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1. Introduction. The purpose of this note is to derive curvature

conditions that will guarantee the existence of a product structure

for a Riemannian manifold of constant ¿-nullity. The proof is

modeled after similar theorems for Riemannian and Kahler mani-

folds of constant nullity [S], [ô]. Nullity was defined by Chern and

Kuiper [l]. Otsuki defined the concept of nullity relative to a con-

stant k, so that nullity became the special case k — 0 [4]. A definition

in terms of vectors was given by Gray, who also shortened the name

to ¿-nullity [2].

2. Definitions and the main theorem. Let Mm denote the tangent

space to the Riemannian manifold M at the point m, and let Rxy

denote the curvature transformation associated with x, y£Mm.

Definition. Let Bxyz = Rxyz — k{(x, z)y — (y, z)x}, where x, y, 2

£ Mm and k is a constant.

Then B is a tensor of the same type as R, and B possesses the

symmetries of R, [2].

Definition. Let Nk(m)= {zEMm'Bxyz = 0 for all x, yEMm}.

Nk(m) is called the ¿-nullity space at m. The dimension p(m) of

Nk(m) is the ¿-nullity at m. The conullity space Ck(m) is the ortho-

gonal complement to the nullity space at m. Elements of Ck(m) are

called conullity vectors. A conullity plane is a plane spanned by

conullity vectors.

Theorem. Let Mn be a complete, connected, and simply connected

C°° Riemannian manifold of constant k-nullity p, where 0<p^n—3.

If n—p is odd and the sectional curvatures of all conullity planes are

unequal to k, then Mn is a direct metric product, JJ" = i?> X Cn~", where

K? and Cn~'i are complete, and ii" has constant curvature k.

3. Proof of the theorem. If p is constant and positive, the distribu-

tion of ¿-nullity spaces is integrable, and the integral manifolds are

complete submanifolds of Mn of constant curvature ¿, [2]. Any one

of these integral manifolds provides one factor for a product struc-

ture of Mn.

Definition. For each m £ A* (m) and xECk(m), let Tu(x) = P(VxU),
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where P is the projection of M„ into dim) and U is any nullity ex-

tension of u.

T„ is a well-defined linear operator on Ckim), called a conullity

operator [ö]. The nonvanishing of the conullity operators represents

the obstruction to the existence of a product structure for Mn, for if

each conullity operator is zero, we can apply DeRham's decomposi-

tion theorem to obtain the theorem [5].

Lemma (the conullity identity). If T is a conullity operator at

m, then

l®x,v,zBxyiTiz)) = 0       for all x, y, z E Ckim).

Proof. Let 7 be the conullity operator associated with uENkim).

The second Bianchi identity for B states that ©»,»,, Vx(B)yz(u)=Q.

Using the definition of B in terms of A, and the relation Vx(B)yz(u)

— ̂xÍByzu)—BVxy,zu—By,^xzU—By,zÍVxu), where X, Y, Z, and U

are extensions of x, y, z and u, with U a ^-nullity field, we find that

0 = ®x,y,zByz(VxU) = @*,„,Ä(7(*)).

Remark. Although this identity is valid for all values of u, it is

nontrivial only when there are at least three independent conullity

vectors. This is the reason for the n—p^3 hypothesis in the theorem.

Lemma. 7/X is a real eigenvalue of a conullity operator, then X is zero.

Proof. Let 7 be the conullity operator at m associated with

uENkim). We may assume that m is a unit vector because 7 is linear

in u. As in Theorem (3.1) of [5], we calculate the curvature of M"

along a unit speed geodesic a starting at m in the u direction. The

frame field used in the calculation remains valid for this case [3]. If

Pit) is the matrix of T,>(t) relative to the adapted frame field used in

this calculation, we obtain a differentiable matrix-valued function P

that satisfies the differential equation P'= —P2 — kI. Since Mn is

complete, the domain of P is the entire real line.

Let x be an eigenvector of P(0) with the real eigenvalue X. The

relation P' = -P2—kI implies that x is an eigenvector of any deriva-

tive of P at time zero. Using the power series representation of P

given by Picard iteration, we can deduce that x is an eigenvector of

Pit) for all /. Thus, we may assume that P,i(t) =0 forjVl. If we set

pit) =Pnit), we find that p satisfies the equation p' = —p2 — k.

We can assume that k^O, as this case is solved in Theorem (3.1)

of [5].
Thus, if k<0, pit)=coipo+co tanh cot)/ico-\-p0 tanh (at), where

u = V — k, and po = piO).
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If ¿>0, p(t) =ü)(po—<¿ tan wt)/(o)+po tan cat), where w = y/ + k.

In either case, if po^O, the denominator of p would vanish for

some value of t, and p would not be differentiable. Thus, \—po = 0.

To show that each conullity operator T vanishes, it suffices to

show that the eignevalues of T are real and that T can have no

multiple eigenspaces with eigenvalue zero. The proofs of these facts

are algebraic in nature, and are similar to Theorems (4.2) and (4.6)

of [S], which used the conullity identity for R and T, the symmetries

of R, and the fact that the sectional curvatures of conullity planes

were nonzero. In this case, we have the conullity identity for B and

T, the fact that B shares the symmetries of R, and the fact that

(Bxyx, y)j^0 for all x, y,ECk(m).

Remark. It should also be clear that a theorem analogous to

Theorem (2*) of [5] holds. That is, if we replace the hypotheses

that n—p is odd, and that the sectional curvatures of conullity

planes are unequal to ¿, by the condition that the tensor B is positive

or negative definite when restricted to pairs of conullity vectors,

then the conclusion of the theorem holds. This is again an algebraic

consequence of the theorems in [S].

References

1. S. S. Chern and N. H. Kuiper, Some theorems on the isometric imbedding of com-

pact Riemann manifolds in Euclidean space, Ann. of Math. (2) 56 (1952), 422-430.

2. A. Gray, Spaces on constancy of curvature operators, Proc. Amer. Math. Soc. 17

(1966), 897-902.
3. B. O'Neill and E. Stiel, Isometric immersions of constant curvature manifolds,

Michigan Math. J. 10 (1963), 335-339.
4. T. Ôtsuki, Isometric imbedding of Riemann manifolds in a Riemann manifold, J.

Math. Soc. Japan 6 (1954), 221-234.
5. A. Rosenthal, Riemannian manifolds of constant nullity, Michigan Math. J. 14

(1967), 469-480.
6. -, Kahler manifolds of constant nullity, Michigan Math. J. 15 (1968), 433-

440.

University of Colorado

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


