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Riemann zeros from Floquet engineering a trapped-ion qubit
Ran He 1,2, Ming-Zhong Ai1,2, Jin-Ming Cui 1,2✉, Yun-Feng Huang 1,2✉, Yong-Jian Han1,2, Chuan-Feng Li 1,2✉, Guang-Can Guo1,2,

G. Sierra3 and C. E. Creffield 4✉

The non-trivial zeros of the Riemann zeta function are central objects in number theory. In particular, they enable one to reproduce
the prime numbers. They have also attracted the attention of physicists working in random matrix theory and quantum chaos for
decades. Here we present an experimental observation of the lowest non-trivial Riemann zeros by using a trapped-ion qubit in a
Paul trap, periodically driven with microwave fields. The waveform of the driving is engineered such that the dynamics of the ion is
frozen when the driving parameters coincide with a zero of the real component of the zeta function. Scanning over the driving
amplitude thus enables the locations of the Riemann zeros to be measured experimentally to a high degree of accuracy, providing
a physical embodiment of these fascinating mathematical objects in the quantum realm.
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INTRODUCTION

The Riemann zeta function ζ(s) is the Rosseta stone for number
theory. The stone, found by Napoleon’s troops in Egypt, contains
the same text written in three different languages, which enabled
the Egyptian hieroglyphics to be deciphered. The ζ-function is also
expressed in three different “languages”: as the series ∑nn

−s over
the positive integers n, as the product ∏p1/(1− p−s) over the
prime numbers p, and as the product /

Q

nð1� s=ρnÞes=ρn over
the Riemann zeros ρn

1. Note that the first two definitions of ζ(s) are
only convergent in the half plane Re½s�> 1, while the third
definition is valid over the entire complex s-plane. Riemann
conjectured in 1859 that these zeros would have a real part equal
to a half, ρn ¼ 1

2 þ iEn, where En is a real number2. This is the
famous Riemann Hypothesis (RH), one of the six unsolved
Millennium problems (https://www.claymath.org/millennium-
problems), whose solution would amplify our knowledge of the
distribution of prime numbers with resulting consequences for
number theory and factorization schemes3. More poetically, in the
words of M. Berry, the proof of the RH would mean that “there is
music in the prime numbers”4.
One of the most interesting ideas to attack the RH is to show

that the En are the eigenvalues of the Hamiltonian of a quantum
system. This idea, suggested by Pólya and Hilbert around 19125,
began to be taken seriously in the 70s with Montgomery’s
observation6 that the Riemann zeros closely satisfy the statistics of
the Gaussian unitary ensemble (GUE). In the 80s Odlyzko7 tested
this prediction numerically for 105 zeros around the 1020th zero,
finding only minor deviations from the GUE. These were explained
later by Berry and collaborators8–10 using the theory of quantum
chaos, and led him to propose that the En are the eigenvalues of a
quantum chaotic Hamiltonian whose classical version contains
isolated periodic orbits whose periods are the logarithm of the
prime numbers. Much work has been done11–17 to find such a
Hamiltonian, but so far without a definitive answer.
We present here an experimental observation of the lowest

Riemann zeros, which is quite different from the spectral
realization described above. Our intention is not to prove the
RH, but rather to provide a physical embodiment of these

mathematical objects by using advanced quantum technology.
The physical system that we consider is a trapped-ion qubit. The
ion is subjected to a time-periodic driving field, and consequently
its behavior is described by Floquet theory, in which the familiar
energy eigenvalues of static quantum systems are generalized to
“quasienergies”. These quasienergies can be regulated by the
parameters of the driving, in a technique termed Floquet
engineering. In particular, when the quasienergies are degenerate
(or cross) the ion’s dynamics is frozen, which can be observed
experimentally. The Riemann zeta function enters into this
construction in the design of the driving field, which is engineered
to produce the freezing of the dynamics when the real part of
ζ(s)/s, with s ¼ 1

2 þ iE, vanishes. Thus observing the freezing of the
qubit’s dynamics as the driving parameters are varied gives a
high-precision experimental measurement of the location of the
Riemann zeros.

RESULTS

Floquet theory

We consider a two-level system subjected to a time-periodic

driving, described by the Hamiltonian HðtÞ ¼ Jðσx þ f ðtÞ
2 σzÞ, where

σx,z are the standard Pauli matrices and J represents the bare
tunneling between the two energy levels. Henceforth we will set
_= 1, and measure all energies (times) in units of J (J−1). As H(t) is
time-periodic, H(t)= H(t+ T), where T is the period of the driving,
the system is naturally described within Floquet theory, using a
basis of Floquet modes and quasienergies which can be extracted
from the unitary time-evolution operator for one driving-period

U ¼ T exp½�i
R T

0 Hðt0Þdt0� (where T denotes the time-ordering

operator). The Floquet modes, ΦjðtÞ
�

�

�

, are the eigenstates of
U, and the quasienergies, ϵj, are related to the eigenvalues of U via
λj ¼ exp �iTϵj

� �

.
The Floquet modes provide a complete basis to describe the

time-evolution of the system, and the quasienergies play an
analogous role to the energy eigenvalues of a time-independent
system. The state of the qubit can thus be expressed as
ψðtÞj i ¼

P

jαj exp �iϵjt
� �

ΦjðtÞ
�

�

�

, where the expansion coefficients
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αj are time-independent, and the Floquet modes are T-periodic
functions of time. From this expression, it is clear that if two
quasienergies approach degeneracy, the timescale for tunneling
between them will diverge as 1/Δϵ. Although in general it is
difficult to obtain explicit forms for the quasienergies, even for the
case of a two-level system, excellent approximations can be
obtained in the high-frequency limit, when Ω= 2π/T is the largest
energy scale of the problem, that is, Ω≫ J. In that case one can
derive18 an effective static Hamiltonian, Heff= Jeffσx, where the
effective tunneling is given by

Jeff ¼
J

T

Z T

0
dte�iFðtÞ : (1)

Here F(t) is the primitive of the driving function, FðtÞ ¼
R t

0 dt
0f ðt0Þ,

and the quasienergies are given by ϵ± ¼ ± Jeffj j. The eigenvalues
thus become degenerate when they are zero, corresponding to
the vanishing of Jeff and the freezing of the dynamics. This
expression is accurate to first order in 1/Ω, and although in
principle higher-order terms could be calculated using the
Magnus expansion19, we will work at sufficiently high frequencies
for this expression to give results of excellent accuracy.
Equation (1) is the key to our approach. By altering the form of

the driving, f(t), we are able to manipulate the effective tunneling
and the quasienergies of the driven system. Our aim is to obtain a
driving function such that Jeff(E) is proportional to the real part of
g(E) with gðEÞ ¼ �ζ 1=2þ iEð Þ= 1=2þ iEð Þ, yielding an effective
Hamiltonian whose dynamics is intimately related to the proper-
ties of the ζ-function. In particular, the effective tunneling will
vanish, an effect termed “coherent destruction of tunneling”
(CDT)20, when E coincides with one of the Riemann zeros. In the
Methods section we give the details of the mathematical
derivation of the driving function, which enables us to obtain
Fourier series for f(t) and F(t) (see Fig. 4) which can be
straightforwardly programmed into a waveform generator to
provide the experimental driving. We choose to focus on the
function −ζ(s)/s for two fundamental reasons. The first is that it
has a remarkably simple Fourier transform. This also motivated
van der Pol21 and Berry22 to use this function as the basis for
physical implementations of the Riemann zeros in diffraction
experiments (in Fourier optics and in antenna radiation patterns
respectively). The second reason is that this function decays slowly

as E increases (see Fig. 4a). In previous work23,24 we proposed to
use Floquet engineering to simulate the Riemann Ξ-function1.
Although successful, the extremely rapid decay of the Ξ-function
meant that only the lowest two Riemann zeros were resolvable. In
contrast, the slower decay of ζ(s)/s should allow many more
quasienergy crossings to be detectable, and thus more zeros to be
identified.

Experiment

The experimental results were obtained by periodically driving a
single trapped ion with microwave fields. The two-level
system is encoded in the hyper-fine clock transition
0j i � 2S1=2 F ¼ 0; mF ¼ 0j i and 1j i � 2S1=2 F ¼ 1; mF ¼ 0j i in a
single ytterbium (171Yb+) ion confined in a Paul ion trap25, as
shown in Fig. 1a. This clock qubit has the advantages of high-
fidelity quantum operations and long coherence time26,27. The
tunneling, J, in this system is of the order of 10 kHz, giving a
resonant Rabi time of ~100 μs.
After 1 ms of Doppler cooling and 50 μs of optical pumping, the

ion is initialized in the ground state 0j i with a probability ≥99.5%.
The qubit is then driven by a microwave field for multiple periods.
The driving function was generated from a programmable
arbitrary waveform generator (AWG), which generates a phase
modulated microwave with a carrier frequency of 200 MHz and a
phase modulation function F(t)/224. It is then mixed with a
12.443 GHz fixed-frequency signal and filtered by a high-pass
filter. The amplified microwave fields near 12.643 GHz were
delivered to the trapped ion from an horn antenna located
outside the vacuum chamber. At the end of the multiple periods,
the state is projected onto the eigenvector of σy with eigenvalue
+1, yþ

�

�

�

¼ 1
ffiffi

2
p ð 0j i þ i 1j iÞ, by applying a π/4 rotation and normal

fluorescence detection. When more than one photon is detected,
the measurement result is noted as 1; otherwise it is noted as 0.
The time evolution of the state population is recorded as a
function of the number of periods.
In Fig. 1b we show the experimental protocol, plotted on the

Bloch sphere. As noted previously, the Floquet modes
Φ1ðE;Ω; tÞj i ¼ aðtÞ 0j i þ bðtÞ 1j i and Φ2ðE;Ω; tÞj i ¼ b�ðtÞ 0j i �
a�ðtÞ 1j i are the eigenstates of the one-period time-evolution
operator U(E,Ω), where Ω is the driving frequency, and E is a

Fig. 1 Experimental procedure to measure Floquet dynamics in a trapped-ion system. a The qubit is encoded in the clock transition of a
single trapped 171Yb+ ion. The qubit is periodically driven by a microwave field generated by an AWG and a fixed-frequency signal source,
which are both referenced to a 10 MHz rubidium frequency standard. b On the right Bloch sphere, the qubit is initialized to 0j i and evolves to
UðTÞ 0j i after one period of driving with function f(E= 16,Ω= 5). The fast dynamics (“micromotion”) of the qubit during this elementary period
is shown on the Bloch sphere, and arises from the intrinsic time-dependence of the Floquet states ΦjðtÞ

�

�

�

. On the left Bloch sphere, the qubit
starts from 0j i (the north pole) and evolves to UðnTÞ 0j i for multiple periods n= 1, 2, 3, . . . , 30. The red dots are the points measured at n= 5,
10, 15, 20, 25, 30. The insert shows the probability P(n) of projecting the qubit onto yþ

�

�

�

¼ 1
ffiffi

2
p ð 0j i þ i 1j iÞ after n periods. P(n) is a sinusoidal

function of n, with frequency proportional to the quasienergy ϵj(E). For values of E satisfying ϵj(E)= 0, the state is frozen at 0j i and P(n)= 1/2 for
all n. Since ϵj(E) is proportional to the real part of −ζ(1/2+ iE)/(1/2+ iE), we can therefore identify Riemann zeros by observing the freezing of
the dynamics, i.e., P= 1/2.
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driving parameter related to the argument of the zeta function,
ζ(1/2+ iE). Starting from the initial state 0j i, the population of the
state projected onto yþ

�

�

�

after n periods of driving is
Pðn; E;ΩÞ ¼ 1=2� A sinð2nTϵjðE;ΩÞÞ, where A ¼ Refað0Þb�ð0Þg,
and ϵj(E,Ω) is the quasienergy. It is clear that if E is equal to the
zeros of ϵj(E,Ω), ϵj(E,Ω) vanishes and P(n, E,Ω)= 1/2 for all n. While
if ϵj(E,Ω) ≠ 0, P(n,Ω, E) evolves sinusoidally with a frequency
proportional to the quasienergy ϵj(E,Ω). The Riemann zeros can
thus be identified by observing the freezing of the evolution
of P(n, E,Ω) produced by CDT.
To give a quantitative characterization of the state evolution,

we define the S parameter as S(Ω, E, y+)= ∑n[P(n,Ω, E)− 1/2],
where n= {5, 10, 15, 20, 25, 30} are the number of driving periods
in the experiment. It is straightforward to see that the zeros of the
quasienergies are the zeros of S(Ω, E, y+) as well. Therefore a scan
of the parameter E allows us to identify the Riemann zeros by
observing S(Ω, E, y+)= 0. To give a direct comparison, we show in
Fig. 2 the experimental results of S(Ω, E, y+) and the real part of
g(E) as a function of E for Ω= 2, 5, 8, and 16, respectively. For
Ω= 2, we can see that S(Ω, E, y+) shows a significant distortion
from the theoretical zeta function and does not allow the position
of the Riemann zeros to be determined. Increasing Ω, however,
substantially improves the results, and gives excellent agreement
between data and theory over the range E ≤ 200, allowing the first
eighty Riemann zeros to be resolved. The measurement can be
extended to higher E without loss of efficiency and accuracy. This
improvement occurs because larger values of Ω satisfy the high-
frequency approximation better, and thus Eq. (1) becomes more
precise. The difference between the measured zeros and the exact
Riemann zeros is shown in Fig. 2g. Most of the zeros can be
identified with an accuracy of 1% or better. In Table 1 we present
the agreement quantitatively for four different driving frequencies

over a wide range of E. We give further, and more detailed,
comparisons of the agreement in the Supplementary Information.
Since increasing Ω further would satisfy the high-frequency

limit better, it might be thought that the accuracy of the results
can be improved by increasing the driving frequency to
arbitrarily high values. This is not the case however. As we show
in the Methods section, the best results will be obtained when
the driving period T is small enough to satisfy the high-frequency
limit, while at the same time T is sufficiently large for it to replace
the upper limit of integration in Eq. (5). As a consequence of
these opposing requirements, the best results will actually be
obtained for mid-range frequencies. In Figs. 2d, f and h we show
the results for Ω= 16. Comparing with the Ω= 8 result reveals
that increasing the frequency has not improved the accuracy of
the results.

Fig. 2 Identifying Riemann zeros by observing the frozen dynamics of the state. In (a–f) the black curve is the real part of g(E). The
vertical gray lines indicate the Riemann zeros, {14.1347, 21.022, 25.0109, 30.4249, 32.9351, ...}; the other points where g(E) crosses the axis
correspond to Re½gðEÞ� vanishing but not Im½gðEÞ�, and so do not represent Riemann zeros. The dots are the S parameter which is defined as S
(Ω, E, y+)= ∑n[P(n,Ω, E)− 1/2], where n= {5, 10, 15, 20, 25, 30}. S(Ω, E, y+) is used to identify the Riemann zeros by observing S= 0. aWhen Ω=

2, the high-frequency limit is not well satisfied, so the behavior of S(Ω, E, y+) does not match g(E). b By contrast, Ω= 5 does give good
agreement for E ≤ 100. c Increasing Ω further to 8 provides even better agreement with g(E). e We implemented the measurement for E up to
200 and identified the first 80 Riemann zeros with high accuracy. d, f Results of Ω= 16. Data points with E ≤ 100 (E ≥ 100) were obtained by
2000 (5000) measurements. The error bar δS of S(Ω, E, y+) is the sum of the statistical errors of the corresponding P(n,Ω, E), where n= {5, 10, 15,
20, 25, 30}, within one standard deviation. g, h Zeros were extracted by interpolating S(Ω, E, y+) using a cubic polynomial 4000 times. Each
time, S is sampled randomly in [S− δS, S+ δS]. The error (dot) is the difference between the extracted zeros and the exact zeros (see
Supplementary Information), with the error bars indicating the standard deviations of the extracted zeros. A vertical line with no red dot has
an error falling outside the plot range.

Table 1. Comparison of the experimentally measured Riemann zeros

with the true values for different driving frequencies.

E1 E10 E30 E50 E70

Exact 14.135 49.774 101.318 143.112 182.207

Ω= 5 14.07 (1) 49.26 (19)

Ω= 8 14.06 (2) 49.67 (3) 101.13 (3) 142.90 (9) 182.28 (6)

Ω= 12 13.99 (4) 49.36 (23) 101.31 (3) 142.72 (22) 182.14 (6)

Ω= 16 14.03 (3) 49.23 (22) 101.33 (5) 142.91 (13) 181.98 (8)

Zeros were extracted by interpolating S(Ω, E, y+) ± δS with a cubic

polynomial 4000 times, where δS is the 1− σ standard deviation of S. Each

time, S is sampled randomly in [S− δS, S+ δS]. The zeros are the mean of

the interpolated zeros. The values in parentheses denote the standard

deviation of the means in terms of the least significant digit.
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Reconstruction of prime numbers

In 1859 Riemann found a formula that gives the number of primes π
(x) below or equal to x in terms of the non-trivial zeros ρn ¼ 1

2 þ iEn
2.

A consequence of this result is a theorem due to E. Landau in 1911
who gave the asymptotic behavior of the sum3,28

hðxÞ ¼ �
X

jρj�T

xρ ¼ T

2π
ΛðxÞ þ Oðlog TÞ (2)

where Λ(x) is the Mangoldt function, that is equal to log p when

x= pn and is zero otherwise. The function h(x) therefore has peaks at
the primes p and their powers pn. We plot the function h(x) in Fig. 3,
together with the function J(x)

JðxÞ ¼
X

n�1

1

n
πðx1=nÞ (3)

which jumps by 1 at every prime and by 1/n at the powers pn. Notice
that the experimental error in the zeros does not affect appreciably
the location of the peaks.

5 10 15 20
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(a) (b)

Fig. 3 Primes from zeros. The function in Eq. (2) with the sum restricted to ∣En∣ < 100 (blue) and the function 5J(x) given in Eq. (3) (red) are
calculated (a) using the exact values of En and (b) using the values of En given in Table II (Extended Data) for Ω= 16. In both cases one can
identify the first eight primes and their powers.

Fig. 4 Derivation of the driving function. a The real component of g(E)=− ζ(1/2+ iE)/(1/2+ iE). b Van der Pol’s function is the Fourier
transform, ~gðtÞ, of g(E). The function is bounded by the red curve exp �jtj=2½ �, and contains an infinite number of finite discontinuities for
positive t, arising from the floor function (see Eq. (4)). c The blue curve shows FðtÞ ¼ cos�1 ~gðtÞ cos Etð Þ, the primitive of the driving function, for
driving parameter E= 1. The discontinuities in ~gðtÞ give rise to discontinuities in this function as well. The red curve shows the Fourier
expansion of F(t), truncated at 500 terms. We can note how the fine detail is progressively blurred out as t increases. d The driving function,
f(t), for E= 1, obtained as f(t)= ∂tF(t), plotted over 0 ≤ t < T. The discontinuities in F(t) produce δ-function spikes in the driving function. By
construction, f(t) is an even function of t, and so the full periodicity of this function is 2T.
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DISCUSSION

We have presented an experimental method for measuring the
location of the zeros of the Riemann ζ-function, by using Floquet
engineering to control the quasienergy levels of a periodically
driven trapped ion. The experimentally measured values of the
zeros are in excellent agreement with their theoretical values, and
we have demonstrated how they can be used to reconstruct the
prime numbers. The high level of experimental control over this
system, and the implementation of a driving function derived
from the complex function g(E)=− ζ(s)/s (where s= 1/2+ iE),
allows as many as the first 80 zeros to be resolved. Our analysis
indicates that there is a “sweet spot” for the driving frequency, in
which Ω is sufficiently large for the system to be in the high-
frequency regime, while its period is large in comparison to the
width of the Fourier transform of g(s). Using the experimentally
measured zeros we have also obtained a good approximation of
the lowest prime numbers. This reconstruction suggests the
possibility of a direct experimental realization of the primes. The
successful realization of the Riemann zeros in a quantum
mechanical system represents an important step along a route
inspired by the Hilbert and Pólya proposal, and may lead to
further insights into the Riemann hypothesis. Another interesting
line of research will be to employ more general modulations of
the zeta function that would enable the exploration of different
intervals along the critical line29.

METHODS

Driving function derivation

Our starting point is the function gðEÞ ¼ �ζ 1=2þiEð Þ
12þiE , where ζ(s) is the

standard Riemann zeta function. We plot the behavior of this function in
Fig. 4a. As van der Pol showed in 1947, its Fourier transform (Fig. 4b) can
be written in the surprisingly simple form21

~gðtÞ ¼ et=2 � e�t=2½et � : (4)

where [x] is the integer part of x. As we can see from Fig. 4b, this function is
localized around the origin, with an envelope of the form exp �jtj=2ð Þ.
By dividing the range of integration for the Fourier transform into two

halves, it is straightforward to show that the real component of g(E) is
given by

Re gðEÞ½ � ¼ 2

4E2 þ 1
þ
Z 1

0

~gðtÞ cos Et dt: (5)

In order to observe the location of the Riemann zeros, our interest is
focused on values of E > 10. Accordingly we can simply discard the first
term, as over this range its magnitude is smaller than the experimental
uncertainty in the measurements.
Our aim is to obtain a driving function f(t) such that the effective

tunneling is proportional to the real component of g(E), that is,
Re Jeff½ � ¼ α Re gðEÞ½ �, where α is the constant of proportionality. Comparing
Eq. (5) with Eq. (1), and assuming that the driving period T is sufficiently
large to replace the upper limit of integration in Eq. (5), reveals that
FðtÞ ¼ cos�1 αT~gðtÞ cos Etð Þ. The boundary condition F(0)= 0 requires
setting α= 1/T, which yields the final driving function
f ðtÞ ¼ ∂t cos�1 ~gðtÞ cos Etð Þ½ �. This choice of α also imposes the condition
that the argument of the inverse cosine function is bounded within ± 1 as
required, since ~gð0Þ is the global maximum of ~gðtÞ. We can note that
replacing the upper limit of integration with T represents an important
restriction on the value of Ω. This replacement means that T must be large
in comparison with the width of ~gðtÞ, and thus the driving frequency Ω

must correspondingly be low. However, for Eq. (1) to be an accurate
description of the system’s dynamics requires a high value of Ω, so that the
system is in the high-frequency regime. Therefore, good results will be
obtained in an intermediate range of frequency, when both of these
conditions can be adequately satisfied.
We show the form of the F(t) and the driving function for a particular

value of E in Fig. 4c and d. The finite discontinuities present in g(E) also
produce discontinuities in F(t), and thus δ-function spikes in f(t). A
convenient way to obtain f(t) numerically is to expand F(t) in a Fourier
series, differentiate the series term by term, and then to re-sum it. As in
ref. 23, we want the driving function to be of definite parity, so that the two

Floquet states will be of opposite parity, and so can cross as the driving
parameter E is varied. If this parity condition were not satisfied, the von
Neumann–Wigner theorem would prevent the quasienergies becoming
degenerate, and they could only form broader avoided crossings instead.
For this reason we choose to expand F(t) as a Fourier sine series, so that its
derivative, f(t) is a cosine series, and is thus an even function of time.
Sufficient terms must be included in the series to ensure that the fine
structure in f(t) is reproduced with sufficient resolution. Typically in the
experiment the series was truncated at 500 terms.
In an analogous way, we could construct a driving function related to

the imaginary component of g(E). Unfortunately, however, Im½gðEÞ� does
not cross the x-axis sharply in the way that Re½gðEÞ� does, making the zeros
more difficult to locate accurately.

Experimental details

A long coherence time of the system is vital in the experiment. The
hyperfine splitting of the (171Yb+) ion, ωhf ¼ 12642812118:5þ ωBð Þ Hz,
has a second-order Zeeman shift ωB= 310.8B2, where B is the magnetic
field in Gauss (G). We used Sm2Co17 permanent magnets to generate a
static magnetic field of around B= 9.15 G to reduce the 50 Hz ac-line
noise. The whole platform is shielded in a 2-mm-thick μ-metal enclosure to
reduce the residual fluctuating magnetic fields30. During the experiment,
we still observed a slow drift of ~±30 Hz of the clock transition in 10 h. This
corresponds to ΔB∼ ± 0.005 G, which is mainly due to the temperature drift
in the laboratory. This drift is not negligible. Therefore the clock transition
frequency was frequently measured by Ramsey type measurements and
calibrated by updating the AWG wave frequency during the experiment
every half hour.

DATA AVAILABILITY

Source data and all other data that support the plots within this paper and other
findings of this study are available from the corresponding authors upon reasonable
request.
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