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RIEMANNIAN FLAG MANIFOLDS
WITH HOMOGENEOUS GEODESICS

DMITRI ALEKSEEVSKY AND ANDREAS ARVANITOYEORGOS

Abstract. A geodesic in a Riemannian homogeneous manifold (M = G/K, g)
is called a homogeneous geodesic if it is an orbit of a one-parameter subgroup
of the Lie group G. We investigate G-invariant metrics with homogeneous
geodesics (i.e., such that all geodesics are homogeneous) when M = G/K is a
flag manifold, that is, an adjoint orbit of a compact semisimple Lie group G.
We use an important invariant of a flag manifold M = G/K, its T -root system,
to give a simple necessary condition that M admits a non-standard G-invariant
metric with homogeneous geodesics. Hence, the problem reduces substantially
to the study of a short list of prospective flag manifolds. A common feature of
these spaces is that their isotropy representation has two irreducible compo-
nents. We prove that among all flag manifolds M = G/K of a simple Lie group
G, only the manifold Com(R2�+2) = SO(2� + 1)/U(�) of complex structures
in R2�+2, and the complex projective space CP 2�−1 = Sp(�)/U(1) · Sp(� − 1)
admit a non-naturally reductive invariant metric with homogeneous geodesics.

In all other cases the only G-invariant metric with homogeneous geodesics is
the metric which is homothetic to the standard metric (i.e., the metric associ-
ated to the negative of the Killing form of the Lie algebra g of G). According
to F. Podestà and G.Thorbergsson (2003), these manifolds are the only non-
Hermitian symmetric flag manifolds with coisotropic action of the stabilizer.

1. Introduction

A Riemannian manifold (M, g) is called homogeneous if it admits a transitive
connected Lie group G of isometries. Then M can be viewed as a coset space G/K
with a G-invariant metric, where K is the isotropy subgroup of some point in M .
A geodesic γ(t) through the origin o = eK is called a homogeneous geodesic if it is
an orbit of a one-parameter subgroup of G, i.e.,

(1) γ(t) = (exp tX) · o,
where X is a non-zero vector in the Lie algebra g of G. Homogeneous geodesics were
originally studied quite a long time ago by several authors such as R. Hermann,
B. Kostant, and E.B. Vinberg to name a few. In particular, in [Kos1] and [Vin] a
simple algebraic condition was found so that the orbit (1) is a geodesic.

Homogeneous geodesics in a Lie group were studied by V.V. Kajzer in [Kaj]
where he proved that a Lie group G with a left-invariant metric has at least one
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homogeneous geodesic through the identity. In [Sz] J. Szenthe proved that if a com-
pact connected and semisimple Lie group has rank greater than 1, then for every
left-invariant metric there are infinitely many homogeneous geodesics through the
identity element. In [Ma] R. A. Marinosci investigated the set of all homogeneous
geodesics in a 3-dimensional Lie group. A generalization of Kajzer’s result was
obtained by O. Kowalski and J. Szenthe ([Ko-Sz]) who proved that every Riemann-
ian homogenous manifold admits at least one homogeneous geodesic through each
point.

Besides their mathematical significance, homogeneous geodesics have important
applications in mechanics. The equation of motion of many systems of classical
mechanics reduces to the geodesic equation in an appropriate Riemannian mani-
fold M . Homogeneous geodesics of M correspond to “relative equilibriums” of the
corresponding system (see V.I. Arnold [Arn]). There is a vast literature in mechan-
ics devoted to the investigation of relative equilibria (e.g., [Ga-Hu-Wi] and relevant
references).

Riemannian homogeneous spaces of special importance are spaces where all
geodesics are homogeneous. In fact these spaces are examples of a wider impor-
tant class of Riemmanian manifolds, the D’Atri spaces, where each local geodesic
symmetry preserves the Riemannian volume element (cf. [Ko-Pr-Va]).

Riemannian homogeneous spaces with all geodesics homogeneous are also known
as g.o. spaces (from “geodesic orbit”). The terminology was introduced by O.
Kowalski and L. Vanhecke in [Ko-Va], who initiated a systematic study of such
spaces. Examples of such spaces are the symmetric spaces, the weakly symmetric
spaces and the naturally reductive spaces. Weakly symmetric spaces are Riemann-
ian manifolds (M, g) such that for any two points p, q ∈ M there exists an isometry
which interchanges p and q. Naturally reductive spaces are Riemannian manifolds
(M, g) whose metric g is induced by an AdG-invariant non-degenerate symmetric
bilinear form on the Lie algebra g of some transitive group G of isometries. The
class of g.o. spaces is larger than the naturally reductive spaces. In fact, A. Kaplan
([Ka]) gave the first example of a g.o. space which is not naturally reductive. Since
then, there was a lot of research on homogeneous spaces where all geodesics are
homogeneous. In [Ko-Va], O. Kowalski and L. Vanhecke classified all g.o. spaces
in dimension ≤ 6. In [Go], C. Gordon reduced the classification of g.o. spaces M
to three special cases: (a) M is a nilmanifold (i.e., a nilpotent Lie group with left-
invariant Riemannian metric), (b) M is compact, and (c) M admits a transitive
non-compact semisimple Lie group of isometries. She described g.o. spaces for case
(a). Another approach for the description of g.o. spaces was proposed by O. Kowal-
ski, S. Ž. Nikčević and Z. Vlašek [Ko-Ni] and [Ko-Ni-Vl], as well as by Z. Dušek
[Du1] and [Du2]. Recently, Z. Dušek, O. Kowalski and S. Ž. Nikčević ([Du-Ko-Ni])
gave examples of g.o. spaces in dimension 7 whose full groups of isometries are not
semisimple. Finally, H. Tamaru ([Ta]) classified homogeneous g.o. spaces which
are fibered over irreducible symmetric spaces.

The general problem of classification of compact homogeneous Riemannian man-
ifolds (M = G/K, g) with homogeneous geodesics remains open.

The aim of this paper is to give a complete classification of Riemannian flag man-
ifolds with homogeneous geodesics (i.e., such that all geodesics are homogeneous).
Recall that a flag manifold is an adjoint orbit M = AdG w = G/K (w ∈ Lie(G)) of
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a compact semisimple Lie group G, and a flag manifold equipped with an invariant
Riemannian metric is called a Riemannian flag manifold.

Let M = G/K be a flag manifold. If the group G acts effectively on M , it has
no center and is a direct product

G = G1 × · · · × Gk

of simple factors. Moreover, if g is an invariant metric on M , then the Riemannian
flag manifold (M = G/K, g) is a Riemannian direct product

M = G/K = G1/K1 × · · · × Gk/Kk

of Riemannian flag manifolds (Mi = Gi/Ki, gi) = g|Mi
, where Ki = K ∩ Gi.

The manifold (M, g) has homogeneous geodesics if and only if each factor (Mi, gi)
has homogeneous geodesics. This reduces the problem of the description of G-
invariant metrics with homogeneous geodesics on a flag manifold M = G/K to the
case when the group G is simple.

Flag manifolds M = G/K of a simple Lie group G can be classified in terms of
their painted Dynkin diagrams (cf. Section 3). In particular, for the exceptional
Lie groups G2, F4, E6, E7, and E8 there are 3, 11, 16, 31, and 40 non-equivalent
flag manifolds, respectively. An important invariant of a flag manifold M = G/K
is the system of T -roots RT . It is defined as the restriction of the root system R of
the corresponding Lie algebra g to the center t of the (stability) subalgebra k of K.
We define the notion of a connected T -root system as follows: The T -root system is
called connected if any two T -roots can be connected by a chain of T -roots whose
sum or difference is also a T -root. We prove the following (cf. Theorem 7):

Theorem I. If the set of T -roots of a flag manifold M = G/K is connected,
then the only invariant metric with homogeneous geodesics on M is the metric
homothetic to the standard metric of M .

We describe flag manifolds of a simple Lie group with a non-connected system of
T -roots. It turns out (cf. Propositions 9 and 10) that there are three infinite series
of such flag manifolds of a classical Lie group (namely the spaces B(� − m, m) =
SO(2� + 1)/U(� − m) · SO(2m + 1), C(� − m, m) = Sp(�)/U(� − m) · Sp(m), and
D(�−m, m) = SO(2�)/U(�−m) ·SO(2m)) and 10 flag manifolds of an exceptional
Lie group. Note that B(�−m, m) (respectively D(�−m, m)) can be identified with
the manifold of CR structures of codimension 2m + 1 (respectively 2m) in R2�+1

(respectively R2�). A posteriori, we get the following characterization of these flag
manifolds.

Let G be a compact simple Lie group, R the root system of the corresponding
complex Lie algebra gC with respect to a Cartan subalgebra hC and Π ⊂ R be a
system of simple roots. For each simple root α ∈ Π we associate a flag manifold
Mα = G/Kα where Kα is the compact subgroup of G associated with the complex
subalgebra kα of gC, generated by hC and the root vectors {Eβ : β ∈ Π \ {α}}.
Theorem II. Let M = G/K be a flag manifold of a simple Lie group G with
T -root system RT . Then the following conditions are equivalent:

(1) RT is not connected,
(2) RT = {±ξ,±2ξ} for some linear form ξ ∈ t∗,
(3) the isotropy representation of K has two irreducible components,
(4) the flag manifold M is associated with a simple root α with Dynkin mark

2, i.e., M = Mα = G/Kα.
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A simple root α ∈ Π defines a gradation

g
C =

∑
i

gi, [gi, gj ] ⊂ gi+j

of the complex Lie algebra gC defined by the conditions

deg h
C = 0, deg Eβ = 0, for all β ∈ Π \ α, deg Eα = 1.

The even and odd parts of a gradation determine a symmetric decomposition

g
C = gev + godd =

∑
g2i +

∑
g2i+1

of the Lie algebra gC and hence a compact symmetric space G/Gev. The flag
manifold Mα = G/Kα is fibered over the corresponding compact symmetric space
G/Gev with fiber Gev/Kα. If the Dynkin mark of α is 2, the fiber is isotropy
irreducible and any invariant metric on Mα (up to a scaling) is obtained from the
standard metric g1 by scaling its vertical part by λ > 0. We denote this metric by
gλ.

In [Ta] H. Tamaru classified all such metrics which have homogeneous geodesics,
for any homogeneous Riemannian manifold which is fibered over an irreducible sym-
metric space. His classification shows that the only flag manifolds Mα which admit
a non-standard metric gλ, λ �= 1 with homogeneous geodesics are the manifolds
B(�, 0) = SO(2� + 1)/U(�) and C(1, � − 1) = Sp(�)/U(1) · Sp(� − 1). The classifi-
cation by D.N. Akhiezer and E.B. Vinberg [Ak-Vin] of compact weakly symmetric
spaces shows that they are weakly symmetric. Furthermore, a result by A.L. On-
ishchik [On] allows us to determine the full isometry group of any invariant metric
gλ on these manifolds, hence the following final result.

Theorem III. The only flag manifolds M = G/K of a simple Lie group G which
admit an invariant metric with homogeneous geodesics, not homothetic to the stan-
dard metric, are the manifolds B(�, 0) = Com(R2�+2) = SO(2� + 1)/U(�)) of com-
plex structures in R2�+2 and the complex projective space C(1, � − 1) = CP 2�−2 =
Sp(�)/U(1) ·Sp(�−1). These manifolds admit a one-parameter family gλ, λ > 0 of
invariant metrics (up to a scaling). All these metrics have homogeneous geodesics
and are weakly symmetric. The metric g1 is the standard metric. It has the full
connected isometry group SO(2� + 2) (respectively SU(2�− 1)) and is the standard
metric of the symmetric space Com(R2�+2) = SO(2� + 2)/U(� + 1) (respectively
CP 2�−2 = SU(2� − 1)/U(2� − 2)). All the other metrics gλ, λ �= 1 have the full
connected isometry group SO(2� + 1) (respectively Sp(�)). In particular, the corre-
sponding spaces are not naturally reductive as Riemannian manifolds.

Note that for � = 2 we obtain Sp(2)/U(1) · Sp(1) ∼= SO(5)/U(2), which is the
6-dimensional not naturally reductive g.o. space of O. Kowalski and L. Vanhecke
[Ko-Va].

We also remark that the flag manifolds of Theorem III appear in a recent work
of F. Podestà and G. Thorbergsson ([Po-Th]) as the only non-Hermitian symmetric
flag manifolds M = G/K such that the action of K on M is coisotropic.

The paper is organized as follows: In Section 2 we give an algebraic necessary
and sufficient condition for a homogeneous Riemannian manifold to have homo-
geneous geodesics. In Section 3 we summarize various facts about flag manifolds
(Lie-theoretic description, T -roots, isotropy representation, invariant metrics, and
painted Dynkin diagrams). We give the complete list of flag manifolds G/K of a
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simple Lie group G and describe G-invariant metrics in terms of T -roots. In Sec-
tion 4 we prove that a flag manifold with a non-standard metric with homogeneous
geodesics has a non-connected T -root system. In Sections 5 and 6 we classify all
flag manifolds M = G/K of a simple Lie group G with a non-connected T -root
system. We determine which of these manifolds have non-standard metrics with
homogeneous geodesics in Section 7, by using Tamaru’s results.

2. Homogeneous geodesics in Riemannian homogeneous spaces

A Riemannian manifold (M, g) is called homogeneous if it admits a transitive
connected Lie group G of isometries. Such a manifold may be identified with the
coset space G/K, where K is the isotropy subgroup of a point o = eK ∈ M. We
assume that G is semisimple and compact and that it acts effectively on G/K.
If AdG : G → Aut(g) is the adjoint representation of G on g, let q be an AdG-
invariant scalar product on g, and m = k⊥ be the orthogonal complement to k with
respect to q. Then g = k ⊕ m is a reductive decomposition of g, that is, [k, m] ⊂ m.
We also identify m with the tangent space To(G/K) at the point o = eK. Then the
isotropy representation of K is identified with the restriction AdK |

m
of the adjoint

representation of K on g to m.
A G-invariant metric g on M = G/K corresponds to an AdK-invariant scalar

product 〈 , 〉 on m = ToM , and conversely any AdK-invariant scalar product 〈 , 〉 on
m determines a G-invariant metric g on M = G/K. The metric g is called normal if
the scalar product 〈 , 〉 on m is the restriction of an AdG-invariant non-degenerate
symmetric bilinear form ( , ) on g. If ( , ) = −B (B = the Killing form on g),
then the metric g is called standard. Any AdK-invariant scalar product 〈 , 〉 on m

can be written as 〈x, y〉 = (Ax, y) (x, y ∈ m), where A is an AdK-invariant positive
definite symmetric operator on m. Conversely, any such operator A determines
an AdK-invariant scalar product 〈·, ·〉 = (A·, ·) on m, which defines a G-invariant
Riemannian metric g on M . We will say that A is the operator associated with the
metric g, or simply the associated operator. If G is simple, then any normal metric
on G/K is proportional to the standard metric; hence it corresponds to the scalar
operator A = c Idm (c > 0).

A Riemannian homogeneous manifold (M = G/K, g) is called naturally reductive
if there exists a reductive decomposition g = k ⊕ m such that for any X ∈ m

the operator AX ∈ End(m) defined by AX(Y ) = [X, Y ]m is skew-symmetric with
respect to 〈 , 〉 (here Zm is the m-component of a vector Z ∈ g = k ⊕ m). In
this case the metric g is called G-naturally reductive. It is well known that natural
reductivity is equivalent to the geometrical property that for each vector u ∈ m,
the orbit γ(t) = (exp tu)o is a geodesic. The metric g of a Riemannian manifold
(M, g) is called naturally reductive if M admits a transitive group of isometries G
such that g is a G-naturally reductive G-invariant metric on M = G/K. Clearly a
normal metric is naturally reductive.

A result of Kostant (see also [Be, p. 196], [DA-Zi, p. 4]) states that (M = G/K, g)
is naturally reductive if and only if there exists a transitive subgroup G′ ⊂ G with
Lie algebra g′ = m + [m, m] (an ideal in g), such that (M = G′/K ′, g) is normal
(here K ′ = K ∩ G′). Notice that if G is a compact simple Lie group, then any
G-naturally reductive metric on M = G/K is proportional to the standard metric.

In the following proposition we give equivalent algebraic conditions so that an
orbit γ(t) = (exp tu)o (u ∈ g) through the point o ∈ G/K is a geodesic. Conditions
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(3) and (4) were originally established by B. Kostant [Kos1] and E. B. Vinberg [Vin],
and reformulated by O. Kowalski and L. Vanhecke [Ko-Va]. Our contribution is
condition (2), which will be of special importance in our work.

Proposition 1. Let (M = G/K, g) be a homogeneous Riemannian manifold and A
be the associated operator. Let a ∈ k and x ∈ m. Then the following are equivalent:

(1) the orbit γ(t) = exp t(a + x) · o of the one-parameter subgroup exp t(a + x)
through the point o = eK is a geodesic of M ;

(2) [a + x, Ax] ∈ k;
(3) 〈[a, x], y〉 = 〈x, [x, y]m〉 for all y ∈ m;
(4) 〈[a + x, y]m, x〉 = 0 for all y ∈ m.

Proof. We show that (1) is equivalent to (2). For each u ∈ g, let Lu ∈ End(m) be
the Nomizu operator defined by

(2) 2〈Lux, y〉 = 〈[u, x]m, y〉 − 〈um, [x, y]m〉 − 〈x, [u, y]m〉

for all x, y ∈ m. If u ∈ g, then Kostant and Vinberg have shown that Luum =
−∇um

u∗, where u∗ is the fundamental vector field associated to u, i.e., u∗ =
d
dt (exp tu · o)

∣∣
t=0

. Hence if u = a+x (a ∈ k, x ∈ m), then the orbit γ(t) = (exp tu)o
is a geodesic through o if and only if

∇γ̇(0)γ̇(t)
∣∣
t=0

= −Luum = La+xx = 0.

Equation (2) reduces to

0 = 〈[a, x], y〉 − 〈x, [x, y]m〉 = B(A[a, x], y) − B(Ax, [x, y]m)

= B(A(ada x), y) − B(Ax, adx y) = B(A(ada x, y)) + B(adx(Ax), y)

for all y ∈ m. By the AdK-invariance of the operator A (i.e., [ada, A] = 0 for all
a ∈ k) the last equality is equivalent to ada Ax + adx Ax ∈ k, or [a + x, Ax] ∈ k,
which completes the proof. The equivalence of (1) and (3) was established through
the proof of (1) ⇔ (2). Finally, the equivalence of (3) and (4) is obtained by the
the following computation:

0 = 〈[a + x, y]m, x〉 = 〈[a, y]m, x〉 + 〈[x, y]m, x〉
= −〈[y, a], x〉 + 〈[x, y]m, x〉 = −〈y, [a, x]〉 + 〈[x, y]m, x〉.

�

Definition. A Riemannian homogeneous manifold (M = G/K, g) has homoge-
neous geodesics if each geodesic of M is homogeneous, i.e., an orbit of a one-
parameter group of isometries {(exp tX)o : X ∈ g}.

An immediate important corollary of Proposition 1 is the following.

Corollary 2. Let (M = G/K, g) be a homogeneous Riemannian manifold. Then
M has homogeneous geodesics if and only if for every x ∈ m there exists an a(x) ∈ k

such that

(3) [a(x) + x, Ax] ∈ k.
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3. Flag manifolds

A description of flag manifolds in terms of painted Dynkin diagrams. A
homogeneous manifold M = G/K of a compact semisimple Lie group G is called a
flag manifold if it is isomorphic to an adjoint orbit of the group G. Equivalently,
the isotropy subgroup K is the centralizer of a torus in G.

Next we give the Lie-theoretic description of flag manifolds in terms of their
painted Dynkin diagrams (see also [A-P], [A], [B-F-R], [Gor-On-Vin]).

We assume that G is simple without center with Lie algebra g. Let

g
C = h

C ⊕
∑
α∈R

CEα

be the root space decomposition of the complexification gC of g with respect to a
Cartan subalgebra hC of gC. Here R ⊂ (hC)∗ is the root system of gC, and Eα are
the root vectors. We identify the dual space (hC)∗ with hC via the Killing form B
of gC.

Let Π = {α1, . . . , αl} be a system of simple roots of R. For any subsystem
ΠK ⊂ Π we denote by

RK = {β ∈ R : β =
∑

αi∈ΠK

kiαi}

the closed subsystem of roots spanned by ΠK , and by

k
C(ΠK) = k

C = h
C ⊕

∑
β∈RK

CEβ

the associated reductive subalgebra of gC. Let K be the connected subgroup of
G generated by the subalgebra k = kC ∩ g. Then the homogeneous manifold M =
G/K is a flag manifold, and any flag manifold is of such a form. We denote by
RM = R \ RK the set complementary to the roots RK . Then

g
C = k

C + m
C where m

C =
∑

α∈RM

CEα

is a reductive decomposition of gC. The root vectors {Eβ ∈ gα : β ∈ RM} form a
basis of the space mC, which is naturally identified with the complexified tangent
space (TM

o )C of the flag manifold M . The reductive decomposition of the compact
Lie algebra g is given by

g = k + m where m = m
C ∩ g.

Let Γ = Γ(Π) be the Dynkin diagram of the simple root system Π. By painting
nodes of Γ corresponding to Π\ΠK in black, we obtain the painted Dynkin diagram
of M = G/K. In this diagram the system ΠK is determined as the subdiagram of
white roots.

Definition. Two G-manifolds M = G/K and M ′ = G/K ′ are called equivalent if
there exists an automorphism α ∈ Aut(G) such that α(K) = K ′.

Such an automorphism defines a diffeomorphism α̃ : M → M ′ given by α̃(gK) =
α(g)K ′, which satisfies α̃(gx) = α(g)α̃(x) for all g ∈ G, x ∈ M . If g′ is a G-invariant
metric on M ′, then g = α̃∗(g′) is a G-invariant metric on M , and α̃ : (M, g) →
(M, g′) is an isometry.
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Proposition 3 ([A]). Different painted connected Dynkin diagrams Γ and Γ1 (ex-
cept for the case of D�) define equivalent flag manifolds G/K and G/K ′ if the
subdiagrams Γ′ and Γ′

1 of white roots corresponding to ΠK and ΠK′ are isomor-
phic.

By using this procedure it is possible to give a complete list of all flag manifolds
G/K, where G is either a classical or an exceptional Lie group (up to isomorphism).

Flag manifolds of a classical Lie group.

A(n̄) = SU(n)/S(U(n1) · · ·U(ns)),

n̄ = (n1, . . . , ns), n = n1 + · · · + ns, n1 ≥ n2 ≥ · · · ≥ ns ≥ 1,

B(�̄) = SO(2� + 1)/U(�1) · · ·U(�k) · SO(2m + 1),

C(�̄) = Sp(�)/U(�1) · · ·U(�k) · Sp(m),

D(�̄) = SO(2�)/U(�1) · · ·U(�k) · SO(2m),

�̄ = (�1, . . . , �k, m), � = �1 + · · · + �k + m, �1 ≥ · · · ≥ �k ≥ 1, k, m ≥ 0.

Flag manifolds of an exceptional Lie group. The subsequent list of flag mani-
folds G/K determined by an exceptional Lie group G consists of 101 non-isomorphic
spaces and is to be read as follows. Let Γ(Π) be the Dynkin diagram of the simple
root system Π = {α1, . . . , αl}. Then G(α1, . . . , αk) means that ΠK = {α1, . . . , αk},
which corresponds to the semisimple part k′ of k, and the remaining l − k nodes of
Γ(Π) have been painted black, so that

k = u(1) ⊕ · · · ⊕ u(1) ⊕ k,

with l−k copies of u(1). The case where all nodes of Γ(Π) have been painted black
corresponds to the manifold G/T of full flag, where T is a maximal torus in G.

For example, E6(α2, α3, α4, α6) corresponds to the painted Dynkin diagram

α1

•
α2

◦
α3

◦
◦ α6

α4

◦
α5

•

or to the flag manifold E6/SO(8) · U(1) · U(1).
The list of flag manifolds determined by an exceptional Lie group G is the fol-

lowing:

G2(0), G2(α1), G2(α2)

F4(0), F4(α4), F4(α1), F4(α3, α4), F4(α1, α2), F4(α1, α4), F4(α2, α3),

F4(α1, α3, α4), F4(α1, α2, α4), F4(α2, α3, α4), F4(α1, α2, α3)

E6(0), E6(α5), E6(α4, α5), E6(α3, α5), E6(α3, α4, α5), E6(α2, α4, α5),

E6(α1, α3, α5), E6(α2, α3, α4, α5), E6(α1, α3, α4, α5), E6(α1, α2, α4, α5),

E6(α2, α4, α5, α6), E6(α2, α3, α4, α6), E6(α1, α2, α3, α4, α5),

E6(α1, α2, α3, α4, α6), E6(α1, α3, α4, α5, α6), E6(α1, α2, α4, α5, α6)
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E7(0), E7(α6), E7(α5, α6), E7(α4, α6), E7(α4, α5, α6), E7(α3, α5, α6),

E7(α2, α4, α6), E7(α4, α6, α7), E7(α3, α4, α5, α6), E7(α2, α4, α5, α6),

E7(α4, α5, α6, α7), E7(α2, α3, α5, α6), E7(α1, α3, α5, α6), E7(α2, α4, α6, α7),

E7(α2, α3, α4, α7), E7(α2, α3, α4, α5, α6), E7(α3, α4, α5, α6, α7),

E7(α1, α3, α4, α5, α6), E7(α1, α2, α4, α5, α6), E7(α2, α4, α5, α6, α7),

E7(α2, α3, α4, α6, α7), E7(α1, α2, α5, α6, α7),

E7(α1, α2, α4, α6, α7), E7(α1, α2, α3, α4, α7), E7(α1, α2, α3, α4, α5, α6),

E7(α2, α3, α4, α5, α6, α7), E7(α1, α3, α4, α5, α6, α7), E7(α1, α2, α4, α5, α6, α7),

E7(α1, α2, α3, α5, α6, α7), E7(α1, α2, α3, α4, α6, α7), E7(α1, α2, α3, α4, α5, α7)

E8(0), E8(α7), E8(α6, α7), E8(α5, α7), E8(α5, α6, α7), E8(α4, α6, α7),

E8(α3, α5, α7), E8(α4, α5, α6, α7), E8(α3, α5, α6, α7), E8(α3, α4, α6, α7),

E8(α2, α4, α6, α7), E8(α1, α3, α5, α7), E8(α2, α3, α4, α8), E8(α3, α4, α5, α6, α7),

E8(α2, α4, α5, α6, α7), E8(α2, α3, α5, α6, α7), E8(α1, α3, α5, α6, α7),

E8(α1, α3, α4, α6, α7), E8(α2, α4, α6, α7, α8), E8(α2, α3, α4, α7, α8),

E8(α1, α2, α3, α4, α8), E8(α2, α3, α4, α5, α6, α7), E8(α1, α3, α4, α5, α6, α7),

E8(α1, α2, α4, α5, α6, α7), E8(α1, α2, α3, α5, α6, α7), E8(α2, α4, α5, α6, α7, α8),

E8(α2, α3, α4, α6, α7, α8), E8(α1, α2, α3, α4, α7, α8), E8(α2, α3, α4, α5, α6, α8),

E8(α1, α2, α5, α6, α7, α8), E8(α1, α2, α4, α6, α7, α8), E8(α1, α2, α3, α4, α5, α8),

E8(α1, α2, α3, α4, α5, α6, α7), E8(α2, α3, α4, α5, α6, α7, α8),

E8(α1, α3, α4, α5, α6, α7, α8), E8(α1, α2, α4, α5, α6, α7, α8),

E8(α1, α2, α3, α5, α6, α7, α8), E8(α1, α2, α3, α4, α6, α7, α8),

E8(α1, α2, α3, α4, α5, α7, α8), E8(α1, α2, α3, α4, α5, α6, α8).

T -roots, isotropy representation and G-invariant metrics. Let M = G/K
be a flag manifold, and g, k be the Lie algebras of the groups G and K respectively.
Let hC be a Cartan subalgebra of the complexification kC of k, which is also a Cartan
subalgebra of gC. Then we have the following Cartan decompositions:

g
C = h

C ⊕
∑
α∈R

gα, k
C = h

C ⊕
∑

α∈RK

gα, m
C =

∑
α∈RM

gα,

where R (respectively RK) is the root system of gC (respectively of kC) with respect
to hC.

We denote by h = hC ∩ ik the real ad-diagonal subalgebra, and by

t = Z(kC) ∩ ih

the intersection of the center Z(kC) with ih. Then kC = tC ⊕ k′
C, where k′

C is the
semisimple part of kC.

We consider the restriction map

κ : h
∗ → t

∗, α �→ α|
t

and set RT = κ(RM ).
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Definition. The elements of RT are called T-roots.

It is known ([Sie], [A-P]) that there exists a 1-1 correspondence between T -roots
ξ and irreducible submodules mξ of the AdK-module mC, given by

RT � ξ ↔ mξ =
∑

κ(α)=ξ

gα.

Hence, a decomposition of the AdK-module mC into irreducible submodules is given
by

(4) m
C =

∑
ξ∈RT

mξ.

We remark that the complex conjugation τ of gC with respect to g interchanges
gα and g−α, hence also mξ and m−ξ. Due to this, a decomposition of the real
AdK-module m = (mC)τ into irreducible submodules is given by

(5) m =
∑

ξ∈R+
T

(mξ + m−ξ)τ .

Here R+
T = κ(R+) is the set of all positive T -roots (i.e., the restriction of the

system R+ of positive roots to t), τ is the complex conjugation of gC with respect
to g, and nτ denotes the set of fixed points of τ in a vector subspace n ⊂ gC.
An explicit description of the set of T -roots is obtained as follows: we fix a basis
Π = {α1, . . . , αm, φ1, . . . , φk} of the root system R such that ΠK = {φ1, . . . φk} is
a basis of the root system RK , and we denote by π1, π2, . . . , πm the fundamental
weights associated to the simple roots α1, α2, . . . , αm, i.e., linear forms defined by

2(πj , αi)
(αi, αi)

= δij , (πj , φi) = 0.

Here (·, ·) is the restriction of the Killing form to h∗.
The fundamental weights πi (i = 1, . . . , m) form a basis of the space t∗ (isomor-

phic to t via the Killing form). So the T -root ᾱ = κ(α) = α|t associated to a root
α ∈ RM , is given by

κ(α) =
m∑

j=1

2(α, αj)
(αj , αj)

πj .

Now following M.M. Graev, we prove the following lemma about the lift of
relations between T -roots to R, which will be used in the next section.

Lemma 4 (M. M. Graev, unpublished). Let ξ, η, ζ be T -roots such that ξ+η+ζ = 0.
Then there exist roots α, β, γ ∈ R with κ(α) = ξ, κ(β) = η, κ(γ) = ζ, and such that
α + β + γ = 0.

Proof. Let Π = {α1, . . . , αm, φ1, . . . , φk} be a basis of the root system R with
αi ∈ RM (i = 1, . . . , m) and φi ∈ ΠK (i = 1, . . . , k). We denote by α ∈
κ−1(ξ), β ∈ κ−1(η), γ ∈ κ−1(ζ) the roots which are the lowest weights of the ks-
modules mξ, mη, mζ respectively, where ks is the semisimple part of the reductive
Lie algebra kC. Without loss of generality we may assume that the roots α, β are
positive and γ is negative. Since κ(α + β + γ) = 0, we can write

α + β + γ = −
∑

kiφi,
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where the coefficients ki are integers. Moreover, ki ≥ 0 since −(α + β + γ) is a
dominant weight of ks. We can represent the positive root −γ as a sum of positive
roots as

−γ = α + β +
∑

kiφi.

It is known [Bour, Ch. VI, paragraph 1.6] that we can rearrange the summand in
this formula in such a way so that, for any n = 1, 2, 3, . . . , all successive summands
from the first term until the n-th term are roots. If

−γ =
∑

piφi + α +
∑

qjφj + β +
∑

rsφs

is such a reordering, we put

α′ =
∑

piφi + α +
∑

qjφj , β′ = β, γ′ = γ +
∑

rsφs.

Then α′, β′, γ′ is the desired triple of roots. �

4. Homogeneous geodesics in Riemannian flag manifolds:

A necessary condition

Recall that a G-invariant Riemannian metric g on a homogeneous space M =
G/K of a compact group G with reductive decomposition g = k + m is determined
by an AdK-invariant scalar product 〈·, ·〉 = (A·, ·) on m, where A is the associated
operator. We extend A to a complex linear operator A on mC.

Definition. A flag manifold M = G/K equipped with a G-invariant metric g is
called a Riemannian flag manifold.

If G/K is a Riemannian flag manifold, then by using decomposition (5) we can
express A as

(6) A =
∑

ξ∈R+
T

λξ Id|(mξ⊕m−ξ)τ .

We remark that λξ are the eigenvalues of the operator A (positive constants),
and that the scalar operator A = c Idm corresponds to the standard metric on
M = G/K.

Let (M = G/K, g) be a Riemannian flag manifold with associated operator A
given by (6). We will give a necessary condition that all geodesics in M through
o = eK are homogeneous geodesics, in terms of the set of T -roots.

Proposition 5. Let (M = G/K, g) be a Riemannian flag manifold, A the asso-
ciated operator given by (6), and let {λξ : ξ ∈ R+

T } be its eigenvalues. Assume
that all geodesics of (M, g) are homogeneous. Then if ξ, η are two T -roots with η
different from ±ξ and ±2ξ, and such that ξ + η ∈ RT or ξ − η ∈ RT , then λξ = λη.

Proof. By Corollary 2, for each x ∈ m there exists an a = a(x) ∈ k such that
[a + x, Ax] ∈ k. Assume that ξ, η are such that ξ + η ∈ RT . Similarly this works if
ξ − η ∈ RT . Let

0 �= x = xξ + x−ξ + xη + x−η ∈ m ∩ (mξ + m−ξ + mη + m−η)
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such that xξ, xη �= 0. Since ξ + η ∈ RT , then by Lemma 4, 0 �= [xξ, xη] ∈ mξ+η.
Then condition (3) can be expressed as

[a + xξ + x−ξ + xη + x−η, λξ(xξ + x−ξ) + λη(xη + x−η)]

≡ (λη − λξ)([xξ, xη] + [x−ξ, x−η] + [xξ, x−η + [x−ξ, xη])

mod(mξ + mη + m−ξ + m−η + k).

Since the first term in the second bracket is a non-zero element of mξ+η, and the
other terms belong to other AdK-submodules, it follows that λξ = λη. �

Proposition 5 motivates the following:

Definition. (1) Two T -roots ξ, η ∈ RT are called adjacent if one of the following
occurs:

(i) If η is a multiple of ξ, then η �= 2ξ and ξ �= 2η.
(ii) If η is not a multiple of ξ, then either ξ − η ∈ RT , or ξ + η ∈ RT .

(2) Two T -roots ξ, η are called connected if there exists a chain of T -roots

ξ = ξ1, ξ2, . . . , ξs = η

such that ξi, ξi+1 are adjacent (i = 1, . . . , s − 1).

We remark that ξ and ±ξ are connected, and if ξ, 2ξ are the only positive
T -roots, then these are not connected. We define the relation

ξ ∼ η ⇔ ξ, η are connected.

One can check easily that this is an equivalence relation. Let Ri be the equivalence
classes consisting of mutually connected T -roots. Then the set RT is decomposed
into a disjoint union

RT = R1 ∪ · · · ∪ Rr.

Definition. The set of T -roots RT is called connected if r = 1.

The above decomposition of RT induces the following decomposition for mC:

m
C = m

1 ⊕ · · · ⊕ m
r,

where mi =
∑

ξ∈Ri mξ. As a consequence we obtain the following:

Proposition 6. Let (M = G/K, g) be a Riemannian flag manifold of a simple Lie
group, and {λξ : ξ ∈ RT } be the eigenvalues of the operator A associated with the
G-invariant metric g. If all geodesics of (M, g) are homogeneous, then

λξ = λη for all ξ, η ∈ Ri (i = 1, . . . , r).

In particular, the operator A is expressed as

(7) A = λ1 Id|
m1 + · · · + λr Id|

mr .

Proof. Let RT = R1∪· · ·∪Rr be the decomposition of the set RT , and let ξ, η ∈ Ri

for some i = 1, . . . , r. Then the result is immediate from Proposition 5. Expression
(7) for the operator A is obtained from (5) and (6). �

The above can be combined to the following important necessary condition:

Theorem 7. Let M = G/K be a flag manifold of a simple Lie group. If the
set of T -roots is connected, then the standard metric is the only (up to a scalar)
G-invariant metric of M with homogeneous geodesics.
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5. Classification of flag manifolds of a classical Lie group

with non-connected system of T -roots

Theorem 7 shows that if a flag manifold M = G/K of a simple Lie group G
admits a G-invariant metric with homogeneous geodesics which is not homothetic
to the standard metric, then the set RT of T -roots is not connected. In this section
we describe all such manifolds of a classical Lie group G.

Let G/K be a flag manifold, where G is one of the classical Lie groups A�, B�, C�

or D�.
Case of A� = SU(n), n = � + 1. A flag manifold of the group A� has the form

A(n̄) = SU(n)/S(U(n1) · · ·U(ns)).

We describe the associated set of T -roots RT as follows (see [A-P], [A]).
Let ε = {ε1, . . . , εn} be the standard basis of Rn. It is more convenient to pass to

dual indices of the vectors of the basis ε, so that ε = {ε11, . . . , ε1n1
, ε21, . . . , ε

2
n2

, . . . , εs
1,

. . . , εs
ns
}. Then the root system is given by

R = {εa
i − εb

j : i �= j},

and if we take RK = {εa
i − εa

j : i �= j, 1 ≤ a ≤ s}, then

RM = {εa
i − εb

j : a �= b, i �= j}.

We also have that

t = {diag(ε1 ε1 · · · ε1 ε2 · · · ε2 · · · εs · · · es) :∑
εi = 0, εi appears ni times (1 ≤ i ≤ s)}.

Then the set of T -roots has the form

RT = {εa − εb : a, b = 1, . . . , s},

which is a root system of type As−1. It is connected. Hence we get the following.

Proposition 8. The set of T -roots of the flag manifold A(n̄) = SU(n)/S(U(n1)
· · ·U(ns)) is connected. Hence any SU(n)-invariant metric on A(n̄) with homoge-
neous geodesics is homothetic to the standard metric.

Following [A-P] we now describe the root systems R, RK for all flag manifolds
B(�̄), C(�), D(�) of the classical groups B� = SO(2� + 1), C� = Sp(�), or D� =
SO(2�) listed in Section 3.

Let ε = {εa
i , πj} be an orthonormal basis of R�, where a = 1, . . . , k, j = 1, . . . , m,

and for a given a the index i takes the values 1, . . . , �a. Then we can describe the
root systems R, RK as follows:

R = {±εa
i ± εb

j , ±εa
i ± εa

j , ±εa
i ± πj , ±πi ± πj , ±µεa

i , ±µπj : i < j, a < b},
RK = {±(εa

i − εa
j ), ±πi ± πj , ±µπj},

where µ = 1 in the case of B�, µ = 2 for C�, and µ is absent for D�.
Case of B�. We choose

R+
K = {εa

i − εa
j , πi ± πj , πj : i < j} so that

R+
M = R+ \ R+

K = {εa
i + εa

j , εa
i ± εb

j , εa
i ± πj , εa

i : i < j, a < b}.
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We note that t = {diag(ε1 ε1 · · · ε1 ε2 · · · ε2 · · · εk · · · ek) : εa appears �a times
(1 ≤ a ≤ k)}, so the set of positive T -roots is given by

R+
T = {2εa, εa ± εb, εa : a < b, a, b = 1, . . . , k}.

If �1 = · · · = �k = 1, then the vectors 2εa are absent, and R+
T is connected. This

corresponds to the space SO(2� + 1)/U(1) · · ·U(1) · SO(2m + 1). If k = 1 and
�1 �= 1, it takes the form R+

T = {2ε, ε}, which is not connected. This corresponds
to the space B(� − m, m) = SO(2� + 1)/U(� − m) · SO(2m + 1). In all other cases
it is connected.

Case of C�. We choose

R+
K = {εa

i − εa
j , πi ± πj , 2πj : i < j} so that

R+
M = {εa

i + εa
j , εa

i ± εb
j , εa

i ± πj , 2εa
i : i < j, a < b}.

The set t is the same as in B�, so we obtain that

R+
T = {2εa, εa ± εb, εa : a < b, a, b = 1, . . . , k}.

If �1 = · · · = �k = 1, then the vectors 2εa are absent, and R+
T is connected. This

corresponds to the space Sp(2�)/U(1) · · ·U(1) ·Sp(m). If k = 1 and �1 �= 1, it takes
the form R+

T = {2ε, ε}, which is not connected. This corresponds to the space
C(� − m, m) = Sp(�)/U(� − m) · Sp(m). In all other cases it is connected.

Case of D�. We choose

R+
K = {εa

i − εa
j , πi ± πj : i < j}, so that

R+
M = {εa

i + εa
j , εa

i ± εb
j , εa

i ± πj : i < j, a < b}.
Similarly, it follows that

R+
T = {2εa, εa ± εb, εa : a < b, a, b = 1, . . . , k}.

If �1 = · · · = �k = 1, then as before the vectors 2εa are absent, and R+
T is

connected. This corresponds to the space SO(2�)/U(1) · · ·U(1) · SO(2m). If k =
1 and �1 �= 1, it takes the form R+

T = {2ε, ε}, which is not connected. This
corresponds to the space D(� − m, m) = SO(2�)/U(� − m) · SO(2m). In all other
cases it is connected. Hence we obtain:

Proposition 9. The only flag manifolds of the classical groups B�, C�, D� with
non-connected system RT of T -roots are

B(� − m, m) = SO(2� + 1)/U(� − m) · SO(2m + 1),

C(� − m, m) = Sp(�)/U(� − m) · Sp(m),

D(� − m, m) = SO(2�)/U(� − m) · SO(2m).

For these manifolds RT = {±ε,±2ε}.

6. Classification of flag manifolds of an exceptional Lie group

with non-connected system of T -roots

Now we determine all flag manifolds of an exceptional Lie group G with non-
connected system RT . Since there are many cases and the examinations are straight-
forward and elementary, we will present the case of the group G2 in detail and con-
sider only a few cases for the other groups E4, E6, E7, E8. We need the following
description of the root systems R of exceptional complex Lie algebras g, which we
take from [Gor-On-Vin]. In the table is indicated the dimension of the exceptional
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Lie algebra, the set of simple roots Π, the maximal root µ, and a description of the
Weyl group W .

Type dim g R Π, µ W

E8 248
εi − εj

± (εi + εj + εk)

αi =εi − εi+1, i < 8

α8 =ε6 + ε7 + ε8

µ=ε1 − ε9

AutR

E7 133
εi − εj

εi + εj + εk + εl

αi =εi − εi+1, i < 7

α7 =ε5 + ε6 + ε7 + ε8

µ=−ε7 + ε8

AutR

E6 78
εi − εj , ±2ε

εi + εj + εk + ε

αi =εi − εi+1, i < 6

α6 =ε4 + ε5 + ε6 + ε

µ=2ε

Aut R=W × {±1}

F4 52

± εi ± εj ; ±εi

1

2
(±ε1 ± ε2 ± ε3 ± ε4)

α1 =
1

2
(ε1−ε2−ε3−ε4)

α2 =ε4

α3 =ε3 − ε4

α4 =ε2 − ε3

µ=ε1 + ε2

AutR

G2 14 εi − εj , ±εi

α1 =−ε2

α2 =ε2 − ε3

µ=ε1 − ε3

AutR

The following notation is used. For F4, εi (i=1, 2, 3, 4) is an orthonormal basis
of the 4-dimensional Euclidean space R4.

For all other exceptional root systems of rank l, ε1, ..., εl+1 is the standard basis
of the Euclidean vector space Rl+1 restricted to the hyperplane

El =

{
α =

∑
xiεi,

l+1∑
i=1

xi = 0

}
.

In particular,

(εi, εi) =
l

l + 1
, (εi, εj) = − 1

l + 1
, i �= j.

For E6, ε is the vector with (ε, ε) = 1/2, orthogonal to all vectors εi.
Recall that every positive T -root is expressed as

prt α := k1ᾱ1 + · · · + kmᾱm,

where α ∈ R+
M , and ᾱi = prt αi = αi|t (αi ∈ Π \ ΠK).

Case of G2. We fix an ordering so that the set of positive roots is

R+ = {−(2ε2 + ε3),−(ε2 + 2ε3), ε2 − ε3,−(ε2 + ε3),−ε2,−ε3}.
The maximal root is µ = −(ε2 +2ε3) = 3α1 +2α2, and any root α ∈ R is expressed
as α = k1α1 + k2α2, with |k1| ≤ 3 and |k2| ≤ 2. More specifically we have:

− (2ε2 + ε3) = 3α1 + α2, −(ε2 + 2ε3) = 3α1 + 2α2, ε2 − ε3 = α2,

− (ε2 + ε3) = 2α1 + α2, −ε2 = α1, −ε3 = α1 + α2.

(1) G2(0): In this case ΠK = ∅, so R = RM . The set of positive T -roots coincides
with R+, which is connected. This corresponds to the space G2/T 2.
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(2) G2(α1): Here ΠK = {α1}, and R+
M = {−(2ε2 + ε3),−(ε2 + 2ε3), ε2 − ε3,

−(ε2 + ε3),−ε3}. Hence t = Rπ2, so prt α2 = cπ2 = ᾱ2. Therefore, each projection
of α ∈ R+

M on t is either ᾱ2 or 2ᾱ2, so R+
T = {ᾱ2, 2ᾱ2}, which is not connected.

This corresponds to the space G2/U(2), with U(2) represented by the long root of
G2.

(3) G2(α2): Then ΠK = {α2}, t = Rπ1, and prt α1 = c′π1 = ᾱ1. By evaluating
the projections of each α ∈ R+

M on t, we obtain that R+
T = {ᾱ1, 2ᾱ1, 3ᾱ1}, which is

connected. This corresponds to the space G2/U(2), with U(2) represented by the
short root of G2.

Case of F4. We fix the set of positive roots to be

R+ = {ε1, ε2, ε3, ε4, εi ± εj (i < j),
1
2
(ε1 ± ε2 ± ε3 ± ε4)}.

The maximal root is expressed in terms of simple roots as µ = ε1+ε2 = 2α1+4α2+
3α3 + 2α4, and any root α ∈ R is expressed as α = k1α1 + k2α2 + k3α3 + k4α4,
with |k1| ≤ 2, |k2| ≤ 4, |k3| ≤ 3, |k4| ≤ 2. We denote such an expression by
α = (k1, k2, k3, k4); hence each positive root is given as follows (see also [Fr-dV,
Appendix Tables B and E]):

ε1 = (2, 3, 2, 1), ε2 = (0, 1, 1, 1), ε3 = (0, 1, 1, 0), ε4 = (0, 1, 0, 0),

ε1 − ε2 = (2, 2, 1, 0), ε1 − ε3 =(2, 2, 1, 1), ε1 − ε4 =(2, 2, 2, 1), ε2 − ε3 = (0, 0, 0, 1),

ε2 − ε4 = (0, 0, 1, 1), ε3 − ε4 =(0, 0, 1, 0), ε1 + ε2 =(2, 4, 3, 2), ε1 + ε3 = (2, 4, 3, 1),

ε1 + ε4 = (2, 4, 2, 1), ε2 + ε3 =(0, 2, 2, 1), ε2 + ε4 =(0, 2, 1, 1), ε3 + ε4 = (0, 2, 1, 0),
1
2
(ε1 + ε2 + ε3 + ε4) = (1, 3, 2, 1),

1
2
(ε1 + ε2 + ε3 − ε4) = (1, 2, 2, 1),

1
2
(ε1 + ε2 − ε3 + ε4) = (1, 2, 1, 1),

1
2
(ε1 − ε2 + ε3 + ε4) = (1, 2, 1, 0),

1
2
(ε1 + ε2 − ε3 − ε4) = (1, 1, 1, 1),

1
2
(ε1 − ε2 + ε3 − ε4) = (1, 1, 1, 0),

1
2
(ε1 − ε2 − ε3 + ε4) = (1, 1, 0, 0),

1
2
(ε1 − ε2 − ε3 − ε4) = (1, 0, 0, 0),

2ε = (1, 2, 3, 2, 1, 2).

(1) F4(0): The set of positive T -roots coincides with R+, which is connected.
This corresponds to the case F4/T 4.

(2) F4(α2, α3, α4): Then t = Rπ1 and prt α = k1ᾱ1 for each α ∈ R+
M (recall that

prt α = 0 if α ∈ RK). We obtain that R+
T = {ᾱ1, 2ᾱ1}, which is not connected.

This corresponds to the space F4/SO(7) · U(1).
(3) F4(α1, α2, α3): Then t = Rπ4 and prt α = k4ᾱ4. It follows that R+

T =
{ᾱ4, 2ᾱ4}, which is not connected. This corresponds to the space F4/Sp(3) · U(1).

(4) F4(α1, α2): Here t = spanR(π3, π4) and prt α = k3ᾱ3+k4ᾱ4 for each α ∈ R+
M .

We obtain the system of positive T -roots R+
T = {2ᾱ3 + ᾱ4, ᾱ3 + ᾱ4, ᾱ3, ᾱ4, 3ᾱ3 +

2ᾱ4, 3ᾱ3 + ᾱ4}, which is connected.
(5) F4(α1, α3, α4): Here t = Rπ2 and prt α = k2ᾱ2. We obtain that R+

T =
{ᾱ2, 2ᾱ2, 3ᾱ2, 4ᾱ2}, which is connected.

In all other cases the set of T -roots is also connected.
Case of E6. We fix the set of positive roots to be

R+ = {εi − εj (i < j), 2ε, εi + εj + εk + ε (i < j < k)}.
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The maximal root is expressed as µ = 2ε = α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6. By
using the notation as in F4 each positive root is given as follows:

ε1 − ε2 = (1, 0, 0, 0, 0, 0), ε2 − ε3 = (0, 1, 0, 0, 0, 0), ε3 − ε4 = (0, 0, 1, 0, 0, 0),

ε4 − ε5 = (0, 0, 0, 1, 0, 0), ε5 − ε6 = (0, 0, 0, 0, 1, 0), ε1 − ε3 = (1, 1, 0, 0, 0, 0),

ε2 − ε4 = (0, 1, 1, 0, 0, 0), ε3 − ε5 = (0, 0, 1, 1, 0, 0), ε4 − ε6 = (0, 0, 0, 1, 1, 0),

ε1 − ε4 = (1, 1, 1, 0, 0, 0), ε1 − ε5 = (1, 1, 1, 1, 0, 0), ε1 − ε6 = (1, 1, 1, 1, 1, 0),

ε2 − ε5 = (0, 1, 1, 1, 0, 0), ε2 − ε6 = (0, 1, 1, 1, 1, 0), ε3 − ε6 = (0, 0, 1, 1, 1, 0),

ε1 + ε2 + ε3 + ε = (1, 2, 3, 2, 1, 1), ε1 + ε2 + ε4 + ε = (1, 2, 2, 2, 1, 1),

ε1 + ε2 + ε5 + ε = (1, 2, 2, 1, 1, 1), ε1 + ε2 + ε6 + ε = (1, 2, 2, 1, 0, 1),

ε1 + ε3 + ε4 + ε = (1, 1, 2, 2, 1, 1), ε1 + ε3 + ε5 + ε = (1, 1, 2, 1, 1, 1),

ε1 + ε3 + ε6 + ε = (1, 1, 2, 1, 0, 1), ε1 + ε4 + ε5 + ε = (1, 1, 1, 1, 1, 1),

ε1 + ε4 + ε6 + ε = (1, 1, 1, 1, 0, 1), ε1 + ε5 + ε6 + ε = (1, 1, 1, 0, 0, 1),

ε2 + ε3 + ε4 + ε = (0, 1, 2, 2, 1, 1), ε2 + ε3 + ε5 + ε = (0, 1, 2, 1, 1, 1),

ε2 + ε3 + ε6 + ε = (0, 1, 2, 1, 0, 1), ε2 + ε4 + ε5 + ε = (0, 1, 1, 1, 1, 1),

ε2 + ε4 + ε6 + ε = (0, 1, 1, 1, 0, 1), ε2 + ε5 + ε6 + ε = (0, 1, 1, 0, 0, 1),

ε3 + ε4 + ε5 + ε = (0, 0, 1, 1, 1, 1), ε3 + ε4 + ε6 + ε = (0, 0, 1, 1, 0, 1),

ε3 + ε5 + ε6 + ε = (0, 0, 1, 0, 0, 1), ε4 + ε5 + ε6 + ε = (0, 0, 0, 0, 0, 1).

(1) E6(α1, α2, α3, α4, α5): t = Rπ6 and prt α = k6ᾱ6 for each α ∈ R+
M . The set

of positive T -roots is R+
T = {ᾱ6, 2ᾱ6}, which is not connected. This corresponds to

the space E6/SU(6) · U(1).
(2) E6(α1, α3, α4, α5, α6): t = Rπ2 and prt α = k2ᾱ2. The set of positive T -

roots is R+
T = {ᾱ2, 2ᾱ2}, which is not connected. This corresponds to the space

E6/SU(2) · SU(5) · U(1).
In all other cases the set of T -roots is connected. We show two cases:
(3) E6(α3, α4, α5): t = spanR(π1, π2, π6) and prt α = k1ᾱ1 + k2ᾱ2 + k6ᾱ6. We

obtain that R+
T = {ᾱ1, ᾱ2, ᾱ1 + ᾱ2, ᾱ1 + 2ᾱ2 + ᾱ6, ᾱ1 + ᾱ2 + ᾱ6, ᾱ2 + ᾱ6, ᾱ6, ᾱ1 +

2ᾱ2 + 2ᾱ6}, which is connected.
(4) E6(α1, α2, α4, α5): t = spanR(π3, π6) and prt α = k3ᾱ3 + k6ᾱ6. We obtain

that R+
T = {ᾱ3, 3ᾱ3 + ᾱ6, 2ᾱ3 + ᾱ6, ᾱ3 + ᾱ6, ᾱ6}, which is connected.

Case of E7. We fix the set of positive roots to be

R+ = {εi − εj (i < j ≤ 7),−(εi − ε8),−(εi + εj + εk + εl) (i < j < k < l ≤ 7),

εi + εj + εk + ε8 (i < j < k)}.

The maximal root is given as µ = −ε7+ε8 = α1+2α2+3α3+4α4+3α5+2α6+2α7.
The set of T -roots is not connected only in the following cases :
(1) E7(α1, α2, α3, α4, α5, α6): We obtain that t = Rπ7 and prt α = k7ᾱ7. The set

of positive T -roots is R+
T = {ᾱ7, 2ᾱ7}, which is not connected. This corresponds to

the space E7/SU(7) · U(1).
(2) E7(α1, α3, α4, α5, α6, α7): We have that t = Rπ2 and prt α = k2ᾱ2. The set

of positive T -roots is R+
T = {ᾱ2, 2ᾱ2}, which is not connected. This corresponds to

the space E7/SU(2) · SO(10) · U(1).
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(3) E7(α1, α2, α3, α4, α5, α7): Here t = Rπ6 and prt α = k6ᾱ6. We obtain that
R+

T = {ᾱ6, 2ᾱ6}, which is not connected. This corresponds to the space E7/SO(12)·
U(1).

Case of E8. We fix the set of positive roots to be

R+ = {εi − εj (i < j), εi + εj + εk (i < j < k ≤ 8),−(εi + εj + ε9) (i < j)}.
The maximal root is expressed as µ = ε1 − ε9 = 2α1 + 3α2 + 4α3 + 5α4 + 6α5 +
4α6 + 2α7 + 3α8.

The set of T -roots is not connected only in the following cases:
(1) E8(α2, α3 . . . , α8): Here t = Rπ1 and prt α = k1ᾱ1. A computation gives

that R+
T = {ᾱ1, 2ᾱ1}, which is not connected. This corresponds to the space

E8/E7 · U(1).
(2) E8(α1, . . . , α6, α8): Here t = Rπ7 and prt α = k7ᾱ7. We obtain that R+

T =
{ᾱ7, 2ᾱ7}, which is not connected. This corresponds to the space E8/SO(14) ·U(1).

Summarizing these results, we get the following.

Proposition 10. Let M = G/K be a flag manifold of an exceptional Lie group
G. If the T -root system RT is not connected, then it has the form RT = {±ξ,±2ξ}
and the manifold M is equivalent to one of the following flag manifolds:

G2(α1) = G2/U(2)

α1

◦ >

α2

•

F4(α2, α3, α4) = F4/SO(7) · U(1)
α1

•
α2

◦ >
α3

◦
α4

◦

F4(α1, α2, α3) = F4/Sp(3) · U(1)
α1

◦
α2

◦ >
α3

◦
α4

•

E6(α1, α2, α3, α4, α5) = E6/SU(6) · U(1)

α1

◦
α2

◦
α3

◦
• α6

α4

◦
α5

◦

E6(α1, α3, α4, α5, α6) = E6/SU(2) · SU(5) · U(1)

α1

◦
α2

•
α3

◦
◦ α6

α4

◦
α5

◦

E7(α1, α2, α3, α4, α5, α6) = E7/SU(7) · U(1)

α1

◦
α2

◦
α3

◦
α4

◦
• α7

α5

◦
α6

◦

E7(α1, α2, α3, α4, α6, α7) = E7/SU(2) · SO(10) · U(1)

α1

◦
α2

•
α3

◦
α4

◦
◦ α7

α5

◦
α6

◦

E7(α1, α3, α4, α5, α5, α7) = E7/SO(12) · U(1)
α1

◦
α2

◦
α3

◦
α4

◦
◦ α7

α5

◦
α6

•

E8(α2, α3, α4, α5, α6, α7, α8)=E8/E7 · U(1)
α1

•
α2

◦
α3

◦
α4

◦
α5

◦
◦ α8

α6

◦
α7

◦

E8(α1, α2, α3, α4, α5, α6, α8) = E8/SO(14) · U(1)
α1

◦
α2

◦
α3

◦
α4

◦
α5

◦
◦ α8

α6

◦
α7

•

Corollary 11. Let M = G/K be a flag manifold of a simple Lie group G . Then
the T -root system RT is not connected if and only if it has the form RT = {±ξ,±2ξ}
for some 1-form ξ on t or, equivalently, the isotropy representation of K has two
irreducible components.

We will give another characterization of the flag manifolds with non-connected
RT , described above.
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According to Section 3, T -roots ξ ∈ RT of a flag manifold M = G/K correspond
to irreducible K-submodules mξ of the complexified tangent space (ToM)C = mC

of M . In particular, a flag manifold M = G/K with the T -root system of the form
RT = {±ξ,±2ξ} defines a depth-two gradation

g
C = g−2 + g−1 + g0 + g1 + g2, [gi, gj ] ⊂ gi+j

of the complexification gC of the Lie algebra g with irreducible K-module m−1,
given by

g0 = k
C, gi = miξ, i = ±1,±2.

Moreover, we have a 1-1 correspondence between such flag manifolds and depth-
two gradations with irreducible modules gi. Such gradations of a complex simple
Lie algebra gC correspond to simple roots α of a simple root system Π of the Lie
algebra gC (with respect to a Cartan subalgebra hC), with Dynkin mark 2 (cf.
[Gor-On-Vin]). Recall that the Dynkin marks ni (also known as “heights” of the
roots) are the coefficients (positive integers) of the decomposition of the maximal
root µ with respect to the simple roots αi ∈ Π : µ =

∑
niαi.

The gradation associated to a simple root α is defined by the conditions

deg h = deg Eβ = 0, for all β ∈ Π \ {α}, deg Eα = 1.

The associated flag manifold is Mα = G/Kα, where Kα is the compact subgroup
of G which corresponds to the Lie subalgebra kC of gC generated by the Cartan
subalgebra hC and the root vectors Eβ , β ∈ Π \ {α}.

Therefore we obtain:

Corollary 12. The flag manifolds M = G/K of a simple Lie group G with non-
connected RT are exactly the flag manifolds Mα = G/Kα associated with a simple
root α with Dynkin mark 2.

7. Flag manifolds with homogeneous geodesics

In this section we describe flag manifolds M = G/Kwith non-connected T -root
system RT , and which have non-standard metrics with homogeneous geodesics. By
Corollary 12 any such manifold M = Mα is associated to a simple root α of the
complex Lie algebra gC and defines a depth-two gradation

g
C = g−2 + g−1 + g0 + g1 + g2,

where g0 = kC, with irreducible K-module g−1.
The even and odd parts of this gradation determine a symmetric decomposition

g
C = gev + godd = (g−2 + g0 + g2) + (g−1 + g1)

of the Lie algebra gC . We denote by G/Gev the corresponding compact symmetric
space, where Gev is the compact subgroup of G which corresponds to the subalgebra
gev. Consider the natural fibration

π : Mα = G/K → G/Gev

with fiber F = Gev/K. Since F is an isotropy irreducible homogeneous space
(whose tangent space can be identified with n := g ∩ (g−1 + g1)), any invariant
metric on Mα is homothetic to the metric gλ, which is obtained from the standard
metric g1 by multiplying its π-vertical part g1|n by a positive constant λ.

In the paper [Ta], H. Tamaru classified all such metrics gλ with homogeneous
geodesics on homogeneous manifolds G/K of a compact simple Lie group G which
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are fibered over a symmetric space G/H. Combining his classification with our
results we conclude that the only flag manifolds M = G/K of a simple Lie group
which admit non-standard metrics gλ (λ �= 1) with homogeneous geodesics are the
manifolds B(�, 0) = SO(2� + 1)/U(�) and C(1, � − 1) = Sp(�)/U(1) · Sp(� − 1).

Also, in [On], A.L. Onishchik proved that the only compact connected enlarge-
nent of the transformation group SO(2� + 1) of B(�, 0) is SO(2� + 2), and the only
compact connected enlargement of the transformation group Sp(�) of C(1, �− 1) is
the group SU(2�−1). In addition, B(�, 0) = SO(2�+1)/U(�) = SO(2�+2)/U(�+1)
and C(1, �− 1) = Sp(�)/U(1) · Sp(�− 1) = SU(2�− 1)/U(2�− 2). Due to this, the
manifold B(�, 0) is identified with the symmetric manifold Com(R2�+2) of complex
structures in R

2�+2, and the manifold C(1, � − 1) is identified with the projec-
tive space CP 2�−2. The metric g1 gives the standard symmetric metric on these
manifolds. Any other metric gλ, λ �= 1 cannot be invariant under the extended
group. Therefore, the full connected groups of isometries of these spaces B(�, 0)
and C(1, � − 1) are SO(2� + 1) and Sp(�), respectively. This proves Theorem III
stated in the introduction.
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[Du1] Z. Dušek: Structure of geodesics in a 13-dimensional group of Heisenberg type,
Proc. Coll. Diff. Geom. in Debrecen (2001) 95–103. MR1859291 (2002f:53057)
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