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Abstract

This paper outlines further properties concerning the fractional derivative of the

Riemann ζ function. The functional equation, computed by the introduction of the

Grünwald–Letnikov fractional derivative, is rewritten in a simplified form that reduces

the computational cost. Additionally, a quasisymmetric form of the aforementioned

functional equation is derived (symmetric up to one complex multiplicative

constant). The second part of the paper examines the link with the distribution of

prime numbers. The Dirichlet η function suggests the introduction of a complex strip

as a fractional counterpart of the critical strip. Analytic properties are shown,

particularly that a Dirichlet series can be linked with this strip and expressed as a sum

of the fractional derivatives of ζ . Finally, Theorem 4.3 links the fractional derivative of

ζ with the distribution of prime numbers in the left half-plane.
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1 Introduction

In the last years, fractional calculus has played a significant role in many scientific fields

and has been utilized for several applications (e.g., electromagnetism, signal processing).

It is worth noting that the fractional derivative is not uniquely defined. This lack of unique-

ness is undoubtedly the weakest point of the fractional calculus. Nevertheless, remarkable

progress has beenmade toward addressing this and other issues in the last decadewith rel-

evant results [1–7], thus making the problem of independent interest for pure and applied

mathematicians.

Fractional calculus has recently been applied to the theory of meromorphic functions

(see, e.g., [8–11]). In particular, theα-order fractional derivative of the Riemann ζ function

given by

ζ (α)(s) = eiπα

∞
∑

n=2

logα n

ns
, s ∈C,α ∈R>0 \N, (1.1)

was computed for the first time in 2015 [12]. By introducing both the Hurwitz ζ function

and the Dirichlet series, two coherent generalizations of (1.1) were obtained. These frac-

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-2202-5
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2202-5&domain=pdf
http://orcid.org/0000-0003-3320-1493
mailto:emanuel.guariglia@gmail.com
mailto:emanuel.guariglia@unibo.it


Guariglia Advances in Difference Equations        ( 2019)  2019:261 Page 2 of 15

tional derivatives reduce to the derivative in (1.1) for a = 1 and f (n) = 1, which are the cases

in which the Hurwitz ζ function and the Dirichlet series are nothing but the Riemann ζ

function, respectively [13].

The main problem of fractional derivative in (1.1) is represented by the functional

equation. Fortunately, the equation sought can be derived by introducing the forward

Grünwald–Letnikov fractional derivative. The aforementioned functional equation was

derived since this fractional derivative satisfies the generalized Leibniz rule [14, 15]. How-

ever, as often happens in mathematics, the solution of one problem gives rise to another

more important problem.The right-hand side of the functional equation in (2.7) entails ex-

tremely high computational cost due to the presence of three infinite series. Unfortunately,

each finite approximation of these series with different numerical simulations produces

an overflow. To minimize the computational cost, we follow the approach proposed by

Apostol and Spira [16, 17] for the integer-order derivatives of ζ . As a result, the aforemen-

tioned right-hand side is reduced from three to only one infinite series, with a substantial

decrease in terms of computational cost (see Sect. 3). Furthermore, the functional equa-

tion of ζ (α) is written as the sum of sines and cosines. In 2017, Guariglia and Silvestrov [14]

introduced the problem of the symmetry of (2.7). Accordingly, a quasisymmetric form of

the functional equation of ζ (α) is derived and discussed in Sect. 3.

The second part of the paper investigates other properties of ζ (α). The fractional equiva-

lent of the critical strip [18], that is, (α, 1+α), is presented and broadly discussed. The infi-

nite series in (2.9)2 associated with this strip is written in terms of ζ (α). The Riemann con-

jecture entails that the critical strip is linked with the nontrivial zeros of ζ , which should

all lie on Re s = 1/2 (critical line). Consequently, the distribution of prime numbers along

the line Re s = 1/2 + α is considered. Based on these considerations, Sect. 4 discusses the

link with prime numbers.

The rest of this paper is organized as follows. The next section provides remarks on ζ (α).

Section 3 reports and describes in detail equivalent forms of the functional equation of

ζ (α). Section 4 outlines the link with prime numbers, together with the analytic properties

of the strip (α, 1+α). Section 5 summarizes the results of this work and draws conclusions.

2 Notations and preliminary results

For the purposes of this paper α and k are always elements of R and N0, respectively,

where N0 = N ∪ {0}. A generic complex variable is denoted by s and the imaginary unit

by i. Moreover, for every x ∈ R and n ∈ N0, the symbol xn indicates the so-called falling

factorial [19].

2.1 Fractional calculus and ζ (α)

In recent years, the fractional calculus of holomorphic functions has merited increas-

ing consideration from the international mathematics community. It has several appli-

cations in mathematics, theoretical physics, and information engineering [18]. Ortigueira

is currently investigating broad applications in information engineering [15] and laying

the foundations of fractional linear-time invariant systems. Furthermore, he has provided

a suitable generalization of the Caputo derivative to the complex plane [12, 20], that is,

CD
αf (s) =

ei(π–θ )(α–m)

Γ (m – α)

∫ ∞

0

dm

dsm
f (xeiθ + s)

xα–m+1
dx, (2.1)
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where f is a complex function of the complex variable s,m–1 < α <m ∈N and θ = [0, 2π ).

The aforementioned fractional derivative can be written in terms of distribution theory

[21].

The Riemann ζ function is defined as follows:

ζ (s) =

∞
∑

n=1

1

ns
, s ∈C.

Consequently, ζ converges for all complex numbers s such that Re s > 1. Riemann showed

that ζ possesses a unique analytical continuation to the entire complex plane, except for

a simple pole at s = 1 with residue 1 [22]. The fractional derivative in (2.1) enables us to

compute the α-order fractional derivative of the Riemann ζ function, that is, the deriva-

tive in (1.1). The convergence of the complex series associated is shown in [12]. In par-

ticular, it pointwise converges in the half-plane Re s > 1 + α, and thus the convergence of

ζ (α) depends on the fractional order α. Furthermore, the k-order integer derivative of the

Riemann ζ function is given [16, 17] by

ζ (k)(s) = eiπk
∞

∑

n=2

logk n

ns
, (2.2)

so that the derivative in (1.1) is a straightforward fractional generalization of the derivative

in (2.2). As mentioned in the Introduction, (2.1) was applied to two generalizations of the

Riemann ζ function (Hurwitz ζ function and Dirichlet series). The results achieved are in

accordance with theory of the Riemann ζ function [13].

2.2 Functional equation of ζ (α)

The Riemann ζ function, introduced in 1859 [22], is characterized by the following func-

tional equation:

ζ (s) = 2(2π )s–1Γ (1 – s)ζ (1 – s) sin
πs

2
, for any s ∈C, (2.3)

that is,

ζ (1 – s) = 2(2π )–sΓ (s)ζ (s) cos
πs

2
. (2.4)

The literature calls (2.3) and (2.4) asymmetric equations. In fact, the functional equation

of ζ can also be written symmetrically as follows:

π–s/2Γ

(

s

2

)

ζ (s) = π–(1–s)/2Γ

(

1 – s

2

)

ζ (1 – s). (2.5)

Introducing a variant of the Riemann ζ function, the Riemann Xi function, defined by

ξ (s) =
1

2
s(1 – s)π–s/2Γ

(

s

2

)

ζ (s),

(2.5) becomes ξ (s) = ξ (1–s). The function ξ is an entire function of s sinceπ–s/2Γ (–s/2)ζ (s)

has simple poles at s = 0 and s = 1.
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Unfortunately, the fractional derivative in (2.1) is unsuitable for deriving a functional

equation of ζ (α). In fact, the integral in (2.1) entails computational problems. Hence, the

fractional operator in (2.1) is substituted with the forward Grünwald–Letnikov fractional

derivative.

Definition 2.1 (see [15]) Let α ∈ R, h ∈ R≥0, and f be a complex-valued function of the

complex variable s. The α-order forward Grünwald–Letnikov fractional derivative of f is

defined by

Dα
f f (s) = lim

h→0+

∑∞
k=0

(

α

k

)

(–1)k f (s – kh)

hα
. (2.6)

Unlike theCaputo derivative in (2.1), Definition 2.1 satisfies the generalized Leibniz rule.

Thus, the fractional derivative ζ (α) can be recomputed by (2.6). The result achieved is in ac-

cordance with (1.1). The proof provided in [14] holds for α ∈R>0 \N. Since Definition 2.1

makes sense for any α ∈R, (1.1) becomes

ζ (α)(s) = eiπα

∞
∑

n=2

logα n

ns
, s ∈C,α ∈R.

The same reasoning fails for the functional equation of ζ (α) due to the presence of the

generalized Leibniz rule (see [15] for more details). Accordingly, for any α ∈R>0 \N, it is

ζ (α)(s) = 2(2π )s–1eiπα

∞
∑

h=0

∞
∑

j=0

∞
∑

n=0

Aα
h,j,nζ

(n)(1 – s)

(

–
π

2

)j

×
Γ (h)(1 – s)

logh+j+n–α 2π
sin

π (s + j)

2
, (2.7)

where Aα
h,j,n =

α
h+j+n

h!j!n!
. The complete proof of (2.7) can be found in [14]. As previously men-

tioned, this equation suffers from problems of computational complexity. In fact, each

numerical approximation of (2.7) produces a buffer overflow. Section 3 discusses such a

computational issue.

2.3 Critical strip and ζ (α)

Prime numbers have played a central role inmathematics since the age of Euclid. In recent

years, the distribution of prime numbers has been widely applied in science as well as

engineering. The Riemann ζ function and the distribution of prime numbers are linked

through the following representation:

ζ (s) =
∏

p∈P

1

1 – p–s
, (2.8)

where P is the set of prime numbers [22]. ζ (s) = 0 for any negative even integers, that is,

for s = –2,–4–, 6, . . . (trivial zeros). As a consequence of (2.8), there are no zeros in the

half-plane Re s > 1, so that all the nontrivial zeros must belong to the (critical) strip (0, 1).

The critical strip has great importance in the theory of prime numbers. Investigating

ζ (α) leads to the introduction of the complex strip (α, 1 +α). Note that (2.1) and (2.6) allow
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Figure 1 The complex strip (α, 1 + α) for α = 0.3 (on the left) and α = 1.3 (on the right)

the computation of the derivative η(α), where η is the Dirichlet η function. Both are given

[18] by

η(s) =

∞
∑

n=1

(–1)n–1

ns
, s ∈ C,

and

η(α)(s) = eiπα

∞
∑

n=2

(–1)n–1
logα n

ns
, s ∈C,α ∈R.

Moreover, it can be shown [18] that

⎧

⎨

⎩

ζ (s) = η(s)

1–21–s
,

η(α)(s) = ζ (α)(s) – eiπα · 21–s
∑∞

n=1
logα 2n

ns
.

(2.9)

ζ (α) and η(α) converge for Re s > 1 + α and Re s > α, respectively [18]. Consequently, for

each fixed α ∈ R, the fractional derivative ζ (α) is associated with a unique complex strip

(α, 1 + α). Being

(α, 1 + α)
α→0
−→(0, 1),

this complex strip can be considered the fractional counterpart of the critical strip. Fig-

ure 1 shows the shift by α in the half-plane of convergence (due to the action of α-order

fractional derivative on ζ ). The strip (α, 1 + α) can open up new scenarios in mathemat-

ics. In fact, some properties of the critical strip can be invariant under the transformation

s −→ s + α (e.g., zero-free regions, Riemann conjecture).
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3 Equivalent forms of the functional equation

In the literature, Spira and Apostol were the first to investigate the higher integer deriva-

tives of the Riemann ζ function [16, 17]. In particular, Spira determined both the zero-free

regions associatedwith the k-order integer derivative ζ (k) and the functional equation, that

is,

(–1)kζ (k)(1 – s) = 2(2π )–s
k

∑

h=0

k
∑

n=0

(

ahkn cos
πs

2
+ bhkn sin

πs

2

)

× Γ (h)(s)ζ (n)(s). (3.1)

Note that the terms ahkn and bhkn are constants [23]. Replacing s by 1 – s yields

ζ (k)(s) = 2(2π )s–1eiπk
k

∑

h=0

k
∑

n=0

(

ahkn cos
π (1 – s)

2
+ bhkn sin

π (1 – s)

2

)

× Γ (h)(1 – s)ζ (n)(1 – s). (3.2)

3.1 Simplified form

The undertaken study aims to repurpose the outcomes contained in [16] to write the func-

tional equation of ζ (α) in a simplified form. In particular, it allows us to reduce the com-

putational cost of (2.7) to only one infinite series (see Theorem 3.3). Furthermore, (3.1)

and (3.2) express the functional equation of ζ (k) in terms of sines and cosines, that is, of

complex exponentials. The next result, reported below, is due to Apostol [16].

Proposition 3.1 Let k ∈N. For any s ∈ C, it is

ζ (k)(s) =

k
∑

h=0

(

k

h

)

eiπ (k–h)
(

e(1–s)wwk–h – e(1–s)w–iπ (w)k–h
)

×
(

Γ (1 – s)ζ (1 – s)
)(h)

, (3.3)

where w = – log2π – iπ/2.

Proof The main idea of the proof is that (2.3) can be written as follows:

ζ (s) = Γ (1 – s)ζ (1 – s)(2π )s–12 sin
πs

2

= Γ (1 – s)ζ (1 – s)
(

e(1–s)[– log2π–iπ/2] – e(1–s)[– log2π+iπ/2]–iπ
)

,

being

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(2π )s–1 = e(s–1) log2π ,

2 sin πs
2
= ei

π
2 (s–1) – e–i

π
2 (s+1),

e–i
π
2 (s+1) = ei

π
2 (1–s)–iπ .

By introducing the function ψ defined by

ψ(s,w, z) = Γ (s)ζ (s)esw+z, z ∈C,
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it is

ζ (s) = ψ(1 – s,w) –ψ(1 – s,w, –iπ ), (3.4)

with ψ(1 – s,w) = ψ(1 – s,w, 0). Differentiating (3.4) k times gives

ζ (k)(s) =
dk

dsk

(

ψ(1 – s,w)
)

–
dk

dsk

(

ψ(1 – s,w, –iπ )
)

.

Since

dk

dsk

(

ψ(1 – s,w, z)
)

=
dk

dsk

(

Γ (1 – s)ζ (1 – s)e(1–s)w+z
)

=

k
∑

h=0

(

k

h

)

(

Γ (1 – s)ζ (1 – s)
)(h)(

e(1–s)w+z
)(k–h)

,

and

dk–h

dsk–h

(

e(1–s)w+z
)

= eiπ (k–h)wk–he(1–s)w+z,

we have

dk

dsk

(

ψ(1 – s,w, z)
)

=

k
∑

h=0

(

k

h

)

eiπ (k–h)e(1–s)w+zwk–h
(

Γ (1 – s)ζ (1 – s)
)(h)

.

Therefore

ζ (k)(s) =

k
∑

h=0

(

k

h

)

eiπ (k–h)
(

e(1–s)wwk–h – e(1–s)w–iπ (w)k–h
)(

Γ (1 – s)ζ (1 – s)
)(h)

,

taking into account the 2π i-periodicity of the complex exponential. �

The fractional generalization of the functional equation in (3.3) is based on the following

result.

Lemma 3.2 Let α ∈R and w ∈C such that Rew < 0. For any s ∈ C, we get

Dα
f e

(1–s)w = eiπαe(1–s)wwα .

Proof Definition 2.1, for f (s) = e(1–s)w, gives

Dα
f e

(1–s)w = e(1–s)w lim
h→0+

∑∞
k=0

(

α

k

)

(–1)kewkh

hα
.

The series above converges to g(w) = (1 – ewh)α if |ewh| < 1, that is, Rew < 0. From

L’Hôpital’s rule it follows

Dα
f e

(1–s)w = e(1–s)w lim
h→0+

(1 – ewh)α

hα
= e(1–s)w

(

lim
h→0+

1 – ewh

h

)α

= eiπαe(1–s)wwα . �
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Relying on Lemma 3.2, we are able to give the fractional counterpart of (3.3).

Theorem 3.3 Let α ∈ R>0 \N and w = – log2π – iπ/2. For any s ∈C, it is

ζ (α)(s) =

∞
∑

h=0

(

α

h

)

eiπ (α–h)
(

e(1–s)wwα–h – e(1–s)w–iπ (w)α–h
)

×
(

Γ (1 – s)ζ (1 – s)
)(h)

. (3.5)

Proof From (3.4) we get

ζ (α)(s) = Dα
f ψ(1 – s,w) – Dα

f ψ(1 – s,w, –iπ ). (3.6)

The generalized Leibniz rule gives

Dα
f ψ(1 – s,w, z) =

∞
∑

h=0

(

α

h

)

(

Γ (1 – s)ζ (1 – s)
)(h)

ez
(

e(1–s)w
)(α–h)

,

and taking into account Lemma 3.2 it follows

Dα
f ψ(1 – s,w, z) =

∞
∑

h=0

(

α

h

)

eiπ (α–h)e(1–s)w+zwα–h

×
(

Γ (1 – s)ζ (1 – s)
)(h)

. (3.7)

ξ is an entire function of s, thus substituting (3.7) into (3.6), the proof follows. �

Theorem 3.3 shows that (3.5) has less computational cost than (2.7). Moreover, (3.2) can

be generalized as the next result points out.

Theorem 3.4 Let α ∈ R>0 \N. For any s ∈C, it is

ζ (α)(s) = 2(2π )s–1eiπα

∞
∑

h=0

∞
∑

n=0

(

ahαn sin
πs

2
+ bhαn cos

πs

2

)

× Γ (h)(1 – s)ζ (n)(1 – s), (3.8)

where the coefficients ahαn and bhαn are given by

⎧

⎨

⎩

ahαn =
∑∞

j=0

Aα
h,j,n

logh+j+n–α 2π
(–π

2
)j cos

π j

2
,

bhαn =
∑∞

j=0

Aα
h,j,n

logh+j+n–α 2π
(–π

2
)j sin

π j

2
.

Proof The trigonometric identity

sin
π (s + j)

2
= sin

πs

2
cos

π j

2
+ cos

πs

2
sin

π j

2

gives (3.8) when substituted in (2.7). �
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Theorem 3.4 takes on particular relevance in harmonic analysis. In fact, (3.8) expresses

the functional equation of ζ (α) as a sum of sines and cosines. Additionally, (3.5) and (3.8),

which are two different forms of (2.7), represent a step forward in our investigation of ζ (α).

3.2 Symmetric form

The problem concerning the symmetric form of (2.7) is dealt with here.

Lemma 3.5 Let α ∈R. For any s ∈C, it is

Dα
f ζ (1 – s) = e–iπαζ (α)(1 – s).

Proof The fractional derivative in (2.6), for f (s) = ζ (1 – s), gives

Dα
f ζ (1 – s) = lim

h→0+

∑∞
k=0

(

α

k

)

(–1)kζ (1 – s + kh)

hα

=

∞
∑

n=1

1

n1–s
lim
h→0+

1

hα

∞
∑

k=0

(

α

k

)

(–1)kn–kh. (3.9)

The binomial series now yields

∞
∑

k=0

(

α

k

)

(–1)kn–kh =
(

1 – n–h
)α
. (3.10)

From L’Hôpital’s rule it follows

lim
h→0+

(

1 – n–h

h

)α

=

(

lim
h→0+

1 – n–h

h

)α

= logα n. (3.11)

Combining (3.9), (3.10), and (3.11), the proof is straightforward. �

Theorem 3.6 Let α ∈ R>0 \N.Moreover, we set Tα as follows:

Tα(s) = π–s/2

∞
∑

h=0

h
∑

j=0

Bα
h,j

eiπ j

2h
logj πΓ (h–j)

(

s

2

)

ζ (α–h)(s).

For any s ∈ C, it is

Tα(s)
.
= Tα(1 – s), (3.12)

where the symbol
.
= denotes equality up to a multiplicative constant and Bα

h,j =
αh

h!(h–j)!
.

Proof Differentiating both members of (2.5) α times, it is

∞
∑

h=0

(

α

h

)(

π–s/2Γ

(

s

2

))(h)

ζ (α–h)(s)

=

∞
∑

k=0

(

α

k

)(

π–(1–s)/2Γ

(

1 – s

2

))(k)
(

ζ (1 – s)
)(α–k)

. (3.13)
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Direct calculation leads to

(

π–s/2Γ

(

s

2

))(h)

=

h
∑

j=0

(

h

j

)

(

π–s/2
)(j)

(

Γ

(

s

2

))(h–j)

, (3.14)

with

⎧

⎨

⎩

(π–s/2)(j) = eiπ jπ–s/2 logj π

2j
,

(Γ ( s
2
))(h–j) = Γ (h–j)(s/2)

2h–j
.

(3.15)

Substituting (3.14) and (3.15) into the left-hand side of (3.13) yields

∞
∑

h=0

(

α

h

)(

π–s/2Γ

(

s

2

))(h)

ζ (α–h)(s)

=

∞
∑

h=0

(

α

h

)

ζ (α–h)(s)

h
∑

j=0

(

h

j

)

eiπ jπ–s/2 logj π

2j
Γ (h–j)(s/2)

2h–j

= π–s/2

∞
∑

h=0

h
∑

j=0

Bα
h,j

eiπ j

2h
logj πΓ (h–j)

(

s

2

)

ζ (α–h)(s). (3.16)

The same holds for the right-hand side of (3.13). In fact, we get

(

π–(1–s)/2Γ

(

1 – s

2

))(h)

=

h
∑

j=0

(

h

j

)

(

π–(1–s)/2
)(j)

(

Γ

(

1 – s

2

))(h–j)

,

with

⎧

⎨

⎩

(π–(1–s)/2)(j) = π–(1–s)/2 logj π

2j
,

(Γ ( 1–s
2
))(h–j) = eiπ (h–j)

2h–j
Γ (h–j)( 1–s

2
).

Thus, Lemma 3.5 gives

∞
∑

h=0

(

α

h

)(

π–(1–s)/2Γ

(

1 – s

2

))(h)
(

ζ (1 – s)
)(α–h)

=

∞
∑

h=0

(

α

h

)

· e–iπ (α–h)ζ (α–h)(1 – s)

h
∑

j=0

(

h

j

)

π–(1–s)/2 logj π

2j

×
eiπ (h–j)

2h–j
Γ (h–j)

(

1 – s

2

)

= π–(1–s)/2

∞
∑

h=0

h
∑

j=0

Bα
h,j ·

eiπ (j–α)

2h
logj πΓ (h–j)

(

1 – s

2

)

ζ (α–h)(1 – s), (3.17)

taking into account the 2π i-periodicity of the complex exponential. Substituting (3.16)

and (3.17) into (3.13), the proof follows. �
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Note that (3.12) is the symmetric form of (2.7) up to the multiplicative constant e–iπα ,

that is, the fractional equivalent of (2.5). Therefore, Theorem 3.6 provides a quasisym-

metric functional equation of ζ (α) by opening up new scenarios in functional fractional

analysis.

4 Distribution of prime numbers and complex strip (α, 1 + α)

This section is devoted to investigation of the strip (α, 1 + α). First and foremost, η(α) is

written in terms of ζ (α). The second part discusses the link between ζ (α) and the distribu-

tion of prime numbers.

4.1 Representation of η(α) in terms of ζ (α)

Theorem 4.1 Let α ∈R>0 \N. For any s ∈C such that Re s > α, the functions η(α) and ζ (α)

are linked by

η(α)(s) = ζ (α)(s) – 21–s
∞

∑

k=0

(

α

k

)

eiπk logk 2ζ (α–k)(s). (4.1)

Furthermore, the series in (2.9)2 can be written in terms of ζ (α) as follows:

∞
∑

n=1

logα 2n

ns
=

∞
∑

k=0

(

α

k

)

eiπ (k–α) logk 2ζ (α–k)(s). (4.2)

Proof From (2.9)1 it follows

η(α)(s) = ζ (α)(s) – Dα
f

(

21–sζ (s)
)

. (4.3)

The generalized Leibniz rule implies

Dα
f

(

21–sζ (s)
)

= 21–s
∞

∑

k=0

(

α

k

)

eiπk logk 2ζ (α–k)(s). (4.4)

Combining (4.3) and (4.4) gives the first part of Theorem 4.1. Finally, comparison of (2.9)2

and (4.1) completes the proof. �

As mentioned in Sect. 2, the condition Re s > α in Theorem 4.1 assures convergence of

η(α). Additionally, (4.1) is the fractional generalization of (2.9)1. In fact, with some caution

it is

ζ (α)(s) – 21–s
∞

∑

k=0

(

α

k

)

eiπ (k–α) logk 2ζ (α–k)(s)
α→0+

−→ ζ (s) – 21–sζ (s)

= ζ (s)
(

1 – 21–s
)

.

Corollary 4.2 Let α ∈R>0. The series in (2.9)2 can be expressed in terms of ζ (α) by

∞
∑

n=1

logα 2n

ns
=

k̃
∑

k=0

(

α

k

)

eiπ (k–α) logk 2ζ (α–k)(s),
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where

k̃ =

⎧

⎨

⎩

α, α ∈N,

∞, α ∈R>0 \N.

Proof The generalized Leibniz rule reduces to the Leibniz rule for α ∈N. Accordingly, the

proof follows from (4.2). �

Corollary 4.2 enables us to write the series in (2.9)2 in terms of ζ (α). Note that this result

is in accordance with theory. Fixm ∈N. Therefore

∞
∑

n=1

log2n

ns
= log2ζ (s) – ζ ′(s) =

1
∑

k=0

(

1

k

)

(–1)1–k logk 2ζ (1–k)(s),

∞
∑

n=1

log2 2n

ns
= log2 2ζ (s) – 2 log2ζ ′(s) + ζ ′′(s)

=

2
∑

k=0

(

2

k

)

(–1)2–k logk 2ζ (2–k)(s),

...

∞
∑

n=1

logm 2n

ns
=

m
∑

k=0

(

m

k

)

(–1)m–k logk 2ζ (m–k)(s)

=

m
∑

k=0

(

m

k

)

eiπ (m–k) logk 2ζ (m–k)(s),

which is Corollary 4.2 for α =m.

4.2 The role of ζ (α) in the distribution of prime numbers

The Euler product in (2.8) cannot be used to investigate the link between ζ (α) and the

distribution of prime numbers due to the nonmultiplicativity of logα . In addition, the in-

troduction of the strip (α, 1 +α) raises more delicate problems, such as the fractional gen-

eralization of both the Riemann hypothesis and the critical line Re s = 1/2. According to

the approach given in [18], the principal candidate for this role is the line Re s = 1/2 + α.

Unfortunately, the zeros of ζ (α) represent a major challenge. In fact, even now the zeros

of the integer derivative ζ (k) remain an open problem. In 1974, assuming the Riemann

hypothesis and k > 1, Levinson and Montgomery [24] proved that ζ ′ has no zeros in the

half-plane 0 < Re s < 1/2 and ζ (k) has atmost finitelymany zeros inRe s < 1/2. Spira showed

thatmost of these zeros lie in 0≤ Re s ≤ 1/2+δ for δ > 0 [23]. Hence, they are located close

to the critical line. In particular,many scholars agree that nontrivial zeros of ζ (k) are located

randomly to the right of Re s = 1/2. However, the left half-plane Re s < 0 is not zero-free

since ζ ′′ has one pair of nontrivial zeros near –0.355± 3.591i [23]. Thus, the current state

of the art does not facilitate any investigation into zeros of ζ (α), that is, the localization

of prime numbers near the line Re s = 1/2 + α. Nevertheless, ζ (α) can be linked with the

distribution of prime numbers, as shown below.
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Theorem4.3 Let α ∈R andP be the set of prime numbers. For any s ∈C such thatRe s < 0,

it is

ζ (α)(s)∼
∑

p∈P

∞
∑

t=0

logα pt

p–st
, (4.5)

where the symbol ∼ means that both sides above converge or diverge together.

Proof From (2.8) we get

ζ (α)(s) = lim
h→0+

∑∞
k=0

(

α

k

)

(–1)kζ (s – hk)

hα

= lim
h→0+

1

hα

∞
∑

k=0

(

α

k

)

(–1)k
∏

p∈P

1

1 – p–s+kh
.

The link between series and infinite products [25] gives

∏

p∈P

1

1 – p–s+kh
=

∏

p∈P

(

1 +
p–s+kh

1 – p–s+kh

)

∼
∑

p∈P

p–s+kh

1 – p–s+kh
,

so that

ζ (α)(s)∼ lim
h→0+

1

hα

∞
∑

k=0

(

α

k

)

(–1)k
∑

p∈P

p–s+kh

1 – p–s+kh

=
∑

p∈P

lim
h→0+

1

hα

∞
∑

k=0

(

α

k

)

(–1)k
p–s+kh

1 – p–s+kh
.

The proof is straightforward by showing that

∞
∑

k=0

(

α

k

)

(–1)k
p–s+kh

1 – p–s+kh
= –

∞
∑

t=0

pst
(

1 – p–h
)α
.

Note that |ps–kh| = |pRe s||p–kh| and |pRe s| < 1, and thus

1

1 – ps–kh
=

∞
∑

t=0

p(s–kh)t . (4.6)

The series expansion in (4.6) implies

∞
∑

k=0

(

α

k

)

(–1)k
p–s+kh

1 – p–s+kh
= –

∞
∑

k=0

(

α

k

)

(–1)k
1

1 – ps–kh

= –

∞
∑

t=0

pst
(

1 – p–ht
)α
.
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Figure 2 The complex strip (1 + α, 0) for α = –2.2 (on the left) and α = –2.6 (on the right)

Therefore

–
∑

p∈P

lim
h→0+

1

hα

∞
∑

t=0

pst
(

1 – p–ht
)α

= –
∑

p∈P

∞
∑

t=0

pst
(

lim
h→0+

1 – p–ht

h

)α

= –
∑

p∈P

∞
∑

t=0

logα pt

p–st
,

being 1–p–ht

h

h→0+

−→ logpt . This completes the proof, as desired. �

The aforementioned proof is strongly dependent on the assumption that Re s < 0. In

particular, the set of prime numbers and ζ (α) are linked by (4.5) in the left half-plane. As

mentioned in Sect. 2, ζ (α) converges for Re s > 1+α, thusmaking this theorem true for any

α < –1. Accordingly, Theorem 4.3 holds in the strip 1 + α < Re s < 0 with α < –1 (Fig. 2).

5 Conclusions

This paper analyzed the fractional derivative of the Riemann ζ function. In particular, the

functional equation and the link with the distribution of prime numbers have been dis-

cussed. Equivalent forms of the functional equation in (2.7) are given.More precisely, such

a functional equation is written in a quasisymmetric form. The introduction of the strip

(α, 1 + α) has allowed investigation of the link with prime numbers. Analytic properties

are given and treated. These results are far from being conclusive. However, Theorem 4.3

represents a step forward towards a final representation of ζ (α) in terms of prime numbers.
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