
Riemannian Elasticity: A Statistical
Regularization Framework
for Non-linear Registration

X. Pennec, R. Stefanescu, V. Arsigny, P. Fillard, and N. Ayache

INRIA Sophia - Projet Epidaure, 2004 Route des Lucioles BP 93,
06902 Sophia Antipolis Cedex, France
Xavier.Pennec@sophia.inria.fr

Abstract. In inter-subject registration, one often lacks a good model
of the transformation variability to choose the optimal regularization.
Some works attempt to model the variability in a statistical way, but the
re-introduction in a registration algorithm is not easy. In this paper, we
interpret the elastic energy as the distance of the Green-St Venant strain
tensor to the identity, which reflects the deviation of the local deforma-
tion from a rigid transformation. By changing the Euclidean metric for a
more suitable Riemannian one, we define a consistent statistical frame-
work to quantify the amount of deformation. In particular, the mean
and the covariance matrix of the strain tensor can be consistently and
efficiently computed from a population of non-linear transformations.
These statistics are then used as parameters in a Mahalanobis distance
to measure the statistical deviation from the observed variability, giving
a new regularization criterion that we called the statistical Riemannian
elasticity. This new criterion is able to handle anisotropic deformations
and is inverse-consistent. Preliminary results show that it can be quite
easily implemented in a non-rigid registration algorithms.

1 Introduction

Most non-linear image registration algorithms optimize a criterion including an
image intensity similarity and a regularization term. In inter-subject registra-
tion, the main problem is not really the intensity similarity measure but rather
the regularization criterion. Some authors used physical models like elasticity
or fluid models [1,2]. For efficiency reasons, other authors proposed to use non-
physical but efficient regularization methods like Gaussian filtering [3,4], recently
extended to non-stationary but still isotropic diffusion in order to take into ac-
count some anatomical information about the tissue types [5,6]. However, since
we do not have in general a model of the deformation of organs across subjects,
no regularization criterion is obviously more justified than the others. We could
think of building a model of the developing organ: inverting the model from the
first subject to a sufficiently early stage and growing toward the second subject
image would allow to relate the two anatomies. However, such a computational
model is out of reach now, and most of the existing work in the literature rather
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try to capture the organ variability from a statistical point of view on a repre-
sentative population of subjects (see e.g. [7,8,9]). Although the image databases
are now large enough to be representative of the organ variability, the problem
remains of how to use this information to better guide inter-subject registration.

We propose in this paper an integrated framework to compute the statistics
on deformations and reintroduce them in the registration procedure. The basic
idea is to interpret the elastic energy as a distance in the space of positive definite
symmetric matrices (tensors). By changing the classical Euclidean metric for
a more suitable one, we define a natural framework for computing statistics
on the strain tensor. Taking them into account in a statistical distance lead
to the Riemannian elasticity energy. Notice that we do not enter the fluid vs
elastic registration debate as the energy we propose can be used either on the
deformation field itself or on its temporal derivative (fluid-like method) [4].

In the sequel, we first recall how to optimize the elastic energy in a registra-
tion algorithm. Then, we define in Section 3 the Riemannian elasticity energy as
the Mahalanobis distance on the logarithmic strain tensor. To better exemplify
its properties, we investigate in Section 4 the isotropic Riemannian Elasticity,
which is close to the classical elasticity energy while being inverse-consistent.
Preliminary experiments show in Sec. 5 that the Riemannian elasticity frame-
work can be implemented quite effectively and yields promising results.

2 Non-linear Elastic Regularization

Let Φ(x) be a non-linear space transformation with a positive Jacobian every-
where. We denote by ∂αΦ the directional derivatives of the transformation along
the spaces axis α (we assume an orthonormal basis). The general registration
method is to optimize an energy of the type: C(Φ) = Sim(Images, Φ) + Reg(Φ).
Starting from an initial transformation Φ0, a first order gradient descent meth-
ods computes the gradient of the energy ∇C(Φ), and update the transformation
using: Φt+1 = Φt − η ∇C(Φt). From a computational points of view, this La-
grangian framework can be advantageously changed into a Eulerian framework
to better conserve the diffeomorphic nature of the mappings [6]. In the following,
we only focus on the computation of the gradient of the regularization.

2.1 Elastic Deformations

In continuum mechanics [10], one characterizes the deformation of an infinitesi-
mal volume element in the Lagrangian framework using the Cauchy-Green tensor
Σ = ∇ΦT ∇Φ =

∑
α ∂αΦ ∂αΦT. This symmetric matrix is positive definite and

measures the local amount of non-rigidity. Let ∇Φ = V S RT be a singular
value decomposition of the transformation Jacobian (R and V are two rota-
tion matrices and S is the diagonal matrix of the positive singular values). The
Cauchy-Green tensor Σ = R S2 RT is equal to the identity if and only if the
transformation is locally a rigid transformation. Eigenvalues between 0 and 1
indicate a local compression of the material along the associated eigenvector,
while a value above 1 indicates an expansion. To quantify the deformation, one



Riemannian Elasticity: A Statistical Regularization Framework 945

usually prefers the related Green-St Venant strain tensor E = 1
2 (Σ − Id), whose

eigenvalues are null for no deformation. Assuming an isotropic material and a
linear Hooks law to relate strain and stress tensors, one can show that the motion
equations derive from the St Venant-Kirchoff elasticity energy [10]:

RegSV KE(Φ) =
∫

µTr(E2) +
λ

2
Tr(E)2 =

∫
µ

4
Tr

(
(Σ − Id)2

)
+

λ

8
Tr(Σ − Id)2

where λ, µ are the Lamé coefficients. To minimize this energy in a registration
algorithm, we need its gradient. Since ∂uΣ =

∑
α

(
∂αΦ ∂αuT + ∂αu ∂αΦT

)
, the

derivative of the elastic energy in the direction (i.e. displacement field) u is:

∂uRegSV KE(Φ) =
∫

µ
2 Tr((Σ − Id) ∂uΣ) + λ

4 Tr(Σ − Id) Tr(∂uΣ)

=
∑

α

∫
〈 µ (Σ − Id) ∂αΦ | ∂αu 〉 + λ

2 Tr(Σ − Id) 〈 ∂αΦ | ∂αu 〉

Using an integration by part with homogeneous Neumann boundary conditions
[4], we have

∫
〈 v | ∂αu 〉 = −

∫
〈 ∂αv | u 〉, so that the gradient is finally:

∇RegSV KE(Φ) = −
∑

α ∂α

(
Z∂αΦ

)
with Z = µ(Σ− Id)+ λ

2 Tr(Σ− Id)Id (1)

2.2 Practical Implementation

In practice, a simple implementation is the following. First, one computes the
image of the gradient of the transformation, for instance using finite differences.
This operation is not computationally expensive, but requires to access the value
of the transformation field at neighboring points, which can be time consuming
due to systematic memory page faults in large images. Then, we process these 3
vectors completely locally to compute 3 new vectors vα = Z(∂αΦ). This opera-
tion is computationally more expensive but is memory efficient as the resulting
vectors can replace the old directional derivatives. Finally, the gradient of the
criterion ∇E =

∑
α ∂αvα may be computed using finite differences on the re-

sulting image. Once again, this is not computationally expensive, but it requires
intensive memory accesses.

3 Riemannian Elasticity

In the standard Elasticity theory, the deviation of the positive definite symmetric
matrix Σ (the strain tensor) from the identity (the rigidity) is measured using
the Euclidean matrix distance dist2Eucl(Σ, Id) = Tr((Σ − Id)2). However, it has
been argued in recent works that the Euclidean metric is not a good metric for
the tensor space because positive definite symmetric matrices only constitute a
cone in the Euclidean matrix space. Thus, the tensor space is not complete (null
or negative eigenvalues are at a finite distance). For instance, an expansion of
a factor

√
2 in each direction (leading to Σ = 2 Id) is at the same Euclidean

distance from the identity than the “black hole” transformation Φ(x) = 0 (which
has a non physical null strain tensor). In non-linear registration, this asymmetry
of the regularization leads to different results if we look for the forward or the
backward transformation: this is the inverse-consistency problem [11].
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3.1 A Log-Euclidean Metric on the Strain Tensor

To solve the problems of the Euclidean tensor computing, affine-invariant Rie-
mannian metrics were recently proposed [12,13,14,15]. Using these metrics, sym-
metric matrices with null eigenvalues are basically at an infinite distance from
any tensor, and the notion of mean value corresponds to a geometric mean, even
if it has to be computed iteratively. More recently, [16] proposed the so-called
Log-Euclidean metrics, which exhibit the same properties while being much eas-
ier to compute. As these metrics simply consist in taking a standard Euclidean
metric after a (matrix) logarithm, we rely on this one for the current article. How-
ever, the Riemannian Elasticity principle can be generalized to any Riemannian
metric on the tensor space without any restriction.

In this framework, the deviation between the tensor Σ and the identity is
the tangent vector log(Σ). Interestingly, this tensor is known in continuum me-
chanics as the logarithmic or Hencky strain tensor and is used for modeling very
large deformations. It is considered as the natural strain tensor for many ma-
terials, but its use was hampered for a long time because of its computational
complexity [17]. For registration, the basic idea is to replace the elastic energy
with a regularization that measures the amount of logarithmic strain by taking
the Riemannian distance between Σ and Id. This give the Riemannian elasticity:

RegRE(Φ) = 1
4

∫
dist2Log (Σ, Id) = 1

4

∫
‖log(Σ) − log( Id)‖2

2 = 1
4

∫
Tr

(
log(Σ)2

)

It is worth noticing that the logarithmic distance is inverse-consistent, i.e. that
Tr

(
log(Σ(Φ(x)))2

)
= Tr

(
log(Σ(Φ(-1)(y)))2

)
if y = Φ(x). This comes from the

fact that ∇(Φ(-1))(y) = (∇Φ(x))(-1). In particular, a scaling of a factor 2 is now
at the same distance from the identity than a scaling of 0.5, and the “black hole”
transformation is at an infinite distance from any acceptable deformation.

3.2 Incorporating Deformation Statistics

To incorporate statistics in this framework, we consider the strain tensor as a ran-
dom variable in the Riemannian space of tensors. In the context of inter-subject
or atlas-to-image registration, this statistical point of view is particularly well
adapted since we do not know a priori the deformability of the material. Starting
from a population of transformations Φi(x), we define the a priori deformability
Σ̄(x) as the Riemannian mean of deformation tensors Σi(x) = ∇ΦT

i ∇Φi. A re-
lated idea was suggested directly on the Jacobian matrix of the transformation
∇Φ in [18], but using a general matrix instead of a symmetric one raises impor-
tant computational and theoretical problems. With the Log-Euclidean metric on
strain tensors, the statistics are quite simple since we have a closed form for the
mean value:

Σ̄(x) = exp(W̄ (x)) with W̄ (x) = 1
N

∑
i log(Σi(x))

Going one step further, we can compute the covariance matrix of the random
process Cov(Σi(x)). Let us decompose the symmetric tensor W = log(Σ) into
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a vector Vect(W )T = (w11, w22, w33,
√

2w12,
√

2w13,
√

2w23) that gathers all the
tensor components in an orthonormal basis. In this coordinate system, we can
define the covariance matrix Cov = 1

N

∑
Vect(Wi − W̄ ) Vect(Wi − W̄ )T.

To take into account these first and second order moments of the random
deformation process, a well known and simple tool is the Mahalanobis distance,
so that we finally define the statistical Riemannian elasticity (SRE) energy as:

RegSRE(Φ) = 1
4

∫
µ2

(W̄ ,Cov)(log(Σ(x))) = 1
4

∫
Vect(W −W̄ )Cov(-1)Vect(W −W̄ )T

As we are using a Mahalanobis distance, this least-squares criterion can be
seen as the log-likelihood of a Gaussian process on strain tensor fields: we are
implicitly modeling the a-priori probability of the deformation. In a registration
framework, this point of view is particularly interesting as it opens the way to
use Bayesian estimation methods for non-linear registration.

4 Isotropic Riemannian Elasticity

With the general statistical Riemannian elasticity, we can take into account the
anisotropic properties of the material, as they could be revealed by the statistics.
However, in order to better explain the properties of this new tool, we focus in
the following on isotropic covariances matrices. Seen as a quadratic form, the
covariance is isotropic if µ2(W ) = µ2(R W RT) for any rotation R. This means
that it only depends on the eigenvalues of W , or equivalently on the matrix
invariants Tr(W ), Tr(W 2) and Tr(W 3). However, as the form is quadratic in W ,
we are left only with Tr(W )2 and Tr(W 2) that can be weighted arbitrarily, e.g.
by µ and λ/2. Finally, the isotropic Riemannian elasticity (IRE) energy has the
form:

RegIRE(Φ) =
∫

µ
4 Tr

(
(log(Σ) − W̄ )2

)
+ λ

8 Tr(log(Σ) − W̄ )2

For a null mean W̄ , we retrieve the classical form of isotropic elastic energy with
Lamé coefficients, but with the logarithmic strain tensor. This form was expected
as the St Venant-Kirchoff energy was also derived for isotropic materials.

4.1 Optimizing the Riemannian Elasticity

To use the logarithmic elasticity energy as a regularization criterion in the reg-
istration framework we summarized in Section 2, we have to compute its gra-
dient. Let as assume that W̄ = 0. Thanks to the properties of the differential
of the log [19], we have Tr(∂V log(Σ)) = Tr(Σ(-1) V ) and 〈 ∂V log(Σ) | W 〉 =
〈 ∂W log(Σ) | V 〉. Thus, using V = ∂uΣ =

∑
α (∂αu ∂αΦT + ∂αΦ ∂αuT) and

W = log(Σ), we can write the directional derivative of the criterion:

∂uRegIRE(Φ) =
∫

µ
2 〈 W | ∂V log(Σ) 〉 + λ

4 Tr(W ) Tr(∂V log(Σ))

=
∫

µ
2 〈 ∂W log(Σ) | V 〉 + λ

4 Tr(W ) Tr(Σ(-1) V )

=
∑

α

∫
µ 〈 ∂W log(Σ) ∂αΦ | ∂αu〉 + λ

2 Tr(W ) 〈 Σ(-1) ∂αΦ | ∂αu 〉
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Integrating once again by part with homogeneous Neumann boundary condi-
tions, we end up with the gradient:

∇RegIRE(Φ) = −
∑

α ∂α(Z ∂αΦ) with Z = µ ∂Wlog(Σ) + λ
2 Tr(W ) Σ(-1) (2)

Notice the similarity with the gradient of the standard elasticity (eq. 1). For
a non null mean deformation W̄ (x), we just have to replace W by W − W̄ in
the above formula. One can even show that the same formula still holds for the
general statistical Riemannian elasticity with Z = ∂X log(Σ) where X is the
symmetric matrix defined by Vect(X) = Cov(-1) Vect(log(Σ)).

4.2 Practical Implementation

Thus, we can optimize the logarithmic elasticity exactly like we did in Section
2.2 for the Euclidean elasticity. The only additional cost is the computation of
the tensor Z, which implies the computation of the logarithm W = log(Σ) and
its directional derivative ∂W log(Σ). This cost would probably be prohibitive if
we had to rely on numerical approximation methods. Fortunately, we were able
to compute an explicit and very simple closed-form expression that only requires
the diagonalization Σ = R D RT [19]:

[RT ∂V log(Σ) R]ij = [RT V R]ij λij with λij = (log(di) − log(dj))/(di − dj)

Notice that formula is computationally well posed since λij = 1
d (1 + 1

12ε2d2 +
1
80ε4d4 + O(ε6)) with d = (di + dj)/2 and ε = di − dj .

5 Experiments

To evaluate the potential of the Riemannian elasticity as a regularization cri-
terion in non-rigid registration, we implemented the following basic gradient
descent algorithm: at each iteration, the algorithm computes the gradient of the
similarity criterion (we chose the local correlation coefficient to take image bi-
ases into account), and adds the derivative of the Euclidean or the Riemannian
elastic energies according Sections 2.1 and 4.1. Then, a fraction η of this gradient
is added to the current displacement field. This loop is embedded in a multi-
scale pyramid to capture larger deformations. At each pyramid step, iterations
are stopped when the evolution of the transformation is too small (typically a
hundred iterations by level). The whole algorithm is implemented in C++, and
parallelized using Message Passing Interface (MPI) library on a cluster of PCs.

We tested the algorithm on clinical T1 weighted MR images of the brain of
Parkinsonian patients (see Fig. 1). The ROI including the full head has 186 x 124
x 216 voxels of size 0.94 x 1.30 x 0.94 mm. Images were first affine registered and
intensity corrected. We used a fraction η = 5.10−4 for the gradient descent and
standard values µ = λ = 0.2 for both Euclidean and isotropic Riemannian elastic
energies. The algorithm took about 1h for the Euclidean elasticity and 3h for the
isotropic Riemannian regularization on a cluster of 12 AMD bi-Opteron PC at 2
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Source image Elastic result Riemann res. Target image Elast.+target Riem.+target

Fig. 1. Experimental comparison of registration with the Euclidean and the Rieman-
nian elasticity regularization. From left to right, we displayed corresponding zoom of
axial and coronal slices of: the source image, the elastically deformed source image,
the Riemannian elastic result, the target image and the elastic and Riemannian results
with the contours of the target image superimposed. Euclidean and Riemannian results
are globally equivalent. One can only notice a slightly larger and better deformation
of the right ventricle (near the crossing of the axes) with the Riemannian elasticity.

Ghz, connected by a gigabit Ethernet Network. These computations times show
that our basic implementation of the Riemannian Elasticity is only 3 times slower
than the Euclidean one. The diagonalization of the symmetric matrices being
performed using a standard Jacobi method, we could easily design a much more
efficient computation in dimensions 2 and 3. In terms of deformation, the results
are quite similar for both methods in the absence of any a priori statistical
information. However, we expect to show in the near future that taking into
account statistical information about the expected deformability improves the
results both in terms of accuracy and robustness.

6 Conclusion

We proposed in this paper an integrated framework to compute the statistics
on deformations and re-introduce them as constraints in non-linear registration
algorithms. This framework is based on the interpretation of the elastic energy
as a Euclidean distance between the Cauchy-Green strain tensor and the identity
(i.e. the local rigidity). By providing the space of tensors with a more suitable
Riemannian metric, namely a Log-Euclidean one, we can define proper statistics
on deformations, like the mean and the covariance matrix. Taking these mea-
surements into account in a statistical (i.e. a Mahalanobis) distance, we end-up
with the statistical Riemannian elasticity regularization criterion. This criterion
can also be viewed as the log-likelihood of the deformation probability, which
opens the way to Bayesian deformable image registration algorithms.

Riemannian elasticity gives a natural framework to measure statistics on
inter-subject deformations. We demonstrate with the isotropic version that it is
also an effective regularization criterion for non-linear registration algorithms.
There is of course room for a lot of improvements that we plan to tackle in the
near future. We are currently computing the deformation statistics (mean and
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covariance of the logarithmic strain tensor) on a database of brain images to
assess their impact on the registration results. We also plan to evaluate carefully
how the implementation influences the theoretical inverse-consistency property
of the Riemannian elasticity, as this feature may turn out to be very useful for
fine measurements of volume changes.
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