Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods

Mark Girolami and Ben Calderhead

Paper reviewed by Hui Li

July 8, 2013

- Standard Metropolis-Hastings Sampling (M-H)
- Metropolis Adjusted Langevin Algorithm (MALA)
- Riemann Manifold Metropolis Adjusted Langevin Algorithm (RMMALA)
- Simplified Manifold Metropolis Adjusted Langevin Algorithm (Simplified mMALA)
- Riemann Manifold Hamiltonian Monte Carlo Method (RMHMC)

Standard Metropolis-Hastings Sampling

- Target distribution $p(\theta)$
- Proposal distribution $q(\theta^*|\theta)$
- Draw a new sample sample θ^* from proposal distribution $q(\theta^*|\theta)$
- Accept the new sample with probability $min\{1, \frac{p(\theta^*)q(\theta|\theta^*)}{p(\theta)q(\theta^*|\theta)}\}$
- Success of MCMC relies upon appropriate proposal design q

- Most-used choice of q(θ*|θ) includes Normal distribution
 N(θ*|θ, σ²I), a D-dimensional norm distribution with mean θ and covariance matrix σ²I
- Random walk
- Need a long time to travel the whole parameter space
- Low acceptance rate
- Poor mixing of the chain and highly-correlated samples
- No information of target distribution needed

Metropolis Adjusted Langevin Algorithm (MALA)

- Stochastic differential equation (SDE) in Langevin diffusion:
 dθ = ∇_θ L{θ(t)}dt + db(t)
- If *L*{θ(t) is defined as log density of p(θ), then the solution of SDE is the stationary distribution p(θ)
- First order Euler discretization of SDE: $\theta^* = \theta^n + \varepsilon^2 \nabla_{\theta} \mathcal{L} \{\theta^n\}/2 + \varepsilon \mathbf{z}^n$
- Proposal distribution can be defined as $\mathcal{N}(\theta^*|\mu(\theta^n, \varepsilon), I)$ with $\mu(\theta^n, \varepsilon) = \theta^n + \varepsilon^2 \nabla_{\theta} \mathcal{L}\{\theta^n\}/2$

Properties of MALA

- Instead of random walking, MALA tries to sample a new value along the direction which maximizes the log density function
- Isotropic diffusion which forces the choice of step size to accommodate variate with smallest variance
- This can be circumvented by employing a pre-conditioning matrix
 M, N(θ^{*}|μ(θⁿ, ε, M), M^{1/2}) with μ(θⁿ, ε, M) = θⁿ + ε²M∇_θL{θⁿ}/2
- Problem: How to select the pre-conditioning matrix M

A manifold:

- A two-dimensional surface embedded in 3D ambient space;
- Euclidean geometry;
- Non-Euclidean geometry;

How to measure the distance of two points

• Euclidean geometry measures a distance between two points $\theta = c(t_i)$ and $\theta + \delta \theta = c(t_i)$ as follows

$$D_E(c(t_i), c(t_j)) = \sqrt{\delta \theta^T \delta \theta}$$
(1)

 Non-Euclidean geometry measures a distance between two points by considering the manifold to which the two points belong

Riemann manifold

- Tangent space *T_θM* is a linear approximation of the manifold and is spanned by the differential operator [*∂*/*∂θ*₁,..., *∂*/*∂θ_n*]
- Riemann manifold is a differential manifold in which the tangent space $T_{\theta}M$ at each point has an inner product defined via a metric tensor G_{θ} .
- The metric tensor is a function which takes two vectors θ_1 and θ_2 as input and outputs a real-valued scalar $G_{\theta} : T_{\theta}M \times T_{\theta}M \mapsto \mathcal{R}$
- The distance of two points θ and $\theta + \delta \theta$ in Rieman manifold is defined as $D_{G_{\theta}}(\theta, \theta + \delta \theta) = \sqrt{\delta \theta^{T} G_{\theta} \delta \theta}$

Properties of Riemannian metric tensor

• Symmetric:
$$G_{\theta}(t_1, t_2) = G_{\theta}(t_2, t_1);$$

- Bilinear: $G_{\theta}(t_1 + t_2, t_3) = G_{\theta}(t_1, t_3) + G_{\theta}(t_2, t_3);$
- Positive definite: $G_{\theta}(t_1, t_1) > 0$

Geometric concept in MCMC

- Denote the expected Fisher information as $G_{\theta} = cov(\nabla_{\theta}L(\theta))$
- The first order approximation of KL distance between p(y; θ) and p(y; θ + δθ)

$$\begin{aligned} \mathsf{KL}(\theta, \theta + \delta\theta) &= \int \mathsf{p}(\mathsf{y}; \theta + \delta\theta) \log \frac{\mathsf{p}(\mathsf{y}; \theta + \delta\theta)}{\mathsf{p}(\mathsf{y}; \theta)} d\mathsf{y} \\ &\approx \delta\theta^{\mathsf{T}} \mathsf{G}_{\theta} \delta\theta \end{aligned}$$
 (2)

• The expected Fisher information is a Reimannian metric tensor.

Riemannian manifold MALA (RMMALA)

- The SDE defining the Langevin diffusion in Riemann manifold $d\theta = \tilde{\nabla}_{\theta} \mathcal{L}\{\theta(t)\} dt + d\tilde{\mathbf{b}}(t)$
- The natural gradient $\tilde{\nabla}_{\theta} \mathcal{L}\{\theta(t)\} = \mathbf{G}^{-1}(\theta(t)) \nabla_{\theta} \mathcal{L}\{\theta(t)\}$
- The Brownian motion in Riemann manifold $d\tilde{\mathbf{b}}_{i}(t) = |\mathbf{G}^{-1/2}(\theta(t))| + \sum_{j=1}^{D} \frac{\partial}{\partial \theta_{j}} [\mathbf{G}^{-1}(\theta(t))_{ij} \mathbf{G}^{-1/2}(\theta(t))] dt + [\sqrt{\mathbf{G}^{-1}(\theta(t))} d\mathbf{b}(t)]_{i}$
- proposal distribution $\mathcal{N}(\theta^* | \mu(\theta^n, \varepsilon, \mathbf{G}), \sqrt{\mathbf{G}^{-1}\mathbf{I}})$ with $\mu(\theta^n, \varepsilon, \mathbf{G}) = \theta^n + \mathbf{G}^{-1}(\theta(t))\nabla_{\theta}\mathcal{L}\{\theta(t)\} + |\mathbf{G}^{-1/2}(\theta(t))| + \sum_{j=1}^{D} \frac{\partial}{\partial \theta_j} [\mathbf{G}^{-1}(\theta(t))_{ij}\mathbf{G}^{-1/2}(\theta(t))] dt$

Illustrative example

- Consider normal density $p(\mathbf{x}|\mu,\sigma) = N_{\mathbf{x}}(\mu,\sigma)$
- Infer the distribution of parameters μ and σ with mMala
- Local inner product on tangent space defined by a metric tensor,
 i.e. δθ^TG_θδθ, where θ = (μ, σ)^T
- Metric G_{θ} is the expected Fisher information matrix

$$G(\mu,\sigma) = \begin{bmatrix} \sigma^{-2} & 0\\ 0 & 2\sigma^{-2} \end{bmatrix}$$
(3)

Metric on tangent space

$$\delta \boldsymbol{\theta}^{\mathsf{T}} \mathbf{G}_{\boldsymbol{\theta}} \delta \boldsymbol{\theta} = \frac{\delta \mu^2 + 2\delta \sigma^2}{\sigma^2} \tag{4}$$

- A sample of size N = 30 was drawn from $N_x(\mu = 0, \sigma = 10)$
- Starting point is $\mu_0 = 0, \sigma_0 = 40$

- A sample of size N = 30 was drawn from $N_x(\mu = 0, \sigma = 10)$
- Starting point is $\mu_0 = 15, \sigma_0 = 2$

Conclusions of RMMALA

- Make moves in a Riemann metric rather than according to the standard Euclidean metric
- Utilize the information of the curvature of the manifold

Hamitanian Monte Carlo Method (HMC)

- A joint density $p(\theta, \mathbf{p})$ is factorized as $p(\theta, \mathbf{p}) = p(\theta)p(\mathbf{p})$
- $p(\theta)$ is the target density function
- $p(\mathbf{p}) = \mathcal{N}(0, \mathbf{M})$ is an independent auxiliary density function
- The Hamiltanian is defined as the negative of the log joint density $H(\theta, \mathbf{p}) = -L(\theta) + \frac{1}{2} \log\{(2\pi)^D |\mathbf{M}|\} + \frac{1}{2} \mathbf{p}^T \mathbf{M}^{-1} \mathbf{p}$
- The Hamiltanian equations:

$$\frac{d\theta}{dt} = \frac{\partial H}{\partial \mathbf{p}} = \mathbf{M}^{-1}\mathbf{p}$$
$$\frac{d\mathbf{p}}{dt} = -\frac{\partial H}{\partial \theta} = \nabla_{\theta}L(\theta)$$
(5)

Properties of HMC

- Preserve the total energy: $H(\theta(t), \mathbf{p}(t)) = H(\theta(0), \mathbf{p}(0))$, and hence $p(\theta(t), \mathbf{p}(t)) = p(\theta(0), \mathbf{p}(0))$
- Preserve the volume: $d\theta(t)d\mathbf{p}(t) = d\theta(0)d\mathbf{p}(0)$
- Time reversal

Euler first-order discretization and Leapfrog method

$$\mathbf{p}(t + \frac{\varepsilon}{2}) = \mathbf{p}(t) + \varepsilon \nabla_{\theta} L(\theta(t))/2$$

$$\theta(t + \varepsilon) = \theta(t) + \varepsilon \mathbf{M}^{-1} \mathbf{p}(t + \frac{\varepsilon}{2})$$

$$\mathbf{p}(t + \varepsilon) = \mathbf{p}(t + \frac{\varepsilon}{2}) + \varepsilon \nabla_{\theta} L(\theta(t + \varepsilon))/2$$
(6)

 Probability of accepting a new sample (θ*, p*) is min{1, exp(-H(θ*, p*) + H(θⁿ, pⁿ⁺¹))}

Riemann manifold HMC

- Considering the geometric information, a tensor metric G(θ) defined at a point θ is used instead of M
- Hamiltanian equations become

$$\frac{d\theta}{dt} = \frac{\partial H}{\partial \mathbf{p}} = \mathbf{M}^{-1}\mathbf{p} = \mathbf{G}(\theta)^{-1}\mathbf{p}$$
$$\frac{d\mathbf{p}}{dt} = -\frac{\partial H}{\partial \theta} = \nabla_{\theta}L(\theta) - \frac{1}{2}tr\{\mathbf{G}(\theta)^{-1}\frac{\partial \mathbf{G}(\theta)}{\partial \theta}\}$$
$$+\frac{1}{2}\mathbf{p}^{T}\mathbf{G}(\theta)^{-1}\frac{\partial \mathbf{G}(\theta)}{\partial \theta}\mathbf{G}(\theta)^{-1}\mathbf{p}$$

 Probability of accepting a new sample (θ*, p*) is min{1, exp(-H(θ*, p*) + H(θⁿ, pⁿ⁺¹))} Example – Stochastic volatility model Stochastic volatility model is defined with the latent volatilities taking the form of an AR(1) process such that

$$y_t = \epsilon_t \beta \exp(x_t/2)$$
 (8)

with

$$\mathbf{x}_{t+1} = \phi \mathbf{x}_t + \eta_{t+1} \tag{9}$$

where

$$\epsilon_t \sim N(0, 1)$$

$$\eta_t \sim N(0, \sigma^2)$$
(10)

and

$$x_1 \sim N(0, \sigma^2/(1-\phi))$$
 (11)

Stochastic volatility model

Joint density

$$p(\mathbf{y}, \mathbf{x}, \beta, \phi, \sigma) = p(\mathbf{x}_1) \prod_{t=1}^T p(\mathbf{y}_t | \mathbf{x}_t, \beta) \prod_{t+2}^T p(\mathbf{x}_t | \mathbf{x}_t - 1, \phi, \sigma)$$
$$\pi(\beta) \pi(\sigma) \pi(\phi)$$
(12)

Split up the sampling procedure in two steps, simulate from

$$egin{aligned} eta, \phi, \sigma | \mathbf{y}, \mathbf{x} &\sim m{p}(eta, \phi, \sigma | \mathbf{y}, \mathbf{x}) \ \mathbf{x} | \mathbf{y}, eta, \phi, \sigma &\sim m{p}(\mathbf{x} | \mathbf{y}, eta, \phi, \sigma) \end{aligned}$$

Metric tensor for parameters

$$G(\beta,\phi,\sigma) = \begin{bmatrix} \frac{2T}{\beta^2} & 0 & 0\\ 0 & 2T & 2\phi\\ 0 & 2\phi & 2\phi^2 + (T-1)(1-\phi^2) \end{bmatrix}$$
(14)

• Metric tensor for latent volatilites $G(\mathbf{x}) = \frac{1}{2} + \mathbf{C}^{-1}$

207

(13)

- The value of β is set to the true value
- The log-joint-probability given different values of σ and φ is shown by the contour plot

Zoom up the plot

- RMHMC sampling effectively normalizes the gradient in each direction;
- HMC sampling with a unit mass matrix exhibits stronger gradients in horizontal direction than vertical direction and therefore takes much longer to converge to the target density.

Mark Girolami and Ben Calderhead

Stochastic Volatility Model - Performance

Method	Mean time (s)	$ESS \\ (\beta, \sigma, \phi)$	Standard error (β, σ, ϕ	s/minimum) ESS	Relative speed
MALA	44.0	(19.1, 11.3, 30.1) (1.9.0.8.2.1)	3.89	36.7
HMC	424.8	(117, 81, 198)	(9.3, 3.1, 10.3) 5.24	27.3
MMALA	2455.9	(17.2, 17.4, 44.5) (2.8, 2.4, 9.2	142.8	1
RMHMC	329.4	(325, 139, 344)	(19.0, 7.3, 25.)	2) 2.37	60.3
Method	Met time	an ESS (1 (s) median,	nînîmum, maxîmum)	s/minimum ESS	Relative speed
					No.
MALA	44	4.0 (9.7, 1)	5.7, 28.4)	4.53	7.5
MALA HMC	44	4.0 (9.7, 1) 4.8 (409, 6	5.7, 28.4) 24, 1239)	4.53	7.5
MALA HMC MMALA	42 424 245	4.0 (9.7, 1) 4.8 (409, 6 5.9 (71.8, 13	5.7, 28.4) 24, 1239) 1.0, 329.8)	4.53 1.04 34.2	7.5 32.9 1

- 2000 simulated observations with $\beta =$ 0.65, $\sigma =$ 0.15 and $\phi =$ 0.98
- 20000 posterior samples averaged over 10 runs.

Stochastic Volatility Model - Performance

• Posterior marginal density for β , σ and ϕ