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RIEMANN SOLITONS ON CERTAIN TYPE OF KENMOTSU

MANIFOLD

Manoj Ray Bakshi∗, Kanak Kanti Baishya, and Ashoke Das

Abstract. The object of the present paper is to investigate the nature of Riemann
solitons on generelized D-conformally deformed Kenmotsu manifold with hyper gen-
eralized pseudo symmetric curvature conditions.

1. Introduction

Let the symbols ∇ and ∇d stand for the Riemann connection and the generalized
D-conformally deformed connection respectively. Also, let R, S, Q, r and Rd, Sd,
Qd, rd respectively stand for curvature tensor, Ricci tensor, Ricci operator, scalar
curvature with respect to ∇ and ∇d respectively. In this study, we consider an almost
contact metric manifold (M2n+1, φ, ξ, η, g) that consists of a (1, 1)-tensor field φ,
a vector field ξ and a 1-form η called respectively the structure endomorphism, the
characteristic vector field and the contact form. In a recent paper, the authors (
[2]) has introduced a new type of space called hyper generalized weaky symmetric
manifold. Then the authors studied ([8]) hyper generalized pseudo Q-symmetric semi-
Riemanian manifold. In Section 3 of this paper we extend this concept to generalized
D-conformally deformed structure of a (2n+ 1)-dimensional Kenmotsu manifold.

A (2n+ 1)-dimensional Kenmotsu manifold is said to be hyper generalized pseudo
symmetric (which will be abbreviated hereafter as [H(GPS)n,∇]) if it admits the
equation

(∇XR̄)(Y, U, V, W )

= 2α(X)R̄(Y, U, V, W ) + α(Y )R̄(X,U, V, W )

+α(U)R̄(Y,X, V, W ) + α(V )R̄(Y, U,X, W )

+α(W )R̄(Y, U, V, X) + 2β(X)(g ∧ S)(Y, U, V,W )

+β(Y )(g ∧ S)(X,U, V,W ) + β(U) (g ∧ S)(Y,X, V,W )

+β(V ) (g ∧ S)(Y, U,X,W ) + β(W ) (g ∧ S)(Y, U, V,X),(1)
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where

(g ∧ S)(Y, U, V,W ) = g(Y,W )S(U, V ) + g(U, V )S(Y,W )

−g(Y, V )S(U,W )− g(U,W )S(Y, V ),(2)

and α, β being non-zero 1-forms defined as α(X) = g(X, θ1) and β(X) = g(X, θ2).
Ricci flow was first introduced by R. S. Hamilton ([17]) in 1982 which generalizes

the notion of Riemann flow ([20], [19]). Keeping the tune with Ricci soliton, Hirica
and Udriste ([18]) introduced and studied Riemann soliton. The Riemann flow is an
evolution equation for metrics on a Riemannian manifold defined as follows

∂

∂t
G (t) = −2R (g (t)) , t ∈ [0, I] ,

where G = 1
2
g~g, ~ is the Kulkarni-Nomizu product and R is the Riemann curvature

tensor associated to the metric g. For (0, 2)-tensors A and B, the Kulkarni-Nomizu
product (A~B) is given by

(A~B)(Y, U, V, Z) = A(Y, Z)B(U, V ) + A(U, V )B(Y, Z)

−A(Y, V )B(U,Z)− A(U,Z)B(Y, V ).(3)

Recently, the present authors studied the Riemann solitons in the frame of (LCS)n-
manifolds ([4]) and α-cosymplectic manifolds ([5]). The Riemann soliton is a smooth
manifold M together with Riemannian metric g that satisfies

(4) 2R + (g ~£Wg) = 2κ(g ~ g),

where W is a potential vector field, £W denotes the Lie-derivative along the vector
field W and κ is a constant. A Riemann soliton is called expanding, steady and
shrinking when κ < 0, κ = 0 and κ > 0 respectively.

We organize our present paper as follows: After Introduction, in Section 2, we
briefly recall some known results for Kenmotsu manifolds and generalizedD-conformally
deformed of a Kenmotsu manifold and established some properties of the deformed
Kenmotsu manifold. In Section 3, we discuss the properties of a generalized D-
conformally deformed Kenmotsu manifold under hyper generalized pseudo symmetric
curvature condition equipped with Riemann solitions. Finally, e determine a necessary
condition for shrinking, steady and expanding of the soliton.

2. Preliminaries

According to the definition of Blair ([11]), an almost contact structure (φ, ξ, η) on
a (2n+ 1)-dimensional Riemannian manifold satisfies the following conditions

(5) φ2 = −I + η ⊗ ξ,

(6) η(ξ) = 1,

(7) φξ = 0, η ◦ φ = 0, rank φ = n− 1.

Moreover, if g is a Riemannian metric on M2n+1 satisfying

(8) g(φX, φY ) = g(X, Y )− η(X)η(Y ),

(9) g(X, ξ) = η(X),
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(10) g(φX, Y ) = −g(X,φY ),

for any vector fields X, Y on M2n+1, then the manifold M2n+1 ([11]) is said to admit
an almost contact metric structure (φ, ξ, η, g).

Definition 2.1. [15] If in an almost contact metric structure (φ, ξ, η, g) on M2n+1,
the Riemann connection ∇ of g satisfies (∇Xφ)Y = g(φX, Y )ξ − η(Y )φX, for any
vector fields X, Y on M2n+1, then the structure is called Kenmotsu.

Proposition 2.2. [3,9,15] If (M2n+1, φ, ξ, η, g) is a Kenmotsu manifold, then for
any vector fields X, Y , Z on M2n+1, the following relations hold

(11) ∇Xξ = X − η(X)ξ,

(12) (∇Xη)Y = g(X, Y )− η(X)η(Y ),

(13) S(X, ξ) = −2nη(X),

(14) η(R(X, Y )Z) = g(X,Z)η(Y )− g(Y, Z)η(X),

(15) R(ξ,X)Y = η(Y )X − g(X, Y )ξ,

(16) R(X, Y )ξ = η(X)Y − η(Y )X.

Definition 2.3. [1] If a contact metric manifold M2n+1 with the almost contact
metric structure (φ, ξ, η, g) is transformed into (φd, ξd, ηd, gd), where

(17) φd = φ, ξd =
1

p
ξ, ηd = pη, gd = qg + (p2 − q)η ⊗ η,

where p and q are constants such that p 6= 0 and q > 0, then the transformation is
called a generalized D-conformal deformation.

Note that the generalized D-conformal deformation give rise to conformal de-
formation (for p2 = q) and D-homothetic deformation (for p = q = constant)
([16], [6], [10]). The generalized D-conformal deformation are studied by various
authors in ([22], [23], [21], [24]).

The relation between the Levi-Civita connections ∇ of g and ∇d of gd is given by
( [1])

(18) ∇d
XY = ∇XY +

(p2 − q)
p2

g(φX, φY )ξ,

for any vector fields X, Y on M2n+1.
In view of (17), (18) and definition of Riemannian curvature tensor, Ricci tensor,

scalar curvature, we get the following:

Proposition 2.4. [1] If a Kenmotsu structure (φ, ξ, η, g) on M2n+1 is transformed
into (φd, ξd, ηd, gd) under a generalized D-conformal deformation, then R, Rd, S, Sd,
r and rd are related by

(19) Rd(X, Y )Z = R(X, Y )Z +
(p2 − q)
p2

[g(φY, φZ)X − g(φX, φZ)Y ],

(20) Sd(X, Y ) = S(X, Y ) +
2n(p2 − q)

p2
g(φX, φY ),
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(21) rd =
r

q
+

2n(2n+ 1)(p2 − q)
p2

,

for any vector fields X, Y , Z on M2n+1.

Now we shall bring out some properties of a generalized D-conformally deformed
structure (φd, ξd, ηd, gd) of a Kenmotsu manifold M2n+1 as follows:

Proposition 2.5. Under a generalized D-conformal deformation of a Kenmotsu
structure (φ, ξ, η, g) on M2n+1 is transformed into (φd, ξd, ηd, gd), then for any vector
fields X, Y , Z on M2n+1, we have

(22) φd = −I + ηd ⊗ ξd,

(23) ηd(ξd) = 1,

(24) φdξd = 0, ηd ◦ φd = 0,

(25) gd(φdX,φdY ) = gd(X, Y )− ηd(X)ηd(Y ),

(26) gd(X, ξd) = ηd(X),

(27) ∇d
Xξ

d =
1

p
[X − ηd(X)ξd],

(28) (∇d
Xη

d)Y =
1

p
[gd(X, Y )− ηd(X)ηd(Y )],

(29) Sd(X, ξd) = −2n

p2
ηd(X),

(30) ηd(Rd(X, Y )Z) =
1

p2
[gd(X,Z)ηd(Y )− gd(Y, Z)ηd(X)],

(31) Rd(ξd, X)Y =
1

p2
[ηd(Y )X − gd(X, Y )ξd],

(32) Rd(X, Y )ξd =
1

p2
[ηd(X)Y − ηd(Y )X].

Now using (28) and (29), we obtain

(33) (∇d
XS

d)(Y, ξd) = −1

p
[
2n

p2
gd(X, Y ) + Sd(X, Y )],

for any vector fields X ,Y and Z on M2n+1.

3. Main results

In the beginning, we shall define a hyper generalized pseudo symmetric space on a
generalized D-conformally deformed structure (φd, ξd, ηd, gd) of a Kenmotsu manifold
M2n+1.
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3.1. Hyper generalized pseudo symmetric deformed Kenmotsu manifold.

Definition 3.1. A generalized D-conformally deformed structure (φd, ξd, ηd, gd)
of a Kenmotsu manifold M2n+1 is said to be hyper generalized pseudo symmetric if it
satisfies the condition

(∇d
XR̄

d)(Y, U, V,W )

= 2αd(X)R̄d(Y, U, V, W ) + αd(Y )R̄d(X,U, V, W )

+αd(U)R̄d(Y,X, V, W ) + αd(V )R̄d(Y, U,X, W )

+αd(W )R̄d(Y, U, V, X) + 2βd(X)(gd ∧ Sd)(Y, U, V,W )

+βd(Y )(gd ∧ Sd)(X,U, V,W ) + βd(U) (gd ∧ Sd)(Y,X, V,W )

+βd(V ) (gd ∧ Sd)(Y, U,X,W ) + βd(W ) (gd ∧ Sd)(Y, U, V,X).(34)

where

(gd ∧ Sd)(Y, U, V,W ) = gd(Y,W )Sd(U, V ) + gd(U, V )Sd(Y,W )

−gd(Y, V )Sd(U,W )− gd(U,W )Sd(Y, V ),(35)

and Adi are non-zero 1-forms defined by Adi (X) = gd(X, σi), for i = 1, 2.

In this section, we consider a Kenmotsu manifold (M2n+1, g) n ≥ 1 which is hyper
generalized pseudo symmetric. Now, making use of (35) in (34), we find

(∇XR̄
d)(Y, U, V, W )

= 2αd(X)R̄d(Y, U, V, W ) + αd(Y )R̄d(X,U, V, W )

+αd(U)R̄d(Y,X, V, W ) + αd(V )R̄d(Y, U,X, W )

+αd(W )R̄d(Y, U, V, X) + 2βd(X)[gd(Y,W )Sd(U, V )

+gd(U, V )Sd(Y,W )− gd(Y, V )Sd(U,W )

−gd(U,W )Sd(Y, V )] + βd(Y )[gd(X,W )Sd(U, V )

+gd(U, V )Sd(X,W )− gd(X, V )Sd(U,W )

−gd(U,W )Sd(X, V )] + βd(U) [gd(Y,W )Sd(X, V )

+gd(X, V )Sd(Y,W )− gd(Y, V )Sd(X,W )

−gd(X,W )Sd(Y, V )] + βd(V ) [gd(Y,W )Sd(U,X)

+gd(U,X)Sd(Y,W )− gd(Y,X)Sd(U,W )− gd(U,W )Sd(Y,X)]

+βd(W )[gd(Y,X)Sd(U, V ) + gd(U, V )Sd(Y,X)

−gd(Y, V )Sd(U,X)− gd(U,X)Sd(Y, V )].(36)
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Now, contracting over Y and W in (36), we get

(∇d
XS

d)(U, V )

= 2αd(X)Sd(U, V ) + αd(U)Sd(X, V )

+αd(Rd(X,U)V ) + 2βd(QdX)gd(U, V )

+αd(Rd(X, V )U) + αd(V )Sd(X,U)

+2βd(X)[2nSd(U, V ) + rdgd(U, V )]

+βd(U) [(2n− 2)Sd(X, V ) + rdgd(X, V )]

+βd(V ) [(2n− 2)Sd(X,U) + rdgd(X,U)]

−βd(QdU)gd(X, V )− βd(QdV )gd(X,U).(37)

Now setting V = ξd and using (29), (31), (32) in the foregoing equation, we obtain

(∇d
XS

d)(U, ξd)

= −2n

p2
[2αd(X)ηd(U) + αd(U)ηd(X)] + αd(ξd)Sd(X,U)

+
1

p2
[gd(X,U)αd(ξd)− 2ηd(U)αd(X) + ηd(X)αd(U)]

+2βd(X)(rd − 4n2

p2
)ηd(U) + βd(U)(rd − 4n(n− 1)

p2
)ηd(X)

+βd(ξd) [2(n− 1)Sd(U,X) + rdgd(U,X)]

+2βd(QdX)ηd(U)− βd(QdU)ηd(X) +
2n

p2
βd(ξd)gd(U,X)(38)

which yields by using (33)

−1

p
[
2n

p2
gd (X,U) + Sd (X,U)]

= [−2(2n+ 1)

p2
αd(X) + 2βd(X)(rd − 4n2

p2
) + 2βd(QdX)]ηd(U)

+[−(2n− 1)

p2
αd(U) + (rd − 4n(n− 1)

p2
)βd(U)− βd(QdU)]ηd(X)

+
1

p2
αd(ξd)gd(X,U) + αd(ξd)Sd(X,U) +

2n

p2
βd(ξd)gd(U,X)

+βd(ξd) [2(n− 1)Sd(U,X) + rdgd(U,X)].(39)

Putting X = U = ξd in succession, we obtain from (39) that

(40) [rd − 2n(2n− 1)

p2
]βd(ξd) =

2n

p2
αd(ξd).

−2(2n+ 1)

p2
αd(X) + 2βd(X)(rd − 4n2

p2
) + 2βd(QdX)

= [
2(2n− 1)

p2
αd(ξd)− 2βd(ξd)(rd − 4n(n− 1)

p2
) + 2βd(Qdξd)]ηd(X).(41)
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and

−(2n− 1)

p2
αd(U) + (rd − 4n(n− 1)

p2
)βd(U)− βd(QdU)

= [
(6n+ 1)

p2
αd(ξd)− (3rd − 12n2 − 2n

p2
)βd(ξd)]ηd(U).(42)

By virtue of (40), (41) and (42), the equation (39) yields

Sd (X,U)

= −

(
1
p2
αd(ξd) + (rd + 2n

p2
)βd(ξd) + 2n

p3

1
p

+ αd(ξd) + 2(n− 1)βd(ξd)

)
gd(U,X)

−

(
(10n−1)

p2
αd(ξd)− (5rd − 20n2−14n

p2
)βd(ξd)

1
p

+ αd(ξd) + 2(n− 1)βd(ξd)

)
ηd(U)ηd(X).(43)

and (40) gives

(44) rd =
2n

p2
[
αd(ξd)

βd(ξd)
+ (2n− 1)].

Next using (44) in (43) we have

Sd (X,U)

= −

(
(2n+1)
p2

αd(ξd) + 4n2

p2
βd(ξd) + 2n

p3

1
p

+ αd(ξd) + 2(n− 1)βd(ξd)

)
gd(U,X)

+

(
1
p2
αd(ξd) + 4n

p2
βd(ξd)

1
p

+ αd(ξd) + 2(n− 1)βd(ξd)

)
ηd(U)ηd(X).(45)

This motivate us to state:

Theorem 3.2. Let (φd, ξd, ηd, gd) be a generalized D-conformally deformed hy-
per generalized pseudo symmetric Kenmotsu manifold M2n+1. Then such a space is
conformally flat provided 1

p
+ αd(ξd) + 2(n− 1)βd(ξd) 6= 0.

Theorem 3.3. The scalar curvature of a hyper generalized pseudo symmetric gen-
eralized D-conformally deformed Kenmotsu manifold is constant.

Corollary 3.4. Let (φd, ξd, ηd, gd) be a generalized D-conformally deformed
pseudo symmetric Kenmotsu manifold M2n+1. Then such a space is conformally flat
provided pαd(ξd) 6= −1.

4. Generalized D-conformally deformed hyper generalized pseudo sym-
metric Kenmotsu manifold and the case of Riemann soliton

In this section, we consider a generalized D-conformally deformed Kenmotsu man-
ifold (φd, ξd, ηd, gd) admitting a Riemann soliton. Then with the aid of (3) and (4),
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we obtain

2Rd (Y, U, V, Z) + gd (Y, Z) (£ξdg
d) (U, V )

+gd (U, V ) (£ξdg
d) (Y, Z)

−gd (Y, V ) (£ξdg
d) (U,Z)− gd (U,Z) (£ξdg

d) (Y, V )

= 2κ
[
gd (Y, Z) gd (U, V )− gd (Y, V ) gd (U,Z)

]
.(46)

Now by contraction over Y and Z we get

(47)
1

2
(£ξdg

d) (U, V ) +
1

2n− 1
Sd(U, V ) =

2nκ− div(ξd)

2n− 1
gd(U, V ).

and then using (47) in (46), we get

(48) rd = 2n[(2n+ 1)κ− 4n

p
].

Comparing (44) with (48) we have

(49) (2n+ 1)p2κ = 4np+ (2n− 1) +
αd(ξd)

βd(ξd)
.

This leads to the following:

Theorem 4.1. Assume that a Kenmotsu structure (φ, ξ, η, g) on M2n+1 is trans-
formed into (φd, ξd, ηd, gd) under a generalized D-conformally deformation which is a
hyper generalized pseudo symmetric space. Then the Riemann soliton is expanding,

steady and shrinking as αd(ξd)
βd(ξd)

+ 2n(2p+ 1) <=> 1.
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