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Standard Metropolis-Hastings Sampling (M-H)

Metropolis Adjusted Langevin Algorithm (MALA)

Riemann Manifold Metropolis Adjusted Langevin Algorithm

(RMMALA)

Simplified Manifold Metropolis Adjusted Langevin Algorithm

(Simplified mMALA)

Riemann Manifold Hamiltonian Monte Carlo Method (RMHMC)
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Standard Metropolis-Hastings Sampling

Target distribution p(θ)

Proposal distribution q(θ∗|θ)
Draw a new sample sample θ

∗ from proposal distribution q(θ∗|θ)
Accept the new sample with probability min{1, p(θ∗)q(θ|θ∗)

p(θ)q(θ∗ |θ) }
Success of MCMC relies upon appropriate proposal design q
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Most-used choice of q(θ∗|θ) includes Normal distribution

N (θ∗|θ, σ2I), a D-dimensional norm distribution with mean θ and

covariance matrix σ2I

Random walk

Need a long time to travel the whole parameter space

Low acceptance rate

Poor mixing of the chain and highly-correlated samples

No information of target distribution needed
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Metropolis Adjusted Langevin Algorithm (MALA)

Stochastic differential equation (SDE) in Langevin diffusion:

dθ = ∇θL{θ(t)}dt + db(t)

If L{θ(t) is defined as log density of p(θ), then the solution of SDE

is the stationary distribution p(θ)

First order Euler discretization of SDE:

θ
∗ = θ

n + ε2∇θL{θn}/2 + εzn

Proposal distribution can be defined as N (θ∗|µ(θn, ε), I) with

µ(θn, ε) = θ
n + ε2∇θL{θn}/2
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Properties of MALA

Instead of random walking, MALA tries to sample a new value

along the direction which maximizes the log density function

Isotropic diffusion which forces the choice of step size to

accommodate variate with smallest variance

This can be circumvented by employing a pre-conditioning matrix

M, N (θ∗|µ(θn, ε,M),M1/2) with µ(θn, ε,M) = θ
n + ε2M∇θL{θn}/2

Problem: How to select the pre-conditioning matrix M
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A manifold:

A two-dimensional surface embedded in 3D ambient space;

Euclidean geometry;

Non-Euclidean geometry;
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How to measure the distance of two points

Euclidean geometry measures a distance between two points

θ = c(ti) and θ + δθ = c(tj) as follows

DE (c(ti), c(tj )) =
√

δθT δθ (1)

Non-Euclidean geometry measures a distance between two

points by considering the manifold to which the two points belong
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Riemann manifold

Tangent space TθM is a linear approximation of the manifold and

is spanned by the differential operator [ ∂
∂θ1

, . . . , ∂
∂θn

]

Riemann manifold is a differential manifold in which the tangent

space TθM at each point has an inner product defined via a metric

tensor Gθ.

The metric tensor is a function which takes two vectors θ1 and θ2

as input and outputs a real-valued scalar Gθ : TθM × TθM 7→ R
The distance of two points θ and θ + δθ in Rieman manifold is

defined as DGθ
(θ,θ + δθ) =

√

δθT Gθδθ

Properties of Riemannian metric tensor

Symmetric: Gθ(t1, t2) = Gθ(t2, t1);

Bilinear: Gθ(t1 + t2, t3) = Gθ(t1, t3) + Gθ(t2, t3);

Positive definite: Gθ(t1, t1) > 0
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Geometric concept in MCMC

Denote the expected Fisher information as Gθ = cov(∇θL(θ))

The first order approximation of KL distance between p(y ;θ) and

p(y ;θ + δθ)

KL(θ,θ + δθ) =

∫

p(y ;θ + δθ)log
p(y ;θ + δθ)

p(y ;θ)
dy

≈ δθT Gθδθ (2)

The expected Fisher information is a Reimannian metric tensor.
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Riemannian manifold MALA (RMMALA)

The SDE defining the Langevin diffusion in Riemann manifold

dθ = ∇̃θL{θ(t)}dt + d b̃(t)

The natural gradient ∇̃θL{θ(t)} = G−1(θ(t))∇θL{θ(t)}
The Brownian motion in Riemann manifold

d b̃i(t) = |G−1/2(θ(t))| +∑D
j=1

∂
∂θj

[G−1(θ(t))ij G−1/2(θ(t))]dt +

[
√

G−1(θ(t))db(t)]i
proposal distribution N (θ∗|µ(θn, ε,G),

√
G−1I) with

µ(θn, ε,G) = θ
n + G−1(θ(t))∇θL{θ(t)} + |G−1/2(θ(t))| +

∑D
j=1

∂
∂θj

[G−1(θ(t))ij G−1/2(θ(t))]dt
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Illustrative example

Consider normal density p(x |µ, σ) = Nx(µ, σ)

Infer the distribution of parameters µ and σ with mMala

Local inner product on tangent space defined by a metric tensor,

i.e. δθT Gθδθ, where θ = (µ, σ)T

Metric Gθ is the expected Fisher information matrix

G(µ, σ) =

[

σ−2 0

0 2σ−2

]

(3)

Metric on tangent space

δθT Gθδθ =
δµ2 + 2δσ2

σ2
(4)
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A sample of size N = 30 was drawn from Nx (µ = 0, σ = 10)

Starting point is µ0 = 0, σ0 = 40
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A sample of size N = 30 was drawn from Nx (µ = 0, σ = 10)

Starting point is µ0 = 15, σ0 = 2
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Conclusions of RMMALA

Make moves in a Riemann metric rather than according to the

standard Euclidean metric

Utilize the information of the curvature of the manifold
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Hamitanian Monte Carlo Method (HMC)

A joint density p(θ,p) is factorized as p(θ,p) = p(θ)p(p)

p(θ) is the target density function

p(p) = N (0,M) is an independent auxiliary density function

The Hamiltanian is defined as the negative of the log joint density

H(θ,p) = −L(θ) + 1
2 log{(2π)D|M|}+ 1

2pT M−1p

The Hamiltanian equations:

dθ
dt

=
∂H
∂p

= M−1p

dp
dt

= −∂H
∂θ

= ∇θL(θ) (5)
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Properties of HMC

Preserve the total energy: H(θ(t),p(t)) = H(θ(0),p(0)), and

hence p(θ(t),p(t)) = p(θ(0),p(0))

Preserve the volume: dθ(t)dp(t) = dθ(0)dp(0)

Time reversal

Euler first-order discretization and Leapfrog method

p(t +
ε

2
) = p(t) + ε∇θL(θ(t))/2

θ(t + ε) = θ(t) + εM−1p(t +
ε

2
)

p(t + ε) = p(t +
ε

2
) + ε∇θL(θ(t + ε))/2 (6)

Probability of accepting a new sample (θ∗,p∗) is

min{1,exp(−H(θ∗,p∗) + H(θn,pn+1))}
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Riemann manifold HMC

Considering the geometric information, a tensor metric G(θ)
defined at a point θ is used instead of M

Hamiltanian equations become

dθ
dt

=
∂H
∂p

= M−1p = G(θ)−1p

dp
dt

= −∂H
∂θ

= ∇θL(θ)− 1

2
tr
{

G(θ)−1∂G(θ)

∂θ

}

+
1

2
pT G(θ)−1 ∂G(θ)

∂θ
G(θ)−1p (7)

Probability of accepting a new sample (θ∗,p∗) is

min{1,exp(−H(θ∗,p∗) + H(θn,pn+1))}
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Example – Stochastic volatility model

Stochastic volatility model is defined with the latent volatilities taking

the form of an AR(1) process such that

yt = ǫtβ exp(xt/2) (8)

with

xt+1 = φxt + ηt+1 (9)

where

ǫt ∼ N(0,1)
ηt ∼ N(0, σ2) (10)

and

x1 ∼ N(0, σ2/(1 − φ)) (11)
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Stochastic volatility model

Joint density

p(y,x, β, φ, σ) = p(x1)

T
∏

t=1

p(yt |xt , β)

T
∏

t+2

p(xt |xt − 1, φ, σ)

π(β)π(σ)π(φ) (12)

Split up the sampling procedure in two steps, simulate from

β, φ, σ|y,x ∼ p(β, φ, σ|y,x)
x|y, β, φ, σ ∼ p(x|y, β, φ, σ)

(13)

Metric tensor for parameters

G(β, φ, σ) =





2T
β2 0 0

0 2T 2φ

0 2φ 2φ2 + (T − 1)(1 − φ2)



 (14)

Metric tensor for latent volatilites G(x) = I
2 + C−1
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The value of β is set to the true value

The log-joint-probability given different values of σ and φ is shown

by the contour plot
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Zoom up the plot

RMHMC sampling effectively normalizes the gradient in each

direction;

HMC sampling with a unit mass matrix exhibits stronger gradients

in horizontal direction than vertical direction and therefore takes

much longer to converge to the target density.
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Stochastic Volatility Model - Performance

2000 simulated observations with β = 0.65, σ = 0.15 and

φ = 0.98

20000 posterior samples averaged over 10 runs.
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Stochastic Volatility Model - Performance

Posterior marginal density for β, σ and φ
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