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RIDGELET TRANSFORM ON
SQUARE INTEGRABLE BOEHMIANS

Rajakumar Roopkumar

Abstract. The ridgelet transform is extended to the space of square
integrable Boehmians. It is proved that the extended ridgelet transform
R is consistent with the classical ridgelet transform R, linear, one-to-one,
onto and both R, R−1 are continuous with respect to δ-convergence as
well as ∆-convergence.

1. Introduction

Motivated by the concept of Boehme’s regular operators [1], the theory of
Boehmians is developed in the literature. Roughly speaking, Boehmians are
convolution quotients fn/δn of sequences, with (δn) converges to the Dirac
distribution. After the work [6] of P. Mikusiński, various Boehmian spaces
have been defined and also various integral transforms have been extended on
them. See [4, 5, 7, 9, 11, 12, 13, 16].

Now we recall the ridgelet transform which is introduced in [2, 15]. Let
L 2(R) denote the space of all complex valued Lebesgue measurable functions
ψ on the set R of all real numbers with

∫∞
−∞ |ψ(x)|2 dx < ∞, L 2(R2) denote

the space of all complex valued Lebesgue measurable functions f on the set R2

with

‖f‖ =
(∫

R2
|f(x)|2 dx

) 1
2

<∞

and L 2(Y) denote the space of all complex valued Lebesgue measurable func-
tions F on Y = R+ × R× [0, 2π] with

9F9 =
(∫

Y
|F (a, b, θ)|2 dµ

) 1
2

<∞,

where dµ = dµ(a, b, θ) = da
a3 db

dθ
4π .
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For a wavelet ψ ∈ L 2(R) and (a, b, θ) ∈ Y, we define

ψa,b,θ(x) = a−
1
2ψ((x · eiθ − b)/a), ∀x ∈ R2.

Definition 1. The ridgelet transform of f ∈ L 2(R2) is defined by

(Rf)(a, b, θ) =
∫

R2
f(x)ψa,b,θ(x) dx, ∀(a, b, θ) ∈ Y.

It is known that R : L 2(R2) → L 2(Y) with the inversion formula

(1) f(x) =
∫

Y
(Rf)(a, b, θ)ψa,b,θ(x) dµ, ∀x ∈ R2

and it satisfies the Parsevel’s identity ‖f‖ = 9Rf9 holds (see [15]).
For f ∈ L 2(R2) and φ ∈ D(R2), we define the usual convolution f ∗ φ by

(f ∗ φ)(x) =
∫

R2
f(x− y)φ(y) dy, ∀x ∈ R2.

2. Boehmian spaces

Boehmians are introduced as quotients of sequences to generalize the dis-
tributions. In this section, we briefly recall the construction of an abstract
Boehmian space and we construct the Boehmian space

B2(L 2(Y), (D(R2), ∗), ?,∆)

which is required to extend the ridgelet transform.
Using the notations as in [8], we let Γ be a topological vector space, (S, ∗)

be a commutative semi group, and ? : Γ × S → Γ is satisfying the following
properties:

(1) (f + g) ? φ = (f ? φ) + (g ? φ), ∀f, g ∈ Γ and ∀φ ∈ S,
(2) (αf) ? φ = α(f ? φ), ∀α ∈ C, ∀f ∈ Γ and ∀φ ∈ S,
(3) f ? (φ ∗ ψ) = (f ? φ) ? ψ, ∀f ∈ Γ and ∀φ, ψ ∈ S,
(4) If fn → f as n→∞ in Γ and φ ∈ S, then fn ? φ→ f ? φ as n→∞ in

Γ,
and a collection ∆ of all sequences (δn) from S, satisfying the following condi-
tions:

(∆1): If (δn), (εn) ∈ ∆, then (δn ∗ εn) ∈ ∆;
(∆2): If fn → f as n→∞ in Γ and (δn) ∈ ∆, then fn?δn → f as n→∞

in Γ.
Every member of B = B(Γ, (S, ∗), ?,∆) is of the form [ fn

δn
], where fn ∈

Γ, ∀n ∈ N, (δn) ∈ ∆ and

fn ? δm = fm ? δn, ∀m,n ∈ N.
Two Boehmians [ fn

δn
], [ gn

φn
] in B are said to be equal if

fn ? φm = gm ? δn, ∀m,n ∈ N.
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The space Γ is identified as a subset of B by the identification f 7→ [ f?δn

δn
],

where (δn) ∈ ∆ is arbitrary.
Addition, scalar multiplication and the operation ? in the context of B are

defined as follows: [
fn

δn

]
+
[
gn

φn

]
=
[
fn ? φn + gn ? δn

δn ∗ φn

]
,

α

[
fn

δn

]
=
[
αfn

δn

]
,

[
fn

δn

]
? φ =

[
fn ? φ

δn

]
.

There are two notions of convergences on Boehmian spaces defined as follows:

Definition 2 (δ-convergence). (xn) is said to δ-converge to x, denoted by
xn

δ→ x, if there exists (δk) ∈ ∆ such that xn ? δk ∈ Γ, ∀n, k ∈ N, x ? δk ∈
Γ, ∀k ∈ N and for each k ∈ N, xn ? δk → x ? δk as n→∞ in Γ.

Definition 3 (∆-convergence). (xn) is said to ∆-converge to x, denoted by
xn

∆→ x, if there exists (δn) ∈ ∆ such that (xn − x) ? δn ∈ Γ, ∀n ∈ N and
(xn − x) ? δn → 0 as n→∞ in Γ.

The following lemma gives a necessary and sufficient condition for δ-conver-
gence, which is stated and proved in [6].

Lemma 1. (xn) δ→ x as n → ∞ in B if and only if there exist fn,k, fk ∈ Γ
and (φk) ∈ ∆ such that xn = [ fn,k

φk
], x = [ fk

φk
] and for each k, fn,k → fk as

n→∞ in Γ.

The L p-Boehmians are constructed in [3] for p > 1. So just we state the
definition of the square integrable Boehmians. The space

B1 = B(L 2(R2), (D(R2), ∗), ∗,∆)

of square integrable Boehmians is defined by taking the topological vector space
Γ as L 2(R2), commutative semigroup (S, ∗) as (D(R2), ∗), where D(R2) is the
Schwartz testing function space consisting of smooth complex valued functions
on R2 with compact supports, ∗ is the usual convolution of functions on R2

defined by

(f ∗ φ)(x) =
∫

R2
f(x− y)φ(y) dy,

? as the same usual convolution and ∆ as the collection of all sequences (δn)
from D(R2) satisfying the following properties:

(1)
∫
R2 δn(x) dx = 1 for all n in the set N of all natural numbers;

(2)
∫
R2 |δn(x)| dx ≤M, ∀n ∈ N for some M > 0;

(3) Given ε > 0 there exists m ∈ N such that supp δn ⊂ B(0; ε), ∀n ≥ m,
where B(0; ε) = {x ∈ R2 : |x| < ε} and |x| is the Euclidean norm of x
in R2.
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To construct the Boehmian space B2 = B(L 2(Y), (D(R2), ∗), ?,∆), we
shall prove the following auxiliary results.

Definition 4. Let F ∈ L 2(Y) and φ ∈ D(R2). For (a, b, θ) ∈ Y, we define

(F ? φ)(a, b, θ) =
∫

R2
F (a, b− x · eiθ, θ)φ(x) dx.

Lemma 2. If F ∈ L 2(Y) and φ ∈ D(R2), then 9F ? φ9 ≤ C 9 F9 for some
C > 0 and hence F ? φ ∈ L 2(Y).

Proof. If φ is identically zero, then F ?φ = 0 and hence, in this case, the lemma
follows. Assume that φ 6= 0. If dν = |φ(x)|dx and C =

∫
R2 |φ(x)|dx, then dν

C is
a probability measure on R2. Therefore

9F ? φ92 ≤
∫

Y

(∫

R2
|F (a, b− x · eiθ, θ)| · |φ(x)| dx

)2

dµ

=
∫

Y
C2

(∫

R2
|F (a, b− x · eiθ, θ)| dν

C

)2

dµ

(by using Jensen’s inequality [14, p. 62])

≤
∫

Y
C2

∫

R2
|F (a, b− x · eiθ, θ)|2 dν

C
dµ

= C

∫

Y

∫

R2

∣∣F (a, b− x · eiθ, θ)
∣∣2 · |φ(x)| dxdµ

= C

∫

R2

∫

Y

∣∣F (a, b− x · eiθ, θ)
∣∣2 dµ |φ(x)| dx

(by using Fubini’s theorem [14, p. 164])

= C2 9 F 92 .

Hence the lemma follows. �

Lemma 3. If F1, F2 ∈ L 2(Y), φ ∈ D(R2) and α ∈ C, then
(1) (F1 + F2) ? φ = F1 ? φ+ F2 ? φ.
(2) (αF ) ? φ = α(F ? φ).

The proof of the lemma follows from the linearity of the integral operator∫
R2 .

Lemma 4. If F ∈ L 2(Y) and φ1, φ2 ∈ D(R2), then F ?(φ1∗φ2) = (F ?φ1)?φ2.

Proof. For (a, b, θ) ∈ Y,

(F ? (φ1 ∗ φ2))(a, b, θ) =
∫

R2
F (a, b− x · eiθ, θ)

∫

R2
φ1(x− y)φ2(y) dy dx

=
∫

R2
φ2(y)

∫

R2
F (a, b− x · eiθ, θ)φ1(x− y) dx dy

(by using Fubini’s theorem)
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=
∫

R2
φ2(y)

∫

R2
F (a, b− (z + y) · eiθ, θ)φ1(z) dz dy

(by putting z = x− y)

=
∫

R2
φ2(y)(F ? φ1)(a, b− y · eiθ, θ) dy

= ((F ? φ1) ? φ2)(a, b, θ). �

Lemma 5. If (Fn) converges to F in L 2(Y) and φ ∈ D(R2), then Fn ? φ →
F ? φ as n→∞ in L 2(Y).

Proof. We have 9Fn − F9→ 0 as n→∞. In view of Lemma 2, and by using
Lemma 3(1), we get

9Fn ? φ− F ? φ9 = 9(Fn − F ) ? φ9 ≤ C 9 Fn − F9
for some C > 0. Hence the lemma follows. �

Lemma 6. If F ∈ L 2(Y) and (δn) ∈ ∆, then F ? δn → F as n → ∞ in
L 2(Y).

Proof. Let ε > 0 be given. Since the space Cc(Y) of all complex valued con-
tinuous functions on Y with compact supports is dense in L 2(Y), there exits
G ∈ Cc(Y) such that

(2) 9F −G9 < min
{ ε

3M
,
ε

3

}
,

where M > 0 is as in property (2) for the delta sequence (δn) (see Section 2).
We note that

(3) 9F ? δn − F9 ≤ 9(F −G) ? δn 9+ 9G ? δn −G 9+ 9G− F 9 .
In view of Lemma 2, we have

9(F −G) ? δn92 < 9F −G 92

(∫

R2
|δn(x)| dx

)2

≤M2 9 F −G 92 .

Therefore

(4) 9(F −G) ? δn9 ≤M
ε

3M
=

ε

3
.

Next, let K1, K2 and K3 be compact subsets of [0, 2π], R and R+ respectively,
such that supp G ⊂ K1 ×K2 ×K3.

Let K = K1 × (K2 + [−1, 1]) ×K3 and C be such that
∫
K dµ < C < +∞.

Since G is uniformly continuous on Y, we choose 0 < r < 1 such that if

(a1, b1, θ1), (a2, b2, θ2) ∈ Y with |(a1, b1, θ1)− (a2, b2, θ2)| < r,

then

(5) |G(a1, b1, θ1)−G(a2, b2, θ2)| < ε

3M
√
C
,
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where M is as in the property (2) of (δn) and |(a1, b1, θ1) − (a2, b2, θ2)| is the
Euclidean norm of (a1, b1, θ1)− (a2, b2, θ2) in R3.

Let m1 ∈ N such that supp δn ⊂ B (0; r) , ∀n ≥ m1. For n ≥ m1, we get

9G ? δn −G92 ≤
∫

Y

(∫

R2
|(G(a, b− x · eiθ, θ)−G(a, b, θ))δn(x)| dx

)2

dµ.

If dνn = |δn(x)| dx, then it is a positive finite measure on R2 and hence dνn

σn

is a probability measure on R2, where σn =
∫
R2 |δn(x)| dx. Therefore the last

integral is equal to
∫

Y
σ2

n

(∫

R2
|G(a, b− x · eiθ, θ)−G(a, b, θ)|dνn

σn

)2

dµ

≤ σ2
n

∫

Y

∫

R2
|G(a, b− x · eiθ, θ)−G(a, b, θ)|2 dνn

σn
dµ

(by using Jensen’s inequality)

≤ M

∫

Y

∫

B(0;r)

|G(a, b− x · eiθ, θ)−G(a, b, θ)|2 · |δn(x)| dxdµ.

(since supp δn ⊆ B (0; r) , n ≥ m1 and σn ≤M, ∀n ∈ N)

Since supp G(a, b, θ) ⊂ K1 × K2 × K3 and x ∈ B(0; r) (with 0 < r <
1), supp G(a, b − x · eiθ, θ) ⊂ K. Therefore the last integral is equal to
M
∫
K
∫

B(0;r)
|G(a, b − x · eiθ, θ) − G(a, b, θ)|2 · |δn(x)| dxdµ. Next we observe

that |(a, b−x · eiθ, θ)− (a, b, θ)| < r. Therefore, by using the inequality (5), the
last integral is dominated by

M

∫

K

∫

B(0;r)

(
ε

3M
√
C

)2

· |δn(x)| dxdµ ≤M2C

(
ε

3M
√
C

)2

=
( ε

3

)2

.

Using (2), (4), and the estimate of 9G ? δn − G9 in (3), it follows that 9F ?
δn − F9 < ε when n ≥ m1. Hence the lemma follows. �

Lemma 7. If Fn → F as n→∞ in L 2(Y) and (δn) ∈ ∆, then Fn ? δn → F
as n→∞.

Proof. We note that 9Fn ? δn−F9 ≤ 9Fn ? δn−F ? δn9+9F ? δn−F 9 . By
Lemma 6, 9F ? δn − F9 → 0 as n → ∞. Now by Lemma 2 and the property
(2) of (δn), 9(Fn − F ) ? δn9 ≤M 9 Fn − F9→ 0 as n→∞. �

3. Extended ridgelet transform

Lemma 8. If f ∈ L 2(R2) and φ ∈ D(R2), then R(f ∗ φ) = (Rf) ? φ.

Proof. For (a, b, θ) ∈ Y,

R(f ∗ φ)(a, b, θ) =
∫

R2
a−

1
2ψ((x · eiθ − b)/a)(f ∗ φ)(x) dx
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=
∫

R2
a−

1
2ψ((x · eiθ − b)/a)

∫

R2
f(x− y)φ(y) dy dx

=
∫

R2
φ(y)

∫

R2
a−

1
2ψ((x · eiθ − b)/a)f(x− y) dx dy

(by using Fubini’s theorem)

=
∫

R2
φ(y)

∫

R2
a−

1
2ψ((z + y) · eiθ − b)/a)f(z) dz dy

=
∫

R2
φ(y)

∫

R2
a−

1
2ψ((z · eiθ − (b− y · eiθ))/a)f(z) dz dy

=
∫

R2
φ(y)(Rf)(a, b− y · eiθ, θ) dy

= ((Rf) ? φ)(a, b, θ). �

Definition 5. The extended ridgelet transform RX of a Boehmian X = [ fn

δn
] ∈

B1 is defined as [Rfn

δn
] ∈ B2.

Lemma 9. The extended ridgelet transform is well defined.

Proof. Let X = [ fn

δn
] ∈ B1. Then we have fn ∗ δm = fm ∗ δn, ∀m,n ∈ N.

Applying the ridgelet transform on both sides and using the Lemma 8, we get
(Rfn) ? δm = (Rfm) ? δn, ∀m,n ∈ N. Therefore Rfn

δn
represents a Boehmian

in B2. If gn

φn
is another representative of X, then we have fn ∗ φm = gm ∗

δn, ∀m,n ∈ N. Again applying the ridgelet transform and using Lemma 8, we
get that (Rfn) ? φm = (Rgm) ? δn, ∀m,n ∈ N. This shows that Rfn

δn
and Rgn

φn

represent the same Boehmian in B2. Hence the lemma follows. �

Lemma 10. The ridgelet transform on B1 is consistent with the classical
ridgelet transform on L 2(R).

Proof. Let f ∈ L 2(R). Then the Boehmian representing f in B1 is [ f∗δn

δn
]. It is

clear that R[ f∗δn

δn
] = [R(f∗δn)

δn
] = [Rf?δn

δn
], which is the Boehmian representing

the Rf in B2. Hence the lemma follows. �

Theorem 1. The extended ridgelet transform R : B1 → B2 is a linear map.

Proof. Let X = [ fn

δn
], Y = [ gn

φn
] ∈ B1 and α ∈ C. By using the linearity of the

ridgelet transform R on L 2(R2) and by Lemma 8, we get

R(X + Y ) = R

[
fn ∗ φn + gn ∗ δn

δn ∗ φn

]
=
[
R(fn ∗ φn + gn ∗ δn)

δn ∗ φn

]

=
[
R(fn ∗ φn) +R(gn ∗ δn)

δn ∗ φn

]
=
[
(Rfn) ? φn + (Rgn) ? δn

δn ∗ φn

]

=
[
Rfn

δn

]
+
[
Rgn

φn

]
= RX + RY.

�
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Theorem 2. The extended ridgelet transform R : B1 → B2 is an one-to-one
map.

Proof. Let X = [ fn

δn
], Y = [ gn

φn
] ∈ B1. If RX = RY , then we have [Rfn

δn
] =

[Rgn

φn
]. This implies that (Rfn)?φm = (Rgm)? δn, ∀m,n ∈ N. Using Lemma 8,

we have R(fn ∗ φm) = R(gm ∗ δn), ∀m,n ∈ N. Since the classical ridgelet
transform R : L 2(R2) → L 2(Y) is one-to-one, we have fn ∗ φm = gm ∗ δn,
∀m,n ∈ N. Thus we have proved that X = Y . Hence the lemma follows. �

Theorem 3. The extended ridgelet transform R : B1 → B2 is an onto map.

Proof. Let H = [Fn

δn
] ∈ B2. Then Fn ∈ L 2(Y) for all n ∈ N. Using the

inversion formula (1) of the classical ridgelet transform, if fn = R−1Fn then
we have

fn(x) =
∫

Y
Fn(a, b, θ)ψa,b,θ(x) dµ, ∀x ∈ R2.

Using Lemma 8, we have for all m,n ∈ N, fn ∗ δm = (R−1Fn) ∗ δm = R−1(Fn ?

δm) = R−1(Fm ? δn) = (R−1Fm)∗ δn = fm ∗ δn. Therefore [ fn

δn
] ∈ B1. It is easy

to verify that R[ fn

δn
] = H. Hence the lemma follows. �

In view of proof of the above lemma, one can get the inversion formula
for the extended ridgelet transform, and the inverse of the extended ridgelet
transform is obtained as

R−1Y =
[
R−1Fn

δn

]
∈ B1 for every Y =

[
Fn

δn

]
∈ B2.

Theorem 4. If X ∈ B1, Y ∈ B2 and φ ∈ D(R2), then
(1) R(X ∗ φ) = RX ? φ and
(2) R−1(Y ? φ) = R−1Y ∗ φ.

Proof. Let X = [ fn

δn
]. Then by using Lemma 8 we get, R(X ∗ φ) = R[ fn∗φ

δn
] =

[R(fn∗φ)
δn

] = [Rfn?φ
δn

] = [Rfn

δn
] ? φ = RX ? φ.

Let Y = [Fn

φn
]. By replacing Rf by F and by applying R−1 on both sides

of the identity R(f ∗ φ) = Rf ? φ in Lemma 8, we obtain that R−1F ∗ φ =
R−1(F ? φ), ∀F ∈ L 2(Y), ∀φ ∈ D(R2). Therefore

R−1(Y ? φ) = R−1

[
Fn ? φ

φn

]
=
[
R−1(Fn ? φ)

φn

]
=
[
R−1Fn ∗ φ

φn

]

=
[
R−1Fn

φn

]
∗ φ = R−1Y ∗ φ.

�

Theorem 5. The extended ridgelet transform R : B1 → B2 and its inverse
are continuous with respect to the δ-convergence.
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Proof. Let Xn
δ→ X as n→∞ in B1. Then by Lemma 2.4 of [6], there exists

fn,k, fk ∈ L 2(R2) and (δk) ∈ ∆ such that Xn = [ fn,k

δk
], X = [ fk

δk
] and for each

k ∈ N,
fn,k → fk as n→∞ in L 2(R2).

Since the classical ridgelet transform is continuous we have

Rfn,k → Rfk as n→∞ in L 2(Y).

Since RXn = [Rfn,k

δk
],RX = [Rfk

δk
], we get RXn

δ→ RX as n→∞ in B2.

Let Yn
δ→ Y as n → ∞ in B2. Then there exist Fn,k, Fk ∈ L 2(Y) and

(δk) ∈ ∆ such that Yn = [Fn,k

δk
], Y = [Fk

δk
] and for each k ∈ N,

Fn,k → Fk as n→∞ in L 2(Y).

Since the inverse ridgelet transform is continuous on L 2(Y) we have

R−1Fn,k → R−1Fk as n→∞ in L 2(R2).

Since R−1Yn = [R−1Fn,k

δk
],R−1Y = [R−1Fk

δk
], we get R−1Yn

δ→ R−1Y as n→∞
in B1. �

Theorem 6. The extended ridgelet transform R : B1 → B2 and its inverse
are continuous with respect to the ∆-convergence.

Proof. Let Xn
∆→ X as n→∞ in B1. Then by definition there exists (δn) ∈ ∆

such that (Xn − X) ∗ δn ∈ L 2(R2), ∀n ∈ N and (Xn − X) ∗ δn → 0 as
n → ∞ in L 2(R2). This means that there exist gn ∈ L 2(R2) such that
(Xn −X) ∗ δn = [ gn∗δk

δk
],∀n ∈ N and gn → 0 as n→ 0 in L 2(R2).

Since the ridgelet transform R : L 2(R2) → L 2(Y) is continuous, Rgn → 0
as n→ 0 in L 2(Y). Using Theorem 4, we get (RXn−RX)?δn = R(Xn−X)?
δn = R((Xn −X) ∗ δn) = R[ gn∗δk

δk
] = [R(gn∗δk)

δk
] = [Rgn?δk

δk
], ∀n ∈ N. Therefore

it follows that RXn
∆→ RX as n → ∞ in B2. Hence R is continuous with

respect to the ∆-convergence.
If Yn

∆→ Y as n → ∞ in B2. Then there exist (φn) ∈ ∆ and Gn ∈ L 2(Y)
such that (Yn − Y ) ? φn = [Gn?φk

φk
],∀n ∈ N and Gn → 0 as n → ∞ in L 2(Y).

Since R−1 : L 2(Y) → L 2(R2) is continuous, R−1Gn → 0 as n → ∞. Again
by using Theorem 4, we get (R−1Yn − R−1Y ) ∗ φn = R−1(Yn − Y ) ∗ φn =
R−1((Yn − Y ) ? φn) = R−1[Gn?φk

φk
] = [R−1(Gn?φk)

φk
] = [R−1Gn∗φk

φk
]. Thus we

have proved that R−1 is continuous with respect to the ∆-convergence. �

Finally we observe that the space B1 is properly larger than L 2(R2). In
deed, the example of a Boehmian not representing any distribution given in [6]
can be modified to get a member of B1 \L 2(R2).

Acknowledgment. The author thanks the referee for his valuable suggestions
and comments.
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