RIEMANNIAN MANIFOLDS OF CONSTANT k-NULLITY!
AARON ROSENTHAL

1. Introduction. The purpose of this note is to derive curvature
conditions that will guarantee the existence of a product structure
for a Riemannian manifold of constant k-nullity. The proof is
modeled after similar theorems for Riemannian and Kihler mani-
folds of constant nullity [5], [6]. Nullity was defined by Chern and
Kuiper [1]. Otsuki defined the concept of nullity relative to a con-
stant k, so that nullity became the special case k=0 [4]. A definition
in terms of vectors was given by Gray, who also shortened the name
to k-nullity [2].

2. Definitions and the main theorem. Let M, denote the tangent
space to the Riemannian manifold M at the point m, and let R,
denote the curvature transformation associated with x, y&E M,,.

DEFINITION. Let B,yz=Rz,,z—k{(x, 2)y— (v, z)x}, where x, ¥y, 2
€ M,, and k is a constant.

Then B is a tensor of the same type as R, and B possesses the
symmetries of R, [2].

DEFINITION. Let Ni(m) = {2E Mn:B,,z=0 for all x, yEM,}.

Ni(m) is called the k-nullity space at m. The dimension u(m) of
Ni(m) is the k-nullity at m. The conullity space Ci(m) is the ortho-
gonal complement to the nullity space at m. Elements of Cy(m) are
called conullity vectors. A conullity plane is a plane spanned by
conullity vectors.

THEOREM. Let M™ be a complete, connected, and simply connected
C* Riemannian manifold of constant k-nullity p, where 0<u=<n—3.
If n—u is odd and the sectional curvatures of all conullity planes are
unequal to k, then M™ 1s a direct metric product, M"=K#X C**, where
K» and C** are complete, and K* has constant curvature k.

3. Proof of the theorem. If u is constant and positive, the distribu-
tion of k-nullity spaces is integrable, and the integral manifolds are
complete submanifolds of M* of constant curvature &, [2]. Any one
of these integral manifolds provides one factor for a product struc-
ture of M.

DEFINITION. For each 4 € N (m) and x € Ci.(m), let Ty (x) =P(V,U),
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where P is the projection of M, into Cx(m) and U is any nullity ex-
tension of .

T. is a well-defined linear operator on Ci(m), called a conullity
operator [6]. The nonvanishing of the conullity operators represents
the obstruction to the existence of a product structure for M*, for if
each conullity operator is zero, we can apply DeRham’s decomposi-
tion theorem to obtain the theorem [5].

LEMMA (THE CONULLITY IDENTITY). If T is a conullity operator at
m, then
©:,4.:By(T(2)) =0  for all x, vy, 2 € Cr(m).

ProoF. Let T be the conullity operator associated with u & Ny (m).
The second Bianchi identity for B states that &, V.(B),.(%) =0.
Using the definition of B in terms of R, and the relation Vx(B)yz(u)
=Vx(Byzu) — Byyy.zt — By yyztt — By,z(Vxu), where X, Y, Z, and U
are extensions of x, v, z and u, with U a k-nullity field, we find that

0 = @z,y,szz(VzU) = @1'v.zBIII(T(x))'

REMARK. Although this identity is valid for all values of p, it is
nontrivial only when there are at least three independent conullity
vectors. This is the reason for the n—u =3 hypothesis in the theorem.

LEMMA. If N is a real eigenvalue of a conullity operator, then \ is zero.

Proor. Let T be the conullity operator at m associated with
# & Ni(m). We may assume that » is a unit vector because T is linear
in u. As in Theorem (3.1) of [5], we calculate the curvature of M~
along a unit speed geodesic ¢ starting at m in the u direction. The
frame field used in the calculation remains valid for this case [3]. If
P(2) is the matrix of T4 (s relative to the adapted frame field used in
this calculation, we obtain a differentiable matrix-valued function P
that satisfies the differential equation P’= —P2?—FkI. Since M" is
complete, the domain of P is the entire real line.

Let x be an eigenvector of P(0) with the real eigenvalue X\. The
relation P’ =—P2—kI implies that x is an eigenvector of any deriva-
tive of P at time zero. Using the power series representation of P
given by Picard iteration, we can deduce that x is an eigenvector of
P(2) for all t. Thus, we may assume that P;;(f) =0 for j=1. If we set
p(t) =Pu(t), we find that p satisfies the equation p’' = —p2—Ek.

We can assume that k70, as this case is solved in Theorem (3.1)
of [5].

Thus, if 2<0, p(¢) =w(po+w tanh wt)/(w+po tanh wt), where
w=+/—k, and po=p(0).
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If k>0, p(t) =w(po—w tan wt)/(w+po tan wt), where w=+/+k.

In either case, if $o5%0, the denominator of » would vanish for
some value of ¢, and p would not be differentiable. Thus, A =p,=0.

To show that each conullity operator T vanishes, it suffices to
show that the eignevalues of T are real and that T can have no
multiple eigenspaces with eigenvalue zero. The proofs of these facts
are algebraic in nature, and are similar to Theorems (4.2) and (4.6)
of [5], which used the conullity identity for R and T, the symmetries
of R, and the fact that the sectional curvatures of conullity planes
were nonzero. In this case, we have the conullity identity for B and
T, the fact that B shares the symmetries of R, and the fact that
(Bzyx, ¥y #0 for all x, y,&Ci(m).

REMARK. It should also be clear that a theorem analogous to
Theorem (2%) of [5] holds. That is, if we replace the hypotheses
that #—u is odd, and that the sectional curvatures of conullity
planes are unequal to k, by the condition that the tensor B is positive
or negative definite when restricted to pairs of conullity vectors,
then the conclusion of the theorem holds. This is again an algebraic
consequence of the theorems in [5].
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