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Abstract

Over the past several years, we have been studying the problem of optimally rotating a rigid sphere about its center,

where the rotation is actuated by a triplet of external torques acting on the body. The control objective is to

repeatedly direct a suitable radial vector, called the gaze vector, towards a stationary point target in IR3. The orientation

of the sphere is constrained to lie in a suitable submanifold of SO(3). Historically, the constrained rotational

movements were studied by physiologists in the nineteenth century, interested in eye and head movements. In this

paper we revisit the gaze control problem, where two visual sensors, are tasked to simultaneously stare at a point

target in the visual space. The target position changes discretely and the problem we consider is how to reorient the

gaze directions of the sensors, along the optimal pathway of the human eyes, to the new location of the target. This is

done by first solving an optimal control problem on the human binocular system. Next, we use these optimal control

and show that a pan-tilt system can be controlled to follow the gaze trajectory of the human eye requiring a nonlinear

static feedback of the pan and tilt angles and their derivatives. Our problem formulation uses a new Riemannian

geometric description of the orientation space. The paper also introduces a new, pyramid based interpolation

method, to implement the optimal controller.

Keywords: Binocular vision, Riemannian geometry, Optimal control, Pyramid based interpolation, Bio-Mimetic

Pan-Tilt rotation

1 Introduction
In this paper we consider the Binocular Sensory Control

problem, where each sensor is tasked to mimic the move-

ment dynamics of the human eye. Typically we assume

that the centers of the sensors are fixed in space and the

sensor gaze directions rotate to inspect point targets that

are located in 3D. The gaze directions are always con-

strained to pass through a point and the goal of the sensing

mechanism is to initially start with a target fixed in its
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view and to switch to an alternate target in the visual

field in a unit interval of time, assumed to be [ 0, 1]. The

paper analyses rotation for a binary pair of sensors and the

goal is to compute optimal control over the chosen fixed

time interval, extending two of our prior papers [1, 2]. In

our earlier research, binocular eye rotation has also been

studied as a cascade of version and vergence eye move-

ment applied to the two eyes separately (see [3] and [4]).

This paper also extends [5], a recently published paper

by the authors on Riemannian geometric formulation for

the optimal control of binocular eye motion. The optimal

control, we show, can be implemented by a pyramid based

linear interpolation introduced in this paper.
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Anatomy of the eye is such that it is only able to rotate

with three degrees of freedom [6, 7], but is unable to trans-

late [8]. The eye movement system is a relatively simple

mechanical control system compared to other complex

human movement systems [9]. Modeling the dynamics

of monocular eye rotation has been an important goal

in Neuroscience (see [10] for a short review article on

how brain controls the eye movement) and Biomechan-

ics [11]. Since the early half of the 19th century [12, 13],

scientists have tried to create dynamic models in order to

understand various eye movement trajectories (see [14]

for some historical details). Starting from some of the

initial papers of [15], the principles from geometry, for

example as in [16–18], are central to many of the key ques-

tions in nonlinear systems theory (see [19]), applied to

rotational dynamics. Specific to the eyemovement control

system, we would also like to refer to [20–22] and many

references therein. For a single eye, optimization problems

associated with gaze control [23], have been extended to

optimal control problems studied by [24–26].

In the last few decades, there has been considerable

research on exactly how the eye rotations are controlled.

It was well known since the 19th century by physiologists

such as Helmholtz, Listing and Donders that when head

is kept fixed, the axes of rotation is confined to a plane

called the Listing’s plane (see [27–29]). Questions arise as

to how the Listing’s constraint is satisfied by the ‘motion

controller’. Current literature seems to support the view

that the constraint is met by active neural control in the

brain (see [23, 29–34]) as opposed to an alternative view

that the constraints are forced by mechanical properties

of the eye plant using muscle pulleys [35, 36]. In this paper

and many of our earlier papers [5, 25] geometric methods

were used to study optimal control problems within the

constrained space (called the configuration space) using

a Riemannian formulation. We demonstrate that the syn-

thesized control, to be viewed as actively generated by the

neural circuit in the brain, continues to enforce for exam-

ple the Listing’s constraint (and an additional co-planarity

constraint to be introduced later in this paper), even when

implemented on the ambient space SO(3) 1.

Geometric methods have a long history in the study

of eye movement rotation (see [27, 28, 37, 38]). Rieman-

nian geometry (see [39, 40]) has been introduced for

monocular optimal control problems on the configuration

spaces LIST in [6] and DOND in [24]. We have recently

(see [5]) extended the Riemannian geometric formulation

to binocular control problems, wherein a configuration

space LBIN for the binocular eye pair is described as a

subset of SO(3)×SO(3). In this paper, we first recall from

[5] the construction of the optimal eye rotation controller

1When states of the dynamical system satisfy the Listing’s constraint at the
initial time.

for the binocular eye pair. We then propose that these

controllers can be implemented using a straightforward

pyramid [41] based interpolation scheme, where the plan

is to synthesize the control function as a convex combi-

nation of four corner points of a pyramid. Controlling the

binocular system to each of the four corner points can be

learnt and kept in the memory to be used subsequently

as a lookup table. Finally we replace the eye-pair with a

pair of mechanical visual sensors, capable of rotating, only

along pan and tilt. We describe a simple control strat-

egy, to track the optimal (human) gaze pathway, using the

mechanical pan/tilt system (see [26] and Fig. 3 for a figure

of generalized gimbal. For a pan/tilt system the axial rota-

tion angle φ3 is constrained to zero)2. Hence a mechanical

pan/tilt system is able to follow human eyemovement only

up to its gaze direction but cannot follow the changing roll

of the eye.

Next we briefly talk about the importance of a mechan-

ical system following the human eye. In one line of

research [42], a mechanical system, such as a humanoid

robot, tries to generate human like behaviors in robots by

recording and mimicking human motions in the execu-

tion of a particular task. For example, a human instructor

can explain the process of assembling a device with sev-

eral parts distributed over a table [43], and his associated

gaze behaviors are learnt and encoded in dynamic gaze

controllers implemented in a robot [44]. Human gaze

behavior can also be replicated in a robot by directly

programming the control laws into the robot. For exam-

ple in [45] a neurophysiological model of human sac-

cadic motion was implemented in a robot head where

each eye had pan/tilt mobility. Although the emphasis of

this paper is not on humanoid robots, we show how a

pan/tilt system can imitate the human ocular movements

upto gaze directions only, without an explicit reprogram-

ming of its controllers, requiring only a nonlinear static

feedback.

Finally, we outline the sections of this paper. In

Section 2, we introduce notations that describe the axis-

angle parametrization [6, 24, 25] of unit quaternion.

Section 3 describes a recently introduced Riemannian

metric on the configuration space LBIN for the binocular

pair of human eyes [5]. Using the Riemannianmetric from

Section 3, we write down the controlled Euler-Lagrange

equation in Section 4. The control variables are the exter-

nal torque vector functions applied to each of the two

eyes and the problem we propose is to optimally control

(using a suitably chosen cost function), the rotation of the

eye-pair, in time interval [ 0, 1], so that the fixated target

point in the visual space switches between two points.

To solve for the optimal control, an associated Two Point

2Note that the pan/tilt system does not rotate axially, and hence, would not
follow the torsional rotation of the eyes.
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Boundary Value Problem needs to be solved and in our

prior papers [5, 26], such a boundary value problem has

been solved using a program called COMSOL [46]. In [5],

many examples are showcased where the eye centers are

kept horizontal, i.e. the head is kept straight relative to

the torso. In Section 5, an example is introduced where

the head is tilted sideways i.e., the separation vector join-

ing the two eyes contained in the Listing’s Plane3. In

Section 6, we propose a pyramid based interpolation

to approximate the control torque function required to

transfer the binocular gaze point from an a priori chosen

initial point to a final point. This final point is assumed

to be contained within a cubic interval in the visual space.

The main point of the interpolation algorithm is that the

optimal control does not have to be computed for every

new final point. It is enough to have precomputed the

optimal control for each of the eight corner points of the

cube, eventually suitably recombining four of the corner

points on a pyramid by convex combination. This proce-

dure needs to be scaled up by discretizing the visual space

into tiles of cubes and the associated optimal control func-

tions, with final gaze points at the corner points of every

cube, stored in the form of a look-up table. In Section 7, we

introduce Tait-Bryan parametrization with the explicit

goal of talking about pan/tilt/roll type of rotation [26]

on SO(3). We compute the controlled Euler-Lagrange’s

equation with external torque as the associated control

vector. We also repeat the same calculation when the roll

component is forced to zero and we have a mechani-

cal pan/tilt system with only two degrees of freedom for

rotation.

In Section 8, we mainly show how an optimal control

computed for the binocular system can be used as an input

to a pair of pan-tilt system, where the goal is to match

the gaze trajectories of the two systems point by point.

Typically this step of biomimetic matching requires a

dynamic feedback. Under the specific hypothesis that

the axes of the binocular system of eyes satisfy Listing’s

condition, the feedback structure can be reduced to a non-

linear static feedback. We also show via simulation that

re-parameterizing SO(3) from axis-angle to Tait-Bryan

parametrization does not change the optimal gaze tra-

jectories of the binocular system on the human eyes. In

Section 9 we briefly discuss three main topics introduced

in this paper. In the first topic we point out why it is

impractical to solve a two point boundary value prob-

lem in real time, every time a control function is required

to be computed. It is desirable, specifically for the pur-

pose of inspecting targets in the visual space, to have the

control functions pre-computed over a fixed initial and

a discrete set of final target points. The required control

is synthesized using interpolation based approximation.

3Other tilts of the head including head roll has not been considered.

The second topic we point out is that for a certain

class of binocular optimal control, the control function

has a linear structure. This simplifies parameterizing and

tabulating the control. The third topic we introduce is

biomimetic control of a pair of mechanical visual sensors,

and how pan/tilt rotation can be used to track the gaze

direction of human eyes, using a feedback control. The

feedback structure is particularly simple (nonlinear static)

when eye axes are constrained to a Listing’s plane. Finally,

Section 10 concludes the paper emphasizing the impor-

tance of pyramid based interpolation and bio-mimetic

pan/tilt rotation.

2 Notations and terminology
We start this section by introducing the axis-angle

parametrization (see Fig. 1) of quaternions, where the

notations are borrowed from [6] and [24, 25]. This param-

eterization is particularly used in our study of human eye

rotation control. In later part of this paper, we have also

introduced Tait-Bryan parametrization [26] in order to

talk about Bio-Mimetic pan/tilt movement.

Let us begin with the space of quaternions denoted by

Q, see [47] and write each q ∈ Q as q0�1+ q1�i+ q2�j+ q3�k.
Space of unit quaternions will be identified with the unit

sphere S3, and can be written as

Fig. 1 Axis-angle parametrization under Listing’s constraint q3 = 0.

The Listing’s plane is described by z = 0. Angle θ is the angle

subtended between the positive axis of rotation on the Listing’s plane

and the positive x-axis. Angle φ is the anticlockwise rotation about

the positive axis of rotation
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q = cos

(

φ

2

)

�1 + sin

(

φ

2

)

n1�i + sin

(

φ

2

)

n2�j + sin

(

φ

2

)

n3�k,

(1)

where φ ∈[ 0, 2π ] is an angle variable and n = (n1, n2, n3)

is a unit axis vector in R
3. We denote by rot, the standard

map from S3 into SO(3) which maps the quaternion q to

an orthogonal matrix that rotates a vector in R
3 around

the axis of rotation n by a counterclockwise angle φ (see

Fig. 1). It is easy to verify (see (3) in [25]) that

rot(q) =
⎡

⎣

q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 + q22 − q21 − q23 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 + q23 − q21 − q22

⎤

⎦ .

(2)

The orthogonal matrix (2) can be associated with the

orientation of a rotating rigid body as follows:

Each column of (2) is a mutually orthogonal unit vector.

We can associate the three column vectors to three body

coordinates that describe the orientation.

The rotating rigid body, viz. the human eye, has a spe-

cific ‘gaze direction’, a vector whose direction is what we

propose to control. We use the convention that the gaze

direction is given by the third column of the rotation

matrix (2). We therefore have the following projection

map, projecting the orientation matrix (2) to a gaze direc-

tion vector

proj : SO(3) → S2,

where

rot(q) �−→

⎡

⎣

2(q1q3 + q0q2)

2(q2q3 − q0q1)

q20 + q23 − q21 − q22

⎤

⎦ . (3)

Typically our interest is to control the gaze vector (3) so

that it is pointing towards a suitable point target (see Fig. 2

where a pair of eyes are pointing towards a target). As has

been commented in Section 1, additional constraints on

the quaternion q need to be imposed (such as the Listing’s

constraint given by q3 = 0 or perhaps amore general Don-

ders’ constraint [26]), so that the constrained orientation

matrix with a specific gaze direction is unique (see [48]).

For pan/tilt rotation (see [26]), considered later in the

paper, the Listing’s constraint is replaced by Fick Gimbal

constraint q0q3 = −q1q2.

The pan/tilt system is a part of a generalized gim-

bal system (see Fig. 3) already introduced in [26], where

the parametrization of the associated quaternion uses

the Tait-Bryan angles φ1, φ2 and φ3
4. In this paper, two

pan/tilt systems (see Fig. 11) are controlled simultane-

ously, so that it bio-mimetically follows the gaze directions

4For additional details on Tait-Bryan parameterization, please refer to [26].

Fig. 2 Figure detailing locations of the two eyes of the binocular

system, gazing at a point target in space. The centers of the left and

the right eyes are located respectively at (0, 0, 0) and (0, 1, 0). Note

that the center of the inertial coordinate is assumed to coincide with

the left eye center, upward-pointing axis is the positive x-axis while

the forward-pointing axis is the positive z-axis. The y-axis joins the

centers of the two eyes and the direction from left to right is chosen

positive. Curly arrows (in blue) indicate the positive (clockwise,

viewed from the axis center) rotation about each axis. The blue dot is

the target, and the two red arrows are the eye-gaze directions

(but not the roll) of the binocular human eyes, optimally

saccading between two target points in the visual space.

3 Riemannianmetric on the space LBIN
This section is essentially replicated from [5]. We begin

by considering parametrization of a point in S3, as intro-

duced in (1) and further describe the unit vector n, the axis

of rotation, as

n = (cos θ cosα sin θ cosα sinα), (4)

where θ ∈[ 0,π ] and α ∈
[

−π
2 ,

π
2

]

. The parameteriza-

tion (1), (4) together describes, what is known in [25], as

the axis-angle parameterization of S3 and SO(3) using the

mapping ‘rot’ (essentially the three axis-angle parameters

are θ , φ and α). In order for the orientation of a single eye

to satisfy Listing’s constraint, q3 = 0, we impose α = 0,

forcing the axis of rotation to always lie on the Listing’s

Fig. 3 The generalized gimbal and the Tait-Bryan angles φ1 , φ2 and

φ3 . Fick Gimbal models a mechanical pan-tilt system and is a special

case of the generalized gimbal when the axial rotation angle φ3

(rotation about axis 3) is constrained to 0. It can only mimic eye

movements up to gaze direction using a pan-tilt feedback
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plane z = 0. This reduces the quaternion in (1) to the form

(see [6])

q = cos
φ

2
�1 + sin

φ

2

[

cos θ �i + sin θ �j
]

+ 0 �k. (5)

We now introduce two such quaternions, one for the left

eye qL and other for the right eye qR, described as

qL = cos
φL

2
�1 + sin

φL

2

[

cos θL�i + sin θL�j
]

+ 0 �k (6)

and

qR = cos
φR

2
�1 + sin

φR

2

[

cos θR�i + sin θR�j
]

+ 0 �k. (7)

The pair
(

qL, qR
)

is thus an element of S3×S3. Note that

the gaze directions corresponding to the left and the right

eye are given by

gL =
(

sin θL sinφL − cos θL sinφL cosφL
)

, (8)

gR =
(

sin θR sinφR − cos θR sinφR cosφR
)

. (9)

Let us now assume that the left and the right eye has

centers separated by the vector e = (x, y, z) = (0, 1, 0) as

shown in Fig. 2. The figure shows that the centers of the

left and the right eyes are located respectively at (0, 0, 0)

and (0, 1, 0). The configuration space of the binocular sys-

tem is now described by imposing that the vectors gL, gR
and e are coplanar. Such a co-planarity condition will

impose that the gaze directions of the left and the right

eyes always meet at a point. Thus we have

cosφR sin θL sinφL = cosφL sin θR sinφR. (10)

We denote by LBIN (L stands for Listing, BIN stands

for Binocular), the subset of SO(3) × SO(3) where the

orientation matrices separately obey Listing’s Law and

together the corresponding gaze directions satisfy the co-

planarity condition (10). Equivalently, LBIN is a subset of

LIST × LIST (see [6]) where the gaze directions of each

component satisfy (10). Let ρ be the mapping

ρ :[ 0,π ]×[ 0, 2π ]×[ 0,π ]→ S3 × S3 (11)

described as

ρ(θL,φL, θR) =

⎡

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎣

cos φL

2

cos θL sin φL

2

sin θL sin φL

2
0

⎤

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎣

cos φR

2

cos θR sin φR

2

sin θR sin φR

2
0

⎤

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎦

,

(12)

where from (10) we have

φR = tan−1

{

sin θL sinφL

sin θR cosφL

}

. (13)

Note that the co-planarity condition (10) or (13) can

change when the separation vector e changes. This will be

the case when the two sensors are fixed but their centers

are located at a different set of points.

A Riemannian metric on LBIN is easily induced from

SO(3) × SO(3). We define elements gij of the symmetric

Riemannian matrix 5 GLB as 6

g11 =
〈

∂

∂θL
, ∂

∂θL

〉

, g12 =
〈

∂

∂θL
, ∂

∂φL

〉

,

g13 =
〈

∂

∂θL
, ∂

∂θR

〉

, g22 =
〈

∂

∂φL ,
∂

∂φL

〉

,

g23 =
〈

∂

∂φL ,
∂

∂θR

〉

, g33 =
〈

∂

∂θR
, ∂

∂θR

〉

(14)

and compute7 the Riemannian metric g given by

g =
(

θ̇L φ̇L θ̇R
)

GLB

⎛

⎜

⎝

θ̇L

φ̇L

θ̇R

⎞

⎟

⎠
, (15)

where G is the corresponding Riemannian matrix of inner

products (see [6] for a single eye and [5] for a binocular

system of two eyes).

4 Euler-Lagrangian formulation of binocular eye
movement

Since a Riemannian metric defines kinetic energy on

the manifold, we use g in (15) to define the Lagrangian

L = 1
2 g of the binocular system8. The controlled

Euler-Lagrange equations are given by

d

dt

∂L

∂μ̇
−

∂L

∂μ
= τμ, (16)

where μ ∈
{

θL,φL, θR
}

. It follows from [25] that (16) can

be written as,

GLB	̈ + ĠLB	̇ − ∇T
	L = τ , (17)

where GLB is the Riemannian matrix, ∇	 is the gradient
(

∂

∂θL
, ∂

∂φL ,
∂

∂θR

)

, 	 =
(

θL,φL, θR
)T

, and τ is the 3-vector

of generalized torques τμ. Further as [25] describes, we

define the external torque vector T (a 6-vector), in the

inertial coordinate to be,

τ = MT
LBT , (18)

and9

MT
LBMLB = 4 GLB. (19)

5The acronym LB stands for Listing and Binocular.
6We define 〈·〉 to be the standard Euclidean inner product on the product
space R4 × R

4 . The inner product of ((x1, x2 , x3, x4), (x5, x6, x7, x8)) and
((y1, y2 , y3 , y4), (y5 , y6, y7, y8)) is given by x1y1 + x2y2 + · · · + x8y8 .
7The details of this computation is omitted, see [6].
8We assume that the potential energy function V is zero.
9For a detailed computation of theM matrix and proof of the statement (19),
we refer to [5].
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Remark 1 The columns of the matrix M are called the

Euler basis vectors, see [49], where T has been described as

the resultant moment relative to the center of mass on the

body.

Now we setup our dynamical system for the binocular

eye rotation by defining

Z(t) = [z1, z2, z3, z4, z5, z6]
T =

[

θL, θ̇L,φL, φ̇L, θR, θ̇R
]T

.

(20)

We require that the states go from some a priori agreed

Z(0) to Z(1) while minimizing the control energy in a

fixed interval of time
∫ 1

0

1

2
‖T‖2 dt, (21)

where T is the vector of external torques given by

Eq. (22).10

T =
[

TL
x ,T

L
y ,T

L
z ,T

R
x ,T

R
y ,T

R
z

]T
. (22)

We denote the costate variables by,


 = [λ1, λ2, λ3, λ4, λ5, λ6]
T (23)

and define the Hamiltonian as,

H(Z,
) = 
T · Ż −
1

2
TTT . (24)

Using the Hamilton’s equations [17], the system

d

dt

[

Z




]

= F
[

z1, . . . , z6, λ1, . . . , λ6,T
L
x ,T

L
y ,T

L
z ,T

R
x ,T

R
y ,T

R
z

]

(25)

is now obtained. Using Eqs. (17), (18), and (20), one can

recast (24) as

H =
T
1 [ ż1 − z2 ż3 − z4 ż5 − z6]

+ 
T
2

[

G−1
LB (MT

LBT − ĠLBŻ1 + ∇T
Z1
L) − Ż2

]

−
1

2
TTT ,

(26)

where 
1 =[ λ1, λ3, λ5]
T , 
2 =[ λ2, λ4, λ6]

T , Z1 =
[ z1, z3, z5]

T , and Z2 =[ z2, z4, z6]
T . Finally using the Pon-

tryagin’s Maximum Principle, the expressions for optimal

external torques (see [6]) are obtained:

∂H

∂T
= 
T

2 G
−1
LBM

T
LB − TT = 0, (27)

which we write symbolically as
[

TL
x ,T

L
y ,T

L
z ,T

R
x ,T

R
y ,T

R
z

]

= [λ2 λ4 λ6] G−1
LBM

T
LB. (28)

The control torques can now be eliminated from the

state space system (25) and we obtain the following

dynamical system

10The superscript L and R are for left eye and right eye respectively. The
subscripts refer to the x-, y- and z-axes.

d

dt

[

Z




]

= F̃[Z,
] . (29)

Since we know only the initial and the final value of Z,

we have a two-point boundary value problem (BVP). The

resulting problem is solved usingCOMSOLMultiphysics

program (see [46])11. The computed Z and
 variables are

plugged in (28) to obtain the optimal vector T , which is

denoted by TBVP.

The optimal vector has been computed for a large num-

ber of examples in [5] where the gaze of the binocular

eye pair moves between target points going from ‘left

to right’, ‘bottom to top’ and ‘near to far’ in the visual

field. The corresponding visual trajectories and the opti-

mal torque trajectories have been plotted. The eye centers

are assumed fixed and located on the (horizontal) y−axis.

This would be the case when the vector separating the

two eyes is parallel to the ground. In the next section we

discuss one simulation when the head is fixed but tilted.

5 Optimal eyemovement when head is fixed and
tilted

The main message of this section is the following.

Although in Section 4 we had said that the optimal exter-

nal torque controls are computed by solving a BVP using

COMSOL, it is often possible to approximate the external

torque function using a linear function. This had been the

case in various examples discussed in [5]12, where sepa-

ration vector between the two eyes are horizontal. In this

section we consider a case when the head is tilted (see

Fig. 4) and the eye separation vector is not horizontal. We

demonstrate via simulation that ‘a linear approximation is

still good’.

Example 1: Eye separation vector is not horizontal,

i.e., the head is tilted

Let us assume a binocular system as in Fig. 4 where

the left eye is centered at (0, 0, 0) and the right eye is

centered at (1, 1, 0). The separation vector e is given by

(1, 1, 0) and the co-planarity of gL, gR, and e is appropri-

ately defined. The angle variable φR needs to be redefined

in comparison to (13) and this changes the Rieman-

nian matrix GLB in (15). We now consider the two point

boundary value problem sketched in Section 4 assum-

ing the initial and final values of the angles
(

θL,φL, θR
)

are respectively
(

π
4 ,

π
8 ,

π
6

)

and
(

π
3 ,

π
5 ,

π
4

)

. The time deriva-

tives of the angle variables are assumed to be 0 at the

initial and final times. As indicated in Section 4, we

use COMSOL to calculate the optimal trajectories for
(

θL(t),φL(t), θR(t)
)

,
(

θ̇L(t), φ̇L(t), θ̇R(t)
)

(see Fig. 5) and

using the co-planarity condition (not explicitly described

11This program has also been used in many of our earlier papers [24, 26]. The
two-point boundary value problem obtained here was also obtained for
optimal control of a single eye rotation in [6].
12See (32) in [5].



Ghosh and Athukorallage Autonomous Intelligent Systems             (2021) 1:3 Page 7 of 19

Fig. 4 The centers of the two eyes are not horizontal, because the

head is tilted. This changes the co-planarity condition (10) and

subsequently the Riemannian matrix GLB in (14)

in this section), the variable φR(t), φ̇R(t). The optimal

trajectories of states and costates are plugged in (28) to

solve for the optimal external torque vector TBVP(t) =
(

TL
x (t),TL

y (t),TL
z (t),TR

x (t),TR
y (t),TR

z (t)
)

(see Fig. 6).

As was noted in [5], the graph of TBVP(t) appears lin-

ear from the figure and we approximate this function by

TLIN (t) = TBVP(0)[ 1 − 2t] where t ∈[ 0, 1]. The approxi-
mate linear function is plotted in Fig. 6 (using the symbol

+) and TLIN (t) and TBVP(t) appear indistinguishable.

Let us now consider an initial value problem by combin-

ing Eqs. (16) and (18) to obtain

d

dt

∂L

∂μ̇
−

∂L

∂μ
= MT

LBTLIN (t). (30)

Initial conditions for (30) are chosen by setting θL(0) =
π
4 , φL(0) = π

8 , θR(0) = π
6 , θ̇L(0) = 0, φ̇L(0) = 0,

θ̇R(0) = 0. The initial value problem is now solved and the

the results are plotted in Fig. 5 using the symbol +. Once

again, these trajectories mimic very close to the optimal

trajectories.

6 Approximating the optimal external torque
function using pyramid based interpolation

In the last Section 5 we observed via simulation that for

the binocular human eye movement, the optimal external

torque functions have a linear graph. We have demon-

strated this ‘linearity’ when the eye separation vector lies

on the frontal plane, which in our construction also hap-

pens to be the Listing’s plane of the two eyes. In this

section we go back to Fig. 2 and consider the binocular

system where the eye centers are at (0, 0, 0) and (0, 1, 0).

Assume that initially the eyes are focused at the point

C (see Fig. 7). The task is to move the gaze optimally

to another final point D. However the exact location of

point D is uncertain and we shall assume that it could

be any where on or inside a cube CU with corners at

D1,D2, · · · ,D8. The main point of this section is to illus-

trate the following: If we denote by TCD the optimal

control of transferring the gaze from C to D, then TCD

can be approximated by a linear pyramid based interpo-

lation using four of the optimal control functions from

TCDi , i = 1, .., 8. First of all we write CU as a union of

six pyramids PYi, i = 1, · · · , 6 where any two pyramids

may intersect only at their surfaces. We now ascertain

the membership of D in one of the six pyramids and call

this pyramid PY. The corner points of the pyramid PY

are four of the eight points D1,D2, · · · ,D8. Assume with-

out any loss of generality that these corner points are

D1,D2,D3,D4. We claim that TCD is approximated by a

convex combination of TCDi , i = 1, 2, 3, 4. Via simulation

Fig. 5 The right eye is located on the Listing’s plane of the left eye centered at (0, 0, 0). The right eye is centered at (1, 1, 0). The separation vector

between the two eyes are on the coronal or the frontal plane but not parallel to the y-axis (horizontal axis). The angles θ L ,φL , θR shifts from
(

π
4 ,

π
8 ,

π
6

)

to ( π
3 ,

π
5 ,

π
4 ). The figure shows the generalized angles and the generalized velocities when the input external torques are computed by solving the

Boundary Value Problem and compared with the corresponding trajectories when the input external torques are approximated by a linear function
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Fig. 6 The external torques are plotted for the example discussed in

Fig. 5. The optimal external torques computed from the Boundary

Value Problem and the linear approximation of the external torque

functions are practically indistinguishable

we show the effectiveness of the proposed approximation.

We now digress a little and describe how a cube can be

written as a union of six pyramids.

6.1 Pyramid construction

We start our discussion with a cube CU of edge distance

1 unit (see Fig. 8). Assume that one corner of the cube is

at (a, b, c) chosen in such a way that D lies in the interior

of the unit cube. The other corners are at the following 7

points: (a+1, b, c), (a, b+1, c), (a, b, c+1), (a+1, b+1, c),

(a + 1, b, c + 1), (a, b + 1, c + 1), (a + 1, b + 1, c + 1).

We claim that CU can be decomposed into 6 pyramids

PY1, . . . ,PY6 such that ∪6
i=1PYi = CU and P̌Y i ∩ P̌Y j is

empty for i, j = 1, . . . 6, i �= j. Here P̌Y i is the interior of

PYi, i = 1, . . . 6. Each pyramid that we construct in IR3 has

4 vertices. Let us now write down the following unordered

Fig. 7 The final point D is uncertain but assumed to be contained

within the cube CU. There are 8 paths transferring the initial gaze

point C to a terminal gaze point Di , i = 1, 2, · · · , 8. The figure shows

paths to D1 , D4 and D for illustration

Fig. 8 A cube CU of edge distance 1 unit. Corner points are (a, b, c),

(a+ 1, b, c), (a, b+ 1, c), (a, b, c + 1), (a+ 1, b+ 1, c), (a+ 1, b, c + 1),

(a, b + 1, c + 1), (a + 1, b + 1, c + 1)

triplets of elements, using tokens ā, b̄, c̄, a + 1, b + 1 and

c + 113. Let us now generate the following array of 6 rows

of 4 triplets as follows:

Array I:

1. (ā, b̄, c̄), (a + 1, b̄, c̄), (a + 1, b + 1, c̄),

(a + 1, b + 1, c + 1)

2. (b̄, ā, c̄), (b + 1, ā, c̄), (b + 1, a + 1, c̄),

(b + 1, a + 1, c + 1)

3. (c̄, ā, b̄), (c + 1, ā, b̄), (c + 1, a + 1, b̄),

(c + 1, a + 1, b + 1)

4. (ā, c̄, b̄), (a + 1, c̄, b̄), (a + 1, c + 1, b̄),

(a + 1, c + 1, b + 1)

5. (b̄, c̄, ā), (b + 1, c̄, ā), (b + 1, c + 1, ā),

(b + 1, c + 1, a + 1)

6. (c̄, b̄, ā), (c + 1, b̄, ā), (c + 1, b + 1, ā),

(c + 1, b + 1, a + 1).

Note that the above array of triplets follow a pattern. In

the first column of the array, the tokens ā, b̄, c̄ are ordered

in each of its possible 6 combinations. The second col-

umn of the array is same as the first column of the array

except that the first element of a triplet in the second col-

umn is obtained by incrementing the first element of the

corresponding triplet in the first column.

Likewise, the third column of the array is same as the

second column of the array except that the second element

of a triplet in the third column is obtained by increment-

ing the second element of the corresponding triplet in the

second column.

Finally, the fourth column of the array is same as the

third column of the array except that the third element of

a triplet in the fourth column is obtained by incrementing

the third element of the corresponding triplet in the third

column.

13The six tokens will eventually be associated with coordinates of corner
points of pyramids.
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For every triplet in Array I, the unordered triplets of

tokens are now reordered by removing the overbar and

writing a or a + 1 to the left of b or b + 1 which is writ-

ten to the left of c or c + 1. We perform this operation for

each triplet of tokens in the above Array I term by term.

We now get the following Array II of 6 rows of 4 ordered

triplets of elements.

Array II:

1. (a, b, c), (a+1, b, c), (a+1, b+1, c), (a+1, b+1, c+1)

2. (a, b, c), (a, b+1, c), (a+1, b+1, c), (a+1, b+1, c+1)

3. (a, b, c), (a, b, c+1), (a+1, b, c+1), (a+1, b+1, c+1)

4. (a, b, c), (a+1, b, c), (a+1, b, c+1), (a+1, b+1, c+1)

5. (a, b, c), (a, b+1, c), (a, b+1, c+1), (a+1, b+1, c+1)

6. (a, b, c), (a, b, c+1), (a, b+1, c+1), (a+1, b+1, c+1).

For every triplet in Array II, we treat each element of a

triplet as coordinates of a point in IR3. We define PYi, i =
1, · · · , 6 as the ith pyramid generated by the four points of

the ith row, to be treated as corner points. The 6 pyramids

are generated one for each row of Array II. We now state

and prove the following theorem.

Theorem 1 Let D be a point in R
3 with coordinates

D = (x, y, z). Let CU be the unit cube as described in this

subsection. If x−a �= y− b �= z− c and D is in CU, then D

belongs uniquely to one of the six pyramids PY1, PY2, PY3,

PY4, PY5, PY6.

Proof First of all we show that for (x, y, z) to lie in the

pyramid PYi, i = 1, · · · , 6 the coordinates (x−a, y−b, z−
c) needs to satisfy certain inequality. This is now described

for each of the six pyramids.

For the pyramid PY1, we write down the convex combi-

nation of four corner points from the first row of Array II,

and obtain

μ1(a, b, c) + μ2(a + 1, b, c) + μ3(a + 1, b + 1, c)

+ μ4(a + 1, b + 1, c + 1)

=(a + μ2 + μ3 + μ4, b + μ3 + μ4, c + μ4).

Note that μi-s are all non-negative and μ1 + μ2 + μ3 +
μ4 = 1. Thus, all points in PY1 has the property that

x − a ≥ y − b ≥ z − c. (31)

Repeating the above calculations and without writing

the details, we obtain the following. For PY2 the convex

combination is

μ1(a, b, c) + μ2(a, b + 1, c) + μ3(a + 1, b + 1, c)

+ μ4(a + 1, b + 1, c + 1)

=(a + μ3 + μ4, b + μ2 + μ3 + μ4, c + μ4).

All points in PY2 has the property that

y − b ≥ x − a ≥ z − c. (32)

For PY3 the convex combination is

μ1(a, b, c) + μ2(a, b, c + 1) + μ3(a + 1, b, c + 1)

+ μ4(a + 1, b + 1, c + 1)

=(a + μ3 + μ4, b + μ4, c + μ2 + μ3 + μ4).

All points in PY3 has the property that

z − c ≥ x − a ≥ y − b. (33)

For PY4 the convex combination is

μ1(a, b, c) + μ2(a + 1, b, c) + μ3(a + 1, b, c + 1)

+ μ4(a + 1, b + 1, c + 1)

= (a + μ2 + μ3 + μ4, b + μ4, c + μ3 + μ4).

All points in PY4 has the property that

x − a ≥ z − c ≥ y − b. (34)

For PY5 the convex combination is

μ1(a, b, c) + μ2(a, b + 1, c) + μ3(a, b + 1, c + 1)

+ μ4(a + 1, b + 1, c + 1)

=(a + μ4, b + μ2 + μ3 + μ4, c + μ3 + μ4).

All points in PY5 has the property that

y − b ≥ z − c ≥ x − a. (35)

For PY6 the convex combination is

μ1(a, b, c) + μ2(a, b, c + 1) + μ3(a, b + 1, c + 1)

+ μ4(a + 1, b + 1, c + 1)

=(a + μ4, b + μ3 + μ4, c + μ2 + μ3 + μ4).

All points in PY6 has the property that

z − c ≥ y − b ≥ x − a. (36)

Since the coordinates x− a, y− b and z − c are distinct,

by assumption, it would follow that one and only one of

the six inequalities described in (31), (32), (33), (34), (35),

(36) would be satisfied.

Remark 2 When the coordinates of D − (a, b, c) are not

distinct, then D is at the surface of more than one of the six

pyramids. The details are quite evident and is omitted.

6.2 Approximating external torque via interpolation

Recall that TCD(t) is the external torque of transferring

the gaze point of the binocular system from C to D in IR3.

Typically TCD(t) is calculated by solving a boundary value

problem (using COMSOL) as outlined in Sections 4 and

5. In this section we argue that TCD(t) need not be calcu-

lated once for every D in IR3. Using pyramid based linear
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interpolation, we can approximate TCD(t) from TCDi(t),

i = 1, · · · , 8 by writing

TCD(t) ≈

4
∑

i=1

μi TCDi(t), (37)

where μi, i = 1, 2, 3, 4 are unique coefficients obtained as

follows. If D belongs to one of the six pyramids with cor-

ner points atD1,D2,D3 andD4, (assumedwithout any loss

of generality), then μi-s are obtained uniquely by solving

D = μ1D1 + μ2D2 + μ3D3 + μ4D4.

Our final step in the interpolation based approxima-

tion is valid when the graph of the functions TCDi , i =
1, · · · , 8 are linear (see Section 5). Using the ‘linearity’ of

the external torque function we modify (37) as follows.

TCD(t) ≈

[

4
∑

i=1

μi TCDi(0)

]

(1 − 2t) . (38)

Example 2: (Final gaze point is in the interior of the

corresponding pyramid)

In this example we consider the binocular system where

the left eye is at (0, 0, 0) and the right eye is at (0, 1, 0). The

two eyes are initially gazing at a target located at (1, 2, 1).

The goal is to optimally move the gaze to a new target

located at (5.7,−0.5, 2.3). By solving the boundary value

problem, we compute and plot the optimal trajectories of

the generalized angles (Fig. 9(a), solid lines) and gener-

alized velocities (Fig. 9(b), solid lines). The optimal gaze

trajectory is shown in (Fig. 9(c), blue, dotted line). Finally

the optimal external torques are graphed in (Fig. 9(d), solid

lines). Note that these graphs are straight lines.

We now use pyramid based interpolation to approxi-

mate the optimal external torque function. First of all we

construct a cube that contains the point (5.7,−0.5, 2.3).

The vertices of the cube are chosen at the following eight

points:

(5,−1, 2, ), (5,−1, 4), (5, 1, 4), (5, 1, 2), (7,−1, 2),

(7,−1, 4), (7, 1, 4), (7, 1, 2). (39)

It turns out that the point (5.7,−0.5, 2.3) is contained in

the pyramid with corner points at

(5,−1, 2), (7,−1, 2), (7, 1, 2), (7, 1, 4).

We now use the approximation formula (38) to obtain a

linear interpolation of the external torque function TL
INT

and TR
INT . In (Fig. 9(d), dotted lines) the graphs of TL

INT
and TR

INT are plotted. Finally we use (30) and the linear

interpolation TL
INT and TR

INT to solve for the general-

ized angles and velocities (see (Fig. 9(a), dotted lines) and

(Fig. 9(b), dotted lines)). We plot the gaze trajectory in

(Fig. 9(c), red, dotted lines) for the interpolated external

torque function. �

Example 3: (Final gaze point is on the surface of the

corresponding pyramid)

In this example, we have the binocular system with sen-

sors located as in Example 2. The goal is to optimally

move the gaze from an initial gaze at (1, 2, 1) to a final

gaze point at (6, 0, 4). We proceed by solving the boundary

value problem, compute and plot the optimal trajectories

of the generalized angles (Fig. 10(a), solid lines) and gener-

alized velocities (Fig. 10(b), solid lines). The optimal gaze

trajectory is shown in (Fig. 10(c), blue, dotted line). Finally

the optimal external torques are graphed in (Fig. 10(d),

solid lines). Once again, as in Example 2, these graphs are

straight lines.

Pyramid based interpolation is now used as in Example

2. It turns out that the final point (6, 0, 4) is on the sur-

face on the cube (39) and specifically on the surface of the

pyramid with corner points at

(5,−1, 2), (5,−1, 4), (7,−1, 4), (7, 1, 4).

We now use the approximation formula (38) to obtain a

linear interpolation of the external torque function TL
INT

and TR
INT . In (Fig. 10(d), dotted lines) the graphs of TL

INT
and TR

INT are plotted. Finally we use (30) and the linear

interpolation TL
INT and TR

INT to solve for the generalized

angles and velocities (see (Fig. 10(a), dotted lines) and

(Fig. 10(b), dotted lines)). We plot the gaze trajectory in

(Fig. 10(c), red, dotted lines) for the interpolated external

torque function. �

Remark 3 The main difference between examples 2 and

3 is the location of the final target point. In the former, the

target point is in the interior of the associated pyramid and

in the latter, it is on the surface. The main point to observe,

and it is the essence of the two simulations, is evident from

Figs. 9(c) and 10(c). ‘The trajectory of the gaze point does

not deviate appreciably even when the input control in the

form of external torque is computed using a linear inter-

polation from four corner points of an associated pyramid’.

Thus control can be synthesized using a lookup table and

one does not have to execute a more demanding COMSOL,

in real time.

Remark 4 Our final remark of this section is about the

approximation formula (38). Recall from (28) that

[

TL
x (0),TL

y (0),TL
z (0),TR

x (0),TR
y (0),TR

z (0)
]

=[ λ2(0) λ4(0) λ6(0)] G−1
LB (0)MT

LB(0). (40)

Let us define the symbols
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Fig. 9 Example 2: Both sensors are on the y-axis located at (0, 0, 0) and (0, 1, 0). The gaze point shifts from (1, 2, 1) to (5.7,−0.5, 2.3). The final point is

an interior point in the pyramid with corner points at (5,−1, 2), (7,−1, 2), (7, 1, 2), (7, 1, 4)

TCD(0) =
[

TL
x (0),TL

y (0),TL
z (0),TR

x (0),TR
y (0),TR

z (0)
]

λ = [ λ2(0) λ4(0) λ6(0)]

and

W = G−1
LB (0)MT

LB(0).

We can rewrite (40) symbolically as

TCD(0) = λ W , (41)

where the matrixW is a 3×6matrix whose entries depend

only on the initial gaze point C and not on the final gaze

point D (see [5]). The vector λ, on the other hand, is a 1× 3

vector whose entries depend both on C and D.

We can rewrite (38), using (41), as follows.

TCD(t) ≈

[

4
∑

i=1

μi λi

]

W (1 − 2t) . (42)

Note in (42) that when C is fixed, then W is fixed but λi
depends on Di, the corner points of the pyramid. The points

λi, i = 1, · · · , 8 in IR3 form the corner points of a cuboid,
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Fig. 10 Example 3: Both sensors are on the y-axis located at (0, 0, 0) and (0, 1, 0). The gaze point shifts from (1, 2, 1) to (6, 0, 4). The final point is on

one surface of the pyramid with corner points at (5,−1, 2), (5,−1, 4), (7,−1, 4), (7, 1, 4)

which can be calculated apriori. We make the following

statemnt about the interpolation algorithm.

For every cube CU (with corner points Di) there is a

cuboid CB (with corner points λi) that can be precalcu-

lated and stored. This cuboid is dependent on the initial

point C.

7 Rotation dynamics with Tait-Bryan
parameterization

In this section we introduce Tait-Bryan (TB) parameter-

ization [50, 51] and make connection with Fick Gimbals

and Pan-Tilt rotation. Our introduction will be brief and

we will refer the readers to a previous paper [26], see also

Figs. 3 and 11.

In the TB parameterization there are three angle vari-

ables φ1, φ2 and φ3 where φ1 is the angle of rotation about

axis 1 (see Fig. 3), φ2 is the angle of rotation about axis 2

rotated by φ1-rotation about axis 1. Rotations about axis

1 and axis 2 are respectively called Pan and Tilt. Finally

φ3 is the angle of Axial rotation about axis 3 rotated by

the previous two rotations. The three angle variables φ1,

φ2 and φ3 completely parameterizes the orientation space
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Fig. 11 A mechanical binosensing system gazing at a target. This

figure is exactly same as Fig. 2 where the eye balls are replaced by a

mechanical pan-tilt system

SO(3). As in Eqs. (1) and (4), for the axis-angle parame-

terization, we now have the following unit quaternion for

the TB parameterization (See (9) in [26]).

q(φ1,φ2,φ3) =

⎛

⎜

⎜

⎜

⎝

sin φ1
2 sin φ2

2 sin φ3
2 + cos φ1

2 cos φ2
2 cos φ3

2

cos φ1
2 sin φ2

2 cos φ3
2 + sin φ1

2 cos φ2
2 sin φ3

2

sin φ1
2 cos φ2

2 cos φ3
2 − cos φ1

2 sin φ2
2 sin φ3

2

cos φ1
2 cos φ2

2 sin φ3
2 − sin φ1

2 sin φ2
2 cos φ3

2

⎞

⎟

⎟

⎟

⎠

,

(43)

where the angles φ1 ∈[−π ,π ], φ2 ∈
[

−π
2 ,

π
2

]

, and φ3 ∈
[−π ,π ]. Using the unit quaternion (43), a left invariant

Riemannian metric on SO(3) can now be written (see

Eqs. (26), (27) in [26]) as

g = [dφ1 dφ2 dφ3] GTB [dφ1 dφ2 dφ3]
T , (44)

where

GTB =

⎛

⎝

1
4 0 − 1

4 sinφ2

0 1
4 0

− 1
4 sinφ2 0 1

4

⎞

⎠ . (45)

Using the Riemannian metric (44) for SO(3), the asso-

ciated Euler-Lagrange Eq. (16) is given by14

(

φ̈1

φ̈3

)

=

(

tanφ2 secφ2

secφ2 tanφ2

)(

φ̇1

φ̇3

)

φ̇2

+ 4 sec2 φ2

(

1 sinφ2

sinφ2 1

)(

τφ1

τφ3

)

, (46)

φ̈2 = − cosφ2 φ̇1 φ̇3 + 4τφ2 . (47)

The vector τ =[ τφ1 , τφ2 , τφ3 ]
T is the generalized torque

vector. If we now define T =[T1,T2,T3]
T to be the

external torque vector, in the inertial coordinate, the two

vectors τ and T can now be related by a formula similar to

(18) written as follows

τ = MT
TB T , (48)

14This equation was originally reported as Eq. (50) in [25].

where MTB is the M-matrix for the TB parameterization

described as follows (already reported in page 323, [25])

MTB =

⎛

⎝

0 cosφ1 cosφ2 sinφ1

1 0 − sinφ2

0 − sinφ1 cosφ1 cosφ2

⎞

⎠ . (49)

The Eqs. (46)-(48), describe rotation dynamics on

SO(3) with the external torque vector T as the control.

As in Eqs. (20)-(29), we can setup a dynamical system for

the monocular unconstrained eye rotation on SO(3). We

can also require the states to go from a priori agreed initial

state to a final state in a unit interval of time minimizing

the control energy (21). Repeating the steps in Section 4,

an optimal external torque T can now be computed using

COMSOL to solve the associated two point boundary

value problem BVP (see also [24–26]).

In order to describe human eye-rotation, the orienta-

tion space is not the unrestricted SO(3) but a submanifold

LIST (see [25] and Fig. 15) of SO(3). We now parameter-

ize LIST using TB parametrization.

Example 4: LIST using Tait-Bryan parametrization

Using the quaternion parametrization (43), it follows that

the Listing’s constraint q3 = 0 is described by

tan
φ3

2
= tan

φ1

2
tan

φ2

2
. (50)

Let us now define

�1 = sin
φ1

2
sin

φ2

2
,

�2 = cos
φ1

2
cos

φ2

2
. (51)

Substituting the Listing’s constraint (50) into the quater-

nion (43), we obtain the following parametrization of

LIST in the TB parametrization

⎡

⎢

⎢

⎣

�2
1 + �2

2

sin φ2
2 cos φ2

2

sin φ1
2 cos φ1

2 cosφ2

0

⎤

⎥

⎥

⎦

/

√

�2
1 + �2

2. (52)

�

Note that in the parametrization (52) of LIST, only

the pan (φ1) and tilt (φ2) are used. Construction of a

left invariant Riemannian metric on LIST in the TB

parametrization would now be standard [6] and the details

are not elaborated here.

Example 5: Euler-Lagrange equation for the Pan-Tilt

system

We now impose the Fick Gimbal constraint φ3 = 0 into

the TB quaternion (43). Recall that for a Fick Gimbal, the

axial rotation angle φ3 is permanently frozen to zero. The
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Fick Gimbal quaternion is described as follows.

ρfick(φ1,φ2) =

⎛

⎜

⎜

⎜

⎝

cos φ1
2 cos φ2

2

cos φ1
2 sin φ2

2

sin φ1
2 cos φ2

2

− sin φ1
2 sin φ2

2

⎞

⎟

⎟

⎟

⎠

. (53)

We now write

∂ρfick

∂φ1
=

1

2

⎛

⎜

⎜

⎜

⎝

− sin φ1
2 cos φ2

2

− sin φ1
2 sin φ2

2

cos φ1
2 cos φ2

2

− cos φ1
2 sin φ2

2

⎞

⎟

⎟

⎟

⎠

(54)

and

∂ρfick

∂φ2
=

1

2

⎛

⎜

⎜

⎜

⎝

− cos φ1
2 sin φ2

2

cos φ1
2 cos φ2

2

− sin φ1
2 sin φ2

2

− sin φ1
2 cos φ2

2

⎞

⎟

⎟

⎟

⎠

. (55)

Computing the inner products we write
〈

∂ρfick

∂φi
,
∂ρfick

∂φi

〉

=
1

4
, i = 1, 2 (56)

and
〈

∂ρfick

∂φ1
,
∂ρfick

∂φ2

〉

= 0. (57)

From (56) and (57) we write the Riemannian matrix 15

GFG =

(

1
4 0

0 1
4

)

.

We choose the potential energy V to be zero and the

kinetic energy

KE =
1

8

(

φ̇2
1 + φ̇2

2

)

,

and we write the Lagrangian as

L =
1

8

(

φ̇2
1 + φ̇2

2

)

.

The Euler-Lagrange’s Eq. (16) for the Pan-Tilt system is

now written as

1

4
φ̈1 = τφ1 ,

1

4
φ̈2 = τφ2 . (58)

Finally we would like to relate the external torque vec-

tor T = (T1,T2,T3)
T to the generalized torque τ =

(τφ1 , τφ2)
T . This is done by first calculating the M-matrix

MFG.

Let q =[ q0, q1, q2, q3]
T be the Fick Gimbal quaternion

(53) and let us define ω̃ =[ 0,ω1,ω2,ω3]
T , where ωi-s are

the components of the angular velocity vector. It follows

from [52] and has also been used in [25] that

q̇ =
1

2
ω̃ • q, (59)

15The acronym FG stands for Fick Gimbal.

where • denotes quaternion multiplication. Substituting

the parameters of the Fick Gimbal quaternion (53) into

(59) and carrying out the algebraic computation we write

⎛

⎜

⎜

⎝

−q2 −q1
q3 q0
q0 q3

−q1 −q2

⎞

⎟

⎟

⎠

(

φ̇1

φ̇2

)

=

⎛

⎜

⎜

⎝

−q1 −q2 −q3
q0 q3 −q2

−q3 q0 q1
q2 −q1 q0

⎞

⎟

⎟

⎠

⎛

⎝

ω1

ω2

ω3

⎞

⎠ .

(60)

Solving (60) we write
⎛

⎝

ω1

ω2

ω3

⎞

⎠ = MFG

(

φ̇1

φ̇2

)

,

where

MFG =

⎛

⎝

0 1

1 0

0 0

⎞

⎠ .

It would now follow from a relation similar to (18) that

τφ1 = T2 and τφ2 = T1. The Euler-Lagrange’s equation for

the Pan-Tilt system (58) now reduces to

1

4
φ̈1 = T2,

1

4
φ̈2 = T1. (61)

For the purpose of the next section, we shall define

TFG =[T2,T1]
T ,

from (61) and write the following Pan-Tilt dynamics
(

φ̈1

φ̈2

)

= 4 TFG. (62)

�

8 Biomimetic Pan-Tilt movement following the
optimal gaze trajectories of the human
binocular system

Our goal in this section is to control the Pan-Tilt dynam-

ics (62) so that the gaze of the pan tilt system matches

the gaze of the human ocular system. Since the ocular

dynamics on SO(3) satisfies (46)-(48), roughly speaking,

we need tomatch the angle variables φ1 and φ2 in (62) with

the same variables in (46) and (47). Note that the angle

φ3 is frozen permanently to zero for the pan-tilt system,

and therefore cannot match the axial movements of the

human eye i.e., φ3 in (46).

Let us rewrite part of the dynamical system (46)-(48) as

follows
(

φ̈1

φ̈2

)

= 4FTB + 4HTBM
T
TBT , (63)

whereMTB is defined in (49) and we define

FTB =
1

4

[

tanφ2 φ̇1φ̇2 + secφ2 φ̇3φ̇2

− cosφ2 φ̇1φ̇3

]
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and

HTB =

[

sec2 φ2 0 sec2 φ2 sinφ2

0 1 0

]

.

In order to match the Fick Gimbal dynamics (62) with

the SO(3) dynamics (63) the right hand sides have to

match and we get the following

TFG = FTB + HTBM
T
TBT , (64)

where T is any external torque input to the ocular dynam-

ics on SO(3). The Eq. (64) can be viewed as a torque-

transformer, which transforms the external torque T for

the SO(3)-system to TFG, the torque input to the Pan-

Tilt-system. The equality (64) would ensure that the angle

variables φ1 and φ2 of the two systems match, provided

they have the same initial conditions.

In order to implement the torque-transformer, we will

need φ̇3 which unfortunately is not available to the Pan-

Tilt system. Hence, we will need a φ̇3-generator to be

implemented with the following equation:

φ̈3 = secφ2 φ̇1φ̇2 + tanφ2 φ̇3φ̇2

+
[

4 sec2 φ2 sinφ2, 0, 4 sec
2 φ2

]

MT
TBT .

Implementation of the torque-transformer and the φ̇3

generator has been sketched in Fig. 12.

If T = T∗ is chosen in such a way that the angle vari-

ables φ1, φ2 and φ3 satisfy the Listing’s constraint (50) one

can compute φ̇3 explicitly as

φ̇3 =
tan φ1

2 sec2 φ2
2

1 + tan2 φ1
2 tan2 φ2

2

φ̇2 +
tan φ2

2 sec2 φ1
2

1 + tan2 φ1
2 tan2 φ2

2

φ̇1.

(65)

As shown in Fig. 13 that in this case the φ̇3 generator is

implemented by a pan-tilt feedback requiring variables φ1,

φ2 and their derivatives.

Remark 5 In this remark we would like to put into per-

spective how we have synthesized and implemented the

Fig. 12 The torque-transformer is a static device. The φ̇3-generator is

a dynamical system requiring T and ρ as input. ρ =
[

φ1 , φ̇1 ,φ2 , φ̇2

]T
,

consists of Pan, Tilt angles and their derivatives. T is the external

torque input to the unconstrained monocular plant. TFG is the

external torque input to the mechanical pan-tilt device that follows

the human eye gaze movement

Fig. 13 The torque-transformer is a static device. The φ̇3-generator is

a static system requiring ρ as input. T∗ is chosen such that the states

φ1 , φ2 , φ3 evolve on LIST. ρ and TFG are as described in Fig. 12

external torque optimal control. First of all note that in

Section 4 we have proposed to synthesize the optimal con-

trol for the binocular system where the axes of human

eye rotation satisfy Listing’s law and the eye gazes always

remain coplanar together with its separation vector. The

associated space LBIN is parametrized using axis-angle

parameters as a subset of SO(3) × SO(3) (see Fig. 14).

The optimal control vector T is a 6-vector, the first 3 com-

ponents of T is the optimal control to the left eye (call it

Tleft) and the next 3 components are likewise for the right

eye (call it Tright). In Examples 1, 2, 3, the optimal con-

trol vector is computed where we show that the control

functions can be approximated by a pyramid based inter-

polation scheme. It turns out that if we apply the optimal

control Tleft to an unrestricted rotation dynamics (viz. (46)-

(48)) on SO(3) with initial condition on LIST, the integral

curves of the dynamical system would evolve on LIST (see

Fig. 15). The same can be said for the optimal control Tright.

In fact the gaze trajectory of the two eyes are precisely

the gaze trajectory computed on LBIN using COMSOL. In

the next example we have verified this fact even when the

parametrization on SO(3) uses Tait-Bryan parametriza-

tion. Finally we demonstrate in Fig. 13 that using optimal

control T∗, which is either Tleft or Tright one can make a

mechanical pan-tilt device follow the gaze directions of the

human eye.

Example 6: On the ambient space SO(3), a single eye

can be optimally controlled while satisfying Listing.

The point we illustrate in this example is that the opti-

mal controller synthesis is independent of the choice of the

parametrization (axis-angle or Tait-Bryan) of the mani-

fold and whether or not the state variables are allowed

to evolve on the constrained manifold (LBIN or LIST)

or respectively the ambient manifold (SO(3) × SO(3) or

SO(3)) (see Figs. 14, 15).

We consider an example16 from [5] wherein we have

a binocular system with eye centers located as in Fig. 2.

The goal is to shift the gaze point from (7, 2, 4) to (3, 2, 8)

16Example 9 in [5].



Ghosh and Athukorallage Autonomous Intelligent Systems             (2021) 1:3 Page 16 of 19

Fig. 14 LBIN is shown as a subset of the ambient space

SO(3) × SO(3). LBIN is to be viewed as a parametrization of the

binocular system

using a dynamical system in the form of (17), (18) while

minimizing a cost function (21). The optimal control was

obtained in [5] and its graph was plotted (see Fig. 13 in

[5]). The problem was solved on LBIN using axis-angle

parametrization. The optimal control vector T , from (22)

is now separated between the left and the right eye and

applied separately to (46)-(48), a dynamical system on

SO(3) described using Tait-Bryan parametrization. Solv-

ing the initial value problem (46)-(48), with the input

torque obtained from T as indicated, we show that the

gaze direction vector of each eye follow a trajectory iden-

tical to what was obtained as solution to the optimal

control problem in [5]. In Fig. 16(a) we show that the

Fig. 15 LIST is shown as a subset of the ambient space SO(3). LIST is

to be viewed as a parametrization of the monocular system

gaze points of the two binocular systems are identical.

We also show that the solution to the initial value prob-

lem actually evolved in LIST (see Fig. 16(b)) although it

was solved on SO(3). It shows that the optimal controller

is able to maintain the LBIN constraints (specifically the

Listing’s constraint on any of the two eyes) although these

constraints are not mechanically imposed on the eye pair.

9 Discussion
Synthesis of the optimal control function, encountered in

eye and head rotation problems, as introduced in many of

our earlier papers [5, 6, 24–26, 53] requires solving a Two

Point Boundary Value Problem. These boundary value

problems are typically computationally intensive (see text

books [54] and [55]), and require the framework of a

recursive solver, for example one based on the algorithm

of [56]. In our research, we had started with MATLAB

Toolbox [6] to solve boundary value problems, Pseu-

dospectral Methods [4, 57–59] and subsequently used

the COMSOL Program already indicated in section 4.

In any application, wherein a binocular gaze directing

robot would be used for target localization, inspection

and reaching17, it is not very convenient to have to solve

a boundary value problem for every chosen pair of ini-

tial and final points. This is because the iterative solu-

tion to the two point boundary value problem, required

to solve for the optimal control, suffers from singular-

ity issues and do not always converge. Often parameters

in the COMSOL Program, and in the KNITRO solver,

that we have used for pseudospectral methods, require

tweaking. The configuration space LBIN may need to

be re-parameterized to avoid singularities. The point we

would like to put forward in this paper is that it is conve-

nient to precompute the control function for a fixed initial

point and over a set of discretely chosen final points, viz.

the corner points of a cube. In real time, the gaze direct-

ing controller uses the precomputed control functions as

a lookup table and computes the required control for its

own action using a pyramid based interpolation. Solutions

to the Boundary Value Problems, once solved, does not

have to be recomputed.

When the centers of the eyes in the binocular system

remain stationary and on the Listing’s plane, we have

illustrated in this paper and also in [5] that the optimal

control function has a Linear structure, described in (42).

The angular velocities of the two eyes increase to a peak

value before reducing back to zero, as is typically observed

in eye saccades [33]. The optimal control to the binocu-

lar system is entirely parameterized by its initial value at

t = 0. It has not been shown rigorously, all the possible

17For example in vision based fruit picking robots [60].
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Fig. 16 Solving an initial value problem with using the external torques obtained Both sensors are on the y-axis located at (0, 0, 0) and (0, 1, 0). The

gaze point shifts from (7, 2, 4) to (3, 2, 8)

conditions under which the linear structure of the optimal

control is maintained18.

Either for the purpose of optimal control or otherwise, it

is important to mimic human movements and is a subject

of research in social robotics in particular [61]. Specific

to human gaze and eye movement, it is possible to con-

trol a pair of mechanical pan/tilt system even though the

underlying configuration spaces of the human eye and the

mechanical pan/tilt system are different19. In spite of the

difference, the part of the two configuration spaces, that

control the gaze/pointing direction can be identified and

controlled (as depicted in Fig. 12). The main point is that

the controller TFG for the mechanical system does not

have to be recomputed but instead it can be generated

from the control input to the human eye, by a suitable

dynamic feedback (64), called the φ̇3-generator. When

the axes of the eyemovement are restricted to the Listing’s

plane, the feedback structure can be simplified to a static

feedback (65) and the implementation details are shown

in Fig. 13.

10 Conclusion
This paper has revisited the optimal binocular gaze con-

trol problem recently introduced in the Riemannian set-

ting by the authors. It is shown that the optimal control

function can be approximated by a pyramid based inter-

polation scheme, hence does not need to be solved in

real time. Some level of discretization for the final tar-

get point will be allowed. The paper also introduces a

new Biomimetic pan-tilt rotation control, where a pair of

mechanical eyes are tasked to follow the human binocular

18In [41], cases have been discussed for non-stationary binocular sensors
where the optimal control is not linear.
19Human eye and the pan/tilt system have different underlying configuration
spaces and are different sub-manifolds of SO(3).

gaze trajectory. The paper shows that if the optimal con-

trol to the human binocular system is known, the same

can be used with a mechanical pair of eyes, with an

appropriate nonlinear static feedback.
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