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This paper develops an extension of the Riemann sum techniques of Philippe (J. Statist. Comput.
Simul. 59: 295–314) in the setup of MCMC algorithms. It shows that these techniques apply equally
well to the output of these algorithms, with similar speeds of convergence which improve upon the
regular estimator. The restriction on the dimension associated with Riemann sums can furthermore
be overcome by Rao–Blackwellization methods. This approach can also be used as a control variate
technique in convergence assessment of MCMC algorithms, either by comparing the values of al-
ternative versions of Riemann sums, which estimate the same quantity, or by using genuine control
variate, that is, functions with known expectations, which are available in full generality for constants
and scores.
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1. Introduction

Simulation techniques and, in particular, MCMC methods, often
aim at approximating integrals of the form

E[h(X )] =
∫
R

h(x) f (x) dx (1)

for integrable functions h of interest. Once a sample (x1, . . . , xn)
is produced, be it from f or from another distribution, indepen-
dent or not, the approximation of E[h(X )] can proceed in many
ways, some of which are vastly superior to the empirical average

δE
n = n−1

n∑
i=1

h(xi ), (2)

which is nonetheless the favorite in most Monte Carlo studies.
While a genuine “Decision Theory for simulation” is difficult
to conceive, as it would have to take into account many factors
(like programming, debugging, running time and such), a co-
herent position, from a statistical point of view, is to require a
use of the sample which is as optimal as possible (see Casella
1996). The notion of “optimality” is obviously difficult to de-
fine, given that, contrary to the usual statistical setting, the value
of interest, E[h(X )], is known exactly if formally. But it does
make sense to prefer the approach which, for (approximately)

the same computing effort, produces estimators with smaller
(mean square) errors.

For instance, when the sample is (independently) generated
from a density g, the importance sampling reweighting of the
average (2) leads to an unbiased estimator whose variance may,
at least formally, decrease down to 0 (see Rubinstein 1981).
But the variance of the importance sampling estimator can also
be infinite for poor choices of g. As already demonstrated in
Philippe (1997a, b), Riemann sums can produce a considerable
improvement over standard averages like (2) in some cases and
we will show in Section 2 that this area of improvement extends
to many MCMC settings. The Riemann sum estimator is built on
a merge of analytic and simulation techniques, by considering
the sum

δR
T =

T−1∑
i=1

(
x [i+1] − x [i]

)
h
(
x [i]
)

f
(
x [i]
)
, (3)

where x [1] ≤ · · · ≤ x [T ] is the ordered sample associated with
(x1, . . . , xT ), which can be generated from the density f or from
a proposal density g. The finiteness of the variance of δR

T is
ensured by the same conditions as for the empirical average,
namely E[h2(X )] <∞. Moreover, when both h and its deriva-
tive h′ are bounded functions, the rate of convergence of the vari-
ance is in O(T−2) (see Philippe 1997b, a), compared with the
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order O(T−1) of the usual average. As demonstrated in Philippe
(1997b), as well as in the following sections, this improvement
in the speed of convergence is far from formal, since it can be
clearly observed on the cumulated sum graphs.

As in importance sampling estimator, requires the density f
needs to be known, at least up to a constant, and this is not al-
ways the case. A stronger impediment to the use of (3) is that
it is seemingly restricted to unidimensional samples: naive ex-
tensions to larger dimensions suffer from the “curse of dimen-
sionality” plaguing numerical methods (see Robert and Casella
1999). We show in Section 3 that extensions of (3) are avail-
able for both MCMC and multidimensional settings, by using
Rao–Blackwellization (see Gelfand and Smith 1990) to both
approximate marginal densities and reduce the dimension.

An important issue in using MCMC methods is to ascertain
the convergence of the simulated Markov chain to the distribu-
tion of interest and, if possible, to come up with stopping rules
or convergence diagnostics pertaining to this goal. Convergence
diagnostics are based on many features of the MCMC sam-
ples, characterising different aspects of the MCMC sample (see
Cowles and Carlin 1996, Brooks and Roberts 1999, Mengersen
et al. 1999) but an important role is played by control variates in
that they provide landmarks in the exploration of the distribution
f and give lower bounds on the simulation time. We show in
Section 4 that Riemann sums can be used as such, by providing
evaluations of the mass of the stationary distribution explored
by the Markov chain at iteration T , as in Brooks (1998). They
also lead to control variates based on various score functions.

2. Riemann sums for MCMC outputs

Before getting to the extension of (3), let us recall how and
why the Riemann sum estimators (3) can be used in MCMC
setups, mainly through a few examples, given that the theory
of order statistics on Markov chains is hardly developed. We
thus consider a unidimensional setting where a density f can be
approximated via an MCMC algorithm. The estimator (3) can
then be reproduced in terms of the Markov chain (x (t)), that is, at
a given iteration T , the sequence x (1), . . . , x (T ) can be ordered
into x [1] ≤ · · · ≤ x [T ] to produce the Riemann estimator of
E f [h(X )],

δh
T =

T−1∑
t=1

(
x [t+1] − x [t]

)
h
(
x [t]
)

f
(
x [t]
)
. (4)

That (4) converges to E f [h(X )] follows from Philippe (1997b)
by asymptotic arguments on the convergence of the spacings
(x [t+1]− x [t]), when (x (t)) is ergodic, that is, truly converging to
the stationary distribution f .

The on-line computation of (4) thus requires ranking the cur-
rent value x (T ) of the Markov chain within the ordered sequence,
x (T ) = x [i] say, and updating the estimator δh

T−1 as

δh
T = δh

T−1+
(
x [i+1]−x [i]

){
h
(
x [i]
)

f
(
x [i]
)−h

(
x [i−1]

)
f
(
x [i−1]

)}
.

Alternatively, if, for convergence assessment purposes, δh
T is

only used at iterations T1, . . . , Tk, . . . , the update of δh
T can be

done for these iterations only, with a computing time still of order
O(Ti ) if the values x (Ti+1), . . . , x (Ti+1) are ranked separately.

Since, in most MCMC settings, f is only known up to a mul-
tiplicative factor, f (x) ∝ f̃ (x), the alternative representation∑T−1

t=1

(
x [t+1] − x [t]

)
h
(
x [t]
)

f̃
(
x [t]
)∑T−1

t=1

(
x [t+1] − x [t]

)
f̃
(
x [t]
) (5)

will be used, rather than (4), with obviously the same conver-
gence properties. Note that the denominator provides an estimate
of the normalization constant of f̃ , which comes as an alterna-
tive to the methods proposed in Geyer (1993) and Chen and Shao
(1997).

The main difference with the iid case is that, due to the ab-
sence of theoretical results on the speed of convergence of the
spacings (x [t+1]− x [t]) and on the order of var(x [t+1]− x [t]) and
cov(x [t+1] − x [t], x [t ′+1] − x [t ′]) for general Markov chains, the
convergence rate on the variance of (4) cannot be evaluated. We
will however check in Example (2) that this rate is still approx-
imately T−2 when h and h′ are bounded. This is not surprising,
given that the spacings are asymptotically independent and thus
recover most of the properties of their iid counterparts.

Example 1. Consider the density

f0(x) ∝ e−x2/2

(1+ (x − x0)2)ν
, (6)

motivated in Robert (1995) as the posterior distribution of
a Cauchy scale parameter, which can be represented as the
marginal density of

g(x, y) ∝ e−x2/2 yν−1 e−(1+(x−x0)2)y/2,

with the following conditional distributions

X | y ∼ N (x0 y/(1+ y), 1/(1+ y))

Y | x ∼ Ga(ν, (1+ (x − x0)2)/2).

The corresponding Gibbs sampler is therefore straightforward
to implement.

Figure 1(a) illustrates the convergences of the Riemann es-
timator and the empirical average for the estimation of E f0 [X ]
based on a given sequence of x (i)’s. The faster convergence of
the Riemann estimator, when compared with the empirical av-
erage, is clearly visible on this graph and the Riemann estima-
tor is close to the true value after only a few hundred itera-
tions. Since this comparison is based on a single sequence, we
also present a comparison based on a Monte Carlo experiment
for 2000 replications of such sequences. We construct a 95%
equal-sided confidence band for both the empirical average and
the Riemann estimator which is represented on Fig. 1(b). The
improvement brought by (4) is magnified on this graph, with a
range of variation much smaller from the start.

In order to compare the behavior of both estimators in a
Markovian setting, we can also take advantage of the fact that it
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Fig. 1. (a) Successive values of the Riemann estimator [dots] and of the empirical average [full] associated with the Gibbs sampler for the
estimation of E f0 [X] in Example 1 with x0 = 0 and ν = 2 . The true value is 0 and the convergence is represented for a given MCMC sample. (b)
Monte Carlo comparison of the 95% confidence bands for the Riemann estimators associated with the Gibbs sampler [dots] and with [A1 ] (see
below) [dashes], and for the empirical average associated with the Gibbs sampler [long dashes] and with [A1 ] [full]. (c) Same graph as (a) for a
sample simulated via [A1 ] and the Riemann estimator [dashes] and the empirical average [long dashes]

is possible to generate directly, that is, independently, from (6).
Indeed, an accept-reject algorithm based on a Gaussian proposal
distribution can be derived as follows:

1. Generate x ∼ N (0, 1) and u ∼ U([0, 1])
2. If u ≤ (1+ (x − x0)2)−ν take x [A1]

else go to 1

Figure 1(c) plots the convergence to 0 of both the empirical
average and the Riemann estimator when based on a (single)
sample simulated from [A1] and it shows the considerable im-
provement brought by (4). Figure 1(b) also compares the per-
formance of both estimators when based on an iid sample from
(6) and it shows that both estimators have very close behavior
in terms of convergence rate for both the iid and the dependent
samplings. The amplitudes of the confidence regions are equal
and therefore the loss of performance due to independence has
no strong influence on the variance of the Riemann estimators.

Example 2. We now consider an auto-exponential model (see
Besag 1974), with Y = (Y1, Y2) ∈ R2

+ distributed according to

the density

g(y1, y2) ∝ exp(−y1 − y2 − y1 y2)IR2+ (y1, y2).

The conditional distributions are available and given by

Y1 | y2 ∼ Exp(1+ y2)

Y2 | y1 ∼ Exp(1+ y1),

and thus induce a corresponding Gibbs sampler.
Since the marginal density of Y1 is available and equal to

g1(y1) ∝ e−y1

1+ y1
IR+ (y1), (7)

the Riemann estimator (5) can be used to estimate integrals of
the form ∫

g1(y1)h(y1) dy1,

that is, integrals that bear only on the first component of Y .
Similarly to the previous example, the alternative to generate

iid variables from g1 through an accept-reject algorithm is also
available and allows for a comparison of the performances of
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Fig. 2. Representation of log(var(δT )) against log(T) for the estimation of E[hi (Y1 )], by δE
T ( full) and δR

T (dots) based on a Gibbs sample (G) and
an iid sample produced by accept-reject (I), for the expectations of h1(x ) = x (left) and h2(x) = 1/(1 + x) (right) in model (7) (based on 2000
independent replications)

both estimators in the dependent and independent cases. (The
proposal distribution is then exponential.)

Figure 2 represents the evolution of the couples (log(T ),
log[var(δT )]) for 10 values of T (where T is the sample size),
for the expectations of the functions h1(x) = x and h2(x) =
1/(1 + x); it exhibits an almost perfect linear fit. We can thus
conclude that the opposition between the O(T−2) and O(T−1)
rates derived in the independent case extends to the Markov case,
given that the lines hardly differ for both cases. The estimates
of the slopes α, that is, of the rate of convergence O(T−α), are
given in Table 1 and indeed show very little difference between
the independent and the Markov cases. For the approximation
of E[h2(X )], the estimate of α is close to 2, which is in line with

Table 1. Estimation of the decrease rate α of the variance for the
empirical average (δE ) and the Riemann estimator (δR), based on an
iid sample (I) and a Gibbs sample (G), for the estimation of E[hi (Y1 )]
in model (7), when h1(x) = x and h2(x) = 1/(1 + x) (based on 2000
independent replications)

δE (I) δE (G) δR(I) δR(G)

h1 1.05 1.03 1.69 1.57
h2 1.05 1.03 2.13 1.97

the result of Philippe (1997b) of a convergence rate in O(T−2)
for bounded functions with bounded derivative.

3. Rao–Blackwellized Riemann sums

3.1. Data augmentation model

We now consider the more general setup where Y = (X, Z ) ∈
R× Rp−1 is distributed from a known density g and E f [h(X )]
is the quantity of interest. WhileE f [h(X )] can be formally writ-
ten as (1), the marginal density f is usually unknown and the
Riemann estimator (3), which depends explicitly on f is not
available. We now consider an alternative, based on the Rao–
Blackwell estimator of f , assuming that the full conditional den-
sities are known in closed form (up to a constant). In particular,
π (x | z) denotes the full conditional density of X given Z = z.

Rao–Blackwellization has been promoted in Gelfand and
Smith (1990) and Casella and Robert (1996) as a mean to reduce
the variance of estimators of integrals, but the improvement is
rarely substantial in practice (see Robert 1998). Another facet of
Rao–Blackwellization is to come up with a parametric estimator
of marginal densities, thus providing a significant improvement
when compared with standard non-parametric estimates. For
instance the Rao–Blackwell estimator of the marginal density
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based on the Markov chain (x (t), z(t)) is

f̂ (x) = T−1
T∑

t=1

π
(
x | z(t)

)
,

which converges to f (x). A natural extension of the Riemann
estimator (4) is thus to replace the density f by its estimation f̂ .
The corresponding Rao–Blackwellized Riemann sum estimator
is thus

δ
R/RB
T =

T−1∑
t=1

(
x [t+1] − x [t]

)
h
(
x [t]
)

f̂
(
x [t]
)

= T−1
T−1∑
t=1

(
x [t+1] − x [t]

)
h
(
x [t]
)( T∑

k=1

π
(
x [t]

∣∣ z(k)
))
.

(8)

Since f̂ converges to f , this estimator is also convergent. How-
ever, the finer convergence properties of the estimator are quite
difficult to fathom, compared with (3), given the interdepen-
dence between f̂ and the x (t)’s. In setups where π (x | z) is only
known up to a constant, (8) is replaced by the ratio∑T−1

t=1

(
x [t+1] − x [t]

)
h
(
x [t]
)(∑T

k=1 π
(
x [t]

∣∣ z(k)
))∑T−1

t=1

(
x [t+1] − x [t]

)(∑T
k=1 π

(
x [t]

∣∣ z(k)
)) .

The update of the estimator at iteration T is then of order T .
Indeed, if (x (T+1), z(T+1)) is the output of the MCMC algorithm

Fig. 3. (left) The 95% confidence bands of the Riemann ( full) and Rao–Blackwellized Riemann (dashes) sum estimators of E f0 [X] in model (6)
(Both curves overlap and cannot be distinguished on the graph.) and (right) The same comparison for the auto exponential model. (Both graphs
are based on 2000 independent replications.)

at iteration T + 1, and if x (T+1) = x [i0],

δT+1 = T

T + 1
δT

+ 1

T + 1

∑
t

(
x [t+1] − x [t]

)
h
(
x [t]
)
π
(
x [t]

∣∣ zi0

)
+ x [i0+1] − x [i0]

T + 1

∑
t 6=i0

{
h
(
x [i0]

)
π
(
x [i0] | z(t)

)
− h

(
x [i0−1]

)
π
(
x [i0−1] | z(t)

)}
To evaluate the effect of the estimation on the variance, we first
consider the same examples as in the previous section, since we
can compare the performance of the estimator δR/RB

T with the
original Riemann estimator. Figure 3 illustrates the comparison
between the Riemann estimators and δR/RB

T for Examples 1 and
2. In both cases, the strong similarity between both curves shows
that the influence of replacing f with f̂ is minimal in these cases.

3.2. Multidimensional extensions

So far, the Riemann sum estimator has only been defined for
unidimensional chains (x (t)). While multidimensional exten-
sions are formally available, they suffer from the “curse of
dimensionality”, with larger variances than the empirical av-
erage when integrating in spaces of dimensions 4 and more
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(see Philippe 1997b). Nonetheless, it is possible to extend the
Rao–Blackwellized Riemann sum estimator to approximate
multidimensional integrals. The decomposition of the integral
on which this extension is based is (l = 1, . . . , p)

E f [h(X )] =
∫
R

∫
Rp−1

h(x)πl(xl | x−l)π
l(x−l) dx−ldxl , (9)

where x−l = (x1, . . . , xl−1, xl+1, . . . , x p) and

f (x) = πl(xl | x−l)π
l(x−l).

The expectation E f [h(X )] thus appears as a unidimensional in-
tegral of the function

ϕ(xl) =
∫
Rp−1

h(x−l , xl)πl(xl | x−l)π
l(x−l) dx−l

and the original Riemann sum estimator could apply if ϕ was
known. Since it is not available in closed form in general, it can
be estimated by a Rao–Blackwellized approximation, that is,

ϕ̂(xl) = 1

T

T∑
k=1

h
(
x (k)
−l , xl

)
πl

(
xl | x (k)

−l

)
,

which converges to ϕ(xl).
This decomposition thus allows for the elimination of the

multidimensional integration problem and reduces the integra-
tion to an unidimensional problem, namely the integration of
ϕ(xl) on R. The Riemann sum approximation (4) applies and
leads to

δl
T = T−1

T−1∑
t=1

(
x [t+1]

l − x [t]
l

){ T∑
k=1

h
(
x [t]

l , x (k)
−l

)
πl

(
x [t]

l | x (k)
−l

)}
(10)

as an estimator of E f [h(X )]. Note that the fact that the x [t]
l ’s are

marginally distributed from

f l(xl) =
∫

f (x) dx−l

in (10) does not appear in the estimator δl
T , because, contrary

to the standard importance sampling estimator, the importance
ratio does not appear in a Riemann sum estimator (see Philippe
1997a).

Obviously, the superior performances of the original Riemann
sum estimator (3) are not preserved, because the speed of con-
vergence is now dictated by the speed of convergence of the
Rao–Blackwellized estimator of the conditional density, ϕ̂. Once
again, finer convergence properties of (10) are difficult to assess,
that is, further than the mere convergence of δl

T to E f [h(X )].

Table 2. Number of failures and observation times for ten nuclear pumps (Source: Gaver and O’Muircheartaigh (1987)

Pump 1 2 3 4 5 6 7 8 9 10

Failures 5 1 5 14 3 19 1 1 4 22
Time 94.32 15.72 62.88 125.76 5.24 31.44 1.05 1.05 2.10 10.48

3.3. Multiple estimates

A feature worth noticing is that (10) depends on the choice of
the component l in the decomposition (9). Therefore, when all
the conditional densities πl(xl | x−l) (l = 1, . . . , p) are avail-
able, this approach produces p convergent estimators of the
integral E f [h(X )], which are all based on the same Markov
chain. A first implication of this multiplicity of estimates is to
identify the fastest component, that is, the one with the highest
rate of convergence, directly by comparison of the convergence
graphs, in order to reduce the computing time. In fact, the con-
vergence rate of the variance of δl

T clearly depends on the choice
of the coordinate l. More particularly, Philippe (1997a) shows
that the convergence properties of the Riemann sums strongly
depends on the function h in the iid case. For a fixed l, we
have∫

R
h(x) f (x) dx =

∫
R

∫
Rp−1

h(x)πl(xl | x−l)π
l(x−l) dx−l dxl

=
∫
R

∫
Rp−1 h(x)πl(xl | x−l)π l(x−l) dx−l

f l(xl)

× f l(xl) dxl ,

which shows that δl
T is also the evaluation of the expectation of

ψl(xl) =
∫
Rp−1 h(x)πl(xl | x−l)π l(x−l) dx−l

f l(xl)

=
∫
Rp−1

h(x)π (x−l | xl) dx−l

against the marginal f l . Therefore if we can choose the com-
ponent l in such a way that the function ψl is bounded, we
are under conditions which ensure a faster convergence of the
Riemann estimator. This choice of the coordinate is then related
to the selection of the conditional π (x−l | xl) with the lighter
tails. Note that, for h(x) = h(x1) and l = 1, the function ψ1 is
equal to h and δl

T is the estimator δR/RB
T .

Example 3. Consider the model introduced by Gaver and
O’Muircheartaigh (1987) which was originally proposed for the
analysis of failures of nuclear pumps, with the dataset given in
Table 2, and is now used as a benchmark in the MCMC liter-
ature (see Robert and Casella 1999). The failures of the i-th
pump are modeled according to a Poisson process with param-
eter λi (1 ≤ i ≤ 10). For an observation time ti , the number of
failures pi is a Poisson P(λi ti ) random variable. For the prior
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Fig. 4. Convergence paths for the different eleven Rao–Blackwellized Riemann sum estimates of E[βλ1 ] (top) and of E[λ1λ2 ] (bottom) for the
pump failure example

distributions

λi
iid∼ Ga(α, β), β ∼ Ga(γ, δ) (1 ≤ i ≤ 10),

with α = 1.8, γ = 0.01 and δ = 1, the joint distribution is

π (λ1, . . . , λ10, β | t1, . . . , t10, p1, . . . , p10)

∝
10∏

i=1

{
λ

pi+α−1
i e−(ti+β)λi

}
β10α+γ−1 e−δβ

and the corresponding full conditionals are

λi | β, ti , pi ∼ Ga(pi + α, ti + β), (1 ≤ i ≤ 10)

β | λ1, . . . , λ10 ∼ Ga

(
γ + 10α, δ +

10∑
t=1

λi

)
.

Each of these eleven posterior conditional distributions corre-
spond to a different Rao–Blackwellized Riemann sum estimate
(10). Figure 4 represents the convergence of these different es-
timates for the approximation of E[βλ1] and E[λ1λ2].

Since the full posterior distributions are completely known,
we can now construct eleven different Rao–Blackwellized
Riemann sum estimates of E[βλ1] and E[λ1λ2]. Figure 4
illustrates the convergences of these different estimates. It shows
similar features for the eleven estimates, although some require
longer convergence times (see in particular the estimation of
E[λ1λ2] where the slowest curve corresponds to λ6).

Besides providing simultaneously different convergent es-
timators of quantities of interest, these Rao–Blackwellized

Riemann sum estimators can also significantly contribute to con-
vergence monitoring. In fact, they first provide a straightforward
stopping rule which is that all the available estimates have con-
verged to a similar value. This method was also proposed in
Robert (1995) with different estimators. While it is not sufficient
to guarantee convergence or even stationarity, especially when
the monitoring is based on a single path of the Markov chain, the
comparison of the various estimates increases the confidence in
the evaluation ofE[h(X )]. However, another major incentive for
using Rao–Blackwellized Riemann sums in convergence mon-
itoring is that they lead to simple control variates, as shown in
the next section.

4. Control variates for convergence assessment

We show in this section how a single path of the Markov chain
can be used to produce a valid, i.e. convergent, evaluation of the
“missing mass”, that is, of the weight of the part of the support
of f which has not yet been explored by the chain. Although
the method is markedly different, the goal is similar to Brooks
(1998), where the author also evaluates the probability of the
part of the space not yet explored by the Markov chain.

4.1. Control via estimation of 1

When the integration problem is of dimension 1 or when a uni-
variate marginal density f is available in closed form, the es-
timator (4) can be used with the constant function h(x) = 1,
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leading to

11
T =

T−1∑
t=1

(
x [t+1] − x [t]

)
f
(
x [t]
)

(11)

as an “estimator of 1”. In this special case, 11
T thus works as

a control variate in the sense that it must converge to 1 for the
chain to converge. The important feature of (11) is, however, that
it provides us with an “on-line” evaluation of the probability
of the region yet unexplored by the chain and is thus a clear
convergence diagnostic for stationarity issues.

Example 4. Consider the case of a bivariate normal mixture,

(X, Y ) ∼ pN2(µ,6)+ (1− p)N2(ν,6′), (12)

where µ= (µ1, µ2), ν= (ν1, ν2)∈R2 and the covariance matri-
ces are

6 =
(

a c

c b

)
, 6′ =

(
a′ c′

c′ b′

)
.

In this case, the conditional distributions are also normal mix-
tures,

X | y ∼ ωyN
(
µ1 + (y − µ2)c

b
,

det6

b

)

Fig. 5. (top) Histogram of the Markov chain after 4000, 6000 and 10,000 iterations (middle) Path of the Markov chain for the first coordi-
nate x (bottom) Control curves for the bivariate mixture model, for the parameters µ = (0, 0), ν = (15, 15), p = 0.5, 6 = 6 ′ = ( 3 1

1 3
)

(Continued on next page).

+ (1− ωy)N
(
ν1 + (y − ν2)c′

b′
,

det6′

b′

)
Y | x ∼ ωxN

(
µ2 + (x − µ1)c

a
,

det6

a

)
+ (1− ωx )N

(
ν2 + (y − ν1)c′

a′
,

det6′

a′

)
,

where

ωx = p−1/2 exp(−(x − µ1)2/(2a))

pa−1/2 exp(−(x − µ1)2/(2a))+ pa′−1/2 exp(−(y − ν1)2/(2a′))

ωy = pb−1/2 exp(−(y − µ2)2/(2b))

pb−1/2 exp(−(y − µ2)2/(2b))+ pb′−1/2 exp(−(y − ν2)2/(2b′))
.

They thus provide a straightforward Gibbs sampler, while the
marginal distributions of X and Y are again normal mixtures,

X ∼ pN (µ1, a)+ (1− p)N (ν1, a′)

Y ∼ pN (µ2, b)+ (1− p)N (ν2, b′).

It is easy to see that, when both components of the normal
mixture (12) are far apart, the Gibbs sampler may take a large
number of iterations to jump from one component to the other.
This feature is thus ideal to study the properties of the conver-
gence diagnostic (11). As shown by Fig. 5, for the numerical val-
ues µ= (0, 0), ν= (15, 15), p= 0.5, 6=6′ = ( 3 1

1 3 ), the chain
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Fig. 5. (Continued.)

takes almost 5000 iterations to jump to the second component
and this is exactly diagnosed by (11), where both indicators con-
verge quickly to p = 0.5 at first and then to 1 when the second
mode is being visited. This illustrates how (11) is truly an on-
line evaluation of the probability mass of the region visited by
the Markov chain.

While the previous examples all involve the Gibbs sampler,
the appeal of using Riemann and Rao–Blackwellized Riemann
sum estimators is not restricted to the Gibbs sampler. For in-
stance, in the case of a unidimensional Metropolis–Hastings
algorithm, the Riemann sum estimators apply as well and the

estimator 11
T can be used to calibrate the instrumental density.

Indeed, a monitoring of the convergence of11
T to 1 for different

instrumental densities (or different parameters of an instrumen-
tal density) can identify a fast mixing algorithm.

Example 5. Consider simulating from the inverse Gaussian
density

g(x) ∝ x−3/2 exp(−θ1x − θ2/x)IR+ ,

using a gamma distribution Ga(β
√
θ2/θ1, β) as proposal. This

parameterization is chosen in order to preserve the first moment
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Fig. 6. (bottom) Control variate for the simulation of the inverse Gaussian distribution using a Metropolis–Hastings algorithm associated with
the instrumental densities G(β θ2 /θ1 , β) for different values of β(θ1 = 1 .5 , θ2 = 2 ) (top) Magnification of the control curves for 0 .5 ≤ β ≤ 2
and the first 2,500 iterations

of the inverse Gaussian distribution. There is therefore only one
free parameter β. While this parameter can be calibrated on
the acceptance rate of the Metropolis–Hastings algorithm, as
suggested in the literature (see Robert and Casella (1999), Note
6.7.4), monitoring the convergence to 1 of the control variate
(11) gives a better view of the convergence properties, that is, of
the mixing speed, of the corresponding algorithm. In particular,
the acceptance rates vary between 0.69 and 0.79 for the values
of β under study, being quite above the suggested 0.5. Figure 6
shows convergence paths for various values ofβ and a preference
for the value β = 1.5.

4.2. Estimating the missing mass

In the general case where f is not available in closed form, the
Rao–Blackwellized Riemann sum extension (10) can replace
(4) for the constant function h(x) = 1, leading to the family of
control variates (1 ≤ l ≤ p)

11
T (l) = T−1

T−1∑
t=1

(
x [t+1]

l − x [t]
l

)( T∑
k=1

πl

(
x [t]

l | x (k)
−l

))
. (13)

In this estimate, the average

T−1
T∑

k=1

πl

(
x [t]

l | x (k)
−l

)
(14)

corresponds to the Rao–Blackwellized estimation of the mar-
ginal density of the l-th component. Therefore, when the whole
support of the density has been visited, the quantity (13) con-
verges to 1. Most unfortunately, the reverse is not true, namely
the fact that (13) is close to 1 is not a sufficient condition for
the exploration of the whole support of the joint density by the
Markov chain.

The reason for this difficulty is that the Rao–Blackwell es-
timation of the marginal density is based on the Markov chain
and thus on the part of the support explored so far. In the case of
well separated modes, as in Example 4, the full conditional dis-
tributions will not detect the missing part of the support, given
that they are concentrated on one of the modes. More precisely,
at a given iteration T , let Cl ⊂ R denote the region visited by
the l-th component, C−l ⊂ Rp−1 denote the region visited by
the x (t)

−l ’s and let C = Cl × C−l be the Cartesian product of the
two. Since the x−l subchain is concentrated on C−l , the Rao–
Blackwell estimate of the marginal density of xl is biased: its
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expectation is ∫
C−l
πl(xl | x−l)π l(x−l) dx−l∫

C−l
π l(x−l) dx−l

,

rather than the marginal density fl . The corresponding Rao–
Blackwellized Riemann sum estimator is thus approximat-
ing ∫

C f (x) dx∫
C−l
π l(x−l) dx−l

= P(X ∈ C | X−l ∈ C−l) .

This quantity may then be close to 1 for every l if

P
(
Xl ∈ Cl , X−l ∈ Cc

−l

) ≈ 0

for every l, which is the case for well separated modes as in
Example 4.

4.3. Control via score functions

This difficulty with the control variate associated with constant
functions leads us to propose a reinforcement of the convergence
diagnostic by using other functions h with known expectations
and different features. Brooks and Gelman (1998) consider score

Fig. 7. Control curves for the pump failure example: Rao–Blackwellized Riemann sum control variates for the constant function h = 1 (top) and
for the functions hl

m (bottom)

functions

hl(x) = ∂

∂xl
log( f (x)) = ∂

∂xl
log(πl(xl | x−l)),

whose expectation is equal to zero when the support of the
conditional distribution πl is unbounded. More general score
functions can be proposed for convergence purposes, namely
(l,m = 1, . . . , p)

hl
m(x) = ∂

∂xm
log(πl(xl | x−l)) ,

since they all have zero expectations under the stationary
distribution when l 6=m under fairly general conditions. We
thus propose to monitor the corresponding Rao–Blackwellized
Riemann sum estimators of Eπ [hm

l (X )]

1S
T (l,m) = T−1

T−1∑
t=1

(
x [t+1]

l − x [t]
l

)( T∑
k=1

∂

∂xm
πl

(
x [t]

l | x (k)
−l

))
,

(15)

till they all converge to 0.

Example 3 continued. Figure 7 compares the behavior of the
control variates (13) and (15). Note that

∂

∂λi
log(π (β | λ))
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Fig. 8. Control curves for the bivariate mixture model, for the parameters µ = (0, 0), ν = (15, 15), p = 0.5, and 6 = 6′ = ( 3 1
1 3

). (top) Control
variates with expectation 1 (bottom) Control variates with expectation 0. (Same simulations as in Fig. 5.)

is independent of i , while, for i 6= j ,

∂

∂λi
log(π (λ j | λ− j , β)) = 0.

The number of score control variates is thus 11 in this setup.
For this model, where the posterior is actually unimodal, both
criteria lead to the same convergence times, in the sense that
it takes about 6000 iterations to get to the expected value.
Note that the control variates of the top graph sometimes con-
verge to 1 from above, which shows that the error due to the
Rao–Blackwell estimation of the marginal densities is larger
than the missing mass in the explored support.

Example 4 continued. When considering the same sequence
of iterations as in Fig. 5. Figure 8 illustrates the improvement
brought by the score functions hl

m , when used in complement to
the control variates for 1. While the chain has only explored half
of the support at iteration 6000, the control variates associated
with 1 both give a positive signal very early. On the contrary,

the score functions hl
m somehow capture the fact that the whole

support has not been explored at this stage.

5. Conclusion

This paper has established that Riemann sum estimation is a high
performance alternative to the empirical average, and that it can
be used in MCMC settings at little implementation cost since
it is an on-line processing of the simulation output like Rao–
Blackwellization. While providing more accurate estimations
of the quantities of interest, often by an order of magnitude in
the variance, it also allows for the calibration of Metropolis–
Hastings algorithms and for convergence monitoring. In partic-
ular, it offers a very specific and attractive feature of estimating
“on-line” the probability mass of the part of the support explored
so far. The availability of many simultaneous control variates is
another point of interest since, while the criterion is unidimen-
sional on an individual basis, the possibility of multiplying the
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number of control variates allows to capture most of the features
of the stationary distribution.
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