578	-0.95	0.28291	Tian et al., 2018
DS005-19	280	0.065119	0.002780	0.282954	25	6.4	12.1	0.9	443	632	-0.92	0.282940	Yu et al., 2017
DS005-20	280	0.048820	0.002146	0.282906	28	4.7	10.5	1	506	776	-0.94	0.282895	Yu et al., 2017
DS005-21	280	0.039529	0.001747	0.282961	27	6.7	12.5	0.9	421	591	-0.95	0.282952	Yu et al., 2017
DS005-22	280	0.043082	0.001855	0.282924	28	5.4	11.2	1	476	712	-0.94	0.282915	Yu et al., 2017
DS005-23	280	0.048959	0.002104	0.282913	25	5	10.7	0.9	496	753	-0.94	0.282902	Yu et al., 2017
DS005-24	280	0.062544	0.002688	0.282907	29	4.8	10.4	1	513	782	-0.92	0.282893	Yu et al., 2017
DS019-01	280	0.056784	0.002187	0.282841	20	2.4	8.2	0.7	602	985	-0.93	0.282830	Yu et al., 2017
DS019-02	280	0.041071	0.001756	0.282835	13	2.2	8	0.5	604	998	-0.95	0.282826	Yu et al., 2017
DS019-03	280	0.032787	0.001404	0.282840	16	2.4	8.3	0.6	591	976	-0.96	0.282833	Yu et al., 2017
DS019-04	280	0.039364	0.001734	0.282849	14	2.7	8.6	0.5	583	952	-0.95	0.282840	Yu et al., 2017
DS019-06	280	0.049699	0.002108	0.282832	15	2.1	7.9	0.5	615	1014	-0.94	0.282821	Yu et al., 2017
DS019-07	280	0.047325	0.002061	0.282821	15	1.7	7.5	0.5	630	1049	-0.94	0.282810	Yu et al., 2017
DS019-08	280	0.050959	0.002211	0.282847	19	2.6	8.4	0.7	594	967	-0.93	0.282835	Yu et al., 2017
DS019-09	280	0.042535	0.001876	0.282828	18	2	7.8	0.6	616	1022	-0.94	0.282818	Yu et al., 2017
DS019-10	280	0.054818	0.002362	0.282874	19	3.6	9.3	0.7	557	883	-0.93	0.282861	Yu et al., 2017
DS019-11	280	0.042748	0.001919	0.282850	15	2.8	8.6	0.5	584	951	-0.94	0.282840	Yu et al., 2017
DS019-12	280	0.050480	0.002167	0.282895	17	4.3	10.1	0.6	523	812	-0.93	0.282884	Yu et al., 2017
DS019-13	280	0.040971	0.001801	0.282825	16	1.9	7.7	0.6	619	1031	-0.95	0.282815	Yu et al., 2017
DS019-14	280	0.054625	0.002351	0.282835	15	2.2	7.9	0.5	614	1008	-0.93	0.282822	Yu et al., 2017

DS019-16 280 0.063887 0.002752 0.28212 20 1.4 7.1 0.7 655 1088 -0.92 0.282798 Yu et al., 20 DS019-17 280 0.048159 0.002120 0.282844 18 2.5 8.3 0.7 597 975 -0.94 0.282899 Yu et al., 20 DS019-18 280 0.0164179 0.003256 0.282901 22 4.5 10.1 0.8 531 812 -0.9 0.282884 Yu et al., 20 DS019-20 280 0.066476 0.002231 0.282848 19 2.3 8 0.7 616 1004 -0.92 0.282851 Yu et al., 20 DS019-20 280 0.06536 0.02231 0.282841 12 2.3 8 0.7 616 1004 -0.92 0.282857 Yu et al., 20 DS019-20 280 0.045878 0.02603 0.282871 10 3.5 9.2 0.7 565 897 -0.92 0.282847<	DS019-15	280	0.047472	0.002079	0.282834	17	2.2	8	0.6	610	1005	-0.94	0.282823	Yu et al., 2017
DS019-17 280 0.048159 0.002120 0.282844 18 2.5 8.3 0.7 597 975 -0.94 0.282833 Yu et al., 20 DS019-18 280 0.019168 0.007575 0.282948 26 6.2 11 0.9 531 812 -0.9 0.282848 Yu et al., 20 DS019-20 280 0.005635 0.002231 0.282838 19 2.3 8 0.7 616 1004 -0.9 0.282824 Yu et al., 20 DS019-22 280 0.065636 0.002131 0.282861 12 2.6 8.4 0.6 574 968 -0.92 0.282857 Yu et al., 20 DS019-23 280 0.048130 0.002103 0.282851 12 3.5 9.2 0.7 565 897 -0.92 0.282877 Yu et al., 20 DS042-02 280 0.048130 0.002163 0.282835 36 2.2 8 1.3 611 1004 -0.93 0.282847 </td <td>DS019-16</td> <td>280</td> <td>0.063887</td> <td>0.002752</td> <td>0.282812</td> <td>20</td> <td>1.4</td> <td>7.1</td> <td>0.7</td> <td>655</td> <td>1088</td> <td>-0.92</td> <td>0.282798</td> <td>Yu et al., 2017</td>	DS019-16	280	0.063887	0.002752	0.282812	20	1.4	7.1	0.7	655	1088	-0.92	0.282798	Yu et al., 2017
DS019-18 280 0.191698 0.007575 0.282948 26 6.2 11 0.9 523 732 -0.77 0.282909 Yu et al., 20 DS019-19 280 0.076385 0.002256 0.282838 19 2.3 8 0.7 616 1004 -0.92 0.282844 Yu et al., 20 DS019-22 280 0.06636 0.002231 0.282846 18 2.6 8.4 0.6 594 968 -0.94 0.282835 Yu et al., 20 DS019-24 280 0.061596 0.002103 0.282851 10 3.5 9.2 0.7 565 897 -0.92 0.282857 Yu et al., 20 DS042-01 280 0.04130 0.002103 0.282858 16 1.2 7.1 0.6 640 1085 -0.90 0.282817 Yu et al., 20 DS042-04 280 0.06165 0.00277 0.282817 16 1.6 7.5 0.6 623 1004 -0.96 0.282818<	DS019-17	280	0.048159	0.002120	0.282844	18	2.5	8.3	0.7	597	975	-0.94	0.282833	Yu et al., 2017
DS019-19 280 0.076385 0.003256 0.282901 22 4.5 10.1 0.8 531 812 -0.9 0.282884 Yu et al., 20 DS019-20 280 0.066179 0.00231 0.282838 19 2.3 8 0.7 616 1004 -0.92 0.282845 Yu et al., 20 DS019-22 280 0.056636 0.002133 0.282846 18 2.6 8.4 0.6 594 565 897 -0.92 0.282857 Yu et al., 20 DS019-24 280 0.044578 0.00213 0.282858 16 3 8.8 0.6 576 930 -0.94 0.282847 Yu et al., 20 DS042-02 280 0.04431 0.002169 0.282835 36 2.2 8 1.3 611 1004 -0.96 0.282847 Yu et al., 20 DS042-06 280 0.061655 0.00277 0.282835 16 1.6 7.5 0.6 623 1049 -0.96	DS019-18	280	0.191698	0.007575	0.282948	26	6.2	11	0.9	523	732	-0.77	0.282909	Yu et al., 2017
DS019-20 280 0.064179 0.002696 0.282838 19 2.3 8 0.7 616 1004 -0.92 0.282824 Yu et al., 20 DS019-22 280 0.056636 0.002231 0.282863 23 3.2 8.9 0.8 571 917 -0.93 0.282851 Yu et al., 20 DS019-23 280 0.048578 0.002133 0.2828461 18 2.6 8.4 0.6 594 968 -0.92 0.282857 Yu et al., 20 DS042-01 280 0.064130 0.002103 0.282858 16 3 8.8 0.6 576 990 -0.92 0.282847 Yu et al., 20 DS042-02 280 0.048138 0.002169 0.282835 36 2.2 8 1.3 611 1004 -0.93 0.282847 Yu et al., 20 DS042-05 280 0.061665 0.002737 0.282835 16 1.6 7.5 0.6 623 1049 -0.96 0.282810 Yu et al., 20 DS042-05 280 0.059506 0.002712	DS019-19	280	0.076385	0.003256	0.282901	22	4.5	10.1	0.8	531	812	-0.9	0.282884	Yu et al., 2017
DS019-22 280 0.056636 0.002231 0.282863 23 3.2 8.9 0.8 571 917 -0.93 0.282851 Yu et al., 20 DS019-23 280 0.048578 0.002103 0.282871 20 3.5 9.2 0.7 556 897 -0.92 0.282857 Yu et al., 20 DS019-24 280 0.048130 0.002103 0.282858 16 3.5 9.2 0.7 556 897 -0.92 0.282877 Yu et al., 20 DS042-01 280 0.048130 0.002169 0.282858 16 1.2 7.1 0.6 640 1085 -0.94 0.282847 Yu et al., 20 DS042-04 280 0.04665 0.002737 0.282813 16 1.6 1.7 7.8 0.7 624 1022 -0.92 0.282814 Yu et al., 20 DS042-06 280 0.059956 0.002161 0.282813 16 1.6 1.7 7.5 0.6 624 1044 </td <td>DS019-20</td> <td>280</td> <td>0.064179</td> <td>0.002696</td> <td>0.282838</td> <td>19</td> <td>2.3</td> <td>8</td> <td>0.7</td> <td>616</td> <td>1004</td> <td>-0.92</td> <td>0.282824</td> <td>Yu et al., 2017</td>	DS019-20	280	0.064179	0.002696	0.282838	19	2.3	8	0.7	616	1004	-0.92	0.282824	Yu et al., 2017
DS019-23 280 0.048578 0.002133 0.282846 18 2.6 8.4 0.6 594 968 -0.94 0.282835 Yu et al., 20 DS019-24 280 0.061596 0.002603 0.282871 20 3.5 9.2 0.7 565 887 -0.92 0.282875 Yu et al., 20 DS042-01 280 0.032658 0.001422 0.282835 16 3 8.8 0.6 576 930 -0.94 0.282878 Yu et al., 20 DS042-04 280 0.043818 0.002137 0.282832 19 2.1 7.8 0.7 624 1022 -0.92 0.282818 Yu et al., 20 DS042-06 280 0.025933 0.00137 0.282817 16 1.6 7.5 0.6 623 1049 -0.96 0.282810 Yu et al., 20 DS042-08 280 0.035885 0.001638 0.282817 16 1.7 7.5 0.6 603 1001 -0.95 0.282	DS019-22	280	0.056636	0.002231	0.282863	23	3.2	8.9	0.8	571	917	-0.93	0.282851	Yu et al., 2017
DS019-24 280 0.061596 0.002603 0.282871 20 3.5 9.2 0.7 565 897 -0.92 0.282857 Yu et al., 20 DS042-01 280 0.048130 0.002103 0.282858 16 3 8.8 0.6 576 930 -0.94 0.282877 Yu et al., 20 DS042-02 280 0.03658 0.001422 0.282836 16 1.2 7.1 0.6 640 1085 -0.96 0.282878 Yu et al., 20 DS042-04 280 0.061665 0.002737 0.282832 19 2.1 7.8 0.7 654 1022 -0.92 0.282810 Yu et al., 20 DS042-06 280 0.029533 0.001337 0.282812 16 1.7 7.5 0.6 623 1044 -0.95 0.282810 Yu et al., 20 DS042-09 280 0.033454 0.001638 0.282831 16 1.7 7.5 0.6 613 1014 -0.95 0.28	DS019-23	280	0.048578	0.002133	0.282846	18	2.6	8.4	0.6	594	968	-0.94	0.282835	Yu et al., 2017
DS042-01 280 0.048130 0.002103 0.282858 16 3 8.8 0.6 576 930 -0.94 0.282847 Yu et al., 20 DS042-02 280 0.032658 0.001422 0.282835 36 2.2 8 1.3 611 1004 -0.93 0.282842 Yu et al., 20 DS042-05 280 0.061655 0.002737 0.282832 19 2.1 7.8 0.7 624 1022 -0.92 0.282810 Yu et al., 20 DS042-06 280 0.025933 0.001337 0.282812 16 1.6 1.7 7.5 0.6 623 1049 -0.96 0.282811 Yu et al., 20 DS042-09 280 0.03585 0.001638 0.282820 16 1.7 7.5 0.6 643 1001 -0.95 0.282811 Yu et al., 20 DS042-10 280 0.033454 0.001515 0.282833 16 2.1 8 0.6 633 1001 -0.95 <td>DS019-24</td> <td>280</td> <td>0.061596</td> <td>0.002603</td> <td>0.282871</td> <td>20</td> <td>3.5</td> <td>9.2</td> <td>0.7</td> <td>565</td> <td>897</td> <td>-0.92</td> <td>0.282857</td> <td>Yu et al., 2017</td>	DS019-24	280	0.061596	0.002603	0.282871	20	3.5	9.2	0.7	565	897	-0.92	0.282857	Yu et al., 2017
DS042-02 280 0.032658 0.001422 0.282806 16 1.2 7.1 0.6 640 1085 -0.96 0.282798 Yu et al., 20 DS042-04 280 0.048381 0.002169 0.282835 36 2.2 8 1.3 611 1004 -0.93 0.282824 Yu et al., 20 DS042-05 280 0.061665 0.002737 0.282832 19 2.1 7.8 0.7 624 1022 -0.92 0.282810 Yu et al., 20 DS042-06 280 0.029533 0.001337 0.282817 16 1.6 7.5 0.6 623 1049 -0.96 0.282810 Yu et al., 20 DS042-09 280 0.03585 0.001638 0.282820 16 1.7 7.5 0.6 623 1044 -0.95 0.282847 Yu et al., 20 DS042-10 280 0.035458 0.001515 0.282833 16 2.1 8 0.6 633 1001 -0.95 0.28	DS042-01	280	0.048130	0.002103	0.282858	16	3	8.8	0.6	576	930	-0.94	0.282847	Yu et al., 2017
DS042-04 280 0.048381 0.002169 0.282835 36 2.2 8 1.3 611 1004 -0.93 0.282824 Yu et al., 20 DS042-05 280 0.061665 0.002737 0.282832 19 2.1 7.8 0.7 624 1022 -0.92 0.282818 Yu et al., 20 DS042-06 280 0.029533 0.001337 0.282817 16 1.6 7.5 0.6 623 1049 -0.96 0.282810 Yu et al., 20 DS042-08 280 0.05906 0.002612 0.282888 20 3 8.7 0.7 584 938 -0.92 0.282844 Yu et al., 20 DS042-10 280 0.03585 0.001515 0.282830 16 2.1 8 0.6 603 1001 -0.95 0.282847 Yu et al., 20 DS042-12 280 0.031578 0.00149 0.282845 18 3 8.8 0.6 574 930 -0.95 0.282847 <td>DS042-02</td> <td>280</td> <td>0.032658</td> <td>0.001422</td> <td>0.282806</td> <td>16</td> <td>1.2</td> <td>7.1</td> <td>0.6</td> <td>640</td> <td>1085</td> <td>-0.96</td> <td>0.282798</td> <td>Yu et al., 2017</td>	DS042-02	280	0.032658	0.001422	0.282806	16	1.2	7.1	0.6	640	1085	-0.96	0.282798	Yu et al., 2017
DS042-05 280 0.061665 0.002737 0.282832 19 2.1 7.8 0.7 624 1022 -0.92 0.282818 Yu et al., 20 DS042-06 280 0.029533 0.001337 0.282817 16 1.6 7.5 0.6 623 1049 -0.96 0.282810 Yu et al., 20 DS042-08 280 0.059096 0.002612 0.282858 20 3 8.7 0.7 584 938 -0.92 0.282844 Yu et al., 20 DS042-09 280 0.033454 0.001515 0.282833 16 2.1 8 0.6 603 1001 -0.95 0.282816 Yu et al., 20 DS042-10 280 0.031578 0.00149 0.282823 16 1.8 7.7 0.6 615 1029 -0.96 0.282817 Yu et al., 20 DS042-12 280 0.039563 0.001739 0.282858 20 3 8.9 0.7 571 924 -0.95 0.282847	DS042-04	280	0.048381	0.002169	0.282835	36	2.2	8	1.3	611	1004	-0.93	0.282824	Yu et al., 2017
DS042-06 280 0.029533 0.001337 0.282817 16 1.6 7.5 0.6 623 1049 -0.96 0.282810 Yu et al., 20 DS042-08 280 0.059096 0.002612 0.282858 20 3 8.7 0.7 584 938 -0.92 0.282844 Yu et al., 20 DS042-09 280 0.033585 0.001638 0.282820 16 1.7 7.5 0.6 624 1044 -0.95 0.282811 Yu et al., 20 DS042-10 280 0.033544 0.001515 0.282833 16 2.1 8 0.6 603 1001 -0.95 0.282816 Yu et al., 20 DS042-12 280 0.03563 0.00173 0.282858 20 3 8.9 0.7 571 924 -0.95 0.282847 Yu et al., 20 DS042-14 280 0.057891 0.002551 0.282873 20 3.6 9.4 0.7 549 876 -0.95 0.282844 </td <td>DS042-05</td> <td>280</td> <td>0.061665</td> <td>0.002737</td> <td>0.282832</td> <td>19</td> <td>2.1</td> <td>7.8</td> <td>0.7</td> <td>624</td> <td>1022</td> <td>-0.92</td> <td>0.282818</td> <td>Yu et al., 2017</td>	DS042-05	280	0.061665	0.002737	0.282832	19	2.1	7.8	0.7	624	1022	-0.92	0.282818	Yu et al., 2017
DS042-08 280 0.059096 0.002612 0.282858 20 3 8.7 0.7 584 938 -0.92 0.282844 Yu et al., 20 DS042-09 280 0.035885 0.001638 0.282820 16 1.7 7.5 0.6 624 1044 -0.95 0.282811 Yu et al., 20 DS042-10 280 0.033454 0.001515 0.282833 16 2.1 8 0.6 603 1001 -0.95 0.282825 Yu et al., 20 DS042-11 280 0.031578 0.001449 0.282823 16 1.8 7.7 0.6 615 1029 -0.96 0.282816 Yu et al., 20 DS042-12 280 0.039563 0.00173 0.282856 18 3 8.8 0.6 574 930 -0.95 0.282847 Yu et al., 20 DS042-13 280 0.040330 0.00173 0.282857 20 3 8.9 0.7 571 924 -0.95 0.282847 Yu et al., 20 DS042-16 280 0.030879 0.00155 0.2828	DS042-06	280	0.029533	0.001337	0.282817	16	1.6	7.5	0.6	623	1049	-0.96	0.282810	Yu et al., 2017
DS042-09 280 0.035885 0.001638 0.282820 16 1.7 7.5 0.6 624 1044 -0.95 0.282811 Yu et al., 20 DS042-10 280 0.033454 0.001515 0.282833 16 2.1 8 0.6 603 1001 -0.95 0.282825 Yu et al., 20 DS042-11 280 0.031578 0.001449 0.282823 16 1.8 7.7 0.6 615 1029 -0.96 0.282816 Yu et al., 20 DS042-12 280 0.039563 0.001773 0.282856 18 3 8.8 0.6 574 930 -0.95 0.282847 Yu et al., 20 DS042-13 280 0.040330 0.001739 0.282858 20 3 8.9 0.7 571 924 -0.95 0.282847 Yu et al., 20 DS042-14 280 0.057891 0.002551 0.282847 20 3.6 9.4 0.7 549 876 -0.95 0.282841 Yu et al., 20 DS042-17 280 0.03869 0.001595 0.	DS042-08	280	0.059096	0.002612	0.282858	20	3	8.7	0.7	584	938	-0.92	0.282844	Yu et al., 2017
DS042-10 280 0.033454 0.001515 0.282833 16 2.1 8 0.6 603 1001 -0.95 0.282825 Yu et al., 20 DS042-11 280 0.031578 0.001449 0.282823 16 1.8 7.7 0.6 615 1029 -0.96 0.282816 Yu et al., 20 DS042-12 280 0.039563 0.001773 0.282856 18 3 8.8 0.6 574 930 -0.95 0.282847 Yu et al., 20 DS042-13 280 0.040330 0.001739 0.282858 20 3 8.9 0.7 571 924 -0.95 0.282847 Yu et al., 20 DS042-14 280 0.057891 0.002551 0.282840 19 2.4 8.1 0.7 609 993 -0.92 0.282847 Yu et al., 20 DS042-16 280 0.039088 0.001752 0.282847 20 3.6 9.4 0.7 549 876 -0.95 0.282841 Yu et al., 20 DS042-17 280 0.034609 0.001595 0.	DS042-09	280	0.035885	0.001638	0.282820	16	1.7	7.5	0.6	624	1044	-0.95	0.282811	Yu et al., 2017
DS042-11 280 0.031578 0.001449 0.282823 16 1.8 7.7 0.6 615 1029 -0.96 0.282816 Yu et al., 20 DS042-12 280 0.039563 0.001773 0.282856 18 3 8.8 0.6 574 930 -0.95 0.282847 Yu et al., 20 DS042-13 280 0.040330 0.001739 0.282858 20 3 8.9 0.7 571 924 -0.95 0.282849 Yu et al., 20 DS042-14 280 0.057891 0.002551 0.282840 19 2.4 8.1 0.7 609 993 -0.92 0.282827 Yu et al., 20 DS042-16 280 0.039088 0.001752 0.282843 20 3.6 9.4 0.7 549 876 -0.95 0.282864 Yu et al., 20 DS042-17 280 0.030879 0.001416 0.282849 16 2.7 8.6 0.6 579 948 -0.96 0.282810 Yu et al., 20 DS042-18 280 0.034609 0.001595 0	DS042-10	280	0.033454	0.001515	0.282833	16	2.1	8	0.6	603	1001	-0.95	0.282825	Yu et al., 2017
DS042-12 280 0.039563 0.001773 0.282856 18 3 8.8 0.6 574 930 -0.95 0.282847 Yu et al., 20 DS042-13 280 0.040330 0.001739 0.282858 20 3 8.9 0.7 571 924 -0.95 0.282849 Yu et al., 20 DS042-14 280 0.057891 0.002551 0.282840 19 2.4 8.1 0.7 609 993 -0.92 0.282827 Yu et al., 20 DS042-16 280 0.039088 0.001752 0.282873 20 3.6 9.4 0.7 549 876 -0.95 0.282864 Yu et al., 20 DS042-17 280 0.030879 0.001416 0.282849 16 2.7 8.6 0.6 579 948 -0.96 0.282814 Yu et al., 20 DS042-18 280 0.034609 0.001595 0.282818 17 1.6 7.5 0.6 625 1048 -0.95 0.282810 Yu et al., 20 DS042-19 280 0.046631 0.002208 0	DS042-11	280	0.031578	0.001449	0.282823	16	1.8	7.7	0.6	615	1029	-0.96	0.282816	Yu et al., 2017
DS042-13 280 0.040330 0.001739 0.282858 20 3 8.9 0.7 571 924 -0.95 0.282849 Yu et al., 20 DS042-14 280 0.057891 0.002551 0.282840 19 2.4 8.1 0.7 609 993 -0.92 0.282827 Yu et al., 20 DS042-16 280 0.039088 0.001752 0.282873 20 3.6 9.4 0.7 549 876 -0.95 0.282844 Yu et al., 20 DS042-17 280 0.030879 0.001416 0.282849 16 2.7 8.6 0.6 579 948 -0.96 0.282841 Yu et al., 20 DS042-18 280 0.034609 0.001595 0.282818 17 1.6 7.5 0.6 625 1048 -0.95 0.282840 Yu et al., 20 DS042-19 280 0.048631 0.002208 0.282823 21 1.8 7.5 0.7 631 1044 -0.93 0.282841 Yu et al., 20 DS042-20 280 0.053830 0.002354 <t< td=""><td>DS042-12</td><td>280</td><td>0.039563</td><td>0.001773</td><td>0.282856</td><td>18</td><td>3</td><td>8.8</td><td>0.6</td><td>574</td><td>930</td><td>-0.95</td><td>0.282847</td><td>Yu et al., 2017</td></t<>	DS042-12	280	0.039563	0.001773	0.282856	18	3	8.8	0.6	574	930	-0.95	0.282847	Yu et al., 2017
DS042-142800.0578910.0025510.282840192.48.10.7609993-0.920.282827Yu et al., 20DS042-162800.0390880.0017520.282873203.69.40.7549876-0.950.282864Yu et al., 20DS042-172800.0308790.0014160.282849162.78.60.6579948-0.960.282841Yu et al., 20DS042-182800.0346090.0015950.282818171.67.50.66251048-0.950.282810Yu et al., 20DS042-192800.0486310.0022080.282902204.610.30.7514791-0.930.282890Yu et al., 20DS042-202800.0525530.0023540.282823211.87.50.76311044-0.930.282811Yu et al., 20DS042-212800.0538300.0024350.282842182.58.20.6606988-0.930.282829Yu et al., 20DS042-222800.0461300.0020610.282881183.89.60.6542856-0.940.282870Yu et al., 20DS042-232800.0530280.0023590.2828582038.80.7580933-0.930.282846Yu et al., 20DS042-242800.0308420.0013730.282819161.67.5<	DS042-13	280	0.040330	0.001739	0.282858	20	3	8.9	0.7	571	924	-0.95	0.282849	Yu et al., 2017
DS042-162800.0390880.0017520.282873203.69.40.7549876-0.950.282864Yu et al., 20DS042-172800.0308790.0014160.282849162.78.60.6579948-0.960.282841Yu et al., 20DS042-182800.0346090.0015950.282818171.67.50.66251048-0.950.282810Yu et al., 20DS042-192800.0486310.0022080.282902204.610.30.7514791-0.930.282890Yu et al., 20DS042-202800.0525530.0023540.282823211.87.50.76311044-0.930.282811Yu et al., 20DS042-212800.0538300.0024350.282842182.58.20.6606988-0.930.282829Yu et al., 20DS042-222800.0461300.0020610.282881183.89.60.6542856-0.940.282870Yu et al., 20DS042-232800.0530280.0023590.2828582038.80.7580933-0.930.282846Yu et al., 20DS042-242800.0308420.0013730.282819161.67.50.66211043-0.960.282811Yu et al., 20	DS042-14	280	0.057891	0.002551	0.282840	19	2.4	8.1	0.7	609	993	-0.92	0.282827	Yu et al., 2017
DS042-172800.0308790.0014160.282849162.78.60.6579948-0.960.282841Yu et al., 20DS042-182800.0346090.0015950.282818171.67.50.66251048-0.950.282810Yu et al., 20DS042-192800.0486310.0022080.282902204.610.30.7514791-0.930.282890Yu et al., 20DS042-202800.0525530.0023540.282823211.87.50.76311044-0.930.282811Yu et al., 20DS042-212800.0538300.0024350.282842182.58.20.6606988-0.930.282829Yu et al., 20DS042-222800.0461300.0020610.282881183.89.60.6542856-0.940.282870Yu et al., 20DS042-232800.0530280.0023590.2828582038.80.7580933-0.930.282846Yu et al., 20DS042-242800.0308420.0013730.282819161.67.50.66211043-0.960.282811Yu et al., 20	DS042-16	280	0.039088	0.001752	0.282873	20	3.6	9.4	0.7	549	876	-0.95	0.282864	Yu et al., 2017
DS042-182800.0346090.0015950.282818171.67.50.66251048-0.950.282810Yu et al., 20DS042-192800.0486310.0022080.282902204.610.30.7514791-0.930.282890Yu et al., 20DS042-202800.0525530.0023540.282823211.87.50.76311044-0.930.282811Yu et al., 20DS042-212800.0538300.0024350.282842182.58.20.6606988-0.930.282829Yu et al., 20DS042-222800.0461300.0020610.282881183.89.60.6542856-0.940.282870Yu et al., 20DS042-232800.0530280.0023590.2828582038.80.7580933-0.930.282846Yu et al., 20DS042-242800.0308420.0013730.282819161.67.50.66211043-0.960.282811Yu et al., 20	DS042-17	280	0.030879	0.001416	0.282849	16	2.7	8.6	0.6	579	948	-0.96	0.282841	Yu et al., 2017
DS042-192800.0486310.0022080.282902204.610.30.7514791-0.930.282890Yu et al., 20DS042-202800.0525530.0023540.282823211.87.50.76311044-0.930.282890Yu et al., 20DS042-212800.0538300.0024350.282842182.58.20.6606988-0.930.282829Yu et al., 20DS042-222800.0461300.0020610.282881183.89.60.6542856-0.940.282870Yu et al., 20DS042-232800.0530280.0023590.2828582038.80.7580933-0.930.282846Yu et al., 20DS042-242800.0308420.0013730.282819161.67.50.66211043-0.960.282811Yu et al., 20	DS042-18	280	0.034609	0.001595	0.282818	17	1.6	7.5	0.6	625	1048	-0.95	0.282810	Yu et al., 2017
DS042-202800.0525530.0023540.282823211.87.50.76311044-0.930.282811Yu et al., 20DS042-212800.0538300.0024350.282842182.58.20.6606988-0.930.282829Yu et al., 20DS042-222800.0461300.0020610.282881183.89.60.6542856-0.940.282870Yu et al., 20DS042-232800.0530280.0023590.2828582038.80.7580933-0.930.282846Yu et al., 20DS042-242800.0308420.0013730.282819161.67.50.66211043-0.960.282811Yu et al., 20	DS042-19	280	0.048631	0.002208	0.282902	20	4.6	10.3	0.7	514	791	-0.93	0.282890	Yu et al., 2017
DS042-212800.0538300.0024350.282842182.58.20.6606988-0.930.282829Yu et al., 20DS042-222800.0461300.0020610.282881183.89.60.6542856-0.940.282870Yu et al., 20DS042-232800.0530280.0023590.2828582038.80.7580933-0.930.282846Yu et al., 20DS042-242800.0308420.0013730.282819161.67.50.66211043-0.960.282811Yu et al., 20	DS042-20	280	0.052553	0.002354	0.282823	21	1.8	7.5	0.7	631	1044	-0.93	0.282811	Yu et al., 2017
DS042-22 280 0.046130 0.002061 0.282881 18 3.8 9.6 0.6 542 856 -0.94 0.282870 Yu et al., 20 DS042-23 280 0.053028 0.002359 0.282858 20 3 8.8 0.7 580 933 -0.93 0.282846 Yu et al., 20 DS042-24 280 0.030842 0.001373 0.282819 16 1.6 7.5 0.6 621 1043 -0.96 0.282811 Yu et al., 20	DS042-21	280	0.053830	0.002435	0.282842	18	2.5	8.2	0.6	606	988	-0.93	0.282829	Yu et al., 2017
DS042-23 280 0.053028 0.002359 0.282858 20 3 8.8 0.7 580 933 -0.93 0.282846 Yu et al., 20 DS042-24 280 0.030842 0.001373 0.282819 16 1.6 7.5 0.6 621 1043 -0.96 0.282811 Yu et al., 20	DS042-22	280	0.046130	0.002061	0.282881	18	3.8	9.6	0.6	542	856	-0.94	0.282870	Yu et al., 2017
DS042-24 280 0.030842 0.001373 0.282819 16 1.6 7.5 0.6 621 1043 -0.96 0.282811 Yu et al., 20	DS042-23	280	0.053028	0.002359	0.282858	20	3	8.8	0.7	580	933	-0.93	0.282846	Yu et al., 2017
	DS042-24	280	0.030842	0.001373	0.282819	16	1.6	7.5	0.6	621	1043	-0.96	0.282811	Yu et al., 2017

DS070-01	280	0.075581	0.003321	0.282905	37	4.7	10.2	1.3	525	799	-0.9	0.282888	Yu et al., 2017
DS070-02	280	0.064509	0.002934	0.282845	23	2.6	8.2	0.8	609	986	-0.91	0.282829	Yu et al., 2017
DS070-03	280	0.093256	0.003845	0.282950	31	6.3	11.7	1.1	464	665	-0.88	0.282930	Yu et al., 2017
DS070-04	280	0.057077	0.002503	0.282908	24	4.8	10.5	0.9	508	775	-0.92	0.282895	Yu et al., 2017
DS070-05	280	0.040452	0.001912	0.282869	23	3.4	9.2	0.8	557	892	-0.94	0.282859	Yu et al., 2017
DS070-06	280	0.051832	0.002360	0.282837	22	2.3	8	0.8	611	1000	-0.93	0.282825	Yu et al., 2017
DS070-07	280	0.069678	0.003002	0.282946	27	6.1	11.7	1	459	663	-0.91	0.282930	Yu et al., 2017
DS070-08	280	0.082225	0.003588	0.282899	28	4.5	10	1	539	824	-0.89	0.282880	Yu et al., 2017
DS070-09	280	0.036524	0.001760	0.282868	21	3.4	9.2	0.8	557	893	-0.95	0.282858	Yu et al., 2017
DS070-10	280	0.040616	0.001815	0.282890	25	4.2	10	0.9	526	823	-0.95	0.282880	Yu et al., 2017
DS070-11	280	0.052130	0.002338	0.282932	19	5.7	11.4	0.7	470	694	-0.93	0.282920	Yu et al., 2017
DS070-12	280	0.064956	0.002957	0.282921	23	5.3	10.9	0.8	495	741	-0.91	0.282906	Yu et al., 2017
DS070-13	280	0.104741	0.004404	0.282883	28	3.9	9.2	1	576	889	-0.87	0.282860	Yu et al., 2017
DS070-14	280	0.060730	0.002816	0.282907	28	4.8	10.4	1	514	783	-0.92	0.282893	Yu et al., 2017
DS070-15	280	0.056011	0.002589	0.282896	22	4.4	10.1	0.8	528	816	-0.92	0.282882	Yu et al., 2017
DS070-16	280	0.055133	0.002469	0.282832	30	2.1	7.8	1.1	621	1019	-0.93	0.282819	Yu et al., 2017
DS070-17	280	0.035784	0.001639	0.282878	26	3.7	9.6	0.9	540	858	-0.95	0.282869	Yu et al., 2017
DS070-18	280	0.050661	0.002354	0.282887	19	4.1	9.8	0.7	537	840	-0.93	0.282875	Yu et al., 2017
DS070-19	280	0.027717	0.001327	0.282890	26	4.2	10.1	0.9	518	813	-0.96	0.282883	Yu et al., 2017
DS070-20	280	0.040323	0.001822	0.282897	22	4.4	10.2	0.8	515	799	-0.95	0.282888	Yu et al., 2017
DS070-21	280	0.051923	0.002358	0.282913	20	5	10.7	0.7	499	758	-0.93	0.282901	Yu et al., 2017
DS070-22	280	0.076272	0.003294	0.282832	26	2.1	7.7	0.9	635	1033	-0.9	0.282815	Yu et al., 2017
DS070-23	280	0.073886	0.003127	0.282981	24	7.4	13	0.9	407	551	-0.91	0.282965	Yu et al., 2017
DS070-24	330	0.029138	0.001289	0.282593	23	-6.3	-0.4	0.8	941	1762	-0.96	0.282585	Yu et al., 2017
HSW10-1-01	351	0.097794	0.003293	0.282860	34		10.1	1.2	592	863	-0.9	0.282838	Li et al., 2014
HSW10-1-02	351	0.105739	0.003579	0.282834	34		9.07	1.2	636	951	-0.89	0.282811	Li et al., 2014
HSW10-1-03	351	0.020620	0.000744	0.282827	22		9.47	0.8	599	915	-0.98	0.282822	Li et al., 2014
HSW10-1-04	351	0.033669	0.001211	0.282608	22		1.63	0.8	917	1622	-0.96	0.282600	Li et al., 2014
HSW10-1-05	351	0.073949	0.002652	0.282816	28		8.67	1	646	988	-0.92	0.282799	Li et al., 2014
HSW10-1-06	351	0.061609	0.002423	0.282948	64		13.4	2.2	448	562	-0.93	0.282932	Li et al., 2014

HSW10-1-07	351	0.064604	0.002538	0.282893	31	11.4	1.1	531	741	-0.92	0.282876	Li et al., 2014
HSW10-1-08	351	0.050943	0.001904	0.282819	30	8.94	1.1	629	963	-0.94	0.282807	Li et al., 2014
HSW5-5-01	319	0.050993	0.002195	0.282832	31	8.8	1.1	610	955	-0.93	0.282819	Li et al., 2014
HSW5-5-03	319	0.024775	0.001034	0.282761	18	5.56	0.7	730	1247	-0.97	0.282755	Li et al., 2014
HSW5-5-06	319	0.045521	0.001965	0.282734	48	8.48	1.7	621	984	-0.94	0.282722	Li et al., 2014
HSW5-5-07	319	0.024541	0.001011	0.282787	20	6.9	0.7	676	1126	-0.97	0.282781	Li et al., 2014
HSW5-5-08	319	0.021317	0.000851	0.282765	19	5.33	0.7	737	1268	-0.97	0.282760	Li et al., 2014
HSW5-5-11	319	0.047188	0.001785	0.282822	27	9.32	1	585	907	-0.95	0.282811	Li et al., 2014
HSW5-5-02	335	0.048779	0.002112	0.282771	41	6.65	1.4	711	1160	-0.94	0.282758	Li et al., 2014
HSW5-5-04	335	0.047872	0.002040	0.282726	32	7.58	1.1	672	1075	-0.94	0.282713	Li et al., 2014
HSW5-5-05	335	0.032724	0.001340	0.282777	17	6.93	0.6	692	1134	-0.96	0.282769	Li et al., 2014
HSW5-5-09	335	0.030676	0.001243	0.282789	17	7.38	0.6	673	1093	-0.96	0.282781	Li et al., 2014
HSW5-5-12	335	0.026325	0.001097	0.282844	17	6.6	0.6	703	1164	-0.97	0.282837	Li et al., 2014
HSW5-5-10	349	0.028104	0.001163	0.282754	19	8.13	0.7	654	1035	-0.96	0.282746	Li et al., 2014
HSW5-5-13	349	0.023708	0.000960	0.282764	17	7.28	0.6	686	1112	-0.97	0.282758	Li et al., 2014
HSW5-5-14	349	0.025225	0.001019	0.282743	17	6.55	0.6	716	1178	-0.97	0.282736	Li et al., 2014
12HSW4-1-01	295	0.032790	0.001028	0.282877	20	10	1.3	533	626	-0.97	0.282871	Li et al., 2014
12HSW4-1-02	295	0.033539	0.000996	0.282865	24	9.59	1.4	548	648	-0.97	0.282860	Li et al., 2014
12HSW4-1-04	295	0.058371	0.001690	0.282893	24	10.4	1.4	519	602	-0.95	0.282884	Li et al., 2014
12HSW4-1-05	295	0.047425	0.001397	0.282850	26	8.96	1.4	576	683	-0.96	0.282842	Li et al., 2014
12HSW4-1-06	295	0.039369	0.001297	0.282845	28	8.82	1.4	581	691	-0.96	0.282838	Li et al., 2014
12HSW4-1-07	295	0.051674	0.001503	0.282874	32	9.82	1.6	542	636	-0.95	0.282866	Li et al., 2014
12HSW4-1-03	318	0.062424	0.002219	0.282894	27	10.9	1.5	524	596	-0.93	0.282881	Li et al., 2014
12HSW4-1-08	318	0.050872	0.001481	0.282853	28	9.56	1.5	572	668	-0.96	0.282844	Li et al., 2014
12HSW4-1-09	318	0.061213	0.002087	0.282855	31	9.49	1.6	580	672	-0.94	0.282843	Li et al., 2014
12HSW4-1-10	318	0.059840	0.002102	0.282837	33	8.84	1.6	606	708	-0.94	0.282825	Li et al., 2014
HSW8-1-01	293	0.042389	0.001677	0.282960	43	12.8	1.5	421	576	-0.95	0.282951	Li et al., 2014
HSW8-1-03	293	0.041257	0.001582	0.282908	38	10.9	1.3	495	743	-0.95	0.282899	Li et al., 2014
HSW8-1-04	293	0.036281	0.001412	0.282957	38	12.7	1.3	422	582	-0.96	0.282949	Li et al., 2014
HSW8-1-07	293	0.035808	0.001430	0.282985	38	13.7	1.3	382	492	-0.96	0.282977	Li et al., 2014

HSW8-1-10 HSW8-1-02 HSW8-1-05 HSW8-1-06 HSW8-1-08 HSW8-1-12 HSW8-1-11 11XL-5.2-1 11XL-5.2-2	293	0.092123	0.003508	0.282999	62		13.8	2.2	384	484	-0.89	0.282980	Li et al., 2014
HSW8-1-02 HSW8-1-05 HSW8-1-06 HSW8-1-08 HSW8-1-12 HSW8-1-11 11XL-5.2-1 11XL-5.2-2	293	0.067765	0.002710	0.282958	46		12.5	1.6	437	603	-0.92	0.282943	Li et al., 2014
HSW8-1-05 HSW8-1-06 HSW8-1-08 HSW8-1-12 HSW8-1-11 11XL-5.2-1 11XL-5.2-2	317	0.043041	0.001809	0.282935	44		12.3	1.6	460	633	-0.95	0.282924	Li et al., 2014
HSW8-1-06 HSW8-1-08 HSW8-1-12 HSW8-1-11 11XL-5.2-1 11XL-5.2-2	317	0.059700	0.002391	0.282926	47		11.9	1.7	479	671	-0.93	0.282912	Li et al., 2014
HSW8-1-08 HSW8-1-12 HSW8-1-11 11XL-5.2-1 11XL-5.2-2	317	0.047417	0.001995	0.282971	34		13.6	1.2	409	520	-0.94	0.282959	Li et al., 2014
HSW8-1-12 HSW8-1-11 11XL-5.2-1 11XL-5.2-2	317	0.062815	0.002588	0.282914	39		11.5	1.4	500	712	-0.92	0.282899	Li et al., 2014
HSW8-1-11 11XL-5.2-1 11XL-5.2-2	317	0.066008	0.002514	0.282952	35		12.8	1.3	442	589	-0.92	0.282937	Li et al., 2014
11XL-5.2-1 11XL-5.2-2	362	0.038094	0.001497	0.282934	30		13.3	1.1	457	575	-0.95	0.282924	Li et al., 2014
11XL-5.2-2	277	0.048336	0.001198	0.282861	18	3.1	9	0.7	560	720		0.282855	Li et al., 2016
	277	0.053735	0.001388	0.282857	17	3	8.8	0.6	570	730		0.282850	Li et al., 2016
11XL-5.2-3	277	0.075853	0.002534	0.282883	33	3.9	9.6	1.2	550	690		0.282870	Li et al., 2016
11XL-5.2-4	277	0.039794	0.001130	0.282825	20	1.9	7.8	0.7	610	800		0.282819	Li et al., 2016
11XL-5.2-5	277	0.038529	0.001279	0.282822	19	1.8	7.6	0.7	610	810		0.282815	Li et al., 2016
11XL-5.2-6	277	0.031207	0.001033	0.282819	16	1.7	7.6	0.6	610	820		0.282814	Li et al., 2016
11XL-5.2-7	277	0.048932	0.001594	0.282908	19	4.8	10.6	0.7	500	620		0.282900	Li et al., 2016
11XL-5.2-8	277	0.031333	0.001057	0.282827	19	1.9	7.8	0.7	600	800		0.282822	Li et al., 2016
11XL-5.2-9	319	0.036168	0.001213	0.282873	15	3.6	10.3	0.5	540	670		0.282866	Li et al., 2016
11XL-5.2-10	277	0.096266	0.002718	0.282850	21	2.8	8.3	0.7	600	770		0.282836	Li et al., 2016
11XL-5.2-11	277	0.033327	0.001037	0.282859	17	3.1	9	0.6	560	730		0.282854	Li et al., 2016
11XL-5.2-12	277	0.036041	0.001099	0.282902	19	4.6	10.5	0.7	500	630		0.282896	Li et al., 2016
11XL-5.2-13	277	0.045439	0.001282	0.282870	21	3.5	9.3	0.8	550	700		0.282863	Li et al., 2016
11XL-5.2-14	277	0.039897	0.001164	0.282909	20	4.8	10.7	0.7	490	610		0.282903	Li et al., 2016
11XL-5.2-15	277	0.035764	0.001017	0.282853	20	2.9	8.8	0.7	570	740		0.282848	Li et al., 2016
11XL-5.2-16	277	0.048660	0.001304	0.282868	20	3.4	9.2	0.7	550	710		0.282861	Li et al., 2016
11SH-3-1	275	0.077110	0.002023	0.282911	20	4.9	10.6	0.7	500	620		0.282901	Li et al., 2016
11SH-3-2	275	0.053723	0.001487	0.282891	21	4.2	10	0.7	520	660		0.282883	Li et al., 2016
11SH-3-3	275	0.077656	0.002119	0.282859	21	3.1	8.7	0.8	570	740		0.282848	Li et al., 2016
11SH-3-4	275		0.001(70	0.282005	18	17	10.4	0.6	500	630		0 282896	Lietal 2016
11SH-3-5		0.053574	0.0016/9	0.282905	10	 /	10.4	0.0	500	050		0.202090	Li et al., 2010
11SH-3-6	275	0.053574 0.057189	0.001679	0.282903	19	2.9	8.7	0.7	570	740		0.282846	Li et al., 2016

11SH-3-7	275	0.039422	0.001324	0.282864	16	3.3	9.1	0.6	560	720	0.282857	Li et al., 2016
11SH-3-8	275	0.061654	0.001999	0.282856	17	3	8.7	0.6	580	740	0.282846	Li et al., 2016
11SH-3-9	275	0.060068	0.001986	0.282859	17	3.1	8.8	0.6	570	740	0.282849	Li et al., 2016
11SH-3-10	275	0.033946	0.001149	0.282867	23	3.4	9.2	0.8	550	710	0.282861	Li et al., 2016
11SH-3-11	275	0.040866	0.001292	0.282905	15	4.7	10.5	0.5	500	630	0.282898	Li et al., 2016
11SH-3-12	275	0.047291	0.001499	0.282860	19	3.1	8.9	0.7	560	730	0.282852	Li et al., 2016
11SH-3-13	275	0.050071	0.001555	0.282869	19	3.4	9.2	0.7	550	710	0.282861	Li et al., 2016
11SH-3-14	275	0.039980	0.001248	0.282825	22	1.9	7.7	0.8	610	810	0.282819	Li et al., 2016
11SH-3-15	275	0.068016	0.001997	0.282902	22	4.6	10.3	0.8	510	640	0.282892	Li et al., 2016
LX-41-1	245	0.023212	0.000686	0.282927	22	5.5	10.8	0.7	457	586	0.282924	Zhao et al., 2019
LX-41-2	245	0.024142	0.000742	0.282958	34	6.6	11.8	1.1	414	517	0.282955	Zhao et al., 2019
LX-41-3	245	0.012442	0.000368	0.282928	19	5.5	10.8	0.6	452	581	0.282926	Zhao et al., 2019
LX-41-4	245	0.023898	0.000797	0.282901	22	4.6	9.8	0.6	495	646	0.282897	Zhao et al., 2019
LX-41-5	245	0.023801	0.000720	0.283038	32	9.4	14.7	1	301	336	0.283035	Zhao et al., 2019
LX-41-6	245	0.037853	0.001056	0.283053	33	9.9	15.1	1	282	304	0.283048	Zhao et al., 2019
LX-41-7	245	0.025310	0.000718	0.282930	32	5.6	10.9	1	453	580	0.282927	Zhao et al., 2019
LX-41-8	245	0.024960	0.000730	0.282915	29	5.1	10.3	0.9	474	614	0.282912	Zhao et al., 2019
LX-41-9	245	0.029514	0.000865	0.282875	29	3.6	8.9	0.9	533	706	0.282871	Zhao et al., 2019
LX-41-10	245	0.030891	0.000917	0.282988	28	7.6	12.9	0.8	374	451	0.282984	Zhao et al., 2019
10LX-63-1	245	0.026902	0.000865	0.283001	21	8.1	13.3	0.6	354	420	0.282997	Zhao et al., 2019
10LX-63-2	245	0.037756	0.001181	0.282909	23	4.9	10.1	0.6	488	632	0.282904	Zhao et al., 2019
10LX-63-3	245	0.029004	0.000910	0.282976	22	7.2	12.5	0.6	390	477	0.282972	Zhao et al., 2019
10LX-63-4	245	0.035729	0.001072	0.282955	23	6.5	11.7	0.7	423	528	0.282950	Zhao et al., 2019
10LX-63-5	245	0.028014	0.000839	0.282912	25	5	10.2	0.8	480	622	0.282908	Zhao et al., 2019
10LX-63-6	245	0.028869	0.000903	0.282934	21	5.7	11	0.6	450	573	0.282930	Zhao et al., 2019
10LX-63-7	245	0.050871	0.001485	0.282910	22	4.9	10	0.5	492	634	0.282903	Zhao et al., 2019
10LX-63-8	245	0.040515	0.001269	0.282922	24	5.3	10.5	0.6	472	605	0.282916	Zhao et al., 2019
10LX-63-9	245	0.067727	0.001922	0.283033	24	9.2	14.3	0.5	318	360	0.283024	Zhao et al., 2019
10LX-63-10	245	0.041773	0.001257	0.282896	25	4.4	9.6	0.7	508	662	0.282890	Zhao et al., 2019
10LX-63-11	245	0.034390	0.000976	0.282912	24	4.9	10.2	0.7	483	624	0.282908	Zhao et al., 2019

10LX-63-12	245	0.039138	0.001150	0.282989	21	7.7	12.9	0.6	374	450	0.282984	Zhao et al., 2019
10LX-63-13	245	0.054838	0.001512	0.282962	25	6.7	11.9	0.6	417	516	0.282955	Zhao et al., 2019
10LX-63-14	245	0.026148	0.000766	0.282983	27	7.5	12.7	0.8	379	460	0.282980	Zhao et al., 2019
10LX-63-15	245	0.026146	0.000744	0.282913	25	5	10.3	0.8	478	619	0.282910	Zhao et al., 2019
10LX-63-16	245	0.038621	0.001105	0.282957	25	6.5	11.7	0.7	420	523	0.282952	Zhao et al., 2019
10LX-63-17	245	0.202797	0.005189	0.282946	32	6.1	10.7	0.3	489	591	0.282922	Zhao et al., 2019
10LX-63-18	245	0.026624	0.000795	0.283052	24	9.9	15.2	0.7	281	303	0.283048	Zhao et al., 2019
10LX-63-19	245	0.029398	0.000858	0.283003	24	8.2	13.4	0.7	352	416	0.282999	Zhao et al., 2019
10LX-63-20	245	0.044499	0.001254	0.282929	26	5.6	10.7	0.7	461	588	0.282923	Zhao et al., 2019
10LX-66-1	246	0.042009	0.001230	0.283011	25	8.5	13.7	0.7	343	401	0.283005	Zhao et al., 2019
10LX-66-2	246	0.042992	0.001287	0.282945	24	6.1	11.3	0.6	439	553	0.282939	Zhao et al., 2019
10LX-66-3	246	0.034184	0.001053	0.282958	26	6.6	11.8	0.7	417	519	0.282953	Zhao et al., 2019
10LX-66-4	246	0.034993	0.001089	0.282976	25	7.2	12.5	0.7	392	479	0.282971	Zhao et al., 2019
10LX-66-5	246	0.040635	0.001191	0.282951	28	6.3	11.6	0.8	429	536	0.282946	Zhao et al., 2019
10LX-66-6	246	0.046281	0.001356	0.282972	25	7.1	12.2	0.7	401	492	0.282966	Zhao et al., 2019
10LX-66-7	246	0.029781	0.000900	0.282924	22	5.4	10.6	0.6	464	594	0.282920	Zhao et al., 2019
10LX-66-8	246	0.040756	0.001201	0.282965	22	6.8	12	0.6	410	506	0.282960	Zhao et al., 2019
10LX-66-9	246	0.041998	0.001273	0.282946	28	6.1	11.3	0.8	437	549	0.282940	Zhao et al., 2019
10LX-66-10	246	0.040224	0.001224	0.282945	27	6.1	11.9	0.7	438	534	0.282939	Zhao et al., 2019
10LX-66-11	246	0.036832	0.001080	0.282913	26	5	10.2	0.7	482	621	0.282908	Zhao et al., 2019
10LX-66-12	246	0.058904	0.001655	0.282936	30	5.8	10.9	0.8	457	576	0.282928	Zhao et al., 2019
10LX-66-13	246	0.045194	0.001344	0.282939	33	5.9	11.1	1	448	565	0.282933	Zhao et al., 2019
10LX-66-14	246	0.030047	0.000898	0.282980	29	7.4	12.6	0.9	385	468	0.282976	Zhao et al., 2019
10LX-66-15	246	0.035538	0.001079	0.282979	31	7.3	12.5	0.9	388	473	0.282974	Zhao et al., 2019
10LX-66-16	246	0.040789	0.001181	0.282912	24	5	10.2	0.7	484	624	0.282907	Zhao et al., 2019
MB1-3-01	472	0.010257	0.000344	0.282727	16	-1.6	8.7				0.282724	Shi et al., 2016
MB1-3-02	472	0.028857	0.000929	0.282768	15	-0.1	10				0.282760	Shi et al., 2016
MB1-3-03	472	0.026590	0.000919	0.282789	19	0.6	10.7				0.282781	Shi et al., 2016
MB1-3-04	472	0.023920	0.000775	0.282760	17	-0.4	9.7				0.282753	Shi et al., 2016
MB1-3-05	472	0.035653	0.001112	0.282784	16	0.4	10.5				0.282774	Shi et al., 2016

MB1-3-06	472	0.014969	0.000506	0.282742	19	-1.1	9.2				0.282738	Shi et al., 2016
MB1-3-07	472	0.020222	0.000705	0.282735	17	-1.3	8.9				0.282729	Shi et al., 2016
MB1-3-08	472	0.035594	0.001262	0.282755	17	-0.6	9.4				0.282744	Shi et al., 2016
MB1-3-09	472	0.039000	0.001240	0.282735	23	-1.3	8.7				0.282724	Shi et al., 2016
MB1-3-10	472	0.012923	0.000407	0.282748	19	-0.8	9.4				0.282744	Shi et al., 2016
MB1-3-11	472	0.020966	0.000721	0.282726	18	-1.6	8.5				0.282720	Shi et al., 2016
MB1-3-12	472	0.031189	0.001023	0.282741	20	-1.1	9				0.282732	Shi et al., 2016
MB1-3-13	472	0.024189	0.000812	0.282694	18	-2.8	7.4				0.282687	Shi et al., 2016
MB1-3-14	472	0.024833	0.000862	0.282756	15	-0.6	9.6				0.282748	Shi et al., 2016
MB1-5-01	320	0.024562	0.000888	0.282808	24	1.3	8.1				0.282803	Shi et al., 2016
MB1-5-02	320	0.023807	0.000790	0.282831	21	2.1	9				0.282826	Shi et al., 2016
MB1-5-03	320	0.028283	0.000901	0.282869	21	3.4	10.3				0.282864	Shi et al., 2016
MB1-5-04	320	0.028539	0.000950	0.282877	25	3.7	10.5				0.282871	Shi et al., 2016
MB1-5-05	320	0.035122	0.001100	0.282854	23	2.9	9.7				0.282847	Shi et al., 2016
MB1-5-06	320	0.041044	0.001284	0.282895	24	4.3	11.1				0.282887	Shi et al., 2016
MB1-5-07	320	0.063100	0.001838	0.282931	24	5.6	12.3				0.282920	Shi et al., 2016
MB1-5-08	320	0.026423	0.000860	0.282863	23	3.2	10.1				0.282858	Shi et al., 2016
MB1-5-09	320	0.028607	0.000930	0.282883	20	3.9	10.8				0.282877	Shi et al., 2016
MB1-5-10	320	0.031284	0.000996	0.282842	23	2.5	9.3				0.282836	Shi et al., 2016
MB1-5-11	320	0.055240	0.001575	0.282865	22	3.3	10				0.282856	Shi et al., 2016
BLD-1.01	310	0.032700	0.000900	0.282841	26	3.07	9.71	556	867	-0.97	0.282836	Chen et al., 2009
BLD-1.02	310	0.048700	0.001200	0.282754	25	-0.01	6.55	685	1154	-0.96	0.282747	Chen et al., 2009
BLD-1.03	310	0.051100	0.001200	0.282816	23	2.21	8.78	596	952	-0.96	0.282809	Chen et al., 2009
BLD-1.04	310	0.049100	0.001200	0.282806	26	1.82	8.39	611	987	-0.96	0.282799	Chen et al., 2009
BLD-1.05	310	0.089200	0.002100	0.282847	27	3.28	9.65	567	873	-0.94	0.282835	Chen et al., 2009
BLD-1.06	310	0.060800	0.001500	0.282853	27	3.51	10.02	547	839	-0.96	0.282844	Chen et al., 2009
BLD-1.07	310	0.040900	0.001000	0.282828	24	2.62	9.23	576	911	-0.97	0.282822	Chen et al., 2009
BLD-1.08	310	0.032500	0.000800	0.282836	23	2.91	9.55	562	882	-0.97	0.282831	Chen et al., 2009
BLD-1.09	310	0.045400	0.001200	0.282852	23	3.48	10.06	544	836	-0.96	0.282845	Chen et al., 2009
BLD-1.10	310	0.052000	0.001300	0.282855	33	3.56	10.11	543	831	-0.96	0.282847	Chen et al., 2009

BLD-1.11	310	0.052800	0.001300	0.282808	29	1.93	8.47	609	980	-0.96	0.282800	Chen et al., 2009
BLD-1.12	310	0.046100	0.001200	0.282811	27	2.02	8.59	603	969	-0.96	0.282804	Chen et al., 2009
BLD-1.13	310	0.032200	0.000800	0.282857	25	3.66	10.3	532	814	-0.97	0.282852	Chen et al., 2009
BLD-1.14	310	0.025600	0.000600	0.282839	25	3.02	9.71	554	868	-0.98	0.282836	Chen et al., 2009
BLD-1.15	310	0.027700	0.000600	0.282892	33	4.9	11.58	480	698	-0.98	0.282889	Chen et al., 2009
BLD-1.16	310	0.048400	0.001200	0.282873	27	4.21	10.78	515	770	-0.96	0.282866	Chen et al., 2009
BLD-1.17	310	0.044300	0.001200	0.282818	29	2.28	8.85	592	945	-0.96	0.282811	Chen et al., 2009
BLD-1.18	310	0.027100	0.000600	0.282718	49	-1.28	5.4	725	1257	-0.98	0.282715	Chen et al., 2009
BLD-1.19	310	0.046500	0.001100	0.282785	30	1.1	7.68	639	1051	-0.97	0.282779	Chen et al., 2009
BLD-1.20	310	0.068300	0.001700	0.282783	33	1.02	7.49	652	1068	-0.95	0.282773	Chen et al., 2009
BLD-1.21	310	0.050300	0.001200	0.282870	34	4.1	10.68	519	780	-0.96	0.282863	Chen et al., 2009
BLD-1.22	310	0.054800	0.001200	0.282820	34	2.35	8.91	591	940	-0.96	0.282813	Chen et al., 2009
BLD-1.23	310	0.055300	0.001200	0.282854	30	3.55	10.11	542	831	-0.96	0.282847	Chen et al., 2009
BLD-1.24	310	0.056100	0.001400	0.282855	27	3.57	10.1	544	832	-0.96	0.282847	Chen et al., 2009
BLD-1.25	310	0.049300	0.001200	0.282799	27	1.6	8.17	620	1007	-0.96	0.282792	Chen et al., 2009
XH-2-01	310	0.521200	0.013400	0.283157	80	14.26	18.34	160	83	-0.6	0.283080	Chen et al., 2009
XH-2-02	310	0.648600	0.019000	0.282879	64	4.41	7.33	968	1083	-0.43	0.282769	Chen et al., 2009
XH-2-03	310	0.282900	0.008300	0.282601	98	-5.43	-0.31	1112	1771	-0.75	0.282553	Chen et al., 2009
XH-2-04	310	0.588200	0.015900	0.283095	38	12.08	15.64	324	329	-0.52	0.283003	Chen et al., 2009
XH-2-05	310	0.033300	0.001400	0.282827	30	2.59	9.12	583	921	-0.96	0.282819	Chen et al., 2009
XH-2-06	310	0.578700	0.016300	0.282932	66	6.3	9.76	723	863	-0.51	0.282838	Chen et al., 2009
XH-2-07	310	0.744400	0.020800	0.282887	11	4.7	7.26	1039	1089	-0.37	0.282767	Chen et al., 2009
XH-2-08	310	0.402800	0.011400	0.282973	59	7.75	12.22	512	640	-0.66	0.282907	Chen et al., 2009
XH-2-09	310	0.089000	0.003200	0.282815	31	2.15	8.3	632	995	-0.9	0.282797	Chen et al., 2009
XH-2-10	310	0.019300	0.000800	0.282857	28	3.65	10.3	532	814	-0.98	0.282852	Chen et al., 2009
XH-2-11	310	0.042200	0.001800	0.282808	34	1.92	8.37	617	989	-0.95	0.282798	Chen et al., 2009
XH-2-12	310	0.034600	0.001400	0.282888	34	4.74	11.27	496	726	-0.96	0.282880	Chen et al., 2009
XH-2-13	310	0.091200	0.002700	0.282727	65	-0.95	5.31	752	1265	-0.92	0.282711	Chen et al., 2009
XH-2-14	310	0.421600	0.011400	0.283096	50	12.1	16.58	269	243	-0.66	0.283030	Chen et al., 2009
XH-2-15	310	0.385700	0.010600	0.282843	67	3.14	7.77	746	1043	-0.68	0.282782	Chen et al., 2009

HLT-1.01	234	0.063800	0.001400	0.282679	25	-2.64	2.2	794	1487	-0.96	0.282673	Chen et al., 2009
HLT-1.02	234	0.062400	0.001300	0.282760	22	0.21	5.05	679	1230	-0.96	0.282754	Chen et al., 2009
HLT-1.03	234	0.047200	0.001000	0.282782	22	0.98	5.87	642	1156	-0.97	0.282778	Chen et al., 2009
HLT-1.04	234	0.054600	0.001400	0.282791	26	1.3	6.14	635	1131	-0.96	0.282785	Chen et al., 2009
HLT-1.05	234	0.062100	0.001800	0.282818	20	2.25	7.02	604	1052	-0.95	0.282810	Chen et al., 2009
HLT-1.06	234	0.047900	0.001300	0.282774	28	0.72	5.57	658	1183	-0.96	0.282768	Chen et al., 2009
HLT-1.07	234	0.050500	0.001200	0.282740	23	-0.51	4.36	705	1293	-0.96	0.282735	Chen et al., 2009
HLT-1.08	234	0.113200	0.003500	0.282790	25	1.29	5.79	675	1163	-0.89	0.282775	Chen et al., 2009
HLT-1.09	234	0.043800	0.001300	0.282772	21	0.63	5.49	660	1190	-0.96	0.282766	Chen et al., 2009
HLT-1.10	234	0.062500	0.001500	0.282780	26	0.9	5.72	654	1170	-0.95	0.282773	Chen et al., 2009
HLT-1.11	234	0.089500	0.002900	0.282830	30	2.7	7.31	603	1026	-0.91	0.282817	Chen et al., 2009
HLT-1.12	234	0.084600	0.002600	0.282734	30	-0.69	3.96	740	1329	-0.92	0.282723	Chen et al., 2009
HLT-1.13	234	0.062500	0.001600	0.282761	33	0.24	5.04	682	1231	-0.95	0.282754	Chen et al., 2009
HLT-1.14	234	0.113400	0.002500	0.282865	37	3.93	8.59	546	910	-0.92	0.282854	Chen et al., 2009
HLT-1.15	234	0.089300	0.002300	0.282768	34	0.5	5.19	685	1217	-0.93	0.282758	Chen et al., 2009
HLT-1.16	234	0.068900	0.001900	0.282779	27	0.87	5.63	662	1178	-0.94	0.282771	Chen et al., 2009
HLT-1.17	234	0.085200	0.002000	0.282645	34	-3.86	0.88	858	1606	-0.94	0.282636	Chen et al., 2009
HLT-1.18	234	0.070200	0.001900	0.282761	20	0.26	5.01	687	1233	-0.94	0.282753	Chen et al., 2009
HLT-1.19	234	0.070800	0.001800	0.282762	22	0.27	5.04	685	1231	-0.94	0.282754	Chen et al., 2009
HLT-1.20	234	0.065300	0.001800	0.282767	27	0.46	5.23	677	1214	-0.95	0.282759	Chen et al., 2009
HLT-1.21	234	0.076600	0.001700	0.282813	35	2.08	6.86	610	1066	-0.95	0.282806	Chen et al., 2009
HLT-1.22	234	0.089800	0.002400	0.282812	22	2.05	6.74	621	1077	-0.93	0.282802	Chen et al., 2009
HLT-1.23	234	0.067800	0.001800	0.282778	21	0.86	5.63	660	1177	-0.95	0.282770	Chen et al., 2009
HLT-1.24	234	0.070500	0.001700	0.282784	24	1.07	5.86	650	1157	-0.95	0.282777	Chen et al., 2009
HLT-2-01	234	0.107400	0.003200	0.282813	22	2.07	6.63	635	1087	-0.9	0.282799	Chen et al., 2009
HLT-2-02	234	0.026900	0.000800	0.282799	20	1.6	6.53	613	1096	-0.98	0.282796	Chen et al., 2009
HLT-2-03	234	0.023300	0.000700	0.282088	33	-23.55	- 18.61	1601	3351	-0.98	0.282085	Chen et al., 2009
HLT-2-04	234	0.038300	0.001200	0.282833	28	2.8	7.67	571	993	-0.97	0.282828	Chen et al., 2009
HLT-2-05	234	0.033800	0.001000	0.282743	25	-0.37	4.52	696	1278	-0.97	0.282739	Chen et al., 2009
HLT-2-06	234	0.019700	0.000600	0.282818	25	2.28	7.24	583	1032	-0.98	0.282815	Chen et al., 2009

HLT-2-07	234	0.102500	0.002900	0.282724	34	-1.06	3.55	761	1366	-0.91	0.282711	Chen et al., 2009
HLT-2-08	234	0.049400	0.001400	0.282759	27	0.16	5	681	1235	-0.96	0.282753	Chen et al., 2009
HLT-2-09	234	0.027900	0.000800	0.282766	27	0.41	5.34	661	1204	-0.98	0.282763	Chen et al., 2009
HLT-2-10	234	0.034300	0.001100	0.282820	38	2.32	7.2	590	1036	-0.97	0.282815	Chen et al., 2009
HLT-2-11	234	0.027700	0.000900	0.282805	44	1.82	6.73	606	1078	-0.97	0.282801	Chen et al., 2009
HLT-2-12	234	0.039400	0.001100	0.282955	26	7.12	12	396	600	-0.97	0.282950	Chen et al., 2009
HLT-2-13	234	0.023500	0.000700	0.282837	26	2.95	7.89	559	973	-0.98	0.282834	Chen et al., 2009
HLT-2-14	234	0.049000	0.001600	0.282805	27	1.8	6.61	618	1089	-0.95	0.282798	Chen et al., 2009
HLT-2-15	234	0.023000	0.000700	0.282805	25	1.82	6.76	604	1075	-0.98	0.282802	Chen et al., 2009
HLT-2-16	234	0.054300	0.001500	0.282759	29	0.17	5	682	1235	-0.96	0.282752	Chen et al., 2009
HLT-2-17	234	0.029400	0.000800	0.282682	26	-2.56	2.36	780	1473	-0.97	0.282679	Chen et al., 2009
HLT-2-18	234	0.073800	0.002200	0.282826	22	2.55	7.26	598	1030	-0.93	0.282816	Chen et al., 2009
HLT-2-19	234	0.024500	0.000700	0.282788	21	1.19	6.13	629	1132	-0.98	0.282785	Chen et al., 2009
HLT-2-20	234	0.044400	0.001300	0.282801	30	1.65	6.49	621	1099	-0.96	0.282795	Chen et al., 2009
HLT-2-21	234	0.065000	0.002000	0.282760	26	0.22	4.97	690	1237	-0.94	0.282751	Chen et al., 2009
HLT-2-22	234	0.030400	0.000900	0.282744	22	-0.37	4.54	694	1276	-0.97	0.282740	Chen et al., 2009
HLT-2-23	234	0.057400	0.001900	0.282762	27	0.28	5.04	686	1231	-0.94	0.282754	Chen et al., 2009
HLT-2-24	234	0.039900	0.001300	0.282767	33	0.47	5.32	668	1206	-0.96	0.282761	Chen et al., 2009
HLT-2-25	234	0.058600	0.001800	0.282844	31	3.19	7.96	565	966	-0.95	0.282836	Chen et al., 2009
HLT-2-26	234	0.071700	0.002000	0.282812	31	2.07	6.81	614	1071	-0.94	0.282803	Chen et al., 2009
HLT-4-01	234	0.029500	0.000900	0.282734	24	-0.71	4.21	707	1306	-0.97	0.282730	Chen et al., 2009
HLT-4-02	234	0.021900	0.000700	0.282775	21	0.74	5.69	646	1173	-0.98	0.282772	Chen et al., 2009
HLT-4-03	234	0.021900	0.000600	0.282783	21	1.01	5.97	634	1147	-0.98	0.282780	Chen et al., 2009
HLT-4-04	234	0.022100	0.000700	0.282786	23	1.14	6.09	630	1136	-0.98	0.282783	Chen et al., 2009
HLT-4-05	234	0.032700	0.001000	0.282583	23	-6.03	-1.14	922	1789	-0.97	0.282579	Chen et al., 2009
HLT-4-06	234	0.019000	0.000500	0.282787	22	1.15	6.12	627	1133	-0.98	0.282785	Chen et al., 2009
HLT-4-07	234	0.047500	0.001400	0.282773	30	0.67	5.5	662	1189	-0.96	0.282767	Chen et al., 2009
HLT-4-08	234	0.051100	0.001500	0.282791	26	1.3	6.12	637	1133	-0.96	0.282784	Chen et al., 2009
HLT-4-09	234	0.063000	0.001900	0.282721	27	-1.15	3.6	745	1361	-0.94	0.282713	Chen et al., 2009
HLT-4-10	234	0.020900	0.000600	0.282799	18	1.58	6.54	611	1095	-0.98	0.282796	Chen et al., 2009

HLT-4-11	234	0.027300	0.000800	0.282742	38	-0.42	4.5	695	1280	-0.97	0.282739	Chen et al., 2009
HLT-4-12	234	0.026200	0.000700	0.282783	21	1.04	5.98	635	1146	-0.98	0.282780	Chen et al., 2009
HLT-4-13	234	0.016400	0.000600	0.282786	28	1.14	6.1	628	1135	-0.98	0.282783	Chen et al., 2009
HLT-4-14	234	0.044400	0.001200	0.282806	29	1.85	6.71	610	1080	-0.96	0.282801	Chen et al., 2009
HLT-4-15	234	0.066700	0.002000	0.282577	34	-6.24	-1.51	957	1822	-0.94	0.282568	Chen et al., 2009
HLT-4-16	234	0.051700	0.001400	0.282741	29	-0.47	4.36	707	1292	-0.96	0.282735	Chen et al., 2009
HLT-4-17	234	0.032500	0.000900	0.282806	21	1.85	6.76	605	1075	-0.97	0.282802	Chen et al., 2009
HLT-4-18	234	0.016000	0.000500	0.282815	19	2.14	7.11	587	1043	-0.98	0.282813	Chen et al., 2009
HLT-4-19	234	0.035100	0.001000	0.282830	24	2.69	7.58	574	1001	-0.97	0.282826	Chen et al., 2009
HLT-4-20	234	0.022900	0.000700	0.282782	25	0.98	5.92	637	1152	-0.98	0.282779	Chen et al., 2009
HLT-4-21	234	0.025500	0.000700	0.281868	23	-31.34	- 26.41	1905	4042	-0.98	0.281865	Chen et al., 2009
HLT-4-22	234	0.042100	0.001200	0.282812	29	2.06	6.92	602	1060	-0.96	0.282807	Chen et al., 2009
HLT-4-23	234	0.048600	0.001300	0.282706	34	-1.71	3.15	754	1402	-0.96	0.282700	Chen et al., 2009
HLT-4-24	234	0.061900	0.001800	0.282494	26	-9.21	-4.45	1072	2085	-0.94	0.282486	Chen et al., 2009
HLT-4-25	234	0.021600	0.000700	0.282856	38	3.61	8.55	532	913	-0.98	0.282853	Chen et al., 2009
HLT-4-26	234	0.013800	0.000400	0.282871	23	4.14	9.12	507	861	-0.99	0.282869	Chen et al., 2009
BJ06-101.1	521	0.082100	0.002900	0.282707	36	-1.66	8.82	787	1091	-0.91	0.282679	Chen et al., 2009
BJ06-101.2	408	0.028400	0.000700	0.282601	24	-5.42	3.38	889	1506	-0.98	0.282596	Chen et al., 2009
BJ06-101.3	488	0.038100	0.000900	0.282222	24	-18.83	-8.38	1424	2611	-0.97	0.282214	Chen et al., 2009
BJ06-101.4	389	0.052700	0.001100	0.282243	28	-18.07	-9.81	1402	2674	-0.97	0.282235	Chen et al., 2009
BJ06-101.5	896	0.132500	0.002400	0.282190	32	-19.95	-1.59	1530	2275	-0.93	0.282150	Chen et al., 2009
BJ06-101.6	1777	0.017300	0.000400	0.281339	32	-50.06	- 10.98	2605	3680	-0.99	0.281326	Chen et al., 2009
BJ06-101.7	302	0.044400	0.001200	0.282807	39	1.87	8.26	610	993	-0.96	0.282800	Chen et al., 2009
BJ06-101.8	536	0.049000	0.001200	0.282380	33	-13.23	-1.86	1214	2061	-0.96	0.282368	Chen et al., 2009
BJ06-101.9	780	0.039400	0.001100	0.281625	32	-39.92	-23.3	2259	4117	-0.97	0.281609	Chen et al., 2009
BJ06-101.10	407	0.008100	0.000200	0.282059	35	-24.58	- 15.71	1623	3211	-0.99	0.282057	Chen et al., 2009
BJ06-101.11	424	0.029800	0.001000	0.282201	30	-19.55	- 10.51	1457	2760	-0.97	0.282193	Chen et al., 2009
BJ06-101.12	1524	0.040800	0.001100	0.282041	37	-25.22	7.5	1687	1891	-0.97	0.282009	Chen et al., 2009

XDC1-1	253	0.044815	0.001733	0.282756	15	-1.03	4.33	0.6	717	977	-0.95	0.282748	Song et al., 2018
XDC1-2	253	0.033783	0.001329	0.282737	15	-1.68	3.74	0.6	736	1014	-0.96	0.282731	Song et al., 2018
XDC1-3	253	0.044412	0.001662	0.282685	16	-3.54	1.83	0.64	818	1136	-0.95	0.282677	Song et al., 2018
XDC1-4	253	0.018255	0.000734	0.282725	24	-2.13	3.4	0.96	742	1036	-0.98	0.282722	Song et al., 2018
XDC1-5	253	0.022261	0.000926	0.282682	14	-3.63	1.86	0.56	805	1133	-0.97	0.282678	Song et al., 2018
XDC1-6	253	0.032400	0.001310	0.282689	17	-3.4	2.03	0.68	804	1123	-0.96	0.282683	Song et al., 2018
XDC1-7	253	0.071743	0.002532	0.282739	22	-1.63	3.59	0.88	758	1024	-0.92	0.282727	Song et al., 2018
XDC1-8	253	0.024298	0.000967	0.282692	13	-3.3	2.19	0.52	793	1113	-0.97	0.282687	Song et al., 2018
XDC1-9	253	0.014777	0.000613	0.282720	20	-2.3	3.25	0.8	746	1045	-0.98	0.282717	Song et al., 2018
XDC1-10	253	0.038589	0.001474	0.282757	21	-0.98	4.42	0.84	710	971	-0.96	0.282750	Song et al., 2018
XDC1-11	253	0.032704	0.001314	0.282746	17	-1.36	4.07	0.68	722	993	-0.96	0.282740	Song et al., 2018
XDC1-12	253	0.022757	0.000902	0.282716	13	-2.43	3.07	0.52	757	1057	-0.97	0.282712	Song et al., 2018
XDC1-13	253	0.019627	0.000775	0.282692	17	-3.29	2.23	0.68	789	1110	-0.98	0.282688	Song et al., 2018
XDC1-14	253	0.031301	0.001238	0.282733	16	-1.83	3.61	0.64	740	1022	-0.96	0.282727	Song et al., 2018
XDC1-15	253	0.029746	0.001110	0.282692	20	-3.28	2.18	0.8	795	1113	-0.97	0.282687	Song et al., 2018
XDM1-1	254	0.023857	0.001052	0.282735	17	-1.76	3.69	0.68	733	1016	-0.97	0.282730	Song et al., 2018
XDM1-2	254	0.032367	0.001393	0.282709	18	-2.7	2.7	0.72	778	1080	-0.96	0.282702	Song et al., 2018
XDM1-3	254	0.038538	0.001673	0.282714	18	-2.51	2.84	0.72	776	1071	-0.95	0.282706	Song et al., 2018
XDM1-4	254	0.032313	0.001327	0.282732	15	-1.89	3.52	0.6	744	1028	-0.96	0.282726	Song et al., 2018
XDM1-5	254	0.039882	0.001777	0.282745	23	-1.4	3.93	0.92	733	1001	-0.95	0.282737	Song et al., 2018
XDM1-6	254	0.041352	0.001614	0.282738	48	-1.66	3.7	1.93	740	1016	-0.95	0.282730	Song et al., 2018
XDM1-7	254	0.025284	0.001130	0.282733	14	-1.83	3.61	0.56	738	1022	-0.97	0.282728	Song et al., 2018
XDM1-8	254	0.044705	0.001812	0.282730	17	-1.93	3.39	0.68	755	1036	-0.95	0.282721	Song et al., 2018
XDM1-9	254	0.035239	0.001417	0.282749	14	-1.29	4.1	0.56	721	990	-0.96	0.282742	Song et al., 2018
XDM1-10	254	0.011086	0.000472	0.282729	12	-1.96	3.58	0.48	730	1023	-0.99	0.282727	Song et al., 2018
XDM1-11	254	0.051517	0.002163	0.282750	17	-1.25	4.02	0.68	734	996	-0.94	0.282740	Song et al., 2018
XDM1-12	254	0.040096	0.001727	0.282743	14	-1.49	3.85	0.56	736	1007	-0.95	0.282735	Song et al., 2018
XDM1-13	254	0.027815	0.001262	0.282697	14	-3.1	2.31	0.56	791	1104	-0.96	0.282691	Song et al., 2018
XDM1-14	254	0.037007	0.001575	0.282753	14	-1.14	4.23	0.56	718	983	-0.95	0.282746	Song et al., 2018
XDM1-15	254	0.021766	0.000938	0.282745	15	-1.42	4.06	0.6	717	993	-0.97	0.282741	Song et al., 2018

SD7-1	256	0.095352	0.003747	0.282709	17	-2.68	2.4	0.68	830	1103	-0.89	0.282691	Song et al., 2018
SD7-2	256	0.017421	0.000691	0.282677	18	-3.8	1.79	0.72	807	1140	-0.98	0.282674	Song et al., 2018
SD7-3	256	0.054499	0.002212	0.282731	28	-1.91	3.43	1.12	763	1036	-0.93	0.282720	Song et al., 2018
SD7-4	256	0.031719	0.001372	0.282715	24	-2.49	2.99	0.96	769	1064	-0.96	0.282708	Song et al., 2018
SD7-5	256	0.022839	0.000897	0.282740	15	-1.6	3.97	0.6	724	1002	-0.97	0.282736	Song et al., 2018
SD7-6	256	0.028262	0.001142	0.282679	18	-3.76	1.77	0.72	815	1142	-0.97	0.282674	Song et al., 2018
SD7-7	256	0.047826	0.001999	0.282736	16	-1.72	3.65	0.64	751	1022	-0.94	0.282726	Song et al., 2018
SD7-8	256	0.048660	0.001921	0.282744	21	-1.45	3.94	0.84	738	1004	-0.94	0.282735	Song et al., 2018
SD7-9	256	0.064140	0.002540	0.282739	16	-1.64	3.64	0.64	759	1023	-0.92	0.282727	Song et al., 2018
SD7-10	448	0.028400	0.001326	0.282722	13	-2.23	7.36	0.52	758	937	-0.96	0.282711	Song et al., 2018
SD7-11	256	0.010696	0.000435	0.282712	17	-2.58	3.06	0.68	754	1059	-0.99	0.282710	Song et al., 2018
SD7-12	256	0.019724	0.000781	0.282731	16	-1.9	3.68	0.64	734	1020	-0.98	0.282727	Song et al., 2018
SD7-13	256	0.030341	0.001361	0.282741	15	-1.55	3.93	0.6	731	1004	-0.96	0.282735	Song et al., 2018
SD7-14	443	0.033585	0.001397	0.282727	17	-2.05	7.41	0.68	752	929	-0.96	0.282715	Song et al., 2018
SD7-15	256	0.043214	0.001764	0.282714	14	-2.53	2.89	0.56	779	1071	-0.95	0.282706	Song et al., 2018
DYS1-1	254	0.048297	0.001941	0.282739	16	-1.61	3.73	0.64	745	1015	-0.94	0.282730	Song et al., 2018
DYS1-2	254	0.060250	0.002444	0.282764	23	-0.75	4.51	0.92	719	966	-0.93	0.282752	Song et al., 2018
DYS1-3	254	0.022277	0.000944	0.282672	14	-3.98	1.53	0.56	820	1155	-0.97	0.282668	Song et al., 2018
DYS1-4	254	0.056493	0.002275	0.282745	22	-1.42	3.87	0.88	744	1007	-0.93	0.282734	Song et al., 2018
DYS1-5	254	0.059222	0.002278	0.282682	25	-3.63	1.66	1	835	1147	-0.93	0.282671	Song et al., 2018
DYS1-6	254	0.015465	0.000671	0.282732	17	-1.88	3.68	0.68	731	1019	-0.98	0.282729	Song et al., 2018
DYS1-7	254	0.047051	0.001942	0.282743	19	-1.49	3.85	0.76	740	1008	-0.94	0.282734	Song et al., 2018
DYS1-8	254	0.033907	0.001341	0.282694	17	-3.21	2.23	0.68	797	1111	-0.96	0.282688	Song et al., 2018
DYS1-9	254	0.021037	0.000855	0.282695	13	-3.18	2.35	0.52	786	1103	-0.97	0.282691	Song et al., 2018
DYS1-10	254	0.028086	0.001116	0.282696	18	-3.15	2.33	0.72	790	1105	-0.97	0.282691	Song et al., 2018
DYS1-11	254	0.092379	0.003602	0.282727	42	-2.06	3	1.69	800	1063	-0.89	0.282710	Song et al., 2018
DYS1-12	254	0.039422	0.001605	0.282684	26	-3.56	1.84	1.04	817	1136	-0.95	0.282676	Song et al., 2018
DYS1-13	254	0.053121	0.002067	0.282685	17	-3.55	1.77	0.68	827	1140	-0.94	0.282675	Song et al., 2018
DYS1-14	254	0.043580	0.001742	0.282696	20	-3.15	2.23	0.8	803	1111	-0.95	0.282688	Song et al., 2018
DYS1-15	254	0.072846	0.002742	0.282742	22	-1.53	3.68	0.88	758	1019	-0.92	0.282729	Song et al., 2018

XQ1-1	255	0.041004	0.001655	0.282751	15	-1.21	4.18	0.6	723	987	-0.95	0.282743	Song et al., 2018
XQ1-2	255	0.037811	0.001535	0.282675	15	-3.87	1.54	0.6	828	1155	-0.95	0.282668	Song et al., 2018
XQ1-3	255	0.058573	0.002455	0.282778	13	-0.24	5.02	0.52	698	934	-0.93	0.282766	Song et al., 2018
XQ1-4	255	0.038849	0.001598	0.282741	16	-1.57	3.83	0.64	736	1009	-0.95	0.282733	Song et al., 2018
XQ1-5	255	0.036687	0.001504	0.282759	18	-0.93	4.48	0.72	709	968	-0.96	0.282752	Song et al., 2018
XQ1-6	255	0.042429	0.001729	0.282732	14	-1.89	3.49	0.56	752	1031	-0.95	0.282724	Song et al., 2018
XQ1-7	255	0.033808	0.001388	0.282699	15	-3.03	2.41	0.6	791	1100	-0.96	0.282692	Song et al., 2018
XQ1-8	255	0.048185	0.002015	0.282775	15	-0.34	4.99	0.6	694	936	-0.94	0.282765	Song et al., 2018
XQ1-9	255	0.023440	0.000976	0.282701	13	-2.96	2.54	0.52	780	1091	-0.97	0.282696	Song et al., 2018
XQ1-10	255	0.037409	0.001548	0.282693	19	-3.27	2.14	0.76	804	1117	-0.95	0.282686	Song et al., 2018
XQ1-11	255	0.034038	0.001381	0.282776	15	-0.31	5.13	0.6	681	927	-0.96	0.282769	Song et al., 2018
XQ1-12	255	0.083875	0.003339	0.282769	17	-0.56	4.55	0.68	729	964	-0.9	0.282753	Song et al., 2018
XQ1-13	255	0.028904	0.001195	0.282692	15	-3.3	2.17	0.6	798	1115	-0.96	0.282686	Song et al., 2018
XQ1-14	255	0.044838	0.001809	0.282745	15	-1.4	3.97	0.6	734	1001	-0.95	0.282736	Song et al., 2018
XQ1-15	255	0.060188	0.002428	0.282762	16	-0.83	4.43	0.64	722	971	-0.93	0.282750	Song et al., 2018
XQ1-16	255	0.050537	0.002082	0.282756	15	-1.02	4.3	0.6	723	979	-0.94	0.282746	Song et al., 2018
XQ1-17	255	0.026167	0.001090	0.282737	13	-1.7	3.79	0.52	732	1012	-0.97	0.282732	Song et al., 2018
XQ1-18	255	0.043057	0.001683	0.282740	16	-1.59	3.79	0.64	739	1012	-0.95	0.282732	Song et al., 2018
DST1-1	257	0.035430	0.001356	0.282772	14	-0.46	5.03	0.56	687	935	-0.96	0.282766	Song et al., 2018
DST1-2	257	0.046039	0.001686	0.282751	12	-1.22	4.21	0.48	724	987	-0.95	0.282743	Song et al., 2018
DST1-3	257	0.036367	0.001351	0.282690	15	-3.35	2.14	0.6	803	1118	-0.96	0.282684	Song et al., 2018
DST1-4	257	0.025947	0.001000	0.282697	14	-3.11	2.44	0.56	786	1099	-0.97	0.282692	Song et al., 2018
DST1-5	257	0.037194	0.001411	0.282721	15	-2.27	3.2	0.6	761	1051	-0.96	0.282714	Song et al., 2018
DST1-6	257	0.031509	0.001189	0.282721	15	-2.27	3.25	0.6	756	1048	-0.96	0.282715	Song et al., 2018
DST1-7	257	0.037157	0.001385	0.282729	13	-1.97	3.52	0.52	748	1031	-0.96	0.282722	Song et al., 2018
DST1-8	257	0.033591	0.001272	0.282762	15	-0.83	4.67	0.6	700	957	-0.96	0.282756	Song et al., 2018
DST1-9	257	0.042747	0.001549	0.282751	19	-1.22	4.24	0.76	721	985	-0.95	0.282744	Song et al., 2018
DST1-10	257	0.026098	0.000994	0.282706	15	-2.81	2.74	0.6	774	1080	-0.97	0.282701	Song et al., 2018
DST1-11	257	0.042807	0.001603	0.282767	15	-0.65	4.8	0.6	699	949	-0.95	0.282759	Song et al., 2018
DST1-12	257	0.024628	0.000934	0.282723	15	-2.2	3.36	0.6	748	1041	-0.97	0.282719	Song et al., 2018

DST1-13	257	0.033033	0.001268	0.282762	17	-0.81	4.69	0.68	699	956	-0.96	0.282756	Song et al., 2018
DST1-14	257	0.033989	0.001275	0.282750	15	-1.25	4.25	0.6	717	984	-0.96	0.282744	Song et al., 2018
DST1-15	257	0.028691	0.001124	0.282764	16	-0.75	4.77	0.64	694	951	-0.97	0.282759	Song et al., 2018
P21-6.1	318	0.033875	0.001460	0.282936	23	5.8	12.5		454	533	-0.96	0.282927	Chai et al., 2018
P21-6.2	318	0.029539	0.001205	0.282942	23	6	12.8		442	515	-0.96	0.282935	Chai et al., 2018
P21-6.3	318	0.047984	0.001851	0.282958	26	6.6	13.2		427	488	-0.94	0.282947	Chai et al., 2018
P21-6.4	318	0.049945	0.001965	0.282982	27	7.4	14		392	433	-0.94	0.282970	Chai et al., 2018
P21-6.5	318	0.040166	0.001591	0.282973	29	7.1	13.8		401	449	-0.95	0.282964	Chai et al., 2018
P21-6.6	318	0.068595	0.002691	0.283004	37	8.2	14.6		368	394	-0.92	0.282988	Chai et al., 2018
P21-6.7	318	0.056425	0.002233	0.283001	30	8.1	14.6		368	395	-0.93	0.282988	Chai et al., 2018
P21-6.8	318	0.054116	0.001967	0.282971	28	7	13.6		408	459	-0.94	0.282959	Chai et al., 2018
P21-6.9	318	0.034544	0.001357	0.282896	16	4.4	11.1		510	622	-0.96	0.282888	Chai et al., 2018
P21-6.10	318	0.045360	0.001844	0.282967	24	6.9	13.5		413	466	-0.94	0.282956	Chai et al., 2018
P21-6.11	318	0.045315	0.001865	0.282958	29	6.6	13.2		427	488	-0.94	0.282947	Chai et al., 2018
P21-6.12	318	0.033697	0.001309	0.282904	17	4.7	11.4		498	603	-0.96	0.282896	Chai et al., 2018
P1-8.1	303	0.050315	0.001867	0.282885	23	4	10.3		533	661	-0.94	0.282874	Chai et al., 2018
P1-8.2	303	0.068851	0.002710	0.283038	23	9.4	15.5		317	324	-0.92	0.283023	Chai et al., 2018
P1-8.3	303	0.057306	0.002234	0.282926	26	5.5	11.7		477	572	-0.93	0.282913	Chai et al., 2018
P1-8.4	303	0.055511	0.002315	0.282983	26	7.5	13.7		395	445	-0.93	0.282970	Chai et al., 2018
P1-8.5	303	0.061428	0.002386	0.283005	26	8.2	14.4		363	395	-0.93	0.282992	Chai et al., 2018
P1-8.6	303	0.040033	0.001635	0.282989	26	7.7	14		380	423	-0.95	0.282980	Chai et al., 2018
P1-8.7	303	0.044512	0.001865	0.282887	27	4.1	10.4		529	656	-0.94	0.282876	Chai et al., 2018
P1-8.8	303	0.098496	0.003800	0.282914	27	5	10.9		518	620	-0.89	0.282893	Chai et al., 2018
P1-8.9	303	0.086177	0.003324	0.282927	28	5.5	11.5		490	584	-0.9	0.282908	Chai et al., 2018
P1-8.10	303	0.042819	0.001781	0.282893	26	4.3	10.6		519	641	-0.95	0.282883	Chai et al., 2018
P1-8.11	303	0.037515	0.001481	0.282932	25	5.7	12		459	549	-0.96	0.282924	Chai et al., 2018
P1-8.12	303	0.037811	0.001463	0.282892	27	4.2	10.6		517	640	-0.96	0.282884	Chai et al., 2018
P1-8.13	303	0.046101	0.001812	0.282926	25	5.5	11.8		472	567	-0.95	0.282916	Chai et al., 2018
P1-8.14	303	0.039190	0.001552	0.282949	21	6.2	12.6		436	513	-0.95	0.282940	Chai et al., 2018
P23-7.1	291	0.030445	0.001206	0.282975	22	7.2	13.3		395	457	-0.96	0.282968	Chai et al., 2018

P23-7.2	291	0.027907	0.001184	0.283009	19	8.4	14.6	346	378	-0.96	0.283003	Chai et al., 2018
P23-7.3	291	0.030583	0.001285	0.282941	23	6	12.1	444	534	-0.96	0.282934	Chai et al., 2018
P23-7.4	291	0.031890	0.001290	0.282908	23	4.8	11	492	609	-0.96	0.282901	Chai et al., 2018
P23-7.5	291	0.030383	0.001242	0.282932	24	5.7	11.8	457	554	-0.96	0.282925	Chai et al., 2018
P23-7.6	291	0.032153	0.001304	0.282939	18	5.9	12.1	447	538	-0.96	0.282932	Chai et al., 2018
P23-7.7	291	0.025295	0.001089	0.282907	21	4.8	11	490	609	-0.97	0.282901	Chai et al., 2018
P23-7.8	291	0.025501	0.001110	0.282912	21	5	11.2	483	596	-0.97	0.282906	Chai et al., 2018
P23-7.9	291	0.031737	0.001263	0.282977	23	7.3	13.4	392	452	-0.96	0.282970	Chai et al., 2018
P23-7.10	291	0.028708	0.001172	0.282973	24	7.1	13.3	397	459	-0.96	0.282967	Chai et al., 2018
P23-7.11	291	0.023802	0.001027	0.282965	20	6.8	13	407	476	-0.97	0.282959	Chai et al., 2018
P23-7.12	291	0.030053	0.001203	0.282951	22	6.3	12.5	429	511	-0.96	0.282944	Chai et al., 2018
P23-7.13	291	0.028512	0.001199	0.282926	21	5.4	11.6	465	568	-0.96	0.282920	Chai et al., 2018
P23-7.14	291	0.031207	0.001244	0.282937	24	5.8	12	449	542	-0.96	0.282930	Chai et al., 2018
P23-7.15	291	0.031255	0.001278	0.282919	21	5.2	11.4	475	583	-0.96	0.282912	Chai et al., 2018
P1-26.1	287	0.024693	0.001031	0.282884	19	3.9	10.1	522	663	-0.97	0.282878	Chai et al., 2018
P1-26.2	287	0.025232	0.001043	0.282905	17	4.7	10.8	492	615	-0.97	0.282899	Chai et al., 2018
P1-26.3	287	0.026345	0.001075	0.282905	15	4.7	10.8	493	615	-0.97	0.282899	Chai et al., 2018
P1-26.4	287	0.051010	0.002116	0.282922	20	5.3	11.2	482	589	-0.94	0.282911	Chai et al., 2018
P1-26.5	287	0.031004	0.001220	0.282906	17	4.7	10.8	494	615	-0.96	0.282899	Chai et al., 2018
P1-26.6	287	0.027684	0.001128	0.282926	15	5.4	11.5	464	569	-0.97	0.282920	Chai et al., 2018
P1-26.7	287	0.041956	0.001710	0.282883	19	3.9	9.9	533	673	-0.95	0.282874	Chai et al., 2018
P1-26.8	287	0.028631	0.001176	0.282941	17	6	12.1	443	535	-0.96	0.282935	Chai et al., 2018
P1-26.9	287	0.026422	0.001039	0.282906	18	4.7	10.8	492	614	-0.97	0.282900	Chai et al., 2018
P1-26.10	287	0.031089	0.001325	0.282937	16	5.8	11.9	450	546	-0.96	0.282930	Chai et al., 2018
P1-26.11	287	0.030505	0.001237	0.282930	18	5.6	11.7	459	560	-0.96	0.282923	Chai et al., 2018
P1-26.12	287	0.030122	0.001112	0.282915	19	5.1	11.2	479	592	-0.97	0.282909	Chai et al., 2018
P1-26.13	287	0.022174	0.000955	0.282913	15	5	11.1	479	595	-0.97	0.282908	Chai et al., 2018
P23-13.1	285	0.026291	0.001130	0.282944	18	6.1	12.1	438	529	-0.97	0.282938	Chai et al., 2018
P23-13.2	285	0.033466	0.001419	0.282954	19	6.4	12.4	428	510	-0.96	0.282946	Chai et al., 2018
P23-13.3	285	0.046947	0.002002	0.282972	50	7.1	13	408	476	-0.94	0.282961	Chai et al., 2018

P23-13.4	285	0.048240	0.002038	0.282920	20	5.2	11.1	483	593	-0.94	0.282909	Chai et al., 2018
P23-13.5	285	0.039658	0.001669	0.282931	20	5.6	11.6	463	565	-0.95	0.282922	Chai et al., 2018
P23-13.6	285	0.032042	0.001423	0.282929	19	5.6	11.6	463	566	-0.96	0.282921	Chai et al., 2018
P23-13.7	285	0.036897	0.001576	0.282969	46	7	13	407	477	-0.95	0.282961	Chai et al., 2018
P23-13.8	285	0.054407	0.002080	0.282941	18	6	11.9	454	547	-0.94	0.282930	Chai et al., 2018
P23-13.9	285	0.057621	0.002248	0.283004	20	8.2	14.1	363	406	-0.93	0.282992	Chai et al., 2018
P20-4.1	283	0.034287	0.001272	0.282960	24	6.7	12.6	416	495	-0.96	0.282953	Chai et al., 2018
P20-4.2	283	0.049461	0.001731	0.282902	20	4.6	10.5	505	631	-0.95	0.282893	Chai et al., 2018
P20-4.3	283	0.029206	0.001134	0.282955	20	6.5	12.5	422	505	-0.97	0.282949	Chai et al., 2018
P20-4.4	283	0.026051	0.001059	0.282942	17	6	12	440	534	-0.97	0.282936	Chai et al., 2018
P20-4.5	283	0.029968	0.001163	0.282876	26	3.7	9.7	535	684	-0.96	0.282870	Chai et al., 2018
P20-4.6	283	0.034296	0.001361	0.282936	24	5.8	11.8	451	550	-0.96	0.282929	Chai et al., 2018
P20-4.7	283	0.029292	0.001205	0.282938	19	5.9	11.9	447	544	-0.96	0.282932	Chai et al., 2018
P20-4.8	283	0.040706	0.001720	0.282930	24	5.6	11.5	465	569	-0.95	0.282921	Chai et al., 2018
P20-4.9	283	0.029152	0.001163	0.282900	23	4.5	10.5	502	631	-0.96	0.282894	Chai et al., 2018
P20-4.10	283	0.056198	0.002164	0.282993	28	7.8	13.6	379	432	-0.93	0.282982	Chai et al., 2018
P20-4.11	283	0.054949	0.002145	0.282972	25	7.1	12.9	410	479	-0.94	0.282961	Chai et al., 2018
P20-4.12	283	0.037615	0.001451	0.282966	21	6.9	12.8	410	484	-0.96	0.282958	Chai et al., 2018
P20-4.13	283	0.053114	0.001976	0.282926	24	5.5	11.3	474	580	-0.94	0.282916	Chai et al., 2018
P20-4.14	283	0.051790	0.002020	0.282964	19	6.8	12.6	420	495	-0.94	0.282953	Chai et al., 2018
P20-9.1	280	0.026142	0.001171	0.282956	38	6.5	12.5	421	504	-0.96	0.282950	Chai et al., 2018
P20-9.2	280	0.025655	0.001103	0.282924	18	5.4	11.3	466	577	-0.97	0.282918	Chai et al., 2018
P20-9.3	280	0.032314	0.001386	0.282971	20	7	12.9	403	474	-0.96	0.282964	Chai et al., 2018
P20-9.4	280	0.018612	0.000801	0.282930	17	5.6	11.6	454	560	-0.98	0.282926	Chai et al., 2018
P20-9.5	280	0.034695	0.001471	0.282906	16	4.7	10.6	497	623	-0.96	0.282898	Chai et al., 2018
P20-9.6	280	0.030513	0.001283	0.282958	18	6.6	12.5	420	502	-0.96	0.282951	Chai et al., 2018
P20-9.7	280	0.028817	0.001323	0.282952	18	6.4	12.3	429	516	-0.96	0.282945	Chai et al., 2018
P20-9.8	280	0.023431	0.000991	0.282994	17	7.9	13.8	365	415	-0.97	0.282989	Chai et al., 2018
P20-9.9	280	0.021657	0.000917	0.282913	18	5	11	479	599	-0.97	0.282908	Chai et al., 2018
P20-9.10	280	0.031829	0.001283	0.282941	22	6	11.9	444	541	-0.96	0.282934	Chai et al., 2018

P20-9.11	280	0.056024	0.002205	0.283040	23	9.5	15.2		310	327	-0.93	0.283029	Chai et al., 2018
P20-9.12	280	0.043401	0.001828	0.282937	17	5.8	11.7		457	556	-0.94	0.282927	Chai et al., 2018
P20-9.13	280	0.022623	0.000922	0.282887	18	4.1	10.1		516	658	-0.97	0.282882	Chai et al., 2018
5102.1	275	0.056114	0.001273	0.282902	36		10.4	1.42	499	632		0.282895	Cheng et al., 2014
5102.5	275	0.060441	0.001508	0.282860	29		8.9	1.16	563	729		0.282852	Cheng et al., 2014
5102.7	276	0.060977	0.001455	0.282961	31		12.5	1.23	417	500		0.282954	Cheng et al., 2014
5102.8	275	0.060903	0.001680	0.282957	23		12.3	0.94	426	512		0.282948	Cheng et al., 2014
5102.9	275	0.056025	0.001412	0.282918	31		11	1.24	479	598		0.282911	Cheng et al., 2014
5102.11	277	0.062339	0.001585	0.282924	30		11.2	1.21	472	585		0.282916	Cheng et al., 2014
5102.14	276	0.066795	0.001886	0.282961	34		12.4	1.34	422	505		0.282951	Cheng et al., 2014
5102.16	277	0.075232	0.001787	0.282927	39		11.2	1.55	471	582		0.282918	Cheng et al., 2014
5102.18	277	0.054356	0.001212	0.282956	27		12.3	1.09	422	509		0.282950	Cheng et al., 2014
5102.19	277	0.046278	0.001012	0.282918	24		11	0.97	474	594		0.282913	Cheng et al., 2014
5102.2	277	0.073486	0.001816	0.282959	25		12.3	1	425	510		0.282950	Cheng et al., 2014
5102.29	276	0.075273	0.002190	0.282962	20		12.4	0.79	424	506		0.282951	Cheng et al., 2014
NM14-50-01	439	0.112847	0.003418	0.282709	32		6.5	1.1	821	1011	-0.9	0.282681	Chen et al., 2016
NM14-50-02	439	0.040920	0.001132	0.282670	22		5.7	0.8	828	1058	-0.97	0.282660	Chen et al., 2016
NM14-50-04	439	0.113437	0.003184	0.282777	30		8.9	1	715	855	-0.9	0.282751	Chen et al., 2016
NM14-50-05	439	0.073751	0.002220	0.282777	30		9.2	1.1	695	835	-0.93	0.282759	Chen et al., 2016
NM14-50-06	439	0.028476	0.001017	0.282629	22		4.3	0.8	883	1148	-0.97	0.282620	Chen et al., 2016
NM14-50-08	439	0.048266	0.001372	0.282644	25		4.7	0.9	870	1120	-0.96	0.282633	Chen et al., 2016
NM14-50-09	439	0.055494	0.001701	0.282615	22		3.6	0.8	919	1192	-0.95	0.282601	Chen et al., 2016
NM14-50-12	439	0.059822	0.001857	0.282591	22		2.7	0.8	958	1249	-0.94	0.282575	Chen et al., 2016
NM14-50-16	439	0.061289	0.002077	0.282646	31		4.6	1.1	883	1129	-0.94	0.282629	Chen et al., 2016
NM14-50-17	439	0.050847	0.001435	0.282627	21		4.1	0.7	895	1159	-0.96	0.282616	Chen et al., 2016
NM14-50-18	439	0.048451	0.001558	0.282586	18		2.6	0.6	956	1253	-0.95	0.282574	Chen et al., 2016
NM14-50-19	439	0.064874	0.002169	0.282690	27		6.1	1	822	1032	-0.93	0.282672	Chen et al., 2016
NM14-50-26	439	0.099914	0.002992	0.282727	28		7.2	1	785	962	-0.91	0.282703	Chen et al., 2016
NM14-50-27	439	0.049256	0.001540	0.282622	30		3.9	1.1	905	1173	-0.95	0.282609	Chen et al., 2016
NM14-53-01	441	0.049174	0.001424	0.282602	22		3.27	0.8	931	1215	-0.96	0.282590	Chen et al., 2016

NM14-53-03	441	0.046628	0.001307	0.282570	19	2.18	0.7	973	1284	-0.96	0.282559	Chen et al., 2016
NM14-53-04	441	0.061389	0.001989	0.282657	39	5.05	1.4	866	1102	-0.94	0.282640	Chen et al., 2016
NM14-53-05	441	0.040415	0.001087	0.282501	21	-0.19	0.7	1064	1435	-0.97	0.282492	Chen et al., 2016
NM14-53-07	441	0.046206	0.001465	0.282515	23	0.18	0.8	1056	1411	-0.96	0.282503	Chen et al., 2016
NM14-53-10	441	0.047870	0.001260	0.282490	18	-0.64	0.6	1085	1463	-0.96	0.282480	Chen et al., 2016
NM14-53-12	441	0.034050	0.000984	0.282525	19	0.67	0.7	1028	1380	-0.97	0.282517	Chen et al., 2016
NM14-53-13	441	0.049728	0.001547	0.282636	25	4.43	0.9	886	1141	-0.95	0.282623	Chen et al., 2016
NM14-53-15	441	0.053412	0.001456	0.282482	21	-0.98	0.7	1102	1485	-0.96	0.282470	Chen et al., 2016
NM14-53-18	441	0.037933	0.001137	0.282572	22	2.29	0.8	966	1277	-0.97	0.282562	Chen et al., 2016
NM14-53-19	441	0.065908	0.002210	0.282758	39	8.58	1.4	723	877	-0.93	0.282740	Chen et al., 2016
NM14-53-22	441	0.046089	0.001252	0.282598	22	3.18	0.8	932	1221	-0.96	0.282587	Chen et al., 2016
NM14-59-1	445	0.031480	0.001205	0.282465	21	-1.4	0.7	1119	1516	-0.96	0.282455	Chen et al., 2016
NM14-59-5	445	0.077534	0.002596	0.282528	27	0.4	1	1069	1399	-0.92	0.282507	Chen et al., 2016
NM14-59-6	398	0.032573	0.001111	0.282514	22	-0.7	0.8	1047	1432	-0.97	0.282506	Chen et al., 2016
NM14-59-8	445	0.027801	0.001102	0.282371	23	-4.7	0.8	1247	1724	-0.97	0.282362	Chen et al., 2016
NM14-59-11	445	0.027912	0.001310	0.282426	21	-2.8	0.7	1177	1604	-0.96	0.282415	Chen et al., 2016
NM14-59-12	445	0.061225	0.002227	0.282396	23	-4.2	0.8	1250	1689	-0.93	0.282378	Chen et al., 2016
NM14-59-13	468	0.064254	0.002426	0.282500	28	-0.1	1	1105	1447	-0.93	0.282479	Chen et al., 2016
NM14-59-14	445	0.100956	0.003735	0.282548	29	0.8	1	1073	1376	-0.89	0.282517	Chen et al., 2016
NM14-59-22	445	0.051504	0.001926	0.282401	19	-3.9	0.7	1233	1673	-0.94	0.282385	Chen et al., 2016
NM14-59-25	413	0.051142	0.001962	0.282640	37	3.9	1.3	890	1155	-0.94	0.282625	Chen et al., 2016
NM14-59-26	445	0.071028	0.002681	0.282566	33	1.7	1.2	1016	1316	-0.92	0.282544	Chen et al., 2016
NM14-59-27	445	0.043177	0.001485	0.282388	24	-4.2	0.8	1236	1693	-0.96	0.282376	Chen et al., 2016
NM14-59-28	445	0.044340	0.001472	0.282536	28	1	1	1026	1362	-0.96	0.282524	Chen et al., 2016
NM14-59-30	445	0.073418	0.002738	0.282628	28	3.9	1	926	1178	-0.92	0.282605	Chen et al., 2016
1	300	0.040257	0.001598	0.282849	9	8.6	0.3		581		0.282840	Zhang et al., 2017
2	300	0.035810	0.001469	0.282896	12	10.3	0.4		511		0.282888	Zhang et al., 2017
3	300	0.042236	0.001549	0.282505	12	-3.6	0.4		1072		0.282496	Zhang et al., 2017
4	300	0.035034	0.001416	0.282882	11	9.8	0.4		530.3		0.282874	Zhang et al., 2017
5	300	0.028963	0.001141	0.282864	11	9.2	0.4		552		0.282858	Zhang et al., 2017

6	300	0.033392	0.001339	0.282861	11		9.1	0.4		559.1		0.282854	Zhang et al., 2017
7	300	0.051623	0.002112	0.282926	11		11.2	0.4		476.5		0.282914	Zhang et al., 2017
8	300	0.042199	0.001535	0.282885	11		9.9	0.4		528.4		0.282876	Zhang et al., 2017
9	300	0.031081	0.001267	0.282863	11		9.2	0.4		555.8		0.282856	Zhang et al., 2017
10	300	0.052356	0.002115	0.282879	13		9.6	0.5		544.6		0.282867	Zhang et al., 2017
11	300	0.035063	0.001420	0.282871	11		9.4	0.4		546.6		0.282863	Zhang et al., 2017
12	300	0.035368	0.001466	0.282878	10		9.7	0.4		536.8		0.282870	Zhang et al., 2017
13	300	0.031384	0.001218	0.282873	9		9.5	0.3		539.9		0.282866	Zhang et al., 2017
14	300	0.042596	0.001758	0.282853	10		8.4	0.4		577.3		0.282843	Zhang et al., 2017
15	300	0.029524	0.001198	0.282848	11		8.7	0.4		575.3		0.282841	Zhang et al., 2017
07130-1-1	449	0.018123	0.000607	0.282625	14	-5.2	4.5		879	1148	-0.98	0.282620	Zhang et al., 2014
07130-1-2	450	0.025081	0.000808	0.282619	13	-5.4	4.3		891	1163	-0.98	0.282612	Zhang et al., 2014
07130-1-3	451	0.021028	0.000681	0.282655	15	-4.1	5.6		838	1079	-0.98	0.282649	Zhang et al., 2014
07130-1-4	453	0.036548	0.001095	0.282682	15	-3.2	6.5		810	1025	-0.97	0.282673	Zhang et al., 2014
07130-1-5	453	0.021242	0.000600	0.282608	17	-5.8	4		902	1183	-0.98	0.282603	Zhang et al., 2014
07130-1-6	450	0.038283	0.001087	0.282574	17	-7	2.6		962	1271	-0.97	0.282565	Zhang et al., 2014
07130-1-7	454	0.261521	0.005462	0.282607	33	-5.8	2.5		1035	127	-0.84	0.282561	Zhang et al., 2014
07130-1-8	451	0.035168	0.001193	0.282571	21	-7.1	2.5		969	1279	-0.96	0.282561	Zhang et al., 2014
07130-1-9	450	0.038260	0.001528	0.282602	32	-6	3.4		934	1217	-0.95	0.282589	Zhang et al., 2014
07130-1-10	453	0.025220	0.000726	0.282623	18	-5.3	4.5		884	1151	-0.98	0.282617	Zhang et al., 2014
07130-1-11	448	0.029276	0.000892	0.282698	19	-2.6	7		783	988	-0.97	0.282691	Zhang et al., 2014
07130-1-12	451	0.021432	0.000607	0.282586	17	-6.6	3.2		932	1233	-0.98	0.282581	Zhang et al., 2014
07130-1-13	447	0.026739	0.000955	0.282652	16	-4.3	5.3		849	1094	-0.97	0.282644	Zhang et al., 2014
07130-1-14	454	0.015033	0.000636	0.282560	26	-7.5	2.3		970	1291	-0.98	0.282555	Zhang et al., 2014
07130-1-15	450	0.063265	0.001590	0.282674	19	-3.5	6		832	1055	-0.95	0.282661	Zhang et al., 2014
07130-1-16	453	0.019911	0.000597	0.282666	18	-3.8	6		821	1052	-0.98	0.282661	Zhang et al., 2014
07130-1-17	452	0.020678	0.000617	0.282581	20	-6.8	3		941	1245	-0.98	0.282576	Zhang et al., 2014
07130-1-18	450	0.020319	0.000584	0.282678	19	-3.3	6.4		805	1027	-0.98	0.282673	Zhang et al., 2014
07130-1-19	456	0.036399	0.000934	0.282647	17	-4.4	5.4		855	1098	-0.97	0.282639	Zhang et al., 2014
07130-1-20	457	0.028804	0.000857	0.282576	19	-6.9	2.9		952	1256	-0.97	0.282569	Zhang et al., 2014

08480-1-1	443	0.032074	0.000831	0.282398	20	-13.2	-3.7	1201	1665	-0.97	0.282391	Zhang et al., 2014
08480-1-2	431	0.033150	0.000790	0.282481	14	-10.3	-1	1084	1485	-0.98	0.282475	Zhang et al., 2014
08480-1-3	441	0.038938	0.001135	0.282490	24	-10	-0.6	1081	1465	-0.97	0.282481	Zhang et al., 2014
08480-1-4	438	0.024325	0.000594	0.282418	15	-12.5	-3.1	1166	1619	-0.98	0.282413	Zhang et al., 2014
08480-1-5	447	0.017979	0.000475	0.282445	16	-11.5	-1.9	1124	1550	-0.99	0.282441	Zhang et al., 2014
08480-1-6	431	0.030883	0.000724	0.282439	18	-11.8	-2.5	1140	1577	-0.98	0.282433	Zhang et al., 2014
08480-1-7	431	0.024944	0.000613	0.282417	16	-12.6	-3.2	1168	1625	-0.98	0.282412	Zhang et al., 2014
08480-1-8	444	0.030144	0.000842	0.282372	18	-14.1	-4.6	1237	1722	-0.97	0.282365	Zhang et al., 2014
08480-1-9	428	0.020816	0.000524	0.282432	15	-12	-2.8	1145	1593	-0.98	0.282428	Zhang et al., 2014
08480-1-10	426	0.022433	0.000636	0.282458	18	-11.1	-1.9	1112	1538	-0.98	0.282453	Zhang et al., 2014
08480-1-11	427	0.031772	0.000732	0.282498	20	-9.7	-0.5	1059	1448	-0.98	0.282492	Zhang et al., 2014
08480-1-12	437	0.023947	0.000598	0.282466	15	-10.8	-1.4	1100	1512	-0.98	0.282461	Zhang et al., 2014
08480-1-13	445	0.023301	0.000590	0.282464	16	-10.9	-1.3	1103	1512	-0.98	0.282459	Zhang et al., 2014
08480-1-14	436	0.025240	0.000719	0.282437	20	-11.8	-2.4	1143	1579	-0.98	0.282431	Zhang et al., 2014
08480-1-15	433	0.021029	0.000559	0.282462	19	-11	-1.6	1104	1523	-0.98	0.282457	Zhang et al., 2014
08487-1-1	453	0.135254	0.002947	0.282461	16	-11	-1.9	1179	1558	-0.91	0.282436	Zhang et al., 2014
08487-1-2	434	0.166049	0.003728	0.282500	20	-9.6	-1.2	1147	1495	-0.89	0.282470	Zhang et al., 2014
08487-1-3	423	0.099194	0.002026	0.282438	17	-11.8	-3.1	1183	1609	-0.94	0.282422	Zhang et al., 2014
08487-1-4	431	0.111585	0.002773	0.282430	29	-12.1	-3.4	1219	1636	-0.92	0.282408	Zhang et al., 2014
08487-1-5	429	0.083703	0.001821	0.282454	21	-11.2	-2.3	1153	1565	-0.95	0.282439	Zhang et al., 2014
08487-1-6	421	0.256432	0.006117	0.282488	46	-10	-2.5	1249	1569	-0.82	0.282440	Zhang et al., 2014
08487-1-7	436	0.053130	0.001149	0.282344	20	-15.1	-5.9	1287	1795	-0.97	0.282335	Zhang et al., 2014
08487-1-8	418	0.321754	0.006795	0.282489	37	-10	-2.7	1275	1581	-0.8	0.282436	Zhang et al., 2014
08487-1-9	424	0.123788	0.002971	0.282437	20	-11.8	-3.3	1215	1626	-0.91	0.282414	Zhang et al., 2014
08487-1-10	430	0.193106	0.004534	0.282360	21	-14.6	-6.4	1389	1824	-0.86	0.282324	Zhang et al., 2014
08487-1-11	438	0.223390	0.005013	0.282456	21	-11.2	-3	1258	1614	-0.85	0.282415	Zhang et al., 2014
08487-1-12	435	0.237770	0.005202	0.282558	22	-7.6	0.5	1104	1390	0.84	0.282516	Zhang et al., 2014
08487-1-13	429	0.117506	0.002470	0.282511	16	-9.2	-0.5	1091	1450	-0.93	0.282491	Zhang et al., 2014
08500-1-1	474	0.066706	0.001806	0.282685	24	-3.1	6.8	821	1021	-0.95	0.282669	Zhang et al., 2014
08500-1-2	467	0.063327	0.001638	0.282766	18	-0.2	9.6	701	838	-0.95	0.282752	Zhang et al., 2014
08500-1-3	481	0.054696	0.001457	0.282763	26	-0.3	9.8	702	832	-0.96	0.282750	Zhang et al., 2014
------------	-----	----------	----------	----------	----	------	------	-----	------	-------	----------	--------------------
08500-1-4	478	0.049939	0.001223	0.282792	16	0.7	10.9	656	763	-0.96	0.282781	Zhang et al., 2014
08500-1-5	469	0.041943	0.001093	0.282793	18	0.7	10.7	652	764	-0.97	0.282783	Zhang et al., 2014
08500-1-6	473	0.057985	0.001353	0.282766	18	-0.2	9.8	695	827	-0.96	0.282754	Zhang et al., 2014
08500-1-7	472	0.042399	0.001022	0.282779	16	0.3	10.3	670	791	-0.97	0.282770	Zhang et al., 2014
08500-1-8	477	0.048249	0.001190	0.282757	18	-0.5	9.6	705	842	-0.96	0.282746	Zhang et al., 2014
08500-1-9	473	0.042278	0.001048	0.282767	19	-0.2	9.9	689	820	-0.97	0.282758	Zhang et al., 2014
08500-1-10	472	0.040177	0.001065	0.282775	20	0.1	10.2	677	801	-0.97	0.282766	Zhang et al., 2014
08500-1-11	475	0.032229	0.000809	0.282721	19	-1.8	8.4	749	918	-0.98	0.282714	Zhang et al., 2014
08500-1-12	473	0.037928	0.000986	0.282770	20	-0.1	10	683	812	-0.97	0.282761	Zhang et al., 2014
08500-1-13	478	0.064342	0.001596	0.282790	17	0.7	10.7	665	774	-0.95	0.282776	Zhang et al., 2014
08500-1-14	468	0.047474	0.001123	0.282745	20	-1	9	721	874	-0.97	0.282735	Zhang et al., 2014
08500-1-15	474	0.059485	0.001775	0.282741	23	-1.1	8.8	739	891	-0.95	0.282725	Zhang et al., 2014
08502-1-1	463	0.037464	0.000920	0.282736	22	-1.3	8.6	730	894	-0.97	0.282728	Zhang et al., 2014
08502-1-2	467	0.026493	0.000652	0.282714	19	-2	8	755	935	-0.98	0.282708	Zhang et al., 2014
08502-1-3	471	0.047244	0.001100	0.282724	21	-1.7	8.4	749	918	-0.97	0.282714	Zhang et al., 2014
08502-1-4	470	0.043783	0.001263	0.282716	20	-2	8	765	941	-0.96	0.282705	Zhang et al., 2014
08502-1-5	461	0.043230	0.001105	0.282653	20	-4.2	5.6	851	1086	-0.97	0.282644	Zhang et al., 2014
08502-1-6	479	0.028133	0.000758	0.282666	20	-3.7	6.6	824	1038	-0.98	0.282659	Zhang et al., 2014
08502-1-7	464	0.031660	0.000811	0.282657	21	-4.1	5.9	838	1069	-0.98	0.282650	Zhang et al., 2014
08502-1-8	474	0.034466	0.000888	0.282703	20	-2.4	7.7	775	960	-0.97	0.282695	Zhang et al., 2014
08502-1-9	472	0.053516	0.001201	0.282734	19	-1.3	8.7	738	897	-0.96	0.282723	Zhang et al., 2014
08502-1-10	469	0.024886	0.000635	0.282688	21	-3	7.2	792	993	-0.98	0.282682	Zhang et al., 2014
08502-1-11	473	0.041967	0.001090	0.282719	19	-1.9	8.2	756	928	-0.97	0.282709	Zhang et al., 2014
08502-1-12	481	0.053923	0.001339	0.282696	21	-2.7	7.5	795	981	-0.96	0.282684	Zhang et al., 2014
08502-1-13	464	0.071500	0.002322	0.282617	26	-5.5	4	932	1189	-0.93	0.282597	Zhang et al., 2014
08502-1-14	478	0.043168	0.001206	0.282687	25	-3	7.2	804	1000	-0.96	0.282676	Zhang et al., 2014
08502-1-15	469	0.043639	0.001182	0.282681	21	-3.2	6.7	813	1020	-0.96	0.282671	Zhang et al., 2014
08504-1-1	476	0.028973	0.000738	0.282638	20	-4.7	5.5	863	1103	-0.98	0.282631	Zhang et al., 2014
08504-1-2	493	0.025287	0.000642	0.282619	19	-5.4	5.3	887	1134	-0.98	0.282613	Zhang et al., 2014

08504-1-3	474	0.031849	0.000857	0.282708	20	-2.3	7.9	768	949	-0.97	0.282700	Zhang et al., 2014
08504-1-4	493	0.031736	0.000906	0.282632	24	-4.9	5.6	875	1110	-0.97	0.282624	Zhang et al., 2014
08504-1-5	493	0.036259	0.000871	0.282639	16	-4.7	5.9	865	1093	-0.97	0.282631	Zhang et al., 2014
08504-1-6	484	0.034705	0.000910	0.282639	19	-4.7	5.7	866	1100	-0.97	0.282631	Zhang et al., 2014
08504-1-7	486	0.026045	0.000668	0.282623	18	-5.3	5.2	882	1129	-0.98	0.282617	Zhang et al., 2014
08504-1-8	473	0.028393	0.000863	0.282635	20	-4.8	5.3	870	1114	-0.97	0.282627	Zhang et al., 2014
08504-1-9	462	0.026645	0.000696	0.282702	20	-2.5	7.5	773	966	-0.98	0.282696	Zhang et al., 2014
08504-1-10	476	0.038867	0.000988	0.282572	26	-7.1	3.1	962	1258	-0.97	0.282563	Zhang et al., 2014
08504-1-11	465	0.031450	0.000817	0.282652	19	-4.2	5.8	845	1079	-0.98	0.282645	Zhang et al., 2014
08504-1-12	474	0.028757	0.000752	0.282665	19	-3.8	6.4	826	1044	-0.98	0.282658	Zhang et al., 2014
08504-1-13	474	0.032758	0.000819	0.282664	19	-3.8	6.4	828	1047	-0.98	0.282657	Zhang et al., 2014
08504-1-14	474	0.026572	0.000679	0.282626	18	-5.2	5.1	879	1131	-0.98	0.282620	Zhang et al., 2014
08504-1-15	474	0.031742	0.000824	0.282652	19	-4.2	5.9	845	1074	-0.98	0.282645	Zhang et al., 2014
108505-1-1	529	0.036277	0.000777	0.282133	19	-22.6	-11.2	1567	2204	-0.98	0.282125	Zhang et al., 2014
108505-1-2	520	0.046717	0.001031	0.282132	17	-22.6	-11.5	1578	2217	-0.97	0.282122	Zhang et al., 2014
108505-1-3	524	0.097915	0.002399	0.282151	88	-22	-11.3	1610	2202	-0.93	0.282128	Zhang et al., 2014
108505-1-4	533	0.038784	0.000791	0.282096	17	-23.9	-12.5	1619	2285	-0.98	0.282088	Zhang et al., 2014
108505-1-5	537	0.048559	0.000995	0.282104	19	-23.6	-12.1	1616	2268	-0.97	0.282094	Zhang et al., 2014
108505-1-6	523	0.054431	0.001119	0.282120	18	-23.1	-11.9	1599	2244	-0.97	0.282109	Zhang et al., 2014
108505-1-7	516	0.047304	0.000986	0.282166	17	-21.4	-10.4	1529	2143	-0.97	0.282157	Zhang et al., 2014
108505-1-8	544	0.061006	0.001204	0.282067	18	-24.9	-13.4	1677	2351	-0.96	0.282055	Zhang et al., 2014
108505-1-9	514	0.057453	0.001347	0.282108	18	-23.5	-12.7	1627	2282	-0.96	0.282095	Zhang et al., 2014
108505-1-10	514	0.041173	0.000825	0.282137	17	-22.5	-11.4	1564	2206	-0.98	0.282129	Zhang et al., 2014
108505-1-11	514	0.042764	0.000913	0.282127	17	-22.8	-11.8	1581	2230	-0.97	0.282118	Zhang et al., 2014
108505-1-12	557	0.040829	0.000897	0.282143	18	-22.2	-10.3	1558	2168	-0.97	0.282134	Zhang et al., 2014
108505-1-13	514	0.041516	0.000875	0.282157	16	-21.7	-10.7	1538	2162	-0.97	0.282149	Zhang et al., 2014
108505-1-14	512	0.033324	0.000761	0.282098	19	-23.8	-12.8	1615	2292	-0.98	0.282091	Zhang et al., 2014
108505-1-15	512	0.050853	0.001084	0.282104	17	-23.6	-12.7	1620	2284	-0.97	0.282094	Zhang et al., 2014
108505-1-16	524	0.062376	0.001801	0.282063	35	-25.1	-14.2	1709	2384	-0.95	0.282045	Zhang et al., 2014
108505-1-17	520	0.039898	0.000860	0.282132	16	-22.6	-11.5	1572	2214	-0.97	0.282124	Zhang et al., 2014

108505-1-18	522	0.046421	0.001181	0.282139	20	-22.4	-11.3	1575	2203	-0.96	0.282128	Zhang et al., 2014
108505-1-19	523	0.057764	0.001241	0.282113	18	-23.3	-12.2	1615	2263	-0.96	0.282101	Zhang et al., 2014
108505-1-20	507	0.047844	0.001008	0.282153	16	-21.9	-11.1	1548	2177	-0.97	0.282143	Zhang et al., 2014
108505-1-21	516	0.035570	0.000765	0.282151	18	-22	-10.9	1542	2172	-0.98	0.282144	Zhang et al., 2014
08515-2-1	429	0.040024	0.000922	0.282364	17	-14.4	-5.2	1251	1750	-0.97	0.282357	Zhang et al., 2014
08515-2-2	431	0.037091	0.000817	0.282367	17	-14.3	-5.1	1244	1741	-0.98	0.282360	Zhang et al., 2014
08515-2-3	448	0.016034	0.000381	0.282362	18	-14.5	-4.8	1237	1734	-0.99	0.282359	Zhang et al., 2014
08515-2-4	421	0.038934	0.001079	0.282395	20	-13.3	-4.4	1213	1688	-0.97	0.282387	Zhang et al., 2014
08515-2-5	423	0.023308	0.000594	0.282398	17	-13.2	-4.1	1194	1673	-0.98	0.282393	Zhang et al., 2014
08515-2-6	1322	0.081584	0.002159	0.282075	22	-24.7	2.8	1709	1935	-0.93	0.282021	Zhang et al., 2014
08515-2-7	435	0.028184	0.000728	0.282391	16	-13.5	-4.1	1208	1684	-0.98	0.282385	Zhang et al., 2014
08515-2-8	433	0.023569	0.000586	0.282338	16	-15.3	-6	1276	1800	-0.98	0.282333	Zhang et al., 2014
08515-2-9	428	0.033789	0.000855	0.282405	17	-13	-3.8	1193	1659	-0.97	0.282398	Zhang et al., 2014
08515-2-10	426	0.044344	0.001176	0.282432	19	-12	-3	1165	1606	-0.96	0.282423	Zhang et al., 2014
08515-2-11	427	0.076263	0.001877	0.282258	25	-18.2	-9.3	1435	2004	-0.94	0.282243	Zhang et al., 2014
08515-2-12	446	0.037847	0.001014	0.282431	22	-12.1	-2.6	1161	1594	-0.97	0.282423	Zhang et al., 2014
08515-2-13	431	0.053995	0.001326	0.282092	19	-24.1	-15	1648	2361	-0.96	0.282081	Zhang et al., 2014
08515-2-14	447	0.054337	0.001580	0.282376	26	-14	-4.6	1256	1725	-0.95	0.282363	Zhang et al., 2014
08556-1-1	465	0.052323	0.001276	0.282717	17	-2	7.9	764	943	-0.96	0.282706	Zhang et al., 2014
08556-1-2	448	0.060498	0.001416	0.282630	22	-5	4.4	890	1151	-0.96	0.282618	Zhang et al., 2014
08556-1-3	440	0.081574	0.002032	0.282763	18	-0.3	8.8	713	867	-0.94	0.282746	Zhang et al., 2014
08556-1-4	455	0.086013	0.002153	0.282770	19	-0.1	9.3	705	845	-0.94	0.282752	Zhang et al., 2014
08556-1-5	474	0.021898	0.000479	0.282636	18	-4.8	5.5	860	1104	-0.99	0.282632	Zhang et al., 2014
08556-1-6	441	0.032109	0.000774	0.282661	18	-3.9	5.6	831	1073	-0.98	0.282655	Zhang et al., 2014
08556-1-7	478	0.028643	0.000728	0.282595	18	-6.3	4	923	1199	-0.98	0.282589	Zhang et al., 2014
08556-1-8	476	0.036241	0.000788	0.282657	16	-4.1	6.2	838	1062	-0.98	0.282650	Zhang et al., 2014
08556-1-9	442	0.080568	0.002025	0.282777	21	0.2	9.3	691	832 0	0.94	0.282760	Zhang et al., 2014
08556-1-10	443	0.077848	0.001954	0.282740	22	-1.1	8	744	916	-0.94	0.282724	Zhang et al., 2014
08556-1-11	467	0.012596	0.000327	0.282615	19	-5.5	4.6	886	1153	-0.99	0.282612	Zhang et al., 2014
08556-1-12	462	0.049998	0.001237	0.282625	20	-5.2	4.6	893	1151	-0.96	0.282614	Zhang et al., 2014

08557-1-1	442	0.069473	0.001795	0.282714	18	-2.1	7.2	779	972	-0.95	0.282699	Zhang et al., 2014
08557-1-2	441	0.061319	0.001567	0.282710	15	-2.2	7.1	779	977	-0.95	0.282697	Zhang et al., 2014
08557-1-3	450	0.149332	0.004340	0.282682	33	-3.2	5.4	886	1088	-0.87	0.282646	Zhang et al., 2014
08557-1-4	450	0.085527	0.002119	0.282780	18	0.3	9.6	689	823	-0.94	0.282762	Zhang et al., 2014
08557-1-5	504	0.046075	0.001040	0.282680	18	-3.3	7.5	811	998	-0.97	0.282670	Zhang et al., 2014
08557-1-6	440	0.106159	0.002523	0.282692	20	-2.8	6.1	827	1036	-0.92	0.282671	Zhang et al., 2014
08557-1-7	441	0.054970	0.001464	0.282787	19	0.5	9.8	668	801	-0.96	0.282775	Zhang et al., 2014
08557-1-8	450	0.167350	0.004064	0.282733	24	-1.4	7.3	801	968	-0.88	0.282699	Zhang et al., 2014
08557-1-9	450	0.081984	0.002139	0.282778	17	0.2	9.5	693	829	-0.94	0.282760	Zhang et al., 2014
08557-1-10	449	0.087570	0.002255	0.282779	20	0.2	9.5	693	829	-0.93	0.282760	Zhang et al., 2014
08557-1-11	450	0.040915	0.001121	0.282824	15	1.9	11.4	608	704	-0.97	0.282815	Zhang et al., 2014
08557-1-12	463	0.029634	0.000758	0.282675	20	-3.4	6.5	812	1028	-0.98	0.282668	Zhang et al., 2014
08557-1-13	441	0.081711	0.002035	0.282747	19	-0.9	8.2	735	901	-0.94	0.282730	Zhang et al., 2014
08557-1-14	445	0.092160	0.002476	0.282791	20	0.7	9.7	680	808	-0.93	0.282770	Zhang et al., 2014
070813-7-1	419	0.018279	0.000493	0.282465	16	-10.8	-1.8	1097	1522	-0.99	0.282461	Zhang et al., 2014
070813-7-2	418	0.018058	0.000492	0.282460	15	-11	-2	1105	1535	-0.99	0.282456	Zhang et al., 2014
070813-7-3	418	0.015786	0.000491	0.282459	17	-11.1	-2	1107	1538	-0.99	0.282455	Zhang et al., 2014
070813-7-4	413	0.028701	0.000799	0.282460	17	-11	-2.2	1114	1544	-0.98	0.282454	Zhang et al., 2014
070813-7-5	423	0.008342	0.000306	0.282486	14	-10.1	-0.9	1063	1469	-0.99	0.282484	Zhang et al., 2014
070813-7-6	425	0.014034	0.000397	0.282452	16	-11.3	-2.1	1113	1546	-0.99	0.282449	Zhang et al., 2014
070813-7-7	421	0.010700	0.000365	0.282468	15	-10.8	-1.6	1090	1513	-0.99	0.282465	Zhang et al., 2014
070813-7-8	425	0.017116	0.000555	0.282481	16	-10.3	-1.1	1077	1484	-0.98	0.282477	Zhang et al., 2014
070813-7-9	420	0.011569	0.000506	0.282462	20	-11	-1.9	1102	1529	-0.98	0.282458	Zhang et al., 2014
070813-7-10	425	0.009817	0.000386	0.282476	18	-10.5	-1.2	1080	1493	-0.99	0.282473	Zhang et al., 2014
070813-7-11	429	0.010338	0.000425	0.282459	18	-11.1	-1.8	1105	1530	-0.99	0.282456	Zhang et al., 2014
070813-7-12	419	0.019587	0.000533	0.282427	17	-12.2	-3.1	1152	1610	-0.98	0.282423	Zhang et al., 2014
070813-7-13	417	0.018816	0.000651	0.282439	18	-11.8	-2.8	1139	1586	-0.98	0.282434	Zhang et al., 2014
070813-7-14	419	0.015573	0.000606	0.282453	18	-11.3	-2.2	1118	1553	-0.98	0.282448	Zhang et al., 2014
070813-7-15	422	0.019722	0.000692	0.282449	20	-11.4	-2.3	1126	1561	-0.98	0.282444	Zhang et al., 2014
070813-7-16	423	0.014506	0.000581	0.282445	19	-11.6	-2.4	1128	1567	-0.98	0.282440	Zhang et al., 2014

070813-7-17	422	0.034594	0.001062	0.282394	20	-13.4	-4.4	1213	1689	-0.97	0.282386	Zhang et al., 2014
08404-1-1	429	0.017421	0.000417	0.282653	19	-4.2	5.1	836	1093	-0.99	0.282650	Zhang et al., 2014
08404-1-2	429	0.035926	0.000886	0.282661	17	-3.9	5.3	835	1083	-0.97	0.282654	Zhang et al., 2014
08404-1-3	444	0.021938	0.000556	0.282633	16	-4.9	4.7	866	1130	-0.98	0.282628	Zhang et al., 2014
08404-1-4	440	0.015102	0.000377	0.282633	16	-4.9	4.7	862	1130	-0.99	0.282630	Zhang et al., 2014
08404-1-5	432	0.038019	0.001320	0.282640	15	-4.7	4.5	874	1136	-0.96	0.282629	Zhang et al., 2014
08404-1-6	441	0.041580	0.000951	0.282553	18	-7.8	1.7	988	1321	-0.97	0.282545	Zhang et al., 2014
08404-1-7	438	0.026369	0.000639	0.282653	18	-4.2	5.2	841	1092	-0.98	0.282648	Zhang et al., 2014
08404-1-8	438	0.031983	0.000806	0.282707	18	-2.3	7.1	768	972	-0.98	0.282700	Zhang et al., 2014
08404-1-9	448	0.015577	0.000415	0.282626	16	-5.2	4.6	872	1141	-0.99	0.282623	Zhang et al., 2014
08404-1-10	439	0.020823	0.000539	0.282650	15	-4.3	5.2	842	1095	-0.98	0.282646	Zhang et al., 2014
08404-1-11	441	0.024699	0.000615	0.282676	18	-3.4	6.1	808	1037	-0.98	0.282671	Zhang et al., 2014
08404-1-12	449	0.017989	0.000464	0.282578	18	-6.9	2.9	941	1251	-0.99	0.282574	Zhang et al., 2014
08404-1-13	440	0.024351	0.000627	0.282641	16	-4.6	4.9	857	1117	-0.98	0.282636	Zhang et al., 2014
08404-1-14	448	0.017412	0.000456	0.282630	16	-5	4.7	868	1134	-0.99	0.282626	Zhang et al., 2014
08404-1-15	440	0.042845	0.001061	0.282643	20	-4.6	4.8	863	1120	-0.97	0.282634	Zhang et al., 2014
08406-1-1	424	0.172880	0.004468	0.282600	26	-6.1	2	1016	1287	-0.87	0.282565	Zhang et al., 2014
08406-1-2	429	0.044202	0.000820	0.282402	106	-13.1	-3.9	1195	1664	-0.98	0.282395	Zhang et al., 2014
08406-1-3	424	0.089725	0.001850	0.282607	18	-5.8	3	934	1225	-0.94	0.282592	Zhang et al., 2014
08406-1-4	425	0.062233	0.001295	0.282496	13	-9.8	-0.8	1077	1464	-0.96	0.282486	Zhang et al., 2014
08406-1-5	432	0.040822	0.000834	0.282503	15	-9.5	-0.2	1054	1435	-0.97	0.282496	Zhang et al., 2014
08406-1-7	454	0.086432	0.002166	0.282474	34	-10.6	-12	1136	1515	-0.93	0.282456	Zhang et al., 2014
08406-1-8	504	0.122766	0.003414	0.282685	37	-3.1	6.9	858	1038	-0.9	0.282653	Zhang et al., 2014
08406-1-9	432	0.030347	0.000648	0.282577	14	-6.9	2.4	946	1266	-0.98	0.282572	Zhang et al., 2014
08406-1-10	432	0.053891	0.001028	0.282474	56	-10.5	-1.3	1100	1504	-0.97	0.282466	Zhang et al., 2014
08409-1-1	432	0.022788	0.000468	0.282515	20	-9.1	0.3	1028	1403	-0.99	0.282511	Zhang et al., 2014
08409-1-2	429	0.023769	0.000487	0.282588	18	-6.5	2.8	927	1241	-0.99	0.282584	Zhang et al., 2014
08409-1-3	437	0.033780	0.000737	0.282557	19	-7.6	1.8	977	1310	-0.98	0.282551	Zhang et al., 2014
08409-1-4	427	0.026785	0.000541	0.282552	20	-7.8	1.5	979	1324	-0.98	0.282548	Zhang et al., 2014
08409-1-5	432	0.020029	0.000446	0.282562	18	-7.4	2	962	1296	-0.99	0.282558	Zhang et al., 2014

08409-1-6	435	0.025322	0.000610	0.282550	16	-7.9	1.5	983	1325	-0.98	0.282545	Zhang et al., 2014
08409-1-7	438	0.017839	0.000432	0.282524	19	-8.8	0.7	1015	1379	-0.99	0.282520	Zhang et al., 2014
08409-1-8	426	0.028475	0.000631	0.282553	18	-7.7	1.5	979	1323	-0.98	0.282548	Zhang et al., 2014
08409-1-9	425	0.023907	0.000565	0.282578	17	-6.9	2.3	943	1267	-0.98	0.282574	Zhang et al., 2014
08409-1-10	436	0.018630	0.000440	0.282536	17	-8.3	1.1	997	1351	-0.99	0.282532	Zhang et al., 2014
08409-1-11	425	0.027281	0.000632	0.282554	19	-7.7	1.4	979	1323	-0.98	0.282549	Zhang et al., 2014
08409-1-12	433	0.027631	0.000694	0.282562	19	-7.4	1.9	968	1300	-0.98	0.282556	Zhang et al., 2014
08409-1-13	429	0.033265	0.000829	0.282576	19	-6.9	2.3	952	1273	-0.98	0.282569	Zhang et al., 2014
08409-1-14	423	0.023433	0.000569	0.282571	17	-7.1	2.1	952	1283	-0.98	0.282567	Zhang et al., 2014
08409-1-15	424	0.019317	0.000474	0.282540	18	-8.2	1	993	1351	-0.99	0.282536	Zhang et al., 2014
08413-1-1	462	0.037210	0.000841	0.282472	24	-10.6	-0.7	1098	1488	-0.97	0.282465	Zhang et al., 2014
08413-1-2	448	0.026034	0.000573	0.282493	21	-9.9	-0.2	1062	1445	-0.98	0.282488	Zhang et al., 2014
08413-1-3	449	0.031453	0.000705	0.282529	19	-8.6	1.1	1014	1364	-0.98	0.282523	Zhang et al., 2014
08413-1-4	431	0.042719	0.000938	0.282496	23	-9.8	-0.5	1067	1454	-0.97	0.282488	Zhang et al., 2014
08413-1-5	452	0.036705	0.000768	0.282246	25	-18.6	-8.9	1410	1997	-0.98	0.282240	Zhang et al., 2014
08413-1-6	477	0.033369	0.000744	0.282502	18	-9.6	0.7	1054	1410	-0.98	0.282495	Zhang et al., 2014
08413-1-7	440	0.019747	0.000491	0.282514	16	-9.1	0.4	1030	1400	-0.99	0.282510	Zhang et al., 2014
08413-1-8	442	0.024084	0.000515	0.282209	21	-19.9	-10.3	1451	2080	-0.98	0.282205	Zhang et al., 2014
08413-1-9	438	0.016507	0.000456	0.282513	22	-9.2	0.3	1031	1404	-0.99	0.282509	Zhang et al., 2014
08413-1-10	444	0.040938	0.000922	0.282500	20	-9.6	-0.1	1061	1437	-0.97	0.282492	Zhang et al., 2014
08413-1-11	445	0.019588	0.000456	0.282536	16	-8.3	1.3	999	1347	-0.99	0.282532	Zhang et al., 2014
08413-1-12	443	0.035265	0.000838	0.282524	21	-8.8	0.7	1026	1383	-0.97	0.282517	Zhang et al., 2014
08413-1-13	436	0.035066	0.000842	0.282530	19	-8.5	0.8	1017	1372	-0.97	0.282523	Zhang et al., 2014
08413-1-14	439	0.043879	0.000986	0.282527	21	-8.7	0.7	1025	1381	-0.97	0.282519	Zhang et al., 2014
08413-1-15	450	0.024815	0.000572	0.282551	16	-7.8	1.9	981	1313	-0.98	0.282546	Zhang et al., 2014
08417-1-1	430	0.030511	0.000669	0.282560	18	-7.5	1.8	970	1305	-0.98	0.282555	Zhang et al., 2014
08417-1-2	422	0.027110	0.000578	0.282524	18	-8.8	0.3	1019	1391	-0.98	0.282519	Zhang et al., 2014
08417-1-3	438	0.031523	0.000697	0.282534	17	-8.4	1	1008	1361	-0.98	0.282528	Zhang et al., 2014
08417-1-4	433	0.033492	0.000760	0.282536	17	-8.4	1	1007	1360	-0.98	0.282530	Zhang et al., 2014
08417-1-5	428	0.029254	0.000665	0.282557	17	-7.6	1.6	975	1315	-0.98	0.282552	Zhang et al., 2014

08417-1-6	442	0.014997	0.000398	0.282559	15	-7.5	2.1	965	1295	-0.99	0.282556	Zhang et al., 2014
08417-1-7	429	0.027575	0.000615	0.282540	18	-8.2	1.1	997	1350	-0.98	0.282535	Zhang et al., 2014
08417-1-8	427	0.021242	0.000559	0.282502	16	-9.5	0.3	1048	1436	-0.98	0.282498	Zhang et al., 2014
08417-1-9	430	0.026310	0.000607	0.282535	16	-8.4	0.9	1004	1362	-0.98	0.282530	Zhang et al., 2014
08417-1-10	429	0.034469	0.000792	0.282489	20	-10	-0.8	1073	1469	-0.98	0.282483	Zhang et al., 2014
08417-1-11	426	0.024869	0.000618	0.282536	16	-8.4	0.8	1003	1362	-0.98	0.282531	Zhang et al., 2014
08417-1-12	427	0.023065	0.000589	0.282539	17	-8.2	1	998	1354	-0.98	0.282534	Zhang et al., 2014
08417-1-13	433	0.040662	0.000966	0.282585	16	-6.6	2.6	944	1254	-0.97	0.282577	Zhang et al., 2014
08417-1-14	428	0.023623	0.000546	0.282507	18	-9.4	-0.1	1042	1425	-0.98	0.282503	Zhang et al., 2014
08417-1-15	433	0.037347	0.000858	0.282555	19	-7.7	1.6	982	1318	-0.97	0.282548	Zhang et al., 2014
08417-1-16	425	0.029576	0.000668	0.282528	16	-8.6	0.5	1016	1382	-0.98	0.282523	Zhang et al., 2014
08429-1-1	430	0.038983	0.000862	0.282633	21	-4.9	4.3	873	1145	-0.97	0.282626	Zhang et al., 2014
08429-1-2	431	0.022664	0.000513	0.282557	19	-7.6	1.7	971	1310	-0.98	0.282553	Zhang et al., 2014
08429-1-3	434	0.023939	0.000543	0.282604	15	-5.9	3.5	906	1202	-0.98	0.282600	Zhang et al., 2014
08429-1-4	458	0.042315	0.000992	0.282550	18	-7.9	1.9	993	1318	-0.97	0.282542	Zhang et al., 2014
08429-1-5	435	0.040628	0.000870	0.282558	18	-7.6	1.7	979	1312	-0.97	0.282551	Zhang et al., 2014
08429-1-6	420	0.026530	0.000600	0.282534	17	-8.4	0.7	1005	1369	-0.98	0.282529	Zhang et al., 2014
08429-1-7	437	0.028626	0.000654	0.282559	20	-7.5	1.9	971	1303	-0.98	0.282554	Zhang et al., 2014
08429-1-8	429	0.043397	0.000960	0.282585	18	-6.6	2.6	943	1255	-0.97	0.282577	Zhang et al., 2014
08429-1-9	434	0.038842	0.000953	0.282519	21	-9	0.3	1036	1402	-0.97	0.282511	Zhang et al., 2014
08429-1-10	433	0.042334	0.001207	0.282475	42	-10.5	-1.3	1104	1504	-0.96	0.282465	Zhang et al., 2014
08429-1-11	433	0.025798	0.000591	0.282555	19	-7.7	1.7	976	1315	-0.98	0.282550	Zhang et al., 2014
08429-1-12	437	0.043841	0.001305	0.282638	32	-4.7	4.5	877	1138	-0.96	0.282627	Zhang et al., 2014
08429-1-13	431	0.039841	0.000882	0.282601	18	-6.1	3.2	919	1217	-0.97	0.282594	Zhang et al., 2014
08429-1-14	441	0.033232	0.000715	0.282549	17	-7.9	1.6	987	1326	-0.98	0.282543	Zhang et al., 2014
08429-1-15	1612	0.043818	0.000879	0.282110	19	-23.4	11.6	1063	1597	-0.97	0.282083	Zhang et al., 2014
08432-1-1	517	0.038234	0.001196	0.282483	25	-10.2	0.8	1092	1438	-0.96	0.282471	Zhang et al., 2014
08432-1-2	452	0.029912	0.000889	0.282587	21	-6.5	3.2	938	1235	-0.97	0.282580	Zhang et al., 2014
08432-1-3	467	0.051921	0.001419	0.282694	18	-2.8	7.1	800	996	-0.96	0.282682	Zhang et al., 2014
08432-1-4	435	0.048566	0.001123	0.282168	16	-21.4	-12.1	1533	2188	-0.97	0.282159	Zhang et al., 2014

08432-1-5	493	0.055878	0.001188	0.282068	23	-24.9	-14.4	1674	2376	-0.96	0.282057	Zhang et al., 2014
08432-1-6	433	0.057845	0.001592	0.282684	19	-3.1	6	817	1041	-0.95	0.282671	Zhang et al., 2014
08432-1-7	445	0.047674	0.001565	0.282522	30	-8.8	0.5	1048	1398	-0.95	0.282509	Zhang et al., 2014
08432-1-8	436	0.036560	0.000892	0.282409	22	-12.9	-3.5	1188	1647	-0.97	0.282402	Zhang et al., 2014
08432-1-9	436	0.056073	0.001462	0.282670	19	-3.6	5.6	834	1069	-0.96	0.282658	Zhang et al., 2014
08432-1-10	433	0.074093	0.001815	0.282512	32	-9.2	-0.2	1070	1434	-0.95	0.282497	Zhang et al., 2014
08432-1-11	431	0.061059	0.001462	0.282616	22	-5.5	3.6	912	1194	-0.96	0.282604	Zhang et al., 2014
08432-1-12	441	0.063664	0.001614	0.282634	22	-4.9	4.4	890	1150	-0.95	0.282621	Zhang et al., 2014
09341-2-1	444	0.080983	0.001929	0.282595	19	-6.2	3	953	1242	-0.94	0.282579	Zhang et al., 2014
09341-2-2	449	0.079696	0.002017	0.282614	21	-5.6	3.7	928	1199	-0.94	0.282597	Zhang et al., 2014
09341-2-3	444	0.054686	0.001382	0.282640	19	-4.7	4.7	875	1130	-0.96	0.282629	Zhang et al., 2014
09341-2-4	457	0.099734	0.002682	0.282645	20	-4.5	4.8	900	1137	-0.92	0.282622	Zhang et al., 2014
09341-2-5	455	0.084033	0.002080	0.282631	24	-5	4.4	905	1158	-0.94	0.282613	Zhang et al., 2014
09341-2-6	444	0.079071	0.001772	0.282597	16	-6.2	3.1	946	1235	-0.95	0.282582	Zhang et al., 2014
09341-2-7	444	0.078449	0.002131	0.282469	22	-10.7	-1.6	1142	1530	-0.94	0.282451	Zhang et al., 2014
09341-2-8	445	0.099118	0.002610	0.282619	22	-5.4	3.6	936	1201	-0.92	0.282597	Zhang et al., 2014
09341-2-9	441	0.109676	0.002875	0.282544	23	-8.1	0.8	1054	1376	-0.91	0.282520	Zhang et al., 2014
09341-2-10	442	0.115733	0.003046	0.282656	23	-4.1	4.7	893	1128	-0.91	0.282631	Zhang et al., 2014
09341-2-11	447	0.101427	0.002437	0.282630	19	-5	4.1	915	1171	-0.93	0.282610	Zhang et al., 2014
09341-2-12	443	0.111207	0.002816	0.282630	24	-5	3.9	925	1180	-0.92	0.282607	Zhang et al., 2014
09341-2-13	457	0.084505	0.002381	0.282569	24	-7.2	2.2	1003	1302	-0.93	0.282549	Zhang et al., 2014
09341-2-14	444	0.157941	0.004155	0.282674	21	-3.4	5.1	893	1105	-0.87	0.282640	Zhang et al., 2014
09341-2-15	443	0.053353	0.001085	0.282662	16	-3.9	5.5	838	1077	-0.97	0.282653	Zhang et al., 2014
09344-1-1	444	0.058730	0.001222	0.282617	17	-5.5	3.9	904	1179	-0.96	0.282607	Zhang et al., 2014
09344-1-2	428	0.071431	0.001778	0.282642	24	-4.6	4.3	882	1142	-0.95	0.282628	Zhang et al., 2014
09344-1-3	469	0.074085	0.001484	0.282583	17	-6.7	3.2	960	1248	-0.96	0.282570	Zhang et al., 2014
09344-1-4	444	0.064235	0.001399	0.282704	18	-2.4	7	785	987	-0.96	0.282692	Zhang et al., 2014
09344-1-5	431	0.060684	0.001240	0.282634	17	-4.9	4.3	880	1148	-0.96	0.282624	Zhang et al., 2014
09344-1-6	439	0.063739	0.001294	0.282560	15	-7.5	1.8	986	1312	-0.96	0.282549	Zhang et al., 2014
09344-1-7	442	0.062887	0.001254	0.282654	14	-4.2	5.2	853	1098	-0.96	0.282644	Zhang et al., 2014

09344-1-8	275	0.057256	0.001447	0.282597	18	-6.2	-0.4	93	9 1324	-0.96	0.282590	Zhang et al., 2014
09344-1-9	444	0.037145	0.000770	0.282616	15	-5.5	4	89	5 1173	-0.98	0.282610	Zhang et al., 2014
09344-1-10	428	0.064286	0.001297	0.282629	16	-5	4	88	8 1162	-0.96	0.282619	Zhang et al., 2014
09344-1-11	401	0.072293	0.001712	0.282656	19	-4.1	4.3	86	0 1125	-0.95	0.282643	Zhang et al., 2014
09344-1-12	430	0.058919	0.001403	0.282643	15	-4.6	4.5	87	2 1133	-0.96	0.282632	Zhang et al., 2014
09344-1-13	444	0.039656	0.000880	0.282617	15	-5.5	4	89	6 1173	-0.97	0.282610	Zhang et al., 2014
09344-1-14	431	0.108001	0.002633	0.282620	20	-5.4	3.4	93	5 1206	-0.92	0.282599	Zhang et al., 2014
09344-1-15	438	0.074783	0.001580	0.282674	14	-3.5	5.7	83	2 1062	-0.95	0.282661	Zhang et al., 2014
DWQ2-TW-1.	315	0.040870	0.001608	0.282787	16	0.5	7.1	67	0 875	-0.96	0.282778	Li et al., 2021
DWQ2-TW-2.	316	0.028291	0.001059	0.282818	15	1.6	8.4	61	6 772	-0.92	0.282812	Li et al., 2021
DWQ2-TW-3.	311	0.031630	0.001178	0.282769	17	-0.1	6.5	68	8 892	-0.94	0.282762	Li et al., 2021
DWQ2-TW-4.	316	0.025540	0.000974	0.282782	15	0.4	7.1	66	6 847	-0.92	0.282776	Li et al., 2021
DWQ2-TW-5.	316	0.031530	0.001168	0.282809	16	1.3	8.0	63	1 815	-0.97	0.282802	Li et al., 2021
DWQ2-TW-6.	316	0.025440	0.000965	0.282772	16	0.0	6.7	68	0 893	-0.97	0.282766	Li et al., 2021
DWQ2-TW-7.	315	0.040670	0.001632	0.282844	15	2.5	9.1	58	8 741	-0.95	0.282834	Li et al., 2021
DWQ2-TW-8.	321	0.032680	0.001157	0.282774	24	0.1	6.9	68	0 888	-0.97	0.282767	Li et al., 2021
DWQ2-TW-9.	314	0.072700	0.002885	0.282873	17	3.6	9.9	56	6 693	-0.91	0.282856	Li et al., 2021
DWQ2-TW- 10.	319	0.045470	0.001695	0.282825	15	1.9	8.5	61	7 782	-0.95	0.282815	Li et al., 2021
DWQ2-TW- 11.	315	0.019820	0.000746	0.282810	17	1.3	8.1	62	2 806	-0.98	0.282806	Li et al., 2021
DWQ2-TW- 12.	320	0.025420	0.001046	0.282862	15	3.2	10.0	55	3 690	-0.97	0.282856	Li et al., 2021
DWQ2-TW- 13.	319	0.032620	0.001210	0.282817	18	1.6	8.3	62	0 794	-0.96	0.282810	Li et al., 2021
DWQ2-TW- 14.	319	0.037530	0.001405	0.282829	15	2.0	8.7	60	6 769	-0.96	0.282821	Li et al., 2021
DWQ2-TW- 15.	315	0.054100	0.002159	0.282870	16	3.5	9.9	55	9 690	-0.93	0.282857	Li et al., 2021
XWQ6-TW-1.	305	0.037510	0.001469	0.282648	16	-4.4	2.0	86	6 1184	-0.96	0.282640	Li et al., 2021
XWQ6-TW-2.	428	0.035990	0.001461	0.282711	16	-2.2	6.8	77	6 973	-0.96	0.282699	Li et al., 2021
XWQ6-TW-3.	772	0.046060	0.002106	0.282264	16	-18.0	-2.0	143	6 1794	-0.94	0.282233	Li et al., 2021
XWQ6-TW-4.	301	0.051300	0.001976	0.282764	15	-0.3	5.9	71	0 933	-0.94	0.282753	Li et al., 2021
XWQ6-TW-5.	1636	0.001742	0.000055	0.281517	19	-44.4	-8.1	236	2826	-1.00	0.281515	Li et al., 2021

XWQ6-TW-7. 301 0.037990 0.001521 0.282743 15 -1.0 5.3 731 974 -0.95 0.28275 XWQ6-TW-8. 1823 0.00119 0.00037 0.281596 20 -41.6 -1.0 2261 2335 -1.00 0.281595 XWQ6-TW-9. 301 0.039820 0.001588 0.282710 23 -1.5 3.9 765 1033 -0.93 0.282711 XWQ6-TW- 11 0.157000 0.005910 0.282775 17 0.5 6.1 761 931 -0.82 0.28276 XWQ6-TW- 11. 311 0.157000 0.001255 0.282770 23 -0.1 6.3 688 910 -0.96 0.28276 XWQ6-TW- 301 0.052590 0.002070 0.282714 16 -2.1 4.1 784 1046 -0.94 0.28270 XWQ6-TW- 303 0.084700 0.002383 0.282772 13 0.0 6.0 724 930 -0.90 0.28276 XWQ6-TW- 303 0.084700 0.001274	KWQ6-TW-6.	259	0.069380	0.002677	0.282760	14	-0.4	4.8	730) 972	-0.92	0.282747	Li et al., 2021
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	KWQ6-TW-7.	301	0.037990	0.001521	0.282743	15	-1.0	5.3	731	974	-0.95	0.282734	Li et al., 2021
XWQ6-TW-9. 301 0.039820 0.001588 0.282720 24 -1.8 4.5 766 1026 -0.95 0.28271 XWQ6-TW- 10. 262 0.055040 0.002231 0.282730 23 -1.5 3.9 765 1033 -0.93 0.282719 XWQ6-TW- 12. 301 0.030670 0.001255 0.282770 23 -0.1 6.3 688 910 -0.96 0.28276 XWQ6-TW- 12. 301 0.030670 0.001255 0.282770 23 -0.1 6.3 688 910 -0.96 0.28276 XWQ6-TW- 13. 425 0.020390 0.000817 0.282533 20 -8.5 0.7 1012 1361 -0.98 0.28270 XWQ6-TW- 13. 301 0.052590 0.02070 0.282714 16 -2.1 4.1 784 1046 -0.94 0.28270 XWQ6-TW- 14. 301 0.052590 0.02070 0.282772 13 0.0 6.0 724 930 -0.90 0.28276 XWQ6-TW- 15. 298 0.031470 0.00	KWQ6-TW-8.	1823	0.001019	0.000037	0.281596	20	-41.6	-1.0	226	1 2535	-1.00	0.281595	Li et al., 2021
XWQ6-TW- 10. 262 0.055040 0.002231 0.282730 23 -1.5 3.9 765 1033 -0.93 0.282711 XWQ6-TW- 11. 311 0.157000 0.005910 0.282785 17 0.5 6.1 761 931 -0.82 0.282765 XWQ6-TW- 12. 301 0.030670 0.001255 0.282770 23 -0.1 6.3 688 910 -0.96 0.282765 XWQ6-TW- 13. 425 0.020390 0.000817 0.282533 20 -8.5 0.7 1012 1361 -0.98 0.282765 XWQ6-TW- 13. 301 0.052590 0.002070 0.282714 16 -2.1 4.1 784 1046 -0.94 0.282705 XWQ6-TW- 14. 303 0.084700 0.001274 0.282809 23 1.3 7.6 632 825 -0.96 0.282807 XWQ6-TW- 15. 298 0.031470 0.00163 0.282836 17 2.3 8.5 599 768 -0.95 0.282807 XWQ6-TW- 17. 238 0.004300 <t< td=""><td>KWQ6-TW-9.</td><td>301</td><td>0.039820</td><td>0.001588</td><td>0.282720</td><td>24</td><td>-1.8</td><td>4.5</td><td>766</td><td>5 1026</td><td>-0.95</td><td>0.282711</td><td>Li et al., 2021</td></t<>	KWQ6-TW-9.	301	0.039820	0.001588	0.282720	24	-1.8	4.5	766	5 1026	-0.95	0.282711	Li et al., 2021
XWQ6-TW- 12. 311 0.157000 0.005910 0.282785 17 0.5 6.1 761 931 -0.82 0.28276 XWQ6-TW- 12. 301 0.030670 0.001255 0.282770 23 -0.1 6.3 688 910 -0.96 0.28276 XWQ6-TW- 13. 425 0.020390 0.000817 0.282533 20 -8.5 0.7 1012 1361 -0.98 0.28276 XWQ6-TW- 14. 301 0.052590 0.002070 0.282714 16 -2.1 4.1 784 1046 -0.94 0.28270 XWQ6-TW- 16. 303 0.084700 0.003283 0.282712 13 0.0 6.0 724 930 -0.90 0.28276 XWQ6-TW- 16. 298 0.031470 0.001274 0.282809 23 1.3 7.6 632 825 -0.96 0.28280 XWQ6-TW- 16. 299 0.041020 0.00163 0.282836 17 2.3 8.5 599 768 -0.95 0.28280 XWQ6-TW- 20. 2338 0.30980 0.00115	XWQ6-TW- 10.	262	0.055040	0.002231	0.282730	23	-1.5	3.9	765	5 1033	-0.93	0.282719	Li et al., 2021
XWQ6-TW- 12. 301 0.030670 0.001255 0.282770 23 -0.1 6.3 688 910 -0.96 0.28276 XWQ6-TW- 13. 425 0.020390 0.000817 0.282533 20 -8.5 0.7 1012 1361 -0.98 0.282527 XWQ6-TW- 14. 301 0.052590 0.002070 0.282714 16 -2.1 4.1 784 1046 -0.94 0.28270 XWQ6-TW- 14. 303 0.084700 0.003283 0.282772 13 0.0 6.0 724 930 -0.90 0.28280 XWQ6-TW- 15. 298 0.031470 0.001274 0.282809 23 1.3 7.6 632 825 -0.96 0.28280 XWQ6-TW- 16. 298 0.041020 0.001603 0.282836 17 2.3 8.5 599 768 -0.95 0.28280 XWQ6-TW- 18. 238 0.30980 0.001159 0.281862 15 -49.9 0.6 2649 2829 -0.97 0.281310 XWQ6-TW- 20. 2338 0.300980	XWQ6-TW- 11.	311	0.157000	0.005910	0.282785	17	0.5	6.1	761	931	-0.82	0.282751	Li et al., 2021
XWQ6-TW- 14. 425 0.020390 0.000817 0.282533 20 -8.5 0.7 1012 1361 -0.98 0.282522 XWQ6-TW- 14. 301 0.052590 0.002070 0.282714 16 -2.1 4.1 784 1046 -0.94 0.282702 XWQ6-TW- 15. 303 0.084700 0.003283 0.282772 13 0.0 6.0 724 930 -0.90 0.282752 XWQ6-TW- 15. 298 0.031470 0.001274 0.282809 23 1.3 7.6 632 825 -0.96 0.282802 XWQ6-TW- 16. 298 0.041020 0.001603 0.282836 17 2.3 8.5 599 768 -0.95 0.282827 XWQ6-TW- 18. 238 0.030980 0.00165 0.281463 19 -46.3 -8.3 2447 2900 -1.00 0.281453 XWQ6-TW- 18. 238 0.030980 0.001159 0.282670 15 -3.6 5.1 845 1076 -0.94 0.282652 DWQ5-TW- 01. 300 0.044300	XWQ6-TW- 12.	301	0.030670	0.001255	0.282770	23	-0.1	6.3	688	910	-0.96	0.282763	Li et al., 2021
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	XWQ6-TW- 13.	425	0.020390	0.000817	0.282533	20	-8.5	0.7	101	2 1361	-0.98	0.282527	Li et al., 2021
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	XWQ6-TW- 14.	301	0.052590	0.002070	0.282714	16	-2.1	4.1	784	4 1046	-0.94	0.282702	Li et al., 2021
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	XWQ6-TW- 15.	303	0.084700	0.003283	0.282772	13	0.0	6.0	724	4 930	-0.90	0.282753	Li et al., 2021
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	XWQ6-TW- 16.	298	0.031470	0.001274	0.282809	23	1.3	7.6	632	2 825	-0.96	0.282802	Li et al., 2021
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	XWQ6-TW- 17.	299	0.041020	0.001603	0.282836	17	2.3	8.5	599	7 68	-0.95	0.282827	Li et al., 2021
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	XWQ6-TW- 18.	1718	0.004300	0.000165	0.281463	19	-46.3	-8.3	244	7 2900	-1.00	0.281458	Li et al., 2021
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	XWQ6-TW- 19.	2338	0.030980	0.001159	0.281362	15	-49.9	0.6	264	9 2829	-0.97	0.281310	Li et al., 2021
DWQ5-TW- 01. 300 0.048150 0.001752 0.282918 19 5.2 11.4 483 585 -0.95 0.282903 DWQ5-TW- 02. 300 0.047870 0.001687 0.282896 20 4.4 10.6 514 633 -0.95 0.282893 DWQ5-TW- 03. 300 0.046440 0.001724 0.282903 23 4.6 10.9 504 618 -0.95 0.282893 DWQ5-TW- 03. 300 0.035360 0.001241 0.282905 18 4.7 11.1 495 607 -0.96 0.282893 DWQ5-TW- 04. 300 0.031700 0.001175 0.282924 17 5.4 11.7 467 564 -0.96 0.282917 DWQ5-TW- 05. 300 0.088800 0.003229 0.282984 21 7.5 13.5 404 454 -0.90 0.282966 DWQ5-TW- 06. 300 0.032784 0.001226 0.282949 18 6.3 12.6 432 508 -0.96 0.282942	XWQ6-TW- 20.	422	0.044300	0.001907	0.282670	15	-3.6	5.1	845	5 1076	-0.94	0.282655	Li et al., 2021
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DWQ5-TW- 01.	300	0.048150	0.001752	0.282918	19	5.2	11.4	483	3 585	-0.95	0.282908	Li et al., 2021
DWQ5-TW- 03. 300 0.046440 0.001724 0.282903 23 4.6 10.9 504 618 -0.95 0.282893 DWQ5-TW- 04. 300 0.035360 0.001241 0.282905 18 4.7 11.1 495 607 -0.96 0.282893 DWQ5-TW- 05. 300 0.031700 0.001175 0.282924 17 5.4 11.7 467 564 -0.96 0.282917 DWQ5-TW- 06. 300 0.088800 0.003229 0.282984 21 7.5 13.5 404 454 -0.90 0.282996 DWQ5-TW- 06. 300 0.032784 0.001226 0.282949 18 6.3 12.6 432 508 -0.96 0.282942	DWQ5-TW- 02.	300	0.047870	0.001687	0.282896	20	4.4	10.6	514	4 633	-0.95	0.282887	Li et al., 2021
DWQ5-TW- 04. 300 0.035360 0.001241 0.282905 18 4.7 11.1 495 607 -0.96 0.282894 DWQ5-TW- 05. 300 0.031700 0.001175 0.282924 17 5.4 11.7 467 564 -0.96 0.282894 DWQ5-TW- 06. 300 0.088800 0.003229 0.282984 21 7.5 13.5 404 454 -0.90 0.282966 DWQ5-TW- 06. 300 0.032784 0.001226 0.282949 18 6.3 12.6 432 508 -0.96 0.282942	DWQ5-TW- 03.	300	0.046440	0.001724	0.282903	23	4.6	10.9	504	618	-0.95	0.282893	Li et al., 2021
DWQ5-TW- 05. 300 0.031700 0.001175 0.282924 17 5.4 11.7 467 564 -0.96 0.282917 DWQ5-TW- 06. 300 0.088800 0.003229 0.282984 21 7.5 13.5 404 454 -0.90 0.282966 DWQ5-TW- 06. 300 0.032784 0.001226 0.282949 18 6.3 12.6 432 508 -0.96 0.282942	DWQ5-TW- 04.	300	0.035360	0.001241	0.282905	18	4.7	11.1	495	5 607	-0.96	0.282898	Li et al., 2021
DWQ5-TW- 06. 300 0.088800 0.003229 0.282984 21 7.5 13.5 404 454 -0.90 0.282960 DWQ5-TW- 07 300 0.032784 0.001226 0.282949 18 6.3 12.6 432 508 -0.96 0.282942	DWQ5-TW- 05.	300	0.031700	0.001175	0.282924	17	5.4	11.7	467	564	-0.96	0.282917	Li et al., 2021
DWQ5-TW- 07 300 0.032784 0.001226 0.282949 18 6.3 12.6 432 508 -0.96 0.282949	DWQ5-TW- 06.	300	0.088800	0.003229	0.282984	21	7.5	13.5	404	454	-0.90	0.282966	Li et al., 2021
07.	DWQ5-TW- 07.	300	0.032784	0.001226	0.282949	18	6.3	12.6	432	2 508	-0.96	0.282942	Li et al., 2021

DWQ5-TW- 08	300	0.044620	0.001545	0.282935	16	5.8	12.1	456	544	-0.95	0.282926	Li et al., 2021
DWQ5-TW-	300	0.082250	0.002875	0.282948	22	6.2	12.2	453	531	-0.91	0.282932	Li et al., 2021
09. DW05 TW												,
10.	300	0.053160	0.001942	0.282943	18	6.0	12.3	449	531	-0.94	0.282932	Li et al., 2021
DWQ5-TW- 11.	300	0.030820	0.001176	0.282908	19	4.8	11.2	490	600	-0.96	0.282901	Li et al., 2021
DWQ5-TW- 12.	300	0.035730	0.001342	0.282933	18	5.7	12.0	456	546	-0.96	0.282925	Li et al., 2021
DWQ5-TW- 13.	300	0.041400	0.001450	0.282914	15	5.0	11.3	485	590	-0.96	0.282906	Li et al., 2021
DWQ5-TW- 14.	300	0.034710	0.001326	0.282937	17	5.8	12.2	450	536	-0.96	0.282930	Li et al., 2021
DWQ5-TW- 15.	300	0.056900	0.001958	0.282921	18	5.3	11.5	481	580	-0.94	0.282910	Li et al., 2021
DWQ5-TW- 16.	300	0.039990	0.001536	0.282956	20	6.5	12.8	425	496	-0.95	0.282947	Li et al., 2021
DWQ5-TW- 17.	300	0.045200	0.001702	0.282914	20	5.0	11.3	488	593	-0.95	0.282904	Li et al., 2021
DWQ5-TW- 18.	300	0.052600	0.001808	0.282926	15	5.45	11.7	472	567	-0.95	0.282916	Li et al., 2021
MD1-TW-01.	306	0.037930	0.001500	0.283012	18	8.5	14.9	344	366	-0.95	0.283003	Li et al., 2021
MD1-TW-02.	308	0.025540	0.001026	0.283032	18	9.2	15.8	312	314	-0.97	0.283026	Li et al., 2021
MD1-TW-03.	284	0.056570	0.001924	0.282895	17	4.3	10.2	519	647	-0.94	0.282885	Li et al., 2021
MD1-TW-04.	305	0.027110	0.001112	0.282994	16	7.9	14.3	366	402	-0.97	0.282988	Li et al., 2021
MD1-TW-05.	302	0.034780	0.001383	0.283012	16	8.5	14.9	343	367	-0.96	0.283004	Li et al., 2021
MD1-TW-06.	293	0.033680	0.001378	0.283056	18	10.0	16.2	280	272	-0.96	0.283048	Li et al., 2021
MD1-TW-07.	1832	0.006650	0.000244	0.281461	16	-46.4	-5.9	2454	2839	-0.99	0.281453	Li et al., 2021
MD1-TW-08.	306	0.027700	0.001111	0.283024	17	8.9	15.4	324	334	-0.97	0.283018	Li et al., 2021
MD1-TW-09.	305	0.034630	0.001409	0.283026	17	9.0	15.4	323	334	-0.96	0.283018	Li et al., 2021
MD1-TW-10.	308	0.039780	0.001582	0.283024	17	8.9	15.4	328	339	-0.95	0.283015	Li et al., 2021
MD1-TW-11.	304	0.029540	0.001184	0.283015	15	8.6	15.0	337	356	-0.96	0.283008	Li et al., 2021
MD1-TW-12.	305	0.045010	0.001763	0.283025	18	8.9	15.3	328	341	-0.95	0.283015	Li et al., 2021
MD1-TW-13.	1829	0.018490	0.000711	0.281492	18	-45.3	-5.4	2442	2809	-0.98	0.281467	Li et al., 2021
MD1-TW-14.	313	0.042060	0.001662	0.283032	21	9.2	15.7	317	319	-0.95	0.283022	Li et al., 2021

NM13-20-1	412	0.04612	0.001198	0.282179	24		-12.3					Qian et al., 2017
NM13-20-2	412	0.045219	0.00115	0.282281	21		-8.6					Qian et al., 2017
NM13-20-3	412	0.040348	0.001127	0.282323	22		-7.1					Qian et al., 2017
NM13-20-4	412	0.05157	0.001247	0.282278	23		-8.7					Qian et al., 2017
NM13-20-5	412	0.034622	0.000985	0.282297	24		-8.0					Qian et al., 2017
NM13-20-6	412	0.049243	0.001193	0.282298	24		-8.0					Qian et al., 2017
NM13-20-8	412	0.051458	0.001286	0.282273	25		-9.0					Qian et al., 2017
NM13-20-9	412	0.044562	0.001126	0.282311	21		-7.6					Qian et al., 2017
NM13-20-10	412	0.051653	0.001254	0.282325	24		-7.1					Qian et al., 2017
NM13-20-12	412	0.039556	0.000976	0.282242	27		-9.9					Qian et al., 2017
NM13-20-15	412	0.074272	0.001634	0.282106	28		-15.0					Qian et al., 2017
NM13-40-1	433	0.048354	0.001504	0.282739	26		8.0					Qian et al., 2017
NM13-40-2	433	0.104064	0.003081	0.282613	30		3.0					Qian et al., 2017
NM13-40-5	433	0.036095	0.001098	0.282478	38		-1.2					Qian et al., 2017
NM13-40-6	433	0.147171	0.003712	0.282858	27		11.5					Qian et al., 2017
NM13-40-8	433	0.117037	0.00318	0.28272	29		6.8					Qian et al., 2017
NM13-40-9	433	0.078945	0.002255	0.282623	30		3.6					Qian et al., 2017
NM13-40-11	433	0.048703	0.001378	0.2825	18		-0.5					Qian et al., 2017
NM13-40-12	433	0.062187	0.002188	0.2826	27		2.8					Qian et al., 2017
NM13-40-14	433	0.033628	0.000907	0.282515	22		0.2					Qian et al., 2017
NM13-40-16	433	0.078007	0.002146	0.282766	33		8.7					Qian et al., 2017
NM13-40-20	433	0.052305	0.001478	0.282552	24		1.3					Qian et al., 2017
NM13-42-1	428	0.114623	0.003021	0.282703	30		6.1					Qian et al., 2017
NM13-42-3	428	0.099984	0.002647	0.282621	29		3.3					Qian et al., 2017
NM13-42-4	428	0.125737	0.003285	0.282822	28		10.3					Qian et al., 2017
NM13-42-5	428	0.076673	0.002088	0.28265	24		4.5					Qian et al., 2017
PM102-15.1	280	0.08815	0.00194	0.28284	20	2.44	8.23	598	775	-0.94	0.282831	Wang et al., 2018
PM102-15.2	280	0.03283	0.00069	0.28273	20	-1.55	4.47	737	1015	-0.98	0.282724	Wang et al., 2018
PM102-15.3	280	0.04242	0.00093	0.28281	20	1.39	7.37	624	830	-0.97	0.282807	Wang et al., 2018
PM102-15.4	280	0.04113	0.00088	0.28276	20	-0.45	5.54	697	947	-0.97	0.282755	Wang et al., 2018

PM102-15.5	280	0.04537	0.001	0.28285	20	2.74	8.71	571	745	-0.97	0.282844	Wang et al., 2018
PM102-15.6	280	0.03019	0.00058	0.28276	20	-0.37	5.67	688	938	-0.98	0.282759	Wang et al., 2018
PM102-15.7	280	0.02877	0.00058	0.28273	20	-1.33	4.71	726	1000	-0.98	0.282731	Wang et al., 2018
PM102-15.8	280	0.04874	0.00125	0.28275	20	-0.86	5.05	720	978	-0.96	0.282741	Wang et al., 2018
PM102-15.9	280	0.04062	0.00079	0.28281	20	1.31	7.32	625	833	-0.98	0.282805	Wang et al., 2018
PM102-15.10	280	0.04979	0.00102	0.28279	20	0.51	6.48	661	887	-0.97	0.282781	Wang et al., 2018
PM102-25.1	301	0.13145	0.003	0.28281	30	1.3	7.28	666	852	-0.91	0.282791	Wang et al., 2018
PM102-25.2	301	0.07036	0.00176	0.28243	20	-12.2	-5.93	1190	1692	-0.95	0.282418	Wang et al., 2018
PM102-25.3	301	0.16578	0.00365	0.28281	30	1.3	7.15	678	860	-0.89	0.282787	Wang et al., 2018
PM102-25.4	301	0.06932	0.00165	0.2829	20	4.6	10.9	505	621	-0.95	0.282893	Wang et al., 2018
PM102-25.5	301	0.0925	0.00216	0.28291	20	4.7	10.93	507	619	-0.93	0.282894	Wang et al., 2018
PM102-25.6	301	0.14064	0.00304	0.28289	30	4.2	10.25	540	662	-0.91	0.282875	Wang et al., 2018
PM102-25.7	301	0.08017	0.00194	0.28285	20	2.9	9.1	580	736	-0.94	0.282842	Wang et al., 2018
PM102-25.8	301	0.09892	0.00239	0.28293	30	5.6	11.72	475	568	-0.93	0.282916	Wang et al., 2018
PM102-25.9	301	0.09019	0.00207	0.2827	20	-2.5	3.75	802	1078	-0.94	0.282691	Wang et al., 2018
PM102-41.1	313	0.14843	0.00308	0.28292	30	5.4	11.64	492	582	-0.91	0.282907	Wang et al., 2018
PM102-41.2	313	0.10731	0.00221	0.28285	30	2.8	9.2	588	738	-0.93	0.282838	Wang et al., 2018
PM102-41.3	313	0.0966	0.0021	0.28284	20	2.5	8.9	600	758	-0.94	0.282829	Wang et al., 2018
PM102-41.4	313	0.05952	0.00128	0.28273	30	-1.4	5.24	741	992	-0.96	0.282726	Wang et al., 2018
PM102-41.5	313	0.07488	0.00154	0.28287	20	3.5	10.08	548	682	-0.95	0.282863	Wang et al., 2018
PM102-41.6	313	0.09672	0.00223	0.28286	20	3.2	9.63	571	711	-0.93	0.28285	Wang et al., 2018
PM102-41.7	313	0.09039	0.0019	0.28278	20	0.3	6.79	685	893	-0.94	0.282769	Wang et al., 2018
PM102-41.8	313	0.10843	0.00231	0.28282	30	1.6	7.99	640	816	-0.93	0.282803	Wang et al., 2018
PM102-41.9	313	0.05542	0.00125	0.28282	20	1.7	8.28	619	798	-0.96	0.282812	Wang et al., 2018
PM102-41.10	313	0.09367	0.00194	0.28278	20	0.5	6.93	680	884	-0.94	0.282773	Wang et al., 2018
FK04-19/1	261	0.014532	0.000562	0.282747	18	-0.9	4.7	707	985		0.282744	Zhang et al., 2010
FK04-19/2	261	0.013861	0.000534	0.28271	18	-2.2	3.4	758	1068		0.282707	Zhang et al., 2010
FK04-19/3	261	0.014938	0.000574	0.28273	17	-1.5	4.1	731	1023		0.282727	Zhang et al., 2010
FK04-19/4	261	0.01848	0.000699	0.282746	19	-0.9	4.7	711	988		0.282743	Zhang et al., 2010
FK04-19/6	261	0.018708	0.000732	0.282737	27	-1.2	4.4	725	1009		0.282733	Zhang et al., 2010

FK04-19/7	261	0.010004	0.000402	0.282723	24	-1.7	3.9	738	1037	0.282721	Zhang et al., 2010
FK04-19/8	261	0.02015	0.000753	0.282746	35	-0.9	4.7	712	989	0.282742	Zhang et al., 2010
FK04-19/9	261	0.017673	0.000666	0.282784	21	0.4	6	657	902	0.282781	Zhang et al., 2010
FK04-19/10	261	0.008663	0.000349	0.282776	20	0.1	5.8	663	916	0.282774	Zhang et al., 2010
FK04-19/12	261	0.015433	0.000577	0.282762	24	-0.4	5.3	687	951	0.282759	Zhang et al., 2010
FK04-19/13	261	0.014338	0.000547	0.282774	27	0.1	5.7	669	923	0.282771	Zhang et al., 2010
FK04-19/14	261	0.029034	0.001097	0.282817	24	1.6	7.1	618	832	0.282812	Zhang et al., 2010
FK04-24/2	249	0.042047	0.001771	0.282728	15	-1.6	3.6	758	1047	0.28272	Zhang et al., 2010
FK04-24/3	249	0.077636	0.002956	0.282802	15	1.1	6.1	673	892	0.282788	Zhang et al., 2010
FK04-24/4	249	0.027123	0.001321	0.282772	11	0	5.3	686	943	0.282766	Zhang et al., 2010
FK04-24/7	249	0.032307	0.001229	0.282756	18	-0.6	4.7	707	978	0.28275	Zhang et al., 2010
FK04-24/8	249	0.060795	0.002273	0.282791	17	0.7	5.8	676	910	0.28278	Zhang et al., 2010
FK04-24/9	249	0.0432	0.001627	0.282747	18	-0.9	4.3	728	1002	0.282739	Zhang et al., 2010
FK04-24/10	249	0.052297	0.00214	0.282748	11	-0.8	4.3	736	1005	0.282738	Zhang et al., 2010
FK04-24/12	249	0.027213	0.001285	0.282742	13	-1.1	4.2	728	1010	0.282736	Zhang et al., 2010
FK04-24/13	249	0.033018	0.001569	0.28276	14	-0.4	4.8	708	972	0.282753	Zhang et al., 2010
FK04-24/14	249	0.059397	0.002073	0.282763	15	-0.3	4.8	713	971	0.282753	Zhang et al., 2010
FK04-24/15	249	0.024554	0.000958	0.282762	16	-0.4	5	694	961	0.282758	Zhang et al., 2010
FK04-24/16	249	0.031467	0.001466	0.282751	12	-0.7	4.5	719	992	0.282744	Zhang et al., 2010
FK04-24/17	249	0.060208	0.002128	0.282772	17	0	5.1	701	951	0.282762	Zhang et al., 2010
FK04-24/18	249	0.058101	0.002175	0.282812	18	1.4	6.6	644	861	0.282802	Zhang et al., 2010
FK04-24/19	249	0.010976	0.000517	0.282751	12	-0.7	4.7	701	981	0.282749	Zhang et al., 2010
FK06-39/1	248	0.045447	0.001737	0.282758	17	-0.5	4.7	714	979	0.28275	Zhang et al., 2010
FK06-39/3	248	0.071077	0.002738	0.28279	19	0.6	5.7	686	917	0.282777	Zhang et al., 2010
FK06-39/4	248	0.043459	0.001669	0.282751	17	-0.7	4.5	723	994	0.282743	Zhang et al., 2010
FK06-39/5	248	0.038266	0.001504	0.282777	18	-0.2	5.4	682	934	0.28277	Zhang et al., 2010
FK06-39/6	248	0.018266	0.000719	0.282754	17	-0.6	4.7	700	977	0.282751	Zhang et al., 2010
FK06-39/7	248	0.048059	0.00184	0.282721	16	-1.8	3.4	769	1064	0.282712	Zhang et al., 2010
FK06-39/8	248	0.034013	0.001356	0.282798	16	0.9	6.2	650	885	0.282792	Zhang et al., 2010
FK06-39/9	248	0.028273	0.001152	0.282768	18	-0.1	5.2	689	950	0.282763	Zhang et al., 2010

FK06-39/10	248	0.03399	0.001316	0.282763	16	-0.3	4.9	699	963		0.282757	Zhang et al., 2010
FK06-39/12	248	0.038849	0.001555	0.28276	14	-0.4	4.8	708	973		0.282753	Zhang et al., 2010
FK06-39/13	248	0.046973	0.001852	0.282792	17	0.7	5.9	667	904		0.282783	Zhang et al., 2010
FK06-39/14	248	0.029344	0.001148	0.28275	17	-0.8	4.5	714	991		0.282745	Zhang et al., 2010
FK06-39/15	248	0.015699	0.000692	0.282765	16	-0.2	5.1	685	952		0.282762	Zhang et al., 2010
FK06-39/16	248	0.024531	0.001017	0.282765	17	-0.2	5.1	690	956		0.28276	Zhang et al., 2010
1	322	0.022562	0.000797	0.282628	16	-5.1	1.7		880	-0.98		Liu, 2009
2	319	0.012051	0.000448	0.282593	15	-6.3	0.6		920	-0.98		Liu, 2009
3	322	0.031207	0.001114	0.282628	17	-5.1	1.7		887	-0.98		Liu, 2009
4	354	0.022379	0.000806	0.282585	17	-6.6	1		940	-0.98		Liu, 2009
5	320	0.024559	0.000843	0.282634	16	-4.9	1.8		872	0.97		Liu, 2009
6	329	0.024752	0.000856	0.282624	17	-5.2	1.8		887	-0.98		Liu, 2009
7	324	0.034543	0.001291	0.282641	21	-4.6	2.2		873	-0.98		Liu, 2009
8	320	0.023158	0.000826	0.282625	17	-5.2	1.6		885	-0.98		Liu, 2009
9	320	0.023946	0.000883	0.282592	17	-6.3	0.4		928	-0.98		Liu, 2009
10	319	0.021992	0.000851	0.282682	21	-3.2	3.7		804	-0.98		Liu, 2009
11	320	0.02151	0.000804	0.282576	17	-6.9	-0.3		952	-0.98		Liu, 2009
12	319	0.023613	0.000922	0.282667	19	-3.7	3.1		828	-0.98		Liu, 2009
13	316	0.025323	0.000923	0.282585	16	-6.6	0.1		943	-0.98		Liu, 2009
14	318	0.026181	0.00099	0.282629	18	-5	1.7		882	-0.98		Liu, 2009
15	320	0.018891	0.000704	0.282558	17	-7.6	-0.8		975	-0.98		Liu, 2009
16	320	0.021857	0.000814	0.28261	17	-5.7	1.1		905	-0.98		Liu, 2009
17	325	0.020182	0.000801	0.28266	22	-4	3		835	-0.98		Liu, 2009
18	322	0.023422	0.000901	0.282646	18	-4.5	2.4		857	0.97		Liu, 2009
1	323	0.044477	0.001724	0.282661	24		2.8			-0.95		Liu, 2009
2	320	0.035919	0.001396	0.282649	18		2.4			-0.96		Liu, 2009
3	356	0.028582	0.0011	0.282657	17		3.5			-0.97		Liu, 2009
4	322	0.056015	0.002206	0.282614	42		0.7			-0.93		Liu, 2009
5	322	0.036952	0.001441	0.282646	17		2.2			0.97		Liu, 2009
6	322	0.064517	0.002463	0.282628	27		1.4			-0.98		Liu, 2009

7	368	0.028587	0.001092	0.28263	17	2.8			-0.93	Liu, 2009
8	322	0.033504	0.001314	0.282671	15	3.2			-0.98	Liu, 2009
9	322	0.044487	0.001724	0.282656	17	2.6			-0.98	Liu, 2009
10	322	0.024297	0.00921	0.282633	17	1.7			-0.95	Liu, 2009
11	322	0.018322	0.0072	0.282657	19	2.7			-0.96	Liu, 2009
12	322	0.02813	0.001096	0.28262	19	1.3			-0.97	Liu, 2009
13	322	0.045855	0.001817	0.282641	17	5.5			-0.93	Liu, 2009
14	384	0.037513	0.001397	0.28261	14	2.4			0.97	Liu, 2009
15	322	0.044068	0.001658	0.282655	17	2.6			-0.95	Liu, 2009
16	321	0.0309	0.00119	0.282602	19	0.8			-0.96	Liu, 2009
17	322	0.041492	0.001598	0.282604	17	0.7			-0.97	Liu, 2009
18	322	0.02384	0.00931	0.282666	18	2.9			-0.93	Liu, 2009
19	322	0.033886	0.001335	0.282665	16	2.9			0.97	Liu, 2009
20	322	0.037094	0.001488	0.282689	17	3.7			-0.98	Liu, 2009
21	322	0.028292	0.001106	0.282693	15	0.5			-0.93	Liu, 2009
0102-17-01	323	0.05791	0.001818	0.282807	11	8.6	644	750	-0.95	Zhou, 2012
0102-17-02	323	0.064514	0.001993	0.282719	9	4.9	776	937	-0.94	Zhou, 2012
0102-17-03	323	0.062144	0.001986	0.282781	9	7	685	815	-0.94	Zhou, 2012
0102-17-04	323	0.043905	0.001411	0.282779	10	7.1	677	812	-0.96	Zhou, 2012
0102-17-05	323	0.047747	0.01567	0.282772	9	6.9	690	815	-0.95	Zhou, 2012
0102-17-06	323	0.043554	0.01504	0.282878	13	10.6	537	616	-0.95	Zhou, 2012
0102-17-07	323	0.048144	0.01684	0.282815	12	8.2	631	746	-0.95	Zhou, 2012
0107-19-01	275	0.002523	0.090312	0.282833	9	8.1		730	-0.92	Zhou, 2012
0107-19-02	275	0.001382	0.048931	0.282796	8	6.8		795	-0.96	Zhou, 2012
0107-19-03	275	0.001681	0.060535	0.282812	8	7.5		762	-0.95	Zhou, 2012
0107-19-04	275	0.001474	0.053097	0.282801	10	7.1		783	-0.96	Zhou, 2012
0107-19-05	275	0.002126	0.073814	0.282839	7	8.3		714	-0.94	Zhou, 2012
0107-19-06	275	0.001702	0.059117	0.282789	9	6.6		809	-0.95	Zhou, 2012
0107-19-07	275	0.001628	0.05637	0.282804	9	7.2		778	-0.96	Zhou, 2012
0107-19-08	275	0.002199	0.075256	0.282811	10	7.2		772	-0.96	Zhou, 2012

0040-01	252	0.000753	0.027884	0.282919	13	10.5		559	-0.95	Zhou, 2012
0040-02	252	0.000609	0.022143	0.282881	10	9.2		633	-0.96	Zhou, 2012
0040-03	252	0.000745	0.026718	0.282914	13	11.3		514	-0.95	Zhou, 2012
0040-04	252	0.001053	0.036482	0.282871	12	9		652	-0.96	Zhou, 2012
0040-05	252	0.000556	0.019631	0.282915	9	10.6		562	-0.95	Zhou, 2012
0040-06	252	0.000521	0.018494	0.282931	13	11.2		527	-0.96	Zhou, 2012
0040-07	252	0.000555	0.019386	0.282924	11	10.9		554	-0.94	Zhou, 2012
0040-08	252	0.000848	0.029237	0.282897	11	9.9		600	-0.95	Zhou, 2012
NM16-15-3	436	0.07819	0.002027	0.282591	18	2.6	1254			Chen et al., 2020
NM16-15-6	436	0.016018	0.000515	0.28262	17	4.1	1161			Chen et al., 2020
NM16-15-8	436	0.031347	0.000898	0.282548	15	1.4	1329			Chen et al., 2020
NM16-15-9	436	0.020443	0.000618	0.282578	16	2.6	1257			Chen et al., 2020
NM16–15-10	436	0.016908	0.000524	0.282576	15	2.5	1259			Chen et al., 2020
NM16–15-16	436	0.023012	0.000695	0.282625	20	4.2	1153			Chen et al., 2020
NM16–15-17	436	0.014914	0.000495	0.282608	16	3.7	1187			Chen et al., 2020
NM16–15-18	436	0.031428	0.000951	0.282585	17	2.7	1247			Chen et al., 2020
NM16–15-19	436	0.038501	0.001138	0.282618	22	3.8	1176			Chen et al., 2020
NM16-15-20	436	0.029709	0.000922	0.282601	19	3.3	1211			Chen et al., 2020
NM16-15-26	436	0.033761	0.000955	0.282596	23	3.1	1222			Chen et al., 2020
NM16–15-27	436	0.017135	0.000543	0.282615	25	3.9	1171			Chen et al., 2020
NM16–15-29	436	0.022459	0.000646	0.28262	17	4.0	1163			Chen et al., 2020
NM16-16-1	440	0.032485	0.001019	0.282616	17	3.9	1177			Chen et al., 2020
NM16-16-4	440	0.027068	0.000796	0.28261	20	3.7	1186			Chen et al., 2020
NM16-16-5	440	0.022112	0.000678	0.282622	24	4.2	1156			Chen et al., 2020
NM16-16-6	440	0.030365	0.000883	0.282588	18	2.9	1236			Chen et al., 2020
NM16-16-7	440	0.024259	0.000742	0.282624	21	4.2	1153			Chen et al., 2020
NM16-16-9	440	0.016064	0.000519	0.282639	21	4.8	1116			Chen et al., 2020
NM16–16-11	440	0.012038	0.00041	0.282646	19	5.1	1097			Chen et al., 2020
NM16–16-14	440	0.012054	0.000386	0.282625	18	4.4	1144			Chen et al., 2020
NM16-16-15	440	0.024592	0.000743	0.282616	24	3.9	1172			Chen et al., 2020

NM16-16-17	440	0.016651	0.000517	0.282627	21		4.4	1143				Chen et al., 2020
NM16-16-18	440	0.031306	0.000968	0.282658	24		5.4	1082				Chen et al., 2020
NM16-16-22	440	0.01861	0.000592	0.282643	23		5.0	1107				Chen et al., 2020
NM16-16-23	440	0.034231	0.001019	0.282597	21		3.2	1218				Chen et al., 2020
NM16-16-26	440	0.02011	0.000665	0.282637	20		4.7	1122				Chen et al., 2020
NM16-27-2	445	0.088149	0.002504	0.282683	26		5.9	1050				Chen et al., 2020
NM16-27-5	445	0.01373	0.00048	0.282701	19		7.2	971				Chen et al., 2020
NM16-27-6	445	0.108933	0.003252	0.282623	29		3.6	1199				Chen et al., 2020
NM16-27-7	445	0.112752	0.003238	0.282754	29		8.2	905				Chen et al., 2020
NM16-15-3	436	0.07819	0.002027	0.282591	18		2.6	1254				Chen et al., 2020
NM16-15-6	436	0.016018	0.000515	0.28262	17		4.1	1161				Chen et al., 2020
NM16-15-8	436	0.031347	0.000898	0.282548	15		1.4	1329				Chen et al., 2020
NM16-15-9	436	0.020443	0.000618	0.282578	16		2.6	1257				Chen et al., 2020
NM16-15-10	436	0.016908	0.000524	0.282576	15		2.5	1259				Chen et al., 2020
NM16-15-16	436	0.023012	0.000695	0.282625	20		4.2	1153				Chen et al., 2020
NM16-15-17	436	0.014914	0.000495	0.282608	16		3.7	1187				Chen et al., 2020
DQ01.1	333	0.095115	0.002054	0.282740	21	-1.1	5.7	747	975	-0.94	0.282727	Liu et al., 2020
DQ01.2	333	0.084376	0.002112	0.282657	20	-4.1	2.8	869	1163	-0.94	0.282644	Liu et al., 2020
DQ01.3	333	0.068931	0.001633	0.282649	21	-4.3	2.6	869	1174	-0.95	0.282639	Liu et al., 2020
DQ01.4	333	0.071761	0.001700	0.282645	17	-4.5	2.5	876	1184	-0.95	0.282635	Liu et al., 2020
DQ01.5	333	0.070262	0.001640	0.282666	20	-3.8	3.2	845	1137	-0.95	0.282656	Liu et al., 2020
DQ01.6	333	0.109007	0.002440	0.282732	22	-1.4	5.4	767	999	-0.93	0.282717	Liu et al., 2020
DQ01.7	333	0.103942	0.002409	0.282695	21	-2.7	4.1	821	1082	-0.93	0.282680	Liu et al., 2020
DQ01.8	333	0.124369	0.002837	0.282722	21	-1.8	4.9	790	1027	-0.91	0.282704	Liu et al., 2020
DQ01.9	333	0.095243	0.002164	0.282699	19	-2.6	4.3	809	1069	-0.93	0.282686	Liu et al., 2020
DQ01.10	333	0.092329	0.002134	0.282670	21	-3.6	3.2	851	1135	-0.94	0.282656	Liu et al., 2020
XWQQ-TW7- 1	319	0.033070	0.001308	0.283018	18	8.7	15.4	334	343	-0.96	0.283010	This study
XWQQ-TW7- 2	319	0.030700	0.001222	0.283016	18	8.6	15.4	336	346	-0.96	0.283009	This study
XWQQ-TW7- 3	319	0.051960	0.001987	0.283042	18	9.5	16.1	305	298	-0.94	0.283030	This study

319	0.034170	0.001323	0.283021	16	8.8	15.5		330	336	-0.96	0.283013	This study
319	0.033480	0.001320	0.283024	16	8.9	15.7		325	329	-0.96	0.283016	This study
319	0.031170	0.001233	0.282998	16	8	14.7		362	387	-0.96	0.282991	This study
319	0.020297	0.000811	0.283021	18	8.8	15.7		325	329	-0.98	0.283016	This study
319	0.038330	0.001499	0.283018	13	8.7	15.4		336	345	-0.95	0.283009	This study
319	0.058700	0.002252	0.283033	17	9.2	15.8		321	321	-0.93	0.283020	This study
319	0.026321	0.001079	0.283014	15	8.6	15.3		338	348	-0.97	0.283008	This study
319	0.025300	0.000994	0.283012	12	8.5	15.3		340	352	-0.97	0.283006	This study
319	0.031300	0.001239	0.283022	16	8.8	15.6		328	333	-0.96	0.283015	This study
319	0.036970	0.001444	0.283023	16	8.9	15.6		328	333	-0.96	0.283014	This study
319	0.041850	0.001642	0.283036	16	9.3	16		311	306	-0.95	0.283026	This study
319	0.056350	0.002175	0.283020	16	8.8	15.3		339	350	-0.93	0.283007	This study
280	0.092110	0.003199	0.283025	19	8.9	14.5		341	371	-0.9	0.283008	This study
282	0.108300	0.003740	0.283058	23	10.1	15.6		296	302	-0.89	0.283038	This study
280	0.039270	0.001428	0.283003	16	8.2	14.1		357	400	-0.96	0.282996	This study
279	0.095100	0.002900	0.283045	23	9.7	15.3		308	323	-0.91	0.283030	This study
277	0.082700	0.002981	0.283006	23	8.3	13.8		368	413	-0.91	0.282991	This study
279	0.117890	0.004021	0.283023	22	8.9	14.3		352	386	-0.88	0.283002	This study
279	0.049090	0.001762	0.283021	20	8.8	14.6		334	364	-0.95	0.283012	This study
279	0.064620	0.002231	0.283026	20	9	14.7		331	358	-0.93	0.283014	This study
279	0.119500	0.004153	0.283072	21	10.6	16		278	277	-0.87	0.283050	This study
279	0.069790	0.002499	0.283031	23	9.2	14.8		326	350	-0.92	0.283018	This study
279	0.049490	0.001810	0.283018	18	8.7	14.5		339	371	-0.95	0.283009	This study
279	0.063800	0.002318	0.283054	25	10	15.7		290	296	-0.93	0.283042	This study
	 319 280 282 280 279 279	3190.0341703190.0334803190.0311703190.0202973190.0383303190.0587003190.0263213190.0253003190.0253003190.0369703190.0369703190.0418503190.0563502800.0921102820.1083002800.0392702790.0951002770.0827002790.1178902790.0490902790.0490902790.195002790.0697902790.0697902790.0697902790.0697902790.063800	3190.0341700.0013233190.0334800.0013203190.0311700.0012333190.0202970.0008113190.0383300.0014993190.0587000.0022523190.0263210.0010793190.0253000.0009943190.0369700.0012393190.0369700.0014443190.0369700.0016423190.0563500.0021752800.0921100.0031992820.1083000.0037402800.0392700.0014282790.0951000.0029002770.0827000.0029812790.1178900.0040212790.0490900.0017622790.0646200.0022312790.0494900.0018102790.0494900.0018102790.0638000.002318	3190.0341700.0013230.2830213190.0334800.0013200.2830243190.0311700.0012330.2829983190.0202970.0008110.2830213190.0383300.0014990.2830183190.0587000.0022520.2830333190.0263210.0010790.2830143190.0253000.0009940.2830123190.0369700.0014440.2830233190.0369700.0016420.2830363190.0563500.0021750.2830202800.0921100.0031990.2830252820.1083000.0037400.2830582800.0392700.0014280.2830032790.0951000.0029000.2830452770.0827000.0029810.2830232790.1178900.0017620.2830212790.0646200.0022310.2830722790.0697900.0024990.2830112790.0697900.0024990.2830182790.0697900.0024990.2830182790.0697900.0024990.2830182790.0697900.0023180.2830182790.0638000.0023180.283054	3190.0341700.0013230.283021163190.0334800.0013200.283024163190.0311700.0012330.282998163190.0202970.0008110.283021183190.0383300.0014990.283018133190.0587000.0022520.283033173190.0263210.0010790.283012123190.0253000.0009940.283012123190.0369700.0014440.283023163190.0369700.0016420.283036163190.0563500.0021750.283020163190.0563500.0021750.283025192820.1083000.0037400.283058232800.0392700.0014280.283003162790.0951000.0029000.283045232790.1178900.0040210.283023222790.0490900.0017620.283021202790.0646200.0022310.283072212790.0646200.0022310.283012232790.0697900.0024990.283013232790.0697900.0024990.283018182790.0638000.0023180.28305425	3190.0341700.0013230.283021168.83190.0334800.0013200.283024168.93190.0311700.0012330.2829981683190.0202970.0008110.283021188.83190.0383300.0014990.283018138.73190.0587000.0022520.283033179.23190.0263210.0010790.283012128.53190.0253000.0009940.283012128.53190.0369700.0014440.283023168.93190.0369700.0014440.283023168.83190.0563500.0021750.283020168.82800.0921100.0031990.283025198.92820.1083000.0037400.2830582310.12800.0392700.0014280.283033168.22790.0951000.0029000.283045239.72770.0827000.0022310.283023228.92790.0490900.0017620.283021208.82790.0646200.0022310.283012239.22790.0697900.0024990.283031239.22790.0494900.0018100.283018188.72790.0638000.0023180.2830542510	3190.0341700.0013230.283021168.815.53190.0334800.0013200.283024168.915.73190.0311700.0012330.28299816814.73190.0202970.0008110.283021188.815.73190.0383300.0014990.283018138.715.43190.0587000.0022520.283033179.215.83190.0263210.0010790.283014158.615.33190.0253000.0009940.283022168.815.63190.0369700.0014440.283023168.915.63190.0418500.0021750.283020168.815.32800.0921100.0031990.283025198.914.52820.1083000.0027400.2830582310.115.62800.0392700.0014280.283003168.214.12790.0951000.0029000.283045239.715.32770.827000.002910.283021208.814.62790.0490900.0017620.283021208.814.62790.0646200.0022310.2830722110.6162790.0697900.0024990.283031239.214.82790.0697900.0024990.283031239.214.8	3190.0341700.0013230.283021168.815.53190.0334800.0013200.283024168.915.73190.0311700.0012330.28299816814.73190.0202970.0008110.283021188.815.73190.0383300.0014990.283018138.715.43190.0587000.0022520.283033179.215.83190.0263210.0010790.283014158.615.33190.0313000.0012390.283012128.515.63190.0369700.0014440.283023168.915.63190.0563500.0021750.283020168.815.32800.0921100.0031990.283025198.914.52820.1083000.0037400.283025198.914.52800.0392700.0014280.283033168.214.12790.0951000.0029810.283023228.914.32790.1178900.0040210.283025239.715.32790.1178900.004210.283023228.914.32790.0490900.0017620.283021208.814.62790.0697900.0024990.283012239.214.82790.0697900.0024990.283018188.714.	319 0.034170 0.001323 0.283021 16 8.8 15.5 330 319 0.033480 0.001320 0.283024 16 8.9 15.7 325 319 0.031170 0.001233 0.282998 16 8 14.7 362 319 0.020297 0.000811 0.283021 18 8.8 15.7 325 319 0.038330 0.001499 0.283018 13 8.7 15.4 336 319 0.058700 0.002252 0.283012 12 8.6 15.3 338 319 0.026321 0.001079 0.283012 12 8.5 15.3 340 319 0.025300 0.001239 0.283022 16 8.8 15.6 328 319 0.031300 0.001444 0.283023 16 8.9 15.6 328 319 0.041850 0.00142 0.283025 19 8.9 14.5 341 280 <td>319 0.034170 0.001323 0.283021 16 8.8 15.5 330 336 319 0.031480 0.001320 0.283024 16 8.9 15.7 325 329 319 0.031170 0.001233 0.282998 16 8 14.7 362 387 319 0.020297 0.000811 0.283021 18 8.8 15.7 325 329 319 0.058700 0.002252 0.283018 13 8.7 15.4 336 345 319 0.026321 0.001079 0.283014 15 8.6 15.3 338 348 319 0.025300 0.000994 0.283012 12 8.5 15.3 340 352 319 0.036970 0.001444 0.283023 16 8.9 15.6 328 333 319 0.041850 0.002175 0.283025 19 8.9 14.5 341 371 280 <</td> <td>319 0.034170 0.001323 0.283021 16 8.8 15.5 330 336 -0.96 319 0.031470 0.001320 0.283024 16 8.9 15.7 325 329 -0.96 319 0.031170 0.001233 0.282998 16 8 14.7 362 387 -0.96 319 0.020297 0.000811 0.283021 18 8.8 15.7 325 329 -0.98 319 0.03330 0.001499 0.283018 13 8.7 15.4 336 345 -0.95 319 0.026321 0.00179 0.283012 12 8.5 15.3 340 352 -0.97 319 0.025300 0.000994 0.283022 16 8.8 15.6 328 333 -0.96 319 0.036970 0.00144 0.283023 16 8.9 15.6 328 333 -0.96 319 0.056350 0.002175</td> <td>319 0.034170 0.001323 0.283021 16 8.8 15.5 330 336 -0.96 0.283013 319 0.033480 0.001320 0.283024 16 8.9 15.7 325 329 -0.96 0.283016 319 0.031170 0.001233 0.282998 16 8 14.7 362 387 -0.96 0.283016 319 0.038330 0.001499 0.283018 13 8.7 15.4 336 345 -0.95 0.283001 319 0.026321 0.001079 0.283012 12 8.5 15.3 338 348 -0.97 0.283005 319 0.025300 0.001444 0.283012 12 8.5 15.6 328 333 -0.96 0.283015 319 0.036970 0.01444 0.283023 16 8.8 15.6 328 333 -0.96 0.283016 319 0.036397 0.001426 0.283025 19 8.9</td>	319 0.034170 0.001323 0.283021 16 8.8 15.5 330 336 319 0.031480 0.001320 0.283024 16 8.9 15.7 325 329 319 0.031170 0.001233 0.282998 16 8 14.7 362 387 319 0.020297 0.000811 0.283021 18 8.8 15.7 325 329 319 0.058700 0.002252 0.283018 13 8.7 15.4 336 345 319 0.026321 0.001079 0.283014 15 8.6 15.3 338 348 319 0.025300 0.000994 0.283012 12 8.5 15.3 340 352 319 0.036970 0.001444 0.283023 16 8.9 15.6 328 333 319 0.041850 0.002175 0.283025 19 8.9 14.5 341 371 280 <	319 0.034170 0.001323 0.283021 16 8.8 15.5 330 336 -0.96 319 0.031470 0.001320 0.283024 16 8.9 15.7 325 329 -0.96 319 0.031170 0.001233 0.282998 16 8 14.7 362 387 -0.96 319 0.020297 0.000811 0.283021 18 8.8 15.7 325 329 -0.98 319 0.03330 0.001499 0.283018 13 8.7 15.4 336 345 -0.95 319 0.026321 0.00179 0.283012 12 8.5 15.3 340 352 -0.97 319 0.025300 0.000994 0.283022 16 8.8 15.6 328 333 -0.96 319 0.036970 0.00144 0.283023 16 8.9 15.6 328 333 -0.96 319 0.056350 0.002175	319 0.034170 0.001323 0.283021 16 8.8 15.5 330 336 -0.96 0.283013 319 0.033480 0.001320 0.283024 16 8.9 15.7 325 329 -0.96 0.283016 319 0.031170 0.001233 0.282998 16 8 14.7 362 387 -0.96 0.283016 319 0.038330 0.001499 0.283018 13 8.7 15.4 336 345 -0.95 0.283001 319 0.026321 0.001079 0.283012 12 8.5 15.3 338 348 -0.97 0.283005 319 0.025300 0.001444 0.283012 12 8.5 15.6 328 333 -0.96 0.283015 319 0.036970 0.01444 0.283023 16 8.8 15.6 328 333 -0.96 0.283016 319 0.036397 0.001426 0.283025 19 8.9

12												
XLHT-TW3- 13	279	0.050680	0.001792	0.283037	18	9.4	15.2	311	328	-0.95	0.283028	This study
XLHT-TW3- 14	279	0.051340	0.001838	0.282997	17	8	13.8	369	419	-0.94	0.282987	This study
XLHT-TW3- 15	279	0.072400	0.002593	0.283008	22	8.3	14	361	403	-0.92	0.282995	This study
XLHT-TW3- 16	279	0.118400	0.004109	0.283066	20	10.4	15.8	287	290	-0.88	0.283045	This study
XLHT-TW3- 17	279	0.069050	0.002430	0.283034	19	9.3	15	321	343	-0.93	0.283021	This study
XLHT-TW3- 18	279	0.054830	0.002005	0.283029	20	9.1	14.9	324	349	-0.94	0.283019	This study
XLHT-TW3- 19	279	0.082900	0.002820	0.283017	22	8.7	14.3	350	386	-0.92	0.283002	This study
XLHT-TW3- 20	279	0.051890	0.001837	0.283039	15	9.4	15.2	308	324	-0.94	0.283029	This study
XWQ-TW3- 01	279	0.024410	0.000858	0.282872	19	3.5	9.5	537	689	-0.97	0.282868	This study
XWQ-TW3- 02	279	0.043860	0.001493	0.282872	20	3.5	9.4	546	697	-0.96	0.282864	This study
XWQ-TW3- 03	279	0.042980	0.001525	0.282915	18	5.1	10.9	484	600	-0.95	0.282907	This study
XWQ-TW3- 04	279	0.056400	0.001847	0.282896	18	4.4	10.2	516	647	-0.94	0.282886	This study
XWQ-TW3- 05	279	0.024002	0.000868	0.282883	19	3.9	9.9	521	665	-0.97	0.282879	This study
XWQ-TW3- 06	279	0.034203	0.001214	0.282853	18	2.9	8.8	569	736	-0.96	0.282847	This study
XWQ-TW3- 07	279	0.039630	0.001400	0.282866	18	3.3	9.2	553	709	-0.96	0.282859	This study
XWQ-TW3- 08	279	0.046700	0.001510	0.282822	18	1.8	7.6	618	809	-0.95	0.282814	This study
XWQ-TW3- 09	279	0.027040	0.000959	0.282856	17	3	8.9	561	726	-0.97	0.282851	This study
XWQ-TW3- 10	279	0.039160	0.001397	0.282881	19	3.9	9.7	531	675	-0.96	0.282874	This study
XWQ-TW3- 11	279	0.019430	0.000723	0.282861	19	3.1	9.1	550	712	-0.98	0.282857	This study
XWQ-TW3- 12	279	0.043160	0.001498	0.282887	22	4.1	9.9	524	663	-0.95	0.282879	This study

XWQ-TW3- 13	279	0.026560	0.000972	0.282893	19	4.3	10.2	508	643	-0.97	0.282888	This study
XWQ-TW3- 14	279	0.030890	0.001103	0.282882	19	3.9	9.8	526	670	-0.97	0.282876	This study
XWQ-TW3- 15	279	0.031600	0.001126	0.282886	26	4	10	521	661	-0.97	0.282880	This study
XWQ-TW3- 16	279	0.030650	0.001085	0.282898	17	4.5	10.4	503	633	-0.97	0.282892	This study

References

- Chai, H., Wang, Q.F., Tao, J.X., Santosh, M., Ma, T.F., Zhao, R., 2018. Late Carboniferous to Early Permian magmatic pulses in the Uliastai continental margin linked to slab rollback: Implications for evolution of the Central Asian Orogenic Belt. Lithos 308–309, 134–158.
- Cheng, Y.H., Teng, X.J., Li, Y.F., Li, M., Zhang, T.F., 2014. Early Permian East-Ujimqin mafic-ultramafic and granitic rocks from the Xing'an-Mongolian Orogenic Belt, North China: Origin, chronology, and tectonic implications. Journal of Asian Earth Sciences. 96, 361–373.
- Chen, Y., Zhang, Z.C., Li, K., Yu, H.F., Wu, T.R., 2016. Geochemistry and zircon U-Pb-Hf isotopes of Early Paleozoic arc-related volcanic rocks in Sonid Zuoqi, Inner Mongolia: Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt. Lithos. 264, 392–404.
- Chen, Y., Zhang, Z.C., Qian, X.Y., Li, J.F., Ji, Z.J., Wu, T.R., 2020. Early to mid-Paleozoic magmatic and sedimentary records in the Bainaimiao Arc: An advancing subduction-induced terrane accretion along the northern margin of the North China Craton. Gondwana Research. 79, 263–282. https://doi.org/10.1016/j.gr.2019.08.012.
- Feng, Z.Q., Liu, Y.Q., Li, Y.R., Li, W.M., Wen, Q.B., Liu, B.Q., Zhou, J.P., Zhao, Y.L., 2017. Ages, geochemistry and tectonic implications of the Cambrian igneous rocks in the northern Great Xing'an Range, NE China. Journal of Asian Earth Sciences. 144, 5–21.
- Hu, C.S., Li, W.B., Xu, C., Zhong, R.C., Zhu, F., 2015. Geochemistry and zircon U-Pb-Hf isotopes of the granitoids of Baolidao and Halatu plutons in Sonidzuoqi area, Inner Mongolia: Implications for petrogenesis and geodynamic setting. Journal of Asian Earth Sciences. 97, 294–306.
- Li, Y., Xu, W.L., Wang, F., Tang, J., Pei, F, P., Wang, Z.J., 2014. Geochronology and geochemistry of late Paleozoic volcanic rocks on the western margin of the Songnen-Zhangguangcai Range Massif, NE China: Implications for the amalgamation history of the Xing'an and Songnen-Zhangguangcai Range massifs. Lithos. 205, 394–410.
- Li, S., Wilde, S.A., Wang, T., Xiao, W.J., Guo, Q.Q., 2016. Latest Early Permian granitic magmatism in southern Inner Mongolia, China: Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt. Gondwana Research. 29, 168–180.
- Li, J.L., Liu, J.G., Wang, Y.J., Zhu, D.C., Wu, C., 2021. Late Carboniferous to Early Permian ridge subduction identified in the southeastern Central Asian Orogenic Belt: Implications for the architecture and growth of continental crust in accretionary orogens. Lithos, https://doi.org/10.1016/j.lithos.2021.105969.

- Liu, J. F., Chi, X. G., Zhang, X. Z., Ma, Z. H., & Zhao, Z. (2009). Geochemical characteristic of Carboniferous quartz-diorite in the Southern Xiwuqi area, Inner Mongolia and its tectonic significance. Acta Geologica Sinica, 83(3), 365–376 (in Chinese with English abstract).
- Liu, C., Zhou, Z.G., Wang, G., et al., 2020. Carboniferous ridge subduction in the Xingmeng Orogenic Belt: Constraints from geochronological, geochemical, and Sr-Nd-Hf isotopic analysis of strongly peraluminous granites and gabbro-diorites in the Xilinhot micro-continent, https://doi.org/10.1016/j.gsf.2020.10.008.
- Qian, X.Y., Zhang, Z.C., Chen, Y., Yu, H.F., Yang, J.F., 2017. Geochronology and geochemistry of the Early Paleozoic igneous rocks in Zhurihe area, Inner Mongolia and its tectonic significance. Earth Sci. 42, 1472e1494.
- Shi, Y.R., Jian, P., Kröner, A., Li, L.L., Liu, C., Zhang, W., 2016. Zircon ages and Hf isotopic compositions of Ordovician and Carboniferous granitoids from central Inner Mongolia and their significance for early and late Paleozoic evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences. 117, 153–169.
- Song, Z.G., Han, Z.Z., Gao, L.H., Geng, H.Y., Li, X.P., Meng, Fan, Xue, Han, M., Zhong, W.J., Li, P.P., Du, Q.X., Yan, J.L., Liu, H., 2018., Permo-Triassic evolution of the southern margin of the Central Asian Orogenic Belt revisited: Insights from Late Permian igneous suite in the Daheishan Horst, NE China. Gondwana Research. 56, 23–50.
- Tian, D.X., Yang, H., Ge, W.C., Zhang, Y.L., Chen, J.S., Chen, H.J., Yun, X.Y., 2018. Petrogenesis and tectonic implications of Late Carboniferous continental arc high-K granites in the Dongwuqi area, central Inner Mongolia, North China. Journal of Asian Earth Sciences. 167, 82–102.
- Tong, Y., Jahn, B.M., Wang, T., Hong, D.W., Smith, E.I., Sun, M., Gao, J.F., Yang, Q.D., Huang, W., 2015. Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance. Journal of Asian Earth Sciences. 97, 320–336.
- Wang, F., Xu, W.L., Meng, E., Cao, H.H., Gao, F.H., 2012. Early Paleozoic amalgamation of the Songnen-Zhangguangcai Range and Jiamusi massifs in the eastern segment of the Central Asian Orogenic Belt: Geochronological and geochemical evidence from granitoids and rhyolites. Journal of Asian Earth Sciences. 49, 234–248.
- Wang, G.S., Liu, C.F., Pei, W.X., Zhou, Z.G., Li, H.Y., Wu, C., Zhu, Y., Ye, B.Y., 2018, Geochemistry and zircon U-Pb-Hf isotopes of the granitoids of Qianjinchang pluton in the Xi Ujimqi, Inner Mongolia: Implications for petrogenesis and geodynamic setting: Geological Journal, v. 53, p. 767–787, https://doi.org/10.1002/gj.2926.
- Yu, Q., Ge, W.C., Zhang, J., Zhao, G.C., Zhang, Y.L., Yang, H., 2017. Geochronology, petrogenesis and tectonic implication of Late Paleozoic volcanic rocks from the Dashizhai Formation in Inner Mongolia, NE China. Gondwana Research. 43, 164–177.
- Zhang, X.H., Zhang, H.F., Wilde, S.A., Yang, Y.H., Chen, H.H., 2010. Late Permian to Early Triassic mafic to felsic intrusive rocks from North Liaoning, North China: petrogenesis and implications for Phanerozoic continental crustal growth. Lithos 117, 283–306.

- Zhang, S.H., Zhao, Y., Ye, H., Liu, J.M., Hu, Z.C., 2014. Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt. Geological Society of America Bulletin. 126, 1275–1230.
- Zhang, X., Yuan, L., Xue, F., Yan, X., Mao, Q., 2015. Early Permian A-type granites from central Inner Mongolia, North China: magmatic tracer of post-collisional tectonics and oceanic crustal recycling. Gondwana Research. 28, 311–327.
- Zhao, L., Li, Z.a., Li, Y.Y., Guo, F., 2019. Generation of Triassic post-collisional granitoids in the Linxi region (Inner Mongolia, NE China) and crustal growth in the eastern Central Asian Orogenic Belt through melting of relict oceanic crust. Journal of Asian Earth Sciences. https://doi.org/10.1016/j.jseaes.2018.08.032.
- Zhou, W.X., 2012. Studies of geochronology and geochemistry of Paleozoic Magmatism in Xilinhot area, Inner Mongolia. A Dissertation Submitted to China University of Geosciences for the Doctor Degree of Geochemistry (in Chinese with English abstract).
- Zhou, H., Zhao, G.C., Han, Y.G., Wang, B., 2018. Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic intrusive rocks in the Damao area in Inner Mongolia, northern China: Implications for the tectonic evolution of the Bainaimiao arc. Lithos 314–315, 119–139.