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Abstract
We propose a simple and effective method for detecting view- and
scale-independent ridge-valley lines defined via first- and second-
order curvature derivatives on shapes approximated by dense tri-
angle meshes. A high-quality estimation of high-order surface
derivatives is achieved by combining multi-level implicit surface
fitting and finite difference approximations. We demonstrate that
the ridges and valleys are geometrically and perceptually salient
surface features and, therefore, can be potentially used for shape
recognition, coding, and quality evaluation purposes.
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1 Introduction
Ridge-valley lines, curves on a surface along which the surface
bends sharply, are powerful shape descriptors. Robust extraction
of ridge-valley structures is important for image analysis [Monga
et al. 1992; López et al. 1998], quality control of free-form surfaces
[Hosaka 1992], geomorphology [Little and Shi 2001], analysis and
registration of anatomical structures [Grenader and Miller 1998;
Pennec et al. 2000], and face recognition [Hallinan et al. 1999].
(See also references therein.) In geometric modeling, there has been
considerable effort to develop robust methods for crease detection
on dense triangle meshes [Watanabe and Belyaev 2001; Hubeli and
Gross 2001; Page et al. 2002; Stylianou and Farin 2003] and point-
sampled surfaces [Gumhold et al. 2001; Pauly et al. 2003].

In this paper, we deal with surface creases defined via extrema of
the principal curvatures along their corresponding curvature lines.
Our motivation to consider curvature extrema is based upon the fol-
lowing analogy with edges of grey-scale images.

A widely used definition for edges in image processing describes
them as the sets of pixels where the magnitude of the gradient of the
image intensity has a local maximum in the direction of the gradi-
ent. Consider a surface S and its Gauss map which associates with
every point p of S the oriented normal vector n(p). The derivative
∇n(p) (Jacobian matrix) of the Gauss map measures the variation
of the normal vector near p, i.e., how the surface bends near p.
Since the eigenvalues and eigenvectors of ∇n(p) are the principal
curvatures and principal directions of S at p, respectively, the max-
imal variation the surface normal is achieved in the principal direc-
tion of the principal curvature maximal in absolute value. Thus it
is natural to define surface creases as loci of points where the pos-
itive (negative) variation of the surface normal in the direction of
its maximal change attains a local maximum (minimum). We have
arrived at the following definition of surface creases: the loci of
points where the largest in absolute value principal curvature takes
a positive maximum (negative minimum) along its corresponding
curvature line.

The extrema of the principal curvatures along their correspond-
ing curvature lines can be described as surface points where osculat-
ing spheres have high-order contacts with the surface. See [Koen-
derink 1990; Porteous 1994; Belyaev et al. 1997]; [Hallinan et al.
1999, Chapter 6], and references therein for rigorous mathemati-
cal treatments revealing beautiful properties of these curvature fea-
tures. However practical detection of curvature extrema is widely
considered a difficult computational task since, it involves estimat-
ing of high-order surface derivatives.

Developing methods for reliable computation of curvature mea-
sures for discrete surfaces is currently a subject of intensive re-
search. The two main approaches to curvature tensor estimation
consist of using finite differences [Meyer et al. 2003; Cohen-Steiner
and Morvan 2003] and polynomial fitting [Cazals and Pouget 2003;
Goldfeather and Interrante 2004]. A robust estimation of first-order
curvature derivatives may require a combination of both these ap-
proaches [Stylianou and Farin 2003]. In general, local methods
show worse performance in estimating curvature derivatives than
global ones. Indeed, moving from one mesh vertex to another
changes discontinuously the local vertex neighborhood where a lo-
cal curvature estimation scheme is used and results in jerky behav-
ior of estimated curvatures and curvature derivatives.

The idea of using global smoothing methods for robust detection
of curvature extrema on height data was considered in [Kent et al.
1996] where globally supported radial basis functions (RBFs) were
used for smoothing. Unfortunately, a straightforward use of glob-
ally supported RBFs for interpolating and approximating large 3D
data is computationally expensive, and sophisticated mathematical
techniques are needed to accelerate the fitting procedure [Carr et al.
2001]. In our work, we employ compactly supported radial basis
functions (CS-RBFs) for global smoothing purposes. Specifically,
we use a slight modification of the method developed in [Ohtake
et al. 2003b] which is fast, not difficult to implement, and can be
used either for approximation or interpolation.

Given a triangle mesh, we approximate it by a CS-RBF surface
and project the mesh vertices onto the surface. The curvature tensor
and curvature derivatives at a mesh vertex are estimated by those at
the corresponding surface point. Finally we detect curvature max-
ima and minima on mesh edges and trace ridges and valleys.

We believe that in this paper, for the first time, a reliable de-
tection of ridge-valley structures defined via first- and second-
order curvature derivatives is achieved on surfaces approximated
by dense triangle meshes generated from typical laser scanner data.

Differential geometry preliminaries and terminology. For
a smooth oriented surface S let us denote by kmax and k

min
the

maximal and minimal principal curvatures, kmax ≥ k
min

. Let tmax

and t
min

be the corresponding principal directions. Consider the
derivatives of the principal curvatures along their corresponding
curvatures directions emax = ∂kmax/∂ tmax and e

min
= ∂k

min
/∂ t

min
.

Notice that emax and e
min

are defined locally in neighborhoods of
non-umbilical points. The extrema of the principal curvatures along
their curvature directions are given by the zero-crossings of emax

and e
min

, and the ridges and valleys are characterized by

emax = 0, ∂emax/∂ tmax < 0, kmax > |k
min
|, (ridges),

e
min

= 0, ∂e
min

/∂ t
min

> 0, k
min

<−|kmax| (valleys).

Since the ridges and valleys turn into each other as surface orienta-
tion is changed, without loss of generality we can consider only the
ridges.
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2 Curvature Estimation
We assume that a given mesh M is rescaled so that the length of a
main diagonal of an axis-aligned bounding cube is equal to d. 1

Implicit surface fitting. For each mesh vertex v we estimate the
normal vector n(v) as the normalized weighted sum of the normals
of triangles incident to the vertex. Then we construct an implicit
surface F(x) = 0 approximating the set of the mesh vertices and
normals.

The approach of [Ohtake et al. 2003b], which we use to build
F(x) = 0, can be considered an extension of techniques developed
in [Floater and Iske 1996; Iske and Levesley 2002] from scattered
height data fitting to scattered 3D data fitting. It consists of the fol-
lowing. Given a set of points P sampled from a smooth surface,
a hierarchy of point sets

{

P
1
,P

2
, . . . ,Pn = P

}

is created such
that P

k
is a simplification of P

k+1
and is obtained from P

k+1

by clustering subsets of P
k+1

. Then a bottom-up approach is em-

ployed to construct implicit surfaces F
k
(x) = 0 interpolating P

k
,

k = 1, . . . ,n, respectively. The interpolation process starts from
P

1
. Given F

k
(x) = 0 interpolating P

k
, a partition of unity (PU)

approximation of P
k+1

is constructed by blending local quadratic

approximations of P
k+1

. Function F
k+1

(x) whose zero-level set

interpolates P
k+1

is then obtained as the sum of F
k
(x), the PU ap-

proximation of P
k+1

, and a sum of CS-RBFs.
The modifications we propose to adapt the method of [Ohtake

et al. 2003b] for our needs consist of employing smoother Wend-
land’s C

3∩PD
3

functions [Floater and Iske 1996] with double sup-
port size compared with that used in [Ohtake et al. 2003b], blending
local linear approximations instead of quadratic ones, and switch-
ing from interpolation to approximation via a regularization of
the corresponding RBF interpolation matrices: instead of inverting
RBF interpolation matrix ΦΦΦ, its regularization ΦΦΦ + λ I is inverted.
We use a regularization parameter λ = 0.1 in all our experiments.

Estimating curvatures and their derivatives. After the im-
plicit surface F(x) = 0 approximating mesh M is constructed, for
each mesh vertex v, its projection v̂ onto the implicit surface is
found and the curvature tensor and curvature derivatives at v are
estimated by those computed analytically at v̂.

To find v̂ we use the Newton-iterative process:

v̂
0

= v, v̂
k+1
← v̂

k
−

F(v̂
k
)∇F(v̂

k
)

‖∇F(v̂
k
)‖2

until
|F(v̂n)|

‖∇F(v̂n)‖
<

ε

d
, (1)

where ε is a user-specified precision parameter and d is the length
of a main diagonal of the bounding cube of M . We have found
that stopping criterion in (1) with ε = 10−4 is quite sufficient for
an accurate projection of the mesh vertices onto the approximating
implicit surface. Usually only a few iterations of (1) are required
since v is already close to F(x) = 0.

The unit normal at v is estimated by n = (n
1
,n

2
,n

3
) = ∇F/|∇F|

at v̂. The two non-zero eigenvalues of ∇n and their correspond-
ing eigenvectors are used to approximate the curvature tensor at v.
The derivative of a principal curvature k along its corresponding
principal direction t = (t

1
, t

2
, t

3
) is given by [Monga et al. 1992],

[Porteous 1994, Exercise 11.8]:

e = ∇k · t =
(

F
i jl

t
i
t

j
t
l +3kFi jt

i
n

j
)/

|∇F|, (2)

where Fi j and F
i jl

denote the second and third partial derivatives of

F(x), respectively, and the Einstein summation convention is used.
Now emax and e

min
at mesh vertex v are estimated according to (2)

computed at v̂.

3 Tracing Ridges
Detection of ridge vertices. Once we can estimate the curva-
ture tensor and curvature derivative emax(v) at each mesh vertex v,

1d = 20
√

3 in our current implementation.

we are ready to check whether the mesh edge [v
1
,v

2
] contains a

ridge vertex.
We flip tmax(v2

) if the angle between tmax(v1
) and tmax(v2

) is
obtuse: tmax(v2

)←−tmax(v2
), emax(v2

)←−emax(v2
). Next we

check the following conditions:

kmax(v) > |k
min

(v)| for v = v
1
,v

2
and emax(v1

)emax(v2
) < 0, (3)

where the latter verifies whether curvature derivative emax has a
zero-crossing on [v

1
,v

2
]. Finally we apply a simple derivative test

emax(vi)
[

(v
3−i−vi) · tmax(vi)

]

> 0 with i = 1 or 2 (4)

to determine whether emax attains a maximum on [v
1
,v

2
].

If (3) and (4) are satisfied, we use linear interpolation to approx-
imate a zero-crossing of emax on [v

1
v

2
]

p =
|emax(v2

)|v
1
+ |emax(v1

)|v
2

|emax(v1
)|+ |emax(v2

)|

and consider p a ridge vertex.
The above procedure would not work properly near the umbilical

points (kmax = k
min

) since the principal directions tmax and t
min

are
not defined at the umbilics and a practical detection of tmax and t

min

near the umbilics is unstable. Fortunately it can be easily shown
[Belyaev et al. 1997, Theorem 18.2.8] that the loci of maxima of
kmax and of minima of k

min
along their corresponding curvature

lines do not pass through the generic (typical) umbilics. Therefore
the ridge-valley lines do not approach the generic umbilical points.

Another potential danger arises from points where the angle be-
tween mesh edge [v

3−i,vi] and principal direction tmax(vi), i = 1,2,
is very close to zero or even vanishes, since the derivative test (4)
may fail there. However, in our numerical experiments, we haven’t
observed any side effect related to such failures.

Connecting ridge vertices. If two ridge vertices are detected
on edges of a mesh triangle, they are connected by a straight seg-
ment. If all three edges of a mesh triangle contain ridge vertices,
the vertices are connected with the centroid of the triangle formed
by the vertices.

Thresholding. We measure the strength of a ridge line by the
integral of kmax along the line and use the trapezoid approximation
of the integral∫

kmax ds≈∑
i

kmax(pi)+ kmax(pi+1
)

2
‖pi−pi+1

‖= T. (5)

Note that T is a scale-independent threshold. We use linear interpo-
lation to estimate kmax at the vertices of the polyline approximation
of the ridge line:

kmax(p) =
|emax(v2

)|kmax(v1
)+ |emax(v1

)|kmax(v2
)

|emax(v1
)|+ |emax(v2

)|
,

where [v
1
,v

2
] is the mesh edge containing p.

We ignore those ridge lines for which the right hand-side of (5)
is less than a user-specified value of threshold T .

Thickness adjustment. For visualization purposes, we deter-
mine the thickness of each segment [v

1
,v

2
] of a ridge line according

to the principal curvature values kmax(v1
) and kmax(v2

). We have
found that visually pleasant results are obtained if the thickness is
proportional to the arithmetic mean of kmax(v1

) and kmax(v2
) with

the same proportionality coefficient for all ridge segments.
We use trilinear interpolation for estimating the principal curva-

ture at a triple junction of a ridge line. Then all the three ridge
line segments incident to the junction are assigned their own thick-
nesses.

4 Results and Discussion
The ridge-valley lines detected on complex shapes with many small
wrinkles usually have poor connectivity. For example, small wrin-
kles on a salient surface crease spawn to many small disconnected
ridges and valleys crossing the crease. Various techniques used to
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reduce fragmentation of line features detected on a mesh include
mesh smoothing, geodesic snakes [Grenader and Miller 1998], and
hysteresis thresholding [Hubeli and Gross 2001; DeCarlo et al.
2003]. The approach we use for reducing fragmentation of the
ridge-valley lines can be considered a variation of mesh smoothing.
To estimate the curvature tensor and curvature derivative emax and
e

min
at mesh vertices P , we use implicit approximation F

k
(x) = 0

of P
k
, k < n, a simplified version of P (described in Section 2).

Figure 1 compares the ridge-valley patterns detected on an eye
part of the 1 mm Michelangelo’s David head model when implicit
approximations of simplified sets P

7
(middle image) and P

8
(right

image) are used.2 The fragmentation of the ridges and valleys is
substantially reduced when simpler implicit function approxima-

tion F
7
(x) = 0 is used instead of F

8
(x) = 0.

Figure 1: Blue ridges and red valleys detected on Michelangelo’s David

head model approximated by F
7
(x) = 0 (left and middle) and F

8
(x) = 0

(right), T=0.5.

Figure 2 shows patterns of ridges and valleys detected on various
triangle meshes. Notice how well the ridge-valley lines capture both
salient shape features and small shape variations.

Figure 2: Ridges and valleys detected on various models, T = 0.5.

Further, the images of Figure 2 suggest that the ridge-valley
lines convey perceptually important information, and we also fore-
see applications of our approach in simulating artistic drawings of
3D objects. The usefulness of the ridge-valley structures for non-
photorealistic rendering is not surprising [Ma and Interrante 1997;
DeCarlo et al. 2003]. Figure 3 shows the ridges and valleys detected
on the Stanford Buddha model for two different values of parame-
ter T . One can notice that salient ridges and valleys (T is large) are
particularly good for highlighting garment wrinkles.

Figure 4 demonstrates how much geometric information is car-
ried by salient ridges and valleys. Thus, similar to multiscale image
edges [Mallat and Zhong 1992], multiscale ridge-valley lines can
be used for shape coding purposes.

According to our numerical experiments, detecting the ridge-
valley lines from the principal curvature tensor via non-maximum
suppression and hysteresis thresholding, as suggested in [Hubeli
and Gross 2001; DeCarlo et al. 2003], often produces hairy patterns
of poorly connected ridges and valleys. This is especially true for
dense irregular meshes approximating surfaces with smooth curva-
ture variations. On the other hand, discriminating between curva-
ture maxima and minima via the second derivative test ∇e · t ≶ 0,

2The full resolution is achieved at octree depth 10.

Figure 3: Filtering ridges (black) and valleys (white) according to their

strength controlled by parameter T . Middle: T = 0. Right: T = 2.

Figure 4: Left: salient ridges and valleys detected on the Max-Planck bust

model, T = 2. Middle: the ridges and valleys alone are sufficient for recog-

nizing the model. Right: only the ridge-valley vertices and mesh normals at

them are used for shape reconstruction via implicit surface fitting.

where ∇e · t is computed analytically is not practical for processing
models with complex geometry.

In Figure 5, four different methods for detecting the ridge-valley
lines on implicit surfaces are compared. The first method (the left-
most image) is the most accurate: ∇emax · tmax and ∇e

min
· t

min
are

computed analytically. The second one (second from the left image)
is the method of this paper: we polygonize the surface (a marching
cubes algorithm is used) and then follow the procedure of Section 2.
One can notice how accurate our ridge-valley detection procedure
is. The third method (rightmost) consists of using a modified MPU
fitting method 3 instead of the hierarchical CS-RBFs of Section 2.
The modified MPU fitting method has a local nature and does not
deliver a sufficiently accurate surface approximation. Finally, the
fourth method (the rightmost image) consists of computing the cur-
vature tensor at the vertices of the marching cubes mesh analyti-
cally and then applying the non-maximum suppression and hystere-
sis thresholding operations mentioned above. The resulting ridges
and valleys are fragmented. Much worse results are obtained if the
curvature tensor is estimated from the mesh.

The two left images of Figure 5 also demonstrate that ridge-
valley lines capture small surface details which are below human
visual sensitivity and suggests their suitability for quality evalua-
tion of various surface fitting methods.

Our implicit surface fitting procedure (described in Section 2)
uses a simple octree-based hierarchical clustering which is orien-
tation dependent. That dependence is reduced when local shape

3In order to achieve C3 continuity we use a smoother blending function

to compare with that used in the original MPU method [Ohtake et al. 2003a].
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Figure 5: Ridges (blue) and valleys (red) detected on implicit dodecahedron-

like surface x6 + y6 + z6 + 20(x4y2 + y4z2 + z4x2) = 1. Left: second-order

curvature derivatives computed analytically are used for discriminating be-

tween curvature maxima and minima. Middle left: the method described in

this paper is employed. Middle right: modified MPU fitting is used. Right:

the curvature tensor is computed analytically and then non-maximum sup-

pression and hysteresis thresholding are applied.

approximations are built. Nevertheless, since the curvature extrema
are very delicate surface features, small differences in the ridge-
valley patterns detected on the same model under different orien-
tation conditions are observed. Figure 6 demonstrates orientation
insensitivity of geometrically salient ridge-valley lines.

Figure 6: Ridge- valley patterns detected on Teeth Casting model (left) and

on the same model after two π/4 rotations about two orthogonal axes are

applied (right), T = 0.5.

Another limitation of our approach is its low speed. For example,
detecting the ridge-valley lines on the 1 mm Michelangelo’s David
head model consisting of more than 4 M triangles takes about an
hour on a low-end PC. The most time-consuming stage is comput-
ing the curvature tensor and curvature derivatives emax and e

min
at

mesh vertex projections v̂, since the approximating implicit surface
F(x) = 0 is globally defined.

Motivated by the results shown in Figure 4 and the similarity be-
tween the ridge-valley lines and image edges, we plan to adapt the
edge-based image compression method [Mallat and Zhong 1992]
for shape compression purposes.
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