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RIDL*: A Tool for the Computer-Assisted Engineering of
Large Databases in the Presence of Integrity Constraints.

ABSTRACT

When designing large databases, tools and methods that transform higher
level formalisms into logical database designs become very important. Rarely
if ever do these transformations take into account integrity constraints
existing in the "conceptual” model. Yet these become essential if one is
forced to introduce redundancies for reasons of e.g. query efficiency: we then
need constraint specifications to describe these redundancies. We therefore
adopted a model (Binary Relationship Model or "NIAM") that is rich in
constraints and built a fexible tool, RIDL*, that graphically captures NIAM
semantic networks, analyzes them and then transforms them into relational
designs (normalized or not) in SQL, under the control of a database engineer
assisted by a rule base. This is made possible by a rule-driven implementation
of a new, stepwise synthesis process, and its benefits are illustrated by .its
treatment of e.g. subtypes. RIDL* is operational at several industrial sites in
Europe and the U.S. on sizeable database projects.

To be published in the proceedings of the ACM-SIGMOD
"International Conference on Management of Data" , Portland,
Oregon 1989.
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1. Introduction

Developing a large relational-based system is a non-trivial and
complex project; it has many phases and requires the participation of
many different people: users, analysts, database administrators,
programmers. Since most large systems have very long lifetimes, the
decisions that have to be taken may have 1long-lasting effects and
far-reaching consequences, and must be well-documented.

Methodologies, or combinations of them, well-supported by software
tools thus become rather a necessity when dealing with large systems.
Moreover, in these cases it is essential that such a methodology be
based on a formal specification mechanism that allows extensive
integrity rule definition and partial design prototyping, so that at
early stages (partial) specifications of the system can already be
checked for correctness and consistency in the large. Also, the
abstraction ability of the formalism is paramount in determining its
usability as specification vehicle. In particular, object oriented
formalisms serve this purpose very well. They allow for several types
of abstractions like abstraction from instance level, aggregation and
most importantly generalization through an inheritance and override
mechanism.

When concentrating on database design (there is also the issue of
application design), we therefore need a language which is more
conceptual in nature, has more abstraction capabilities than the
relational model, and is richer in the area of integrity constraints.
The relational model in its present implementations nearly completely
ignores the semantics of the data, and consequently this semantics
must then in principle be hand-crafted into the database's application
programs. Usually this happens in the form of ad-hoc constraint
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checks, transaction procedures and other hacker's delights. Database
design often starts out too early from "rough", application-inspired
aggregations of data which then must be made into more correct ones
using decomposition (normalization) rules, a technique that still
leaves a lot to the intuition of the database engineer.

To be able to concentrate more on the semantics of the information
rather than merely on its aggregation structure we need a formalism
which should at least be free from any fore-ordened data organis-
ation, allow to abstract from any representation of individuals and
allow to express a semantics which is much richer than the trivial
semantics expressable in the relational model.

As specification formalism we have adopted here the Binary Relationship
Model (BRM) (1974). It 1is somewhat related to the Functional Data
Model [12] with which it shares the ability to support powerful and
elegant functional query and data manipulation languages [6], [4],[25],
[10]. In the BRM all relationships are expressed between exactly two
object types either as "fact types" or as "sublink types". The meta-
concept object type allows to make the abstraction from individuals
or occurrences while the sublink type supports the inheritance
mechanism also kn n frcm object orient'd languages such as e.g.
Smalltalk. Fact types are used to express aggregation, general
relationships etc.. Additionally, the BRM explicitly addresses the
issue of <constraints. For a comprehensive comparison of the BRM (or
NIAM, see below) to Entity-Relationship modelling from the viewpoint
of semantics, we refer to [23]. The name "NIAM" (Nijssen Information
Analysis Method [25],([18],[26]) refers to the notation most often
associated with the BRM; we give a condensed description of it in
section 2.

In this paper we describe a software workbench, named RIDL* and in
particularly its engineering method. The workbench is based on the
BRM and supports the activities related to the specification, design
and generation of 1large and complex (relational) databases. The
relational designs are generated from the conceptual database design
(expressed in the BRM) using synthesis.

The synthesis method for constructing a relational database from a
(binary) conceptual design becomes quite complex, at 1least if one
wants to provide the flexibility needed for the design of large
database system. In this paper we concentrate on this important
aspect of the RIDL* system. A short overview of the RIDL* system is
given in section 3. (A much more extensive description, however not
including the aspects covered in this paper, can be found in [7]).
Snapshots of RIDL*'s operation are given, taken from the screen of an
Apollo workstation on which the software is currently available. The
overall example 1is a well-known hypothetical database system
supporting the organization of conferences taken from the literature
and known as the "CRIS-case" [20].

2. The Binary Relationship Model (BRM)

Descriptions of the BRM (under different names) appear 1in several
forms in the literature ([25], (5], ([10], [15], (18], [26], ...).

Its mai.: characteristics are:

a. objects are classified 1into object types, there is an explicit
distinction between "non-lexical" and "lexical" objects, the
latter standing for strings or numbers in the universe of discourse;
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b. all information is stored as link, called fact instance involving
two object types - hence the name "binary";

c. (non-lexical) object types may be organized into subtypes (e.g.
because of additional fact properties) using sublink types;

d. it supports the specification of constraints, rules and other
forms of "semantics" using e.g., some functional language ([25],
[16F, [30]:eeuds

We adopt the "NIAM" graphical notation for these concepts

(::) a NOLOT -- (NOn-Lexical Object Type)

i a LOT -- (Lexical Object Type). A LOT may be
\ i involved in one fact type only, with a NOLOT.

-

a LOT-NOLOT. Sometimes for notational
convenience, for a particular object type we
might not care to represent explicitly the
distinction between its non-lexical entities
and their lexical representation.

a fact type. The "boxes" are called roles.
Each fact type involves exactly two object

types (which may be the same).

sublink types - the subtype occurrences
implicitly inherit all properties of the
supertype. Subtypes need not be disjoint; not
all of a NOLOT's occurrences need be in one
of its subtypes.

Constraints are named n-place predicates with variables ranging over
the chosen object types and some generic lexical object types such as
string, integer, real, etc.. Certain constraint types occur so
frequently and are so fundamental that they have a graphical
representation as well. We only introduce the constraint types used in
the example schemas given in this paper:

— The identifier constraint (simple functional
(::}{:[}{:::) dependency) is drawn as a line over the key
role.

A total role constraint stating that each
( :

instance of an object type should participate
(
\

in a given role is represented by a "V" sign.

A total union constraint is a generalization
of a total role constraint. Each instance of
the object type should participate in at
least one of the indicated roles or subtypes.

i 9
) The exclusion constraint expresses the
mutually exclusion of a number of subtypes.
®

e’

(
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The last three types of constraints are examples of "set-algebraic
constraints” on role- and object populations (see below where we
briefly discuss BRM analyzer, RIDL-A).

The above is not a formal description of the BRM. For such we refer
to the literature e.g. see [5].

A major effect of this modeling technique is the uniform represent-
ation of entity types, domains, attributes, relations etc. as object
types. Facts may be considered as objects; the actual classical
distinction among "entity", ‘"relation" or T"attribute" is made
by applying a synthesis algorithm to the resulting object/link type
structure, rather than being a modelling choice.

3. The RIDL* system - Architecture and Functionalities.

The RIDL* apprcach to capturing information system specification
starts with the information analysis phase. Actual knowledge
acquisition about the application domain typically precedes this.
Although a module RIDL-F assisting this activity is currently under
development as part of RIDL*, we shall not discuss this here.

The architecture of the RIDL* system is presented in figure 1. This
displays the three major modules of the system, which are

1. the RIDL-G module, the conceptual design interface,

2. the RIDL-A module, the validation module,

3. the RIDL-M module, the (relational) database generation module.

We introduce each of these modules successively.

.DB 3
Engineering
Expertise
RIDL-A
Constraint
Analysis
Binary CSl Analysis A ga't‘a
Conceptual Info RIDL-M chema
Schema RIDL-G to actual
O i :aall:ltl'znal i == * oBws
. i .
constraints) 24! | Schema Implementations
)
ot
Meta
Database <ol [
Rule Base

figure 1.

3:1. RIDL-G.

RIDL-G is an interactive graphical module which assists the development
of binary conceptual schemas and provides supporting documentation
features. It is a typical graphical tool with windows, (pop up-
)menus, icons, mouse and full graphical editing. Figure 2 shows a
picture of RIDL-G in action.

The binary conceptual schemas developed with RIDL-G are stored in
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RIDL*'s own meta-database. It may contain several independent
conceptual schemas. Its implementation is a relational (ORACLE)
database, and its design is partly "open", meaning that a comprehensive
set of views is available to the RIDL* user to allow him to prepare
his own style of data- -dictionary and query meta-information for use
in his particular project environment.

' | Draper_id_coniarenca
Papar_Titte \ ¢ Paper_Lo_conferend i
f T T—Jescn paper nas 3 unique nuster within
K,\ Va @ conferance, bul bacawvss Lhe sgitem
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figure 2.

At each stage of the database engineering project the binary schemas
may be checked for validity, completeness and consistency using RIDL-
A, the analyzer module. RIDL-A performs 4 specific functions:

1. It verifies the correctness of the schema according to the rules of
the BRM. Certain rules of the BRM are enforced by RIDL-G as the
schema is constructed, the others are checked on demand.

2. It determines whether the binary schema contains all necessary
concepts to be a complete description.

3. It verifies the consistency of the set-algebraic constraints
defined in the binary schema on the populations of roles and object
types.

4. It detects non-referable object types in the conceptual schema, i.e.
object types for which it is not possible to refer uniquely and
unambiguously (one-to-one) to ail of their instances. This one-to-
one property should be inferable from constraints in the binary
schema. This condition is needed because ultimately we want to
obtain a relational database for the conceptual schema. Obviously,
the values that will be stored in the database will be "lexical"
and thus we need to be guaranteed of a lexical representation-




(type) for

3.3. RIDL-M.

The kernel of
M module.

The uMI'I

each non-lexical object(-type).

Mapper. It

for the

takes all

semantics

the RIDL* system and subject of this paper is the RIDL-
stands for
binary schema and generates a relational data schema,
constraint specifications

or part of the
with additional
given 1in the binary

conceptual schema.
poorly, if at all
conditions, these
to find their way

Since most RDBMSs at this moment support constraints
except for unique indexes (keys) and/or NOT-NULL
generated formal constraint specifications may have
into the eventual application designs "by hand".

(in both directions)
application programmer to go back and forth between the

RIDL-M also maintains extensive and precise maps
allowing the

conceptual schema and the relational schema generated from it. As
such they are nearly indispensable tools for the application
designers: they describe how the modeling concepts from the application

domain translate into the

vice versa.

implementation language of the RDBMS, and

at the
Windows, buttons and
the generation process. A more
and its underlying principles are

Figure 3 gives an illustration of RIDL-M. The leftmost window
top of the screen shows RIDL-M's user interface.
control
RIDL-M

pop—-up menus are used to
elaborate description of
given in the next section.
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4. The RIDL* mapper

RIDL-M builds a (by default fully normalized) relational data schema
from a binary conceptual schema.

Several algorithms to construct a relational schema from a conceptual

schema or semantical network are already proposed in the literature

(e.g. for the BRM [5] [22], entity-relationship model [2] [23],

functional model [12]). These algorithms mostly have common underlying
principles which are basically simple and straightforward. As an

example we sketch the naive algorithm to transform a binary schema

into a relational schema. We presume the binary schema to be correct

and complete according to the rules of the BRM (as ascertained by

RIDL-A).

step 1: Construct a relation for each NOLOT by grouping all
functionally dependent roles for the NOLOT as attributes in
one relation.

step 2: For each subtype NOLOT add an extra attribute referring to a
supertype of this subtype to the constructed relation. This
is needed to later express referential integrity for this
subtype.

step 3: For each many-to-many fact type, create a separate relation
only consisting of two attributes, one for each role.

step 4: Replace non-lexical attributes (attributes derived from NOLOT-
roles) by one of the 1lexical representation types of the
NOLOT from which they are derived. Care has to be taken that
the necessary foreign key constraints still can be expressed
(i.e. relate to compatible domains).

step 5: Add additional constraints according to the constraints of
the binary schema (this is not as easy as it sounds).

It can be shown that in the absence of additional constraints which
express functional or multivalued dependencies in a procedural
fashion, this algorithm always yields a relational schema in fifth
normal form. For most "mapping" algorithms in the literature indeed
the main concern is with a proof that the generated relational schema
satisfies some normal form and that the algorithms preserves some of
the essential properties (like the functional dependency and the
referentially integrity property) of the conceptual schema.

However, past experience 1learns us that for real-life database
engineering these algorithms and the tools implementing them are
poorly suited. For example, the many smaller tables derived by
normalization have to be joined dynamically which may result in an
unacceptable increase of I/O consumption [9]. Other problems are due
to undocumented decisions or a choice of grouping strategy which may
prove inconvenient in the (often already existing) application
environment. Furthermore, constraints often considered as first class
citizens in the conceptual modelling seem to become pariahs during
the transformation process. Only constraint types with a corresponding
constraint type in the relational model (e.g. functional dependency,
foreign keys) are conserved. In addition, the cross-link between the
conceptual and the relational schema is left to the intuition of the
application programmer. Name conventions used for relations and
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attributes are often the only guiding principle. This may result in a
misunderstanding of the structure of the generated schema and a
consequent misuse of it, thus losing a great deal of the benefits
gained by the conceptual modelling.

We have taken an essentially different starting point for the design
of the RIDL-M module. Instead of being merely concerned about the
activity of normalization we have developed a method and a tool that
with the assistance of a rule base and the expertise of the database
engineer generates a more optimal data schema from the viewpoint of
the application environment, and therefore not even necessarily in
third normal form. To guarantee control over this (much more) complex
process and the redundancies it may introduces in the data schema we
needed to develop a set of formal methods and foundations.

4.1. Principles Underlying RIDL-M.

In RIDL-M the generation of a relational database schema from a
conceptual schema 1is based on database schema transformation theory
(27l .

We have adopt a model-theoretic view of databases. We represent a
database schema as a logical theor' and view the models of the theory
as representing possible states of the universe of discourse.

We use the notation STATE(S) to denote the set of all possible models
of a database schema (or theory) S and we use the term database state
for such a model.

Definition 1.

Given two database schemas Si: and S:,

a schema transformation from S: into Sz is defined as a mapping
g : STATES(S:1) =-> STATES(Sz2)

such that, given a database state of S; one and only one database
state for S: is obtained.

St and Sz need not be schemas using the same type of formalism. E«Qs
for our purposes S: is a database schema expressed in the BRM while
Sz 1is the ‘"corresponding" data schema expressed in the Relational
Model (RM).

In most cases, schema transformations are used to provide different
views (e.g. conceptual view, different relational views) on a
database. In that case only one of the two databases schemas has a
physical representation and a schema transformation is used to
generate the "virtual" database state (the view) from the "base"
database state. However, there is no reason to restrict this to
transformations from "base" to "virtual" databases. When dealing with
update specifications on virtual databases or with data translations
between different databases we also have to consider the inverse
mapping to assure to be able to go back and forth between the two
databases.

Definition 2.

A schema transformation g from S: into S: is lossless if g is one-to-
one (bijection).

In this case S: and Sz are said to be state equivalent.

Requiring a transformation g : S1 -> S2 to be one-to-one implies that
it should not be possible to have a database state for S2 without a
unique corresponding database state for S1, hence the definition
state equivalence.

It is important to note that state equivalence does not imply that



g
both schemas have the same semantical power. As an example a binary
schema containing sublinks can be transformed into a state-equivalent

binary schema without sublinks (see figure 4). It can be shown easily
that this last schema expresses less semantics than the original one.

Bl :
S1 and S2 are state
equivalent
B
(_//

figure 4.

S2 :

In general, schema transformations from the BRM to the relational
model are not one-to-one. This is because the two models do not have
the same expressive power. Either we need to restrict the class of
binary schemas which can be transformed into a state equivalent
relational schema, or we need to extend the relational model with
additional constraint types. These constraint types are needed
firstly to express in the relational schema the constraints defined
in the BRM schema and secondly to state the losslessness of the
transformation. The constraints which assure the 1losslessness of the
transformation are called the lossless rules of the transformation.
Naturally, we have chosen to extend the relational model, it being
the target of our efforts. We generate the necessary constraints in a
pseudo-SQL or using SQL2 [11] such that an application programmer may
be able to incorporate them into the database applications in order
to achieve state equivalency of the relational schema with its BRM
definition.

Defining the transformation from a BRM schema to a RM schema as a
"monolithic" transformation algorithm is not very useful: it would
not achieve the flexibility required for a database engineering tool
and it would be very hard to prove the 1losslessness of this
transformation. Therefore we have defined this schema transformation
as the composition of a number of very basic schema transformations.
These basic schema transformations are quite elementary and therefore
it is easier to prove their losslessness.

The basic schema transformations used can be divided into three
kinds: binary to binary, binary to relational, and relational to
relational. The transformations of the first kind are used to convert
a binary schema into its most canonical form. They eliminate
superfluous definitions, reduce constraints to their canonical form
and replace non-elementary concepts by their definitions. The
transformations of the second kind transform such a canonical binary
schema into a "binary" relational schema and the transformations of
the third kind are wused to ‘"sculpt" this relational schema. An
example transformation of this last kind is the well known
projection/join transformation wused to obtain relations in third
normal form or conversely to combine relations into one relation
[24] . The lossless rules of this transformation include a multivalue
dependency for the projection transformation and an equality
constraint for the inverse join transformation.
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There is an important advantage to this transformation composition
technique. We are now able to "drive" the composition of these basic
transformations by rules specified externally to the algorithm. In
this way external control may ultimately influence the transformation
process nearly without limitations. Currently a 1limited number of
these rules are built in and externalized as options or choices
available to the database engineer e.g. the treatment of null-values.
These options are explained in more detail in section 4.2.

In a later implementation these rule specifications may in part be
extracted from functional requirements and process specifications
obtained through suitable tools (RIDL-F, RIDL-P) which are currently
under development. For example, gquery information can be used to
steer the mapping towards limited de-normalization whereas right now
the database engineer has to infer the correct RIDL-M controls from
his own knowledge.

This RIDL-M architecture is illustrated in figure 5. The transformation
base contains the basic schema transformations, the rule base
contains the rules which together with the user mapping options drive
the transformation engine. The meta database contains the schema to
be transformed.

Meta Database
1
. A
User Mapping
Options Transformation Transformation
— ¥ Engine Base
4
Rule Base
figure 5.

The basic schema transformations and the proof of their correctness
will be given in forthcoming work.

4.2. The mapping options.

As explained 1in section 4.1 the transformation process can be
influenced by the database engineer. This can be done by exercising a
number of "mapping options" that trigger the rules which influence the
mapping process. These mapping options include :

1. control on the admissibility of null values in attributes,

2. the mapping of sublink types,

3. the choice of different lexical representations for a NOLOT,

4. the decision whether to combine tables ,

5. when and how to omit certain tables.

Mapping options to control denormalization are currently under
development.

Because of space limitations we only explain the first three mapping
options.
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4.2.1. The null value options.

The null value option controls the admissibility of null values in
attributes. By default, null values are inadmissible in attributes
which are part of the primary key of a relation (as stated in the
"Entity Integrity Rule"” of the relational model, see [4]). In the
remaining attributes, null values may be admissible depending on
constraints specified in the binary schema.

Next to this default option there are three alternative options
"NULL NOT ALLOWED", "NULL NOT ALLOWED IN KEYS" and "NULL ALLOWED".

The first alternative, "NULL NOT ALLOWED" is a very restrictive one;
none of the attributes should allow null values. This implies that
according to the constraints of the binary schema (mainly total role
and role-equality constraints) the fact types of the binary schema
will be grouped into relations in such a way that null values in the
data schema are not needed. As a consequence, a large number of small
tables will in general be generated.

The second alternative, "NULL NOT IN KEYS", restricts the admissibility
of null values to attributes not part of a primary or a candidate key.

The third alternative, "NULL ALLOWED", as a matter of fact allows the
database engineer to violate the earlier mentioned "Entity Integrity
Rule" of the RM. The reason why we have introduced the possibility to
obviate this integrity rule is the following. Some NOLOTS may only
have a non-homogenous lexical representation type. The entities of
such a NOLOT are distinguishable but there is no overall unique
identification function that applies to all of them. This means in
turn that there 1is no "primary key" concept for these entities.
However, there will be two or more candidate keys and for each given
entity of the NOLOT at least one of them will act as primary key. To
keep information on such a non-homogenously referencible NOLOT into
one relation (rather than possibly introducing redundancy by
duplicating this information into two or more relations), we have to
allow null values in the "primary keys". Furthermore some relational
database systems allow null values also in primary key attributes
(ORACLE is an example).

4.2.2. The sublink mapping options

A sublink mapping option controls the transformation of the sublink
types of the binary schema. By default the (identified) fact types
defined on the subtype of a sublink type are grouped into one relation,
called the sub-relation in RIDL-M terminology, and those defined on
the supertype of the sublink are grouped into another relation,
called the super-relation. The sublink type is expressed by means of
a foreign key, linking the primary key or a candidate key of this sub-
relation to a primary key in the super-relation. This option 1is the
default and is announced as "SUBOT & SUPOT SEPARATE".

The sublink mapping option "SUBOT & SUPOT TOGETHER" groups all
(identified) fact types defined on the subtype as well as those on the
supertype of a sublink type into one relation. This sublink mapping
option permits to perform stronger typing on the conceptual schema
without needlessly compromising the efficiency requirements. Indeed
the default sublink mapping option (strong typing) in general results
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in a larger number of relations with only a few attributes. Therefore
more dynamic joins might be needed.

The third sublink mapping alternative is called "SUBOT INDICATOR FOR
SUPOT". This option groups fact types like for the default option, but
causes an extra attribute (called the indicator attribute) to be
added to the relation derived for the supertype; the value in a given
tuple (row) of this attribute is supposed to indicate whether the
tuple corresponds to a tuple in the sub-relation or not. By adding
this indicator attribute, redundancy of a ‘"procedural"” kind is
introduced, presumably for the benefit of query efficiency. To
control this redundancy RIDL-M generates extra constraints (a
"conditional" equality constraint). If the target DBMS does not
support this type of constraint then an SQL-like statement is
generated which to an application programmer acts as a formal
specification for a program segment to enforce this constraint. (For
an example, see below.)

The sublink mapping option 1is a global option with exceptions; the
selected option holds for all the sublink types of the binary schema,
but may be overridden for chosen individual sublink types.

4.2.3. The lexical mapping options.

It is explained in section 2 how NIAM makes an explicit distinction
between non-lexical objects and lexical objects. Data Base Management
Systems typically deal only with lexically represented information.
It 1is of «course possible to introduce surrogates [4] as a
representation for non-lexical objects, but this representation is an
artifact. Consequently, this means that the non-lexical information
has to be represented by lexical data in the relational schema. See
also section 3.2, there we also introduced for a NOLOT the concept of
lexical representation type or naming convention; a way to refer to a
NOLOT by a (combination) of LOT(s). It is quite wusual to have
several, even a great many, lexical representation types for the same
NOLOT.

Often therefore, we have to choose the lexical representation type

that will be used to represent the NOLOT instances in the database.

RIDL-M selects for each NOLOT the "smallest" lexical representation

type, this 1is the one which involves the 1least number of LOTs and

NOLOTs and will have the smallest physical representation as derived

from the data types of the LOTs involved. Since this limits the

freedom of the database engineer, flexibility needs to be added to

allow selection for each NOLOT of the preferred lexical representation
and even to use more than one representation type for a NOLOT. Even

within the same relation two different naming conventions for the

same NOLOT might be useful, e.g. if that would allow easier expression
of a particular constraint or query.

Below are four state equivalent (normalized) relational schemas for
the binary given given in figure 6. They are generated using
different mapping option combinations. Other alternatives are
possible as well. We use a straightforward graphical representation
for a relational schema. Attributes allowing null values have their
name between brackets. A primary key is indicated by a full line, a
candidated key by a dotted 1line and a foreign key by an arrow.
Additional constraints are given using SQL2 syntax [11].
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e
submitted_at i .

Frogran_Papar of _submission

Invited Paper
presented by

Paper Programld -
. oy \
figure 6.

Paper
| Paper_Id | Title_of | [Date_of_submission]|

Program_Paper
| Paper_Programid |Paper_Id [Session_comprising | [ Person_presenting] |

Invited_Paper

Alternative 2.
Paper
] Paper_ld]TnIe_of[ [Date_of_submission}] {s_lnvited_PaperJ Is_Program_Paper I

Program_Paper

EQUALITY VIEW CONSTRAINT :
( SELECT Paper_ Id
FROM Program Paper

I8 EQUAL TO
( SELECT Paper Id
FROM Paper
WHERE ( Is_Program Paper = 1 )

)
CONSTRAINT C_EQ$_3
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Alternative 3.

Paper
Paper_Id | Title_of | [ Date_of_submission ]| Is_Invited_Paper| [Paper_Programld_|s]

Program_Paper
lﬁper_Programld—ISession_comprising I [Person Jxesentingjl

EQUALITY VIEW CONSTRAINT :
( SELECT Paper Programild
FROM Program Paper

)
IS EQUAL TO
( SELECT Paper Programld Is
FROM Paper
WHERE ( Paper_ ProgramId Is IS NOT NULL )

)
CONSTRAINT C_EQ§_3

Alternative 4.
Paper

[ Paper_ldlﬁtie_ofl [Date_of_submission ]] Is_mvitedﬁPaperI [Paper_Programid _with] I

l [Session_oomprising]l [ Person_presenting |

CHECK( -- Dependent Existence
{ ( Person presenting IS NOT NULL )
AND ( Paper ProgramId with IS NOT NULL )

)
OR ( Person_presenting IS NULL )

CONSTRAINT C_DE$§_8

CHECK( -- Equal Existence
( ( Paper ProgramId with IS NULL )
AND ( Session_comprising IS NULL )
)
OR ( ( Paper_ ProgramId with IS NOT NULL )
AND ( Session_comprising IS NOT WULL )
)
)
CONSTRAINT C_EE$§ 6

4.3. The RIDL-M output

The relational schema built by RIDL-M is independent of any target
DBMS, it 1is called a generic relational schema. From this generic
relational schema a schema definition for any relational (or
relation-like) DBMS can be derived using the specific database
definition language of such a DBMS.

At the time of writing, RIDL-M generates fully operational ORACLE,
INGRES and DB2 schema definitions, and a "neutral"” schema definition
in the SQL2 (draft) standard [11]. Syntaxes for SYBASE and other RDBMSs
are in the works.

Below is a fragment of a generated SQL2 schema definition for the
binary schema of figure 6. Notice the additional semantics, given in
an SQL-like fashion, which express the constraints specified in the
conceptual schema. They are added as comment lines because (even) the
SQL2 standard does not currently support these type of constraints.
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B o o o o B o o B B B
e TABLE Program Paper i
B o o o o o o  E n & B o B N N S A S S S A R A

CREATE TABLE Program Paper
( Paper_ ProgramId
D _Paper ProgramId -- DATA TYPE CHAR(2)
NOT NULL

PRIMARY KEY
CONSTRAINT C_KEY$ 11
REFERENCES Paper ( Paper ProgramId Is )
CONSTRAINT C_FKEY$ 8
+ Person_presenting
D_Person -- DATA TYPE CHAR(30)
== NULL
+ Session comprising
D _Session == DATA TYPE NUMERIC (3)
NOT NULL

== EQUALITY VIEW CONSTRAINT :

— ( SELECT Paper ProgramId

- FROM Program Paper

- )

-- I8 EQUAL TO

g ( SELECT Paper Programld Is

i FROM Paper

i WHERE ( Paper Programld Is IS NOT NULL )

generated relational schema fragment

In addition to the generated schema definition files, RIDL-M provides
a detailed so-called map report. This report describes the complete
cross-reference 1link (in both directions) between the conceptual
binary schema and the generated relational schema (in its RDBMS
syntax). The map report is divided into two parts, the forwards map
and the backwards map. The forwards map describes how each of the
binary schema concepts (LOTS, NOLOTS, facts, roles, sublinks and
constraints) are expressed in the relational schema. The backwards
map tells how the relational schema concepts are derived from the
binary schema concepts. More specifically, for each generated
relational schema concept (domain, relation, attribute, constraint) the
binary schema concepts from which it is derived (or which have
participated in its derivation) are given. Below are two fragments of
the map report associated with the SQL2 schema definition given
higher up. The first fragment is a excerpt of the forward map report,
the second fragment is a part of the backwards map report.

The map report is essential for application programmers; they need to
know how to translate (high 1level) process specifications on the
conceptual schema into application programs onto the generated data
schema and how to interpret the results of such application programs
(output data, error messages, etc.) into conceptual schema terms. And
this forwards map will also play a key role in ultimately compiling
such high-level process specifications into relational application
programs. An early production-quality prototype of such a compiler
for query processes on the BRM, known as the RIDL compiler (built in
1983, [6]) has already proven the effectiveness of that approach.



FACT WITH ROLE presented by ON NOLOT Program Paper AND ROLE presenting ON
LOT-NOLOT Person
MAPPED TO
SELECT Paper ProgramId , Person _presenting
FROM Program Paper
WHERE ( Person_presenting IS NOT NULL )
FACT WITH ROLE presented during ON NOLOT Program Paper AND ROLE comprising ON
LOT-NOLOT Session
MAPFED TO
SELECT Paper ProgramId , Session_comprising
FROM Program Paper

SUBLINK Is FROM NOLOT Program Paper TO NOLOT Paper
MAPPED TO
SELECT Paper ProgramId Is , Paper Id
FROM Paper
WHERE ( Paper ProgramId Is IS NOT NULL )

IDENTIFIER : ROLE ON NOLOT Paper AND LOT Paper Id
MAPPED TO
UNIQUE ( Paper Id )
ON Paper
CONSTRAINT C_KEY$ 5

fragment 1

TABLE Paper

DERIVED FROM

FACT WITH ROLE ON NOLOT Paper AND ROLE ON LOT Title ,

FACT WITH ROLE ON NOLOT Paper AND ROLE ON LOT Paper Id ,

SUBLINK Is FROM NOLOT Program Paper TO NOLOT Paper ,

SUBLINK Is FROM NOLOT Invited Paper TO NOLOT Paper ,

FACT WITH ROLE submitted_at ON NOLOT Paper AND ROLE of submission ON
LOT-NOLOT Date

COLUMN Paper Programld IN TABLE Program Paper
DERIVED FROM
ROLE of ON LOT Paper ProgramId - ROLE presented by ON NOLOT Program Paper

ROLE of ON LOT Paper ProgramId - ROLE presented during ON NOLOT
Program Paper ,

ROLE of ON LOT Paper Programld - ROLE with ON NOLOT Program Paper ,
ROLE of ON LOT Paper Programld

EQUALITY VIEW CONSTRAINT :

( SELECT Paper ProgramId
FROM Program Paper

)

I8 EQUAL TO

( SELECT Paper ProgramId Is
FROM Paper
WHERE ( Paper Programld Is IS NOT NULL )

)

CONSTRAINT C_EQ$ 3

DERIVED FROM
NOLOT Program Paper ,
SUBLINK Is FROM NOLOT Program Paper TO NOLOT Paper ,
TOTAL : ROLE presented during ON NOLOT Program Paper AND LOT-NOLOT
Session ,

FOREIGN KEY Program Paper ( Paper ProgramId )
REFERENCES Paper ( Paper_FrogramId Is )
CONSTRAINT C_FKEY$ 8
DERIVED
SUBLINK Is FROM NOLOT Program Paper TO NOLOT Paper

fragment 2

16
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5. Concluding Remarks

We have described the database design process used in RIDL*, a
database engineering workbench based essentially on the NIAM method.
In this method, information system design starts at the conceptual
level, resulting in a (binary) conceptual schema independent of any
implementation considerations. Afterwards this binary schema is
transformed into a relational schema. During this transformation,
called the mapping process, implementation and efficiency aspects may
be taken into consideration in order to generate a (relational) data
schema that will give the best performance in the given application
environment. To do this the database engineer disposes of a number of
so-called mapping options. Current research is concentrated on how to
expand RIDL-M into a rule driven system, that also has the capability
to automatically generate the database schema that best fits a
particular application environment. To achieve this, we are currently
defining such a set of "expert" rules to drive the transformation
process. Next, we shall extract the triggers for these expert rules
from requirements and functional specifications supplied by the RIDL*
user. Note that it is precisely the way the mapping "algorithm" is
implemented as a programmable sequence of elementary transformations
that enables us to do this.

A note on the implementation:

RIDL* as described above has been completely implemented [7]. It runs
currently on an Apollo workstation, and is mostly written in Common
Lisp (RIDL-M) and Objective C (RIDL-A). It is being used at the time
of this writing at a few industrial locations where it routinely
generates databases of up to 120-150 ORACLE tables (this is not a
limit). More interestingly perhaps, the generated (pseudo-)SQL
constraints cause the output design to reach approx. 1 to 1.2 pages
per table on the average, not counting forwards or backwards maps.
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