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Abstract

Let g : B → C
1 be a holomorphic map of the unit ball B. We study the

integral operators

Tgf(z) =

∫ 1

0
f(tz)ℜg(tz)

dt

t
; Lgf(z) =

∫ 1

0
ℜf(tz)g(tz)

dt

t
, z ∈ B.

The boundedness and compactness of the operators Tg and Lg on the Hardy
space H2 in the unit ball are discussed in this paper.

1 Introduction

Let B = {z ∈ Cn : |z| < 1} be the open unit ball in Cn, S = ∂B = {z ∈ Cn :
|z| = 1} be its boundary, dν the normalized Lebesgue measure of B, i.e. ν(B) = 1,
and dσ the normalized surface measure on ∂B. Let H(B) denote the class of all
holomorphic functions on the unit ball. For f ∈ H(B) with the Taylor expansion
f(z) =

∑
|β|≥0 aβzβ , let ℜf(z) =

∑
|β|≥0 |β|aβz

β be the radial derivative of f, where

β = (β1, β2, . . . , βn) is a multi-index and zβ = z
β1

1 · · · zβn
n . It is well known that

ℜf(z) =
∑n

j=1 zj
∂f
∂zj

(z), see, for example, [22].

The Hardy space Hp = Hp(B) (0 < p < ∞) is defined on B by

Hp(B) =
{

f | f ∈ H(B) and ||f ||Hp = sup
0≤r<1

Mp(f, r) < ∞
}
,

where

Mp(f, r) =
(∫

∂B
|f(rζ)|pdσ(ζ)

)1/p

.
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It is well known that f ∈ H2 if and only if (see [22])

||f ||2H2 ≍ |f(0)|2 +
∫

B
|ℜf(z)|2(1 − |z|2)dν(z) < ∞. (1)

The BMOA space consists of all f ∈ H2 satisfying the condition (see [22])

‖f‖2
BMOA = |f(0)| + sup

1

σ(Q)

∫

Q
|f − fQ|

2dσ < ∞,

where fQ denotes the averages of f over Q and the supremum is taken over all

Q = Q(ξ, δ) = {η ∈ S : |1 − 〈η, ξ〉|1/2 < δ}

for ξ ∈ S and 0 < δ ≤ 2. The closure in BMOA, of the set of all polynomials is
called V MOA. By [12, 22], we know that f ∈ BMOA if and only if

sup
a∈B

∫

B
|ℜf(z)|2(1 − |z|2)

(
1 − |a|2

|1 − 〈z, a〉|2

)n

dν(z) < ∞, (2)

and f ∈ V MOA if and only if

lim
|a|→1

∫

B
|ℜf(z)|2(1 − |z|2)

(
1 − |a|2

|1 − 〈z, a〉|2

)n

dν(z) = 0. (3)

Let D be the open unit disk in the complex plane C1. Denote by H(D) the class
of all analytic functions on D. Suppose that g ∈ H(D). The operator

Jgf(z) =
∫ 1

0
f(tz)zg′(tz)dt =

∫ z

0
f(ξ)g′(ξ)dξ, z ∈ D,

where f ∈ H(D), was introduced in [13] where Pommerenke showed that Jg is a
bounded operator on the Hardy space H2(D) if and only if g ∈ BMOA. Aleman
and Siskasis proved that Jg is a compact operator on the Hardy space H2(D) if and
only if g ∈ V MOA (see [2]).

The following integral operator was recently introduced and studied in [20]

Igf(z) =
∫ z

0
f ′(ξ)g(ξ)dξ.

The operator Jg, Ig acting on various function spaces have been studied recently
in [1, 2, 3, 10, 15, 20] (see, also the references therein).

The operators Jg, Ig can be extended to the unit ball. Suppose that g : B → C1

is a holomorphic map of the unit ball, for a holomorphic function f : B → C1, define

Tgf(z) =
∫ 1

0
f(tz)

dg(tz)

dt
=
∫ 1

0
f(tz)ℜg(tz)

dt

t
, z ∈ B.

This operator is called Riemann-Stieltjes operator (or Extended-Cesàro operator),
which was introduced in [5], and studied in [5, 6, 7, 9, 16, 17].

Here, we extend the operator Ig for the case of holomorphic functions on the
unit ball as follows (see also [9])

Lgf(z) =
∫ 1

0
ℜf(tz)g(tz)

dt

t
, z ∈ B.
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The purpose of this paper is to study the boundedness and compactness of
operators Tg and Lg on the Hardy space H2, which extend the results of [2, 13].
Moreover, our method is different to their’s. Below are our main results.

Theorem 1. Suppose that g is a holomorphic function on B. Then

1. Tg : H2 → H2 is bounded if and only if g ∈ BMOA.

2. Lg : H2 → H2 is bounded if and only if

sup
a∈B

∫

B

(
1 − |a|2

|1 − 〈a, z〉|2

)n+2

|g(z)|2(1 − |z|2)dν(z) < ∞. (4)

Theorem 2. Suppose that g is a holomorphic function on B. Then

1. Tg : H2 → H2 is compact if and only if g ∈ V MOA.

2. Lg : H2 → H2 is compact if and only if

lim
|a|→1

∫

B

(
1 − |a|2

|1 − 〈a, z〉|2

)n+2

|g(z)|2(1 − |z|2)dν(z) = 0. (5)

Throughout this paper, constants are denoted by C, they are positive and may
differ from one occurrence to the next. The notation a � b means that there is a
positive constant C such that a ≤ Cb. If both a � b and b � a hold, then one says
that a ≍ b.

2 Auxiliary Results

In this section, we state some auxiliary results which are incorporated in the follow-
ing lemmas.

Lemma 1. ([5]) For every f, g ∈ H(B) it holds

ℜ[Tg(f)](z) = f(z)ℜg(z) and ℜ[Lg(f)](z) = ℜf(z)g(z).

For ζ ∈ S and r > 0, the nonisotropic metric ball S(ζ, r) is defined to be

Qr(ζ) = {z ∈ B : |1 − 〈z, ζ〉|1/2 < r}.

A positive Borel measure µ on B is called a γ-Carleson measure if there exists a
constant C > 0 such that

µ(Qr(ζ)) ≤ Crγ

for all ζ ∈ S and r > 0.
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A positive Borel measure µ on B is called a vanishing γ-Carleson measure if

lim
r→0

µ(Qr(ζ))

rγ
= 0

for all ζ ∈ S and r > 0.

A well-known result about the γ-Carleson measure and vanishing γ-Carleson
measure characterization is the following lemma (see [18, 19, 22]).

Lemma 2. Let µ be a positive Borel measure on B. Then µ is a γ-Carleson measure
if and only if

sup
a∈B

∫

B

(
1 − |a|2

|1 − 〈a, z〉|2

)γ

dµ(z) < ∞.

µ is a vanishing γ-Carleson measure if and only if

lim
|a|→1

∫

B

(
1 − |a|2

|1 − 〈a, z〉|2

)γ

dµ(z) = 0.

The following lemma can be found in [21].

Lemma 3. Suppose that 0 < p ≤ q < ∞, α is real, and µ is a positive Borel
measure on B. Then for any nonnegative integer k with α + kp > −1, the following
conditions are equivalent.

1. There exists a constant C(independent of f) such that

(∫

B
|ℜkf(z)|qdµ(z)

)1/q

≤ C

(∫

B
|f(z)|pdνα(z)

)1/p

for all f ∈ Ap(να).

2. There is a constant C > 0 such that

µ(Qr(ζ)) ≤ Cr(n+1+α+kp)q/p

for all r > 0 and ζ ∈ S.

Lemma 4. ([8]) Suppose that µ is a positive Borel measure on B. Then the following
conditions are equivalent.

1. There exists a constant C such that
(∫

B
|f(z)|2dµ(z)

)1/2

≤ C‖f‖H2

for all f ∈ H2.

2. There is a constant C > 0 such that

µ(Qr(ζ)) ≤ Crn

for all r > 0 and ζ ∈ S.
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The following criterion for compactness follows by standard arguments similar,
for example, to those outlined in Proposition 3.11 of [4].

Lemma 5. The operator Tg ( or Lg ) : H2 → H2 is compact if and only if Tg ( or Lg ) :
H2 → H2 is bounded and for any bounded sequence (fk)k∈N in H2 which converges to
zero uniformly on compact subsets of B, we have ‖Tgfk‖H2 → 0 ( corresp. ‖Lgfk‖H2 →
0) as k → ∞.

3 Proofs of the main results

Proof of Theorem 1. It is easy to see that Tgf(0) = 0. By (1.1) and Lemma 1, we
have

‖Tgf‖
2
H2 ≍

∫

B
|ℜ(Tgf)(z)|2(1 − |z|2)dν(z)

=
∫

B
|ℜg(z)|2|f(z)|2(1 − |z|2)dν(z) =

∫

B
|f(z)|2dµ1(z),

where

dµ1(z) = |ℜg(z)|2(1 − |z|2)dν(z).

By Lemma 4 we see that Tg : H2 → H2 is bounded if and only if

µ1(Qr(ζ)) ≤ Crn. (6)

By Lemma 2, (6) is equivalent to

sup
a∈B

∫

B

(
1 − |a|2

|1 − 〈a, z〉|2

)n

|ℜg(z)|2(1 − |z|2)dν(z) < ∞,

i.e. g ∈ BMOA.

Similarly,

‖Lgf‖
2
H2 ≍

∫

B
|ℜf(z)|2dµ2(z), (7)

where

dµ2(z) = |g(z)|2(1 − |z|2)dν(z).

Taking p = q = 2, k = 1, α = −1 in Lemma 3, we see that Lg : H2 → H2 is bounded
if and only if

µ2(Qr(ζ)) ≤ Crn+2. (8)

By Lemma 2, (8) is equivalent to

sup
a∈B

∫

B

(
1 − |a|2

|1 − 〈a, z〉|2

)n+2

|g(z)|2(1 − |z|2)dν(z) < ∞,

as desired.
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Proof of Theorem 2. We give the proof of (a). The proof of (b) is similar and
will be omitted.

First, suppose that Tg : H2 → H2 is compact. Let (ak)k∈N be a sequence in B

such that limk→∞ |ak| = 1. Set

fk(z) =

(
1 − |ak|

2

(1 − 〈z, ak〉)2

)n
2

(z ∈ B, k ∈ N). (9)

By [14, Proposition 1.4.10] fk ∈ H2, k ∈ N, moreover, there is a constant C such
that supk∈N ‖fk‖

2
H2 ≤ C. On the other hand, it is easy to see that fk converges to 0

uniformly on compact subsets of B as k → ∞. By Lemma 5, we have that Tgfk → 0
in H2 as k → ∞. Hence

lim
k→∞

∫

B

(
1 − |ak|

2

|1 − 〈z, ak〉|2

)n

|ℜg(z)|2(1 − |z|2)dν(z)

= lim
k→∞

∫

B
|ℜ(Tgfk)|

2(1 − |z|2)dν

≍ lim
k→∞

‖Tgfk‖
2
H2 = 0.

This implies that g ∈ V MOA.

Conversely, suppose that g ∈ V MOA. Then Tg : H2 → H2 is bounded by
Theorem 1. Moreover, for every fixed ε > 0, there exist an η0 ∈ (0, 1) such that

∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

)n

dµ1(z) < ε (10)

for all a ∈ B with η0 < |a| < 1. Let r0 = 1 − η0. For ζ ∈ S, r ∈ (0, r0), let
a = (1 − r)ζ . Then a ∈ B, η0 < |a| < 1,

|1 − 〈z, a〉| < 2r and 1 − |a|2 ≥ r

for each z ∈ Qr(ζ). Hence

(
1 − |a|2

|1 − 〈z, a〉|2

)n

≥

(
r

(2r)2

)n

= (4r)−n (11)

for each z ∈ Qr(ζ). By (10) and (11), we have

µ1(Qr(ζ))

4nrn
≤
∫

Qr(ζ)

(
1 − |a|2

|1 − 〈z, a〉|2

)n

dµ1(z)

≤
∫

B

(
1 − |a|2

|1 − 〈z, a〉|2

)n

dµ1(z) < ε (12)

for all r ∈ (0, r0) and ζ ∈ S. Let ε > 0 be fixed and µ̃1 ≡ µ1 |B\(1−r0)B . As in the
proof of Theorem 1.1 of [11], we see that there exists a constant C > 0 such that

µ̃1(Qr(ζ)) ≤ Cεrn. (13)
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Suppose that (fk)k∈N is a sequence in H2 such that converges to 0 uniformly on
compact subsets of B and supk∈N ‖fk‖H2 < L. By Lemma 1, we have

‖Tgfk‖
2
H2 ≍

∫

B
|ℜg(z)|2|fk(z)|2(1 − |z|2)dν(z)

=
∫

B
|fk(z)|2dµ̃1(z) +

∫

(1−δ0)B
|fk(z)|2dµ1(z). (14)

Using (13) and the method of Theorem 1.1 of [11], there exists a positive constant
C such that

∫

B
|fk|

2dµ̃1 ≤ Cǫ‖fk‖
2
H2 ≤ CLε, (15)

for each k ∈ N. Since fk converges to 0 uniformly on (1 − δ0)B, the second term in
(14) can be made small enough for k sufficiently large. Hence, we obtain

lim
k→∞

∫

(1−δ0)B
|fk(z)|2dµ1(z) = 0. (16)

Combining with (14), (15) and (16), we see that ‖Tgfk‖H2 → 0 as k → ∞. Applying
Lemma 5, we obtain that Tg : H2 → H2 is compact.
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