
Riemannian Manifolds with Structure Group G2 (*). 

~ .  F n I r  (Spain) - A. G~Au (~aryland)  

S u m m a r y .  - Riemannian mani/olds with structure group G~ are 7-dimensional and have a 
distinguished 3-]orm. I n  this paper such mani]olds are treated as analogues o/ almost Her- 
mit ian mani/olds. Thus S T has structure group G~ ~ust as S 6 is an almost Hermitian mani/old. 
We study the covariant derivative o] the ]undamental 3-]orm as was done in  [GH] ]or almost 

Hermitian mani]olds. 

l .  - I n t r o d u c t i o n .  

The exceptional  Lie group G~ is one of the possible candidates for the holonomy 

group of an irreducible l~iemannian manifold [BE]. Such a Eiemannian  manifold M 

must  be 7-dimensional and have zero Ricei curvature  [BO]. There is a representa- 

t ion of G~ on each tangent  space of M defined by  means of a 2-fold vector  cross 

product  [CA], [G:R 1-5], which is parallel. This vector  cross product  can be con- 

sidered as a natural  generalization of an almost complex s t ructure  [BG], [E 2], 

[GI~ 4], [GI~ 5]. Corresponding to the K~hler form, one has a fundamenta l  3-form 

which is parallel;  thus if M is compact  H s ( M ,  R )  ~ O. 

One approach to the s tudy of a l~ieman~ian manifold M whose holonomy 

group is contained in G2 is to  generalize the theory  of Ki~hler manifolds. For  ex- 

ample, one has a theory  of harmonic forms on M which is a special case of a much 

more general t r ea tmen t  by  C n ~  [CH]. However,  the  authors  have so far  been 

unable to  find examples of Riemannian manifolds whose holonomy group is ac- 

tua l ly  equal  to G~. 

The analogy between Ki~hler manifolds and l~iemannian manifolds whose holo- 

nomy group is a subgroup of G~ suggests the s tudy of analogs of complex and symplec- 

tic manifolds , provided such analogs exist. More precisely, the situation is this: 

Consider the class ~l) of 7-dimensional l~iemannian manifolds M for which the  struc- 

ture  group of the  bundle of or thonormal  frames can be reduced from 0(7) to G2: 

This reduct ion can be described geometrically by  saying tha t  M has a 2-fold vector  

cross product  2 .  The class %0 contains all parallelizable 7-dimensional manifolds 

and is analogous to the class of a l l  almost Hermi t i an  manifolds. With in  the  class 

one can search for analogs of the classes of Hermi t ian  and almost K~hler manifolds 

as well as analogs of other  special types  of almost Hermi t ian  manifolds. 

(*) Entrata in Redazione il 9 settembre 1980, 
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This search, which we do in a systematic  way using the method of [Gtt],  is the 

principal  subject  of this paper.  The idea is to s tudy  the  representat ion of (72 on 

the space W of tensors having the same symmetr ies  as the covariant  der ivat ive 

V~0 of the  fundamenta l  3-form % and to decompose this representat ion into ir- 

reducible components.  Corresponding to each invar iant  subspace of W there  is a 

subclass of qg. 

In  fact  we shall show tha t  the  representa t ion of G~ on W has four irreducible 

components :  

w =  w,| w~| w~| w~. 

Thus,  there  are a to ta l  of 16 invar iant  subspaees of W, and hence 16 subclasses of 

ql). Corresponding to {0} are the  manifolds with parallel  vector  cross products.  The 

manifolds with d~o = 0 will correspond to W2, and manifolds with locally con- 

formally parallel  vector  cross products  will correspond to Wd. On the  sphere S 7 

there  is a na tura l ly  defined vector  cross product ,  which will correspond to W1 and 

is analogous to the  canonical almost complex s t ructure  on S s. Similar interpretat ions 

can be given to each of the 16 invar iant  subspace~ of W. We explain all of this 

in section 5. 

I t  should be remarked  t ha t  there  is one fundamenta l  difference between 2-fold 

vector  cross products  and almost complex structures.  _&]most complex s t ructures  

are defined wi thout  reference to  a metr ic  (although if a metr ic  exists; a compat ibi l i ty  

condit ion is required).  In  contrast  to this, a 2-fold vector  cross product  has a unique 

(positivie definite) metr ic  associated with it. We make this precise in section 2. 

We discuss the  algebra of a 2-fold vector  cross product  2 in section 2, and ex- 

tend  the  definition of 2 so tha t  2 ) operates on /+vectms and k-forms. I~epresenta- 

t ions of the  Lie group G~ and the relevance of vector  cross products  to the s tudy 

of these representat ions are studied in section 3. 

The space W is defined in section 4, and the decomposit ion W = W~| W2 O 

| W3 O W4 is established. I t  is a]so shown th a t  the representat ion of d2 on each W~ 

is irreducible. We define the  16 classes in section 5. Conformal relations between 

the  16 classes are s tudied in section 6. Each  orientable hypersurfaee of R s has a 2-fold 

vector  cross p roduc t  [GP~ 3]. These are studied in section 7. We define in sect.ion 8 

the notion of complex vector  cross product ,  and using it, we find nontr ivial  ex- 

amples of manifolds in the  class %/3~. Final ly  we discuss the inclusion reIations bet-  

ween the  various classes in section 9. 

2 .  - The algebra of  2-fold vector cross products. 

A general  definition of the  not ion of vector  cross product  has been given by  

Ec~IA~z~ [E 1]. See also [BG], [CA], [GR 1-5], [E 2], [YS], [Z]. There are four 

kinds. We shall be concerned exclusively with vector  cross products  of t ype  (iii)~ 

the  2-fold vector  cross products.  Explici t ly,  we have 
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DE:FINIT!ON. -- Le t  V be a finite dimensional  vector  space over  R with  a (posit ive 

definite) inner p roduc t  ( ,  >. A 2-]old vector cross product on V is a bil inear m a p  

_P: V X V - ~  V sat isfying the  axioms 

(2.1) 

(2.2) 

(.P(x, y), x> = <.P(x, y), y> = O, 

I1 . y)tl Ilxil llyll 

for x, y ~ V. 

Le t  A~(V) denote the  k-th Grassmann  space over  V (i.e., the  space gemerated 

by  the  skew-symmet r ic  products  v~A...Avk). I t  follows f rom (2.1) t h a t  P(x,  y ) =  

---- - - /~(y ,  x). Thus we m a y  ex tend  P to a l inear mapp ing  _P: A2(V) --+ V. For  this 

reason we shall usual ly  write 2(xAy) instead of P(x, y). F u r t h e r m o r e  let  the inner 

p roduc t  ( , )  be extended to A*(V) b y  the  formula  

<v~A...Av~, w~A...Aw~,> = det ((v~ wj)) 

for v~... . ,  vk, w~, . . . ,wkeV. Them (2.2) becomes 

(2.3) IlP( Ay)!I llxAyjl 

~ o t e  t h a t  (2.3) does not  say t h a t  P is an isometry ,  but  only an i sometry  on de- 

composable  vectors .  

DEri~IT!O~. - The f u n d a m e n t a l  3-iorm ~ of the 2-reid vector  cross product  P 

is given by  

g(xAyAz) = (P(xAy), z> 

for x, y, z ~ V. (From (2.1) i t  follows tha t  io is skew-symmetr ic . )  

I n  [E 1], [BG] (for example)  it  is shown t h a t  if (V, ( ,  >) has  a 2-fold vector  

cross p roduc t  then  necessarily dim V ~ 3 or 7. When  dim V ~ 3 the vector  cross 

p roduc t  P is the  (~ classical ,> vector  cross p roduc t  known to s tudents  of engineering. 

I n  this cause a vector  cross product  determines a volume e lement  (namely the  fun- 

damen ta l  3-form ~v) and  vice versa.  Thus, there is 11o advan tage  to s tudying vector  

cross products  as such in this case. Therefore,  we shall hencefor th  assume t h a t  

d im V = 7. 

A simple explicit  construct ion for P can be given via the  Cayley numbers  Cay. 
We view Cay as an 8-dimensional  division algebra over  R with  iden t i ty  1 a n d  ortho- 

normal  basis (1, e0, ..., e6}. The mul t ip l icat ion in Cay is then  de te rmined  by  
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(This definition seems to be due to C~ICTA~ [C~]. Many recent  books, e.g. [BS], 

[FR], [GO], [J] have insisted on the  mult ipl icat ion in Cay by  a complicated asym- 

metr ic  table.) Le t  V ~ {1} • be the 7-dimensional space of pure imaginary Cayley 

numbers.  On V the  2-fold vector  cross product  is then  given by  

(2.4) ~P(xAy) ---- xy 4- (x, y)  1 

for x, y ~ V. Here  xy denotes the  Cayley produc t  of x and y. 

DiEFINITIO~'. - A Cayley basis for  V is an or thonormal  basis (eo,..., e~} such tha t  

P(ei, et+l) -~ e~+~ for i ~ ZT. 

Some of our formulas are simpler when wr i t ten  using a Cayley basis. However ,  

in general, we prefer  to write the formulas using an a rb i t ra ry  or thonormal  basis 

(co, . . . ,  e0} of V. 
Firs t  we wriCe down without  proof some e lementary  consequences of (2.1)-(2.3). 

L E ~ . ~  2.1. - For  x, y, z ~V we have 

(2.5) 

(2.6) 

(2.7) 

<P(xAy),  P ( x A z ) )  - (xAy,  x A z )  , 

 (zAP( Ay)) = --IlxI! y + <x, y> 

P(xAP(yAz)) 4- P(yAP(xAz)) = --2 (x, y)z 4- (x, z>y 4- (y, z>x. 

CO~OLL~Y 2.2. - The metr ic  ( , )  is de termined by  the vector  cross product  P.  

P~ooF. - F rom (2.6) we have 

(2.8) P(x A P(x A P(x Ay) ) ) = --'Jxil'P(xAy). 

Choose x and y l inearly independent .  Then  P(xAy)  V: 0. F rom (2.8) we can deter- 

mine Ilx[[ ~ f rom ~P. By  a s tandard  polarizat ion argument  we get ( , ) .  

As explained in [BG] a 1-fold vector  cross p roduc t  is nothing other  t h an  an al- 

most  complex structure.  However ,  an almost complex s t ructure  does no~ determine a 

par t icular  metric.  (For example ,  complex manifolds can be defined wi thout  reference 

to a metric.)  Thus because of corollary 2.2, 2-fold vector  cross products  are fun- 

damenta l ly  different f rom almost complex structures.  

We now introduce a mapping tha t  will t u rn  out to be the adjoint  of _P. 

DnF~ImIo~-. - The linear mapping p: V--~A~(V)  is given by  

6 

(2.9) p(x)  : - -  �89 ~ e~A-P(e~Ax) 
i = 0  

for x ~ V, where {eo~ ...~e6) is any  or thoaormal  basis of V, 



M FERNANDEZ - A. GlChY: t~iemannian mani]olds with structure, etc. 23 

L E ~ [ ~  2.3. - The mapping p has the  following propert ies:  

(i) p is the  adjoint  of P ;  t ha t  is for x e V ,  SeA~(V);  

(240) { p ( x ) ,  ~) = {x,  P(~)}; 

(ii) we have for x e V  

(2 .~)  ~(~(x)) = 3x; 

(iii) if {Co, ..., e~} is a Cayley basis of V, then 

(2.~2) 

P~oo~. - (2.]0) follows from (2.1), and (2.9). Also (2.11) is a consequence of 

(2.6) and (2.9). Finally~ (2.12) is an easy calculation using (2.9) and the definition 

of Cayley basis. 

Next  we ex tend  P and p to linear maps 

t): A~+~(V) -~ A~(V) and p: A~(V) -~ A~+x(V). 

D E F I N I T I O N .  - -  L e t  Vl~  . . .  ~ Vk+l@ V. Then 

P(VlA...Av~+,) = ~ (-- lY+~+~P(v~Av~)Av~A...A~A...Av~A...A'~ v~+l, 

p(v~A...Av~) = ~ (-- I)~+~p(v~)Av~A...A~A...Av~. 
~=1 

We ex tend  P and p l inearly so tha t  t hey  become maps P :  A~+~(V) --> A~(V) and 

p: A~(V) ~ A~+~(V). 

�9 In  par t icular  we have 

p(xAy) = p(x)Ay - - p ( y ) A x  , 

P(xAyAz)  = ~ P(xAy)Az  , 
Z y z  

for x, y, z ~ V, where ~ denotes the cyclic sum. Fur thermore ,  we can compute  the 

powers of p. In  addit ion to (2.12), there  are the following formulas:  

p2(e~) = 3(e~+lAe~+2Ae~+~--e~+IAei+~Ae~+6--ei+2Ae~+sAe~+4 + e~+3A e,+sA ei+,} , 

Ps(e~) = 9e~A{e~+lAe~+2Ae~+4 + e~+2Ae~+sAe~+s -~ e~+sAe~+4Ae~+6 Jr ei+~Aei+6Aei+~}, 

p4(e~) = 36eiA{--ei+~Ae~+~Ae~+3Aei+6 Jr e~+iAe~+~Ae~+4Aei+~ Jr ei+~Aei+4Aei+sAe~+6} , 

pS(e~) = - -  108e~+lAei+~A ei+~Aei+~Aei+~Aei+~ 

pe(e~) = O. 
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7 

L e t  A(V)= @ A ~ ( V ) .  ~eca l l  t h a t  an  ant ider ivx~ion of A(V) is a l inear  m a p  
k=0 

L: A(V) -~ A(V) such gha t  

L(~A~) = L($)A~ 4- (--I)~AL(~) 

for S e  A~(V) a, n4 ~? ~ A ( V ) .  E x g e n d  p t o  u m a p  p :  A(V) ~A(V).  F r o m  the  defini- 

t i on  of p we h a v e :  

LESIS~k 2.4. - The  m a p  p :  A(V)-+A(V) is an  an t i de r i va t i on  of A(V). 
N e x t  te t  , :  A(V) -~ A(V) be the  H e d g e  s tar  opera tor .  T h u s ,  (A~(V)) = Ay-~(V). 

L m ~ i a  2.5. - p ---- ( - - 1 F + ~ ,  P , :  A~(V) -+A~+~(V). 

Pi~oo~'. - This can be checked  b y  choosing a Cay ley  basis for  V and  c o m p u t i n g  

for  each k t he  maps  �9 P ,  and  p.  

We  also no te  

LES~IA 2.6. - Fo r  x~ y. z 5 V we have  

(2.:ts) P~( x Ay /\ z) = | P( P(x /\y) A z) 
xyz 

= 3P(P(xAY)Az)-- 3<x, z>y + 3(y, z>x~ 

9{it / ,yA'dl 

P~oo~:. - These equa t ions  follow easily f rom the  definit ions and  equa t ions  (2.3), 

(2.7). 

W e  shal l  also need  a formula, for  �9 q~. (Here  the  4- form �9 q0 can  be defined b y  

(, cp)(wAxAyAz)~ c f ( * ( w A s A y A z ) ) ;  this  is equ iva l en t  to  the  usua l  definit ion.)  

LENN:A 2.7. - Let w~ x~ y~ z ~ V. Then 

(2.15) (, qg(~,JAx/\y/\z) = ~ {w, | P(P(x/\y)Az)> 

= {w, P(P(xAy)Az)} d- {wAz, x/\y). 

Pt~OOF, T ~- - ~Je~, ~o be the  ~-form on V g iven  by  

~p(w/ \x / \y / \ z )  = iw ,  | P ( P ( x A y ) / \ z ) }  �9 

Then  for a Cay ley  basis {eo~ ...~ e,} it is easy  to  ver i fy  t h a t  

(2 , .16 )  t # ( e , : , , \ e l A e , , A e ~ )  = - -  3d,-~ = 3 ( .  ~)(e~,4e~/\e~,'~e3), 
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Since (2.16) holds for any Cayley basis we get ~o = 3 , 9 .  This is the firs~ part of 

equation (2.15). The second part is a consequence of (2.13). 

3. - Some low dimensional  representations o f  G2. 

The purpose of this section is to describe in a concrete way some representations 

of G2 that  we shall need in subsequent sections. Using Weyl's formula for the degrees 

of irreducible representations of simple Lie groups (see for example [SA, p. 130]), 

it e~n be verified that  the degrees of the f rs t  five irreducible representations of G.z 

are 1, 7, 14, 27, and 64. We shall need the first four of these. For convenience, all 

of the representations that  we consider will be covariant. 

The 7-dimensional representation of G2 is best described by means of the vector 

cross product P:  

G, = (g e O(7)f(gxAgy) = gP(xAy) for all x, y e V}.  

In fact, one purpose of the theory of vector cross products is to have this simple 

description of the 7-dimensional representation of G2. The 14-dimensional representa- 

tion of G~ is the ~djoint representation. 

I t  will be convenient to consider covariant versions of P and p (which we shall 

denote by the same letters). Let V* denote the dual space of V. 

DEFI~ITIOS"S. -- _P: Ak(V *) -+A~+~(V *) and p: A~(V *) -+ Ak-~(V *) are given by 

P(c~) = c~oP and p(~) = c~op. For clarity we sometimes write P~ and p~. 

Thus we obtain the following (non-exact) sequences: 

O -+ V* ~ A~(V *) ~ A~(V *) ~Aff:V*)~ A*(V *) ~__ Ae(V*)~ O. 

We shall determine the irreducible components of the induced representation 

of G2 on each ATe(V*). The representation of G~ on A~(V *) and AT-~(V *) are the same 

because the ttodge star operator , :  Ak(V *) --> A~-~(V *) is an isometry. (Here we 

use the inner product ( ,  } on Ak(V*) given by 

6 

<a,#> = ]~ ~(%A...A%)fl(%A...A%), 

where {Co, ..., e6} is an arbitrary basis of V.) Therefore, it  suffices to describe the 

representations of G2 on V*, A2(V*), and As(V*). The representation of G2 on V* 

is the irreducible 7-dimensional representation; the representations of G2 on A~(V *) 
and A~(V *) are both reducible. We now use the vector cross product P to describe 

in a geometrically useful way the irreducible summands. 
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Firs t  we defirm 

A~(V*) = 

W~(v*)  = 

A~(V *) = 

A~(V*)  = 

A~(V *) = 

LE~IMA 3.1. - 

(3.1) 

{oc e A~( V*)]p(~) = 0 } ,  

{a e A2(V*)]3~ = Pp(a )} ,  

{ o~ e A3(V*)[p(a) = 0 and 
0 } 

~(e,Ae, AP(e,Aej)) = 0 , 
i,j=O 

(~ e A~(V*)I~(xAyA.P(xAy)) = 0 for all x, y e V} .  

We have the  following orthogonal  direct sum: 

A~(V *) ---- A2~(V *) Q A~(V*) . 

Also G2 acts irreducibly on A~(V*), and 

dim A2~(V *) = 14 ,  dim A2~(V *) = 7.  

PgooF. - Using the fact  tha t  p~oP~= 3I~ (where L0: Ak(V *) --->Ak(V*) denotes 

the  iden t i ty  map),  it  is easy to  ver i fy  t h a t  �89 and I2--�89 are projections 

onto A~(V *) and A2~(V *) respectively.  This proves (3.1). 

The mapping P~: V* ~ A~(V *) is inject ive and Image P~= A~(V*). Thus A~(V*) 

and A~(V *) have the  s ta ted dimensions. 

To check t ha t  G2 acts i rreducibly on A~(V*) one verifies t ha t  there  are no non- 

t r ivial  irreducible summands of dimension 1 or 7. This completes the  proof. 

L m ~ A  3.2. - We have the  following orthogonM direct sum: 

(3.2) A3(V *) = A~( V*) | A~(V*) | A~( V*) . 

Also Go acts irreducibly on A~(V*), and 

dim A~(V*) = 1 ,  dim A~(V*) = 27 ,  dim A~(V*) = 7.  

P~ooF. - Consider the  subspace A of As(V) generated by  elements of the  form 

(xAy A/)(xAy)Ix, y e V}. By  Corollary 2.8, A coincides with the  kernel  of p2 :As(V) -+V. 

Since P~ is onto i t  follows t ha t  dim A----' 28. Hence the  set of forms yanishing of A, 
namely  A~(V*), has dimension 7. Similarly P :  A3(V *) --> V* is onto so t h a t  its kernel  

has dimension 28. Also A~(V*)oA~(V*) = kernel  P.  Hence all of the  spaces have  

the  s ta ted dimensions. These representat ions of G~ are irreducible and so they  are 

or thogonal .  
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4. - The space o f  covariant derivatives of  the fundamental  3-form. 

I n  the  nex t  section we shall consider the cov~ri~nt der ivat ive  V 9 of the  funda-  

men ta l  3-form 9 of u vector  cross p roduc t  on a 7-dimensional manifold  M. The  

tensor  field V~ has var ious s y m m e t r y  propert ies.  I n  the  present  section we define 

finite dimensional  vector  space W t h a t  consists of those tensor  fields having  the  

same symmetr ies .  Then we s tudy  the  decomposit ion of W into irreducible com- 

ponen t s  under  the  na tu ra l  act ion of G2. 

The space W is given b y  

W--- {~ e V*| As(V*)lo:(x, yAzAP(yAz)) = 0 for all x, y, z e V}.  

L E n A  4.1. - d im W ---- 49. 

PI%OOF. - I t  is clear t h a t  W is na tu ra l ly  isomorphic to V*(D Ass(V*). 
dim V* = d im A~(V*) = 7, the  result  follows. 

There is a na tu ra l  inner p roduc t  on W given by  

6 

(~, fl) = ~ o~(e,, ejAe~Ae,)fl(e,, ejAekAe,).  

Since 

Here  {eo, ...,e6} is an  a rb i t r a ry  o r thonormal  basis of V. i t  will also be  useful to  

consider l inear maps  L~: W--~A~(V *) for i = 0, 1, 2 given b y  

6 

L~(~)(xAy) = ~ ~(e,, e~AxAy) , 
i = 0  

6 

Ll(o~)(x) = ~ ~(P(e,Aej), e~Ae~Ax), 
i , ~ = 0  

6 

Lo(~) = 2 ~(/)(P(e,Aej)Ae~), e,Ae, Ae~), 
i,J,k=O 

for x, y E V ,  a e W .  

LEMMA 4.2. - We have  

(4.]) 

(4.2) 

Lo(~) ---- <~, *~>, 

6 

L,(oO(x) -~ ~ o~(e,, e, AP(e,Ae,)Ax) 
i = 0  

z - -  2pL~(:r 

for x e V, o~ e W. 
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P~ooF. - In  the definition of Z,  we m ay  replace e~ by  2(e~Ae~). Then using (2.6) 

we obtain 

6 

(4.3) L , ( o ~ ) ( x )  = ~, ~(.P(e, AP(eJ\e,)), e,AP(e,Ae,)Ax) 
i , i  = 0 

6 

4,~=0 

6 

= - -  Z ~(e~, e~A2(e~Ae~)Ax) 
i,~=O 

6 

--- Z ~(ei, e~AP(eiAe~)Ax) �9 
i,~'=0 

Fur thermore ,  using (2.9) and (4.3) we see t h a t  

6 

(pL~)(~)(x) = - -  �89 ~ ~(e,, e , \  e j A r ( e j \ x ) )  = - -  �89 L~(~)(x) . 
i , j=0  

This establishes (4.2). We get  (4.1) f rom (2.15). 

LE.~f.~fA 4.3. - Suppose there  is a constant  a such tha~ 

(r y .(P(x/ \y) ,  x / \ y A z )  = a{~(x, P ( x A y ) A y A z )  - -  ~(y, P ( x A y ) A x A z ) }  , 

for all x,y,z~V. If ar189 then pL~(~)= O. 

PROOF. - From lemma 4.2 and equation (4.4) we have 

6 

( p L y )  (o~)(x)  - - -~ 
6 

= - - ~ ,  ~ o  {~(e,, P(e ,A e , ) A e , A x ) -  ~(e,, P ( e , i e , ) i e , A x ) }  

6 

= a ]~ ~(ei, e~AP(e~Aej)Ax) = - -  2a(pL~)(~)(x) . 
/ , j=O 

t tence  the  lemma follows. 

We now define four subspaces of W: 

Wl = {, ~}, 

tV~ = ~ ~ W[~(~,  x A y  A z) - -  ~( x, 'w / \y  A z) T ~-(Y, w /\ x A z) - -  ~.(z, wAxAY) ---- 0 

for all w , x , y , z ~ V } ,  

w ~  = {~ e WiL~(~) = Lo(=) = o } ,  

W4 = {e e Wil2c~(w, x A Y A z )  = | ( --  (pL~,)(e)(x)~(w/\yAz)  § 

+ 3 @v, x )  Ldc~)(yAz)) for all w, x, y, z e V} �9 
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Eventua l ly  we shall show tha t  these are the four irreducible components  of the 

representat ion of G~ on W. Firs t  we need several a l ternate  descriptions of these 

subspaces and thei r  direct sums. 

LEm[A 4.4. - W1 = {~ e WI~ = (1/168)~0(g) * q~} = W ~ AffV*). 

P~ooP. - Suppose e e W1. Then  ~ = a .  ~. Using (2.14), (2.15), and (2.2) we 

find t ha t  a = (1/168)L0(~). Hence the  lemma follows. 

LE~r~A 4.5. - W~, W~, Ws, are mutual ly  orthogonal and 

(4.5) W~ | W3 = kernel  Z2, 

(4.6) WI |  W, = {~ e Wl~(t)(xAy), xAyAz)  

= ~(x, P ( x A y ) A v A z )  - -  ~ ( V , . P ( x A v ) A x A z )  for all x, y, z e V}. 

P~ooF. - I t  is obvious from lemma 4.2 that  W~ snd Ws are orthogonal and 6hat 

(4.5) holds. Also i t  can be verified by  direct calculation using the definition of the 

iImer product  on W tha t  W~ is perpendicular  to  W~. Fur thermore ,  

W, | W, C_ {~ e WI~(_P(x Ay), x Ay A z) = ~(x, t '(x Ay) Ay A z) --~(y, 2(x Ay) A x A z) 

for a l l x ,  y , z ~ V } .  

To establish the  reverse inclusion we define T: W-->Ad(V *) by  

T(~)(w, x AY Az) = ~ {a(w, xAYAz) --~(x, wAy Az) + ~(y, wAxAz) --~(z, wAxAy)} 

for w, x, y, z ~ V. Then one checks t h a t  if ~ E W is such t h a t  

~(P(x Ay), x Ay A z) = a(x, P(x A y ) Ay Az) --  ~(y, P(xAy ) A x Az) 

for all x, y, z e V ,  then  T ( ~ ) e W .  Fur thermore ,  T 2 ~ - T .  Thus T is the projec- 

t ion  of 

(~ e WI~(P(xAy), xAyAz)  = ~(x, _P(xAy)AyAz) . ~(y, P(xAy)AxAz) 

for all x~ y, z e V} 

onto W~ = W (~ A~(V*). I t  is clear t ha t  the kernel  of T is W:. Thus we get (4.6). 

LE~Wr~A 4.6. 

(4.7) WI |  W~ | Wa = kerne lpL~.  

3 - A n n a l i  d i  M a l e m a t i e a  
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Pnoo~ .  - One checks t h a t  W~ n kerne l  Z~ = {0}. F u r t h e r m o r e ,  us ing l e m m a  4.3 

and  l e m m a  4.5~ pZ2(~) = 0 for  ~ ~ W~| W~| Wa. Also W~ = kerne l  T so t h a t  d im  W~ > 

> 1 4 .  Then  W~@ W.~| Wa = k e r n e l p L ~  because  b o t h  spaces have  the  same  d imen-  

sion. 

L E n A  4.7. - Suppose  ~ s W  wi th  pL~(o~) ~ 0 and  t h a t  

(4.8) ~(vo, x A y A z )  = | {apLd~)(x)~o(wAYAz) § b <w, x)  Z~(a)(yAz)} , 
zyf$ 

for  all w, x, y, z ~ V. T h e n  a = --1/12,  b = ~ and  2pL~(~) -~ 3L~(~). 

P~ooF .  - I n  (4.8) we let  x ---- e~, y = ej~ z = _P(e~Ae~) and  sum.  Since ~ e W  we 

m u s t  have  

6 

~(w, e~Ae~A.P(e~Aej)) = 0 .  
i , j=0  

This implies t h a t  

(4.9) (18a q- 6b)pL2(~)(w) = O . 

On t he  o the r  h a n d  if we app ly  L~ to  b o t h  sides of (4.8) we ob ta in  

( 4 . 1 0 )  (1  - -  5 b ) L , ( a )  = aPpL:(o:). 

Apply ing  p to  b o t h  sides of (4.10) we ge t  

(4.11) (1 - -  5b - -  3a)pL~(~) = 0 .  

F r o m  (4.9) a nd  (4.11) a nd  the  a s s u m p t i o n  t h a t  pJL2(~) V= 0 we o b t a i n  a = - -  1/12 

b = ~. T h e n  subs t i t u t i ng  these  va lues  in to  (4.10) we f ind t h a t  PPs = 3Z=(~) 

LEM~A 4.8. 

wl| w ,e  w, = {~ e w l 2 p L , ( ~ )  = a~ , (~)} .  

PI~0OF. - W e  h a v e  W10 W3 C- {~ ~ WI2pL~(~) = 3L~(~)} because  L2(~) : 0 for  

e W I |  Ws. Also W~_C {~ e W]PpL~(~) : 3Z~(~)} b y  L e m m a  4.7. Consider  t he  m a p -  

p ing  U: V*--+ V * |  A~(V *) given  b y  

1 
g(y)(w,  x A y A z )  ---- - -  ~ | {7(x)~(wAyAz)  --  (w, x)  y ( P ( y A z ) ) } .  

~ y z  
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I t  can be checked tha t  U is injective and Image U = W~. Thus dim W4---- 7. Since 

dim (a e W[_PpL~(o~) : 3Z2(~)) = 35 we must  have TV~| W~| W , :  {~ e WIPpL.(o~ ) -= 

-----3L2(~)} because bo th  spaces have the same dimension. 

The representat ion of G~ on V induces a representat ion of G~ on W. The nex~ 

theorem describes the decomposition of this induced representat ion into irreducible 

components.  

THEO~V,~ 4.9. - We have W = W~| W~| WzO Wd. This sum is direct and or- 

thogonal,  and i t  is preserved under  the induced representat ion of G2 on W. The 

induced representat ion of G~ on W~ is irreducible. We have dim W~---- 1, dim W2 = 

-= 14, dim W3-= 27, and dim W4 = 7. 

P~ooF. - In  the  previous lemmas the  dimensions of the W~ have been calculated. 

Also i t  is clear t ha t  W, n W~ = {0} for i va j. Since dim W = 49, i t  follows t h a t  

W~| W20 W~O W4 = W and the  sum is direct and orthogonal. 

Tha t  G~ acts irreducibly on W~ is obvious, and can be checked for W~ and W~. 

Tha t  G2 acts irreducibly on W3 follows because W~---- e. (A~(V*)). This completes 

the proof. 

5. - Seven  d i m e n s i o n a l  R i e m a n n i a n  mani fo lds  w i th  t w o  fold vec tor  cross  products.  

Let  M be a Coo l~iemannian manifold of dimension 7 with metr ic  tensor field 

( ,  >. Denote  by  E(M) the  Lie algebra of C ~ vector  fields on M and by  3;(M) the 

algebra el Coo functions on M. For  each m ~ M the t angent  space at  m will be de- 

noted by  Mm. 

DEI~I:NITI01~. - -  We say tha t  (M, ( ,  >) has a 2-fold vector  cross .product P pro- 

vided t ha t  each tangent  space M~ has a 2-fold vector  cross product  Pm: M~ • M~ -+ 

--> M~. We require tha t  the  mapping m -> P~ be C% 

I t  is clear t h a t  P gives rise to a tensor field P :  E ( M ) •  E(M) -+ ~(M) of t y p e  

(2,1) and t ha t  

(5.1) 

(5.2) 
(P(x ,  Y), x}  = (P(x ,  ]0, Y> = 0, 

~itx~[I,) <x,~})Hr[t [I..P(X, I7)]] ~ = ][XA Y]t ~ = det  \ ( X ,  

for X,  Y ~ E(M). In  fact,  the  linear algebra of the previous sections goes over in 

the  obvious way to manifolds. The purpose of the present  section is to s tudy  the  

way the vector  cross p roduc t /~  changes from point  to point,  t h a t  is, the  differential 

geometry  of _P. For  this, i t  is impor tan t  to s tudy the  covariant  derivat ive of /~.  

We note  t ha t  the fundamenta l  3-form ~0 becomes a differential 3-form on M. 

In  special circumstances, (for example when _P is parallel), i t  generates cohomology 

in dimension 3. 
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Let V denote the l%iemannian connection of ( , ) .  The covariant derivatives 

V2 and V~ are given by 

(5.3) 

(5.4) 

vAP) (~  , z) = v~(i.(~, z)) - ~ ( v j ,  z ) -  2.(~z, v ~ z ) ,  

v ~ ( ~ ) ( x ,  ]~, z )  = w~f(x, ~, z )  - ~ ( v ~ x ,  ~ ,  z )  - ~ ( x ,  v~Y,  z )  - 

- -  q~(X, Y, VwZ ) , 

for W, X, !z, Z ~ E(M). Then we have from (5.3) and (5.4) that 

(5.5) v~(~)(x, ]~, z) -- (v~(p)(x,  ]:), z ) ,  

and so the study of the covariant derivatives of P is equivalent to the study of the 

covariant derivatives of the fundamental 3-form 9- For convenience we shall do 

our calculations with VT. 

LEM~fA 5.1. - We have 

(5.6) 

(5.7) 

% ( ~ ) ( x ,  y ,  z )  - -  - v A ~ ) ( ~  :, x ,  z )  = - v ~ ( ~ ) ( x ,  z ,  ] 0 ,  

vA~)(x,  ]~, p (x ,  ]~)) = o, 

for W, X,  :Y, Z ~ ~(M). 

P~ooF. - (5.6) is easy to check directly from (5.4). Then (5.7) is proved by 

applying the vector field W to both sides of (5.2) and using (5.3) and (5.5). 

We shall henceforth write Vw(T)(XA:YAZ ) for V~(T)(X, :Y, Z), etc. 

Consider the natural 7-dimensional representation of G2 on each tangent space 

M~. Put  

: A (2~I~)1~(x, yAzAP(yAz))  ---- 0 for all x, y, z e M~}. 

Then the induced representation of G2 on W~ has the four components W~I, W,,~, 
W~s, W~ as described in the previous section. I t  is possible to form from these 

four a total of sixteen invariant subspaces of W~ (including {0} and W~). 

DEFINITION. -- Let U be one of the sixteen invariant subspaces of W. For a 

7-dimensional Riemannian manifold M with 2-fold vector cross product and m e M, 

let U~ denote the corresponding subspace of W~. Then %b will denote the class 

of all 7-dimensional l~icmannian manifolds with a 2-fold vector cross product such 

that  (Vg)~ ~ U~ for all m c M. 

The class corresponding to W~ will be denoted by ~ ,  and that  corresponding 

to W~Q Wj by 2D~Q ~1)~-, etc. Also ff will correspond to {0} and 21) to W. Some, 

but not all, oi these classes have been studied in [GI~ 3]. There are obvious analo- 
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gies be tween some of these classes and corresponding ones for a lmost  t t e rmi t i an  

manifolds  [Gtt].  

I~et d and  (3 be the exter ior  differential and the  coderivat ive of a manifold M. 

Is ~ is a 3-form on M we have  the  following explicit  formulas  for d~] and  (3~]: 

(5.s) 

(5.9) 

dn(WAXA Y A Z )  = Vw(~/)(XA Y A Z )  - -  V~(~)(WA Y A Z )  + 

+ V r ( ~ ) ( W A X A Z )  - -  V~(~)(WAXA 17), 
6 

~7(YAZ) = - -  ~ V~,(v)(E~A YAZ) ,  
i = 0  

for W, X,  Y, Z +  3~(M). Here  {Eo, ..., E6} is a a  a rb i t r a ry  local f rame  field. 

Now assume t h a t  M is a 7-dimensional R iemannian  manifold  wi th  a vector  cross 

p roduc t  P and  fundamen ta l  3-form 9. We note  t h a t  

(5Ao) ~9 = --  LdVg) .  

Also, when wr i t t en  out for a manifold,  the  formulas  for /~o and T,1 become 

6 

(5.11) Lo(Vr = ~ V~(p(E,A~)A~)(9)(E~AEsABk) , 
4~,j,/c= 0 

6 

(5.12) LI(V~)(X) = ~ Vp(~,^E~)(~)(E~AEjAX), 
i ,~=0  

for X ~ E(M). Using l emma  4.2 we have  

(5.13) Lo(V~) = (V% ,~v),  

(5.1~) LI(V~) = 2~ ~9.  

Tn-E01~v,~ 5.2. - The defining relations for each of the  16 classes are given in 

t ab le  I below 

TABL]~ I 

Class Defining relations 

'Y V9 = o 

V~(9)(XA YAZ) = o 

or d~ = 4V~, or V9 = ~-~ (V~, * ~) * 

ql)  2 = d~ff  d 9  = 0 
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TA]~r,~ I (continued). 

Class Defining relations 

~)2~= Cff 12Vw@)(XAYAZ) : ~ {p~(X)~(WAYAZ)--3{W,X}(~q~(YAZ)} 
X T Z  

' ~ (~  '11)~ V~(zA~')@)(XA YAZ) = Vz@)(P(XA Y)A Y A Z ) -  
- -  Vr@)(P(XA Y)AXAZ) 

"~,,@ '~  p@ = (V% , ~ )  = o 

v~(~)(XA YA z) -- ~ | {p @(x) ~(wA YA z) -- 
4 Z X T Z  

1 
--  3 { W, X> 6~( YA Z)} = ~ ( V ~ , ,  ~ ) ,  q~(WA XA YA Z) 

1 

'1~0 'IDt 3~q~ = P p ~  and (V~, , ~ }  = 0 

1 1 

3 6q~ii= Pp ~ or 

"tO~O '938G ql)4 12Vz(9)(XAYAZ) = p(~9(X)9(XAYAZ)-  
- -  3 {][Xll z 6 f ( Y h  Z) - -  ( X ,  Y }  6 f ( X A  Z) -k {X, Z} @ ( X A  Y) }  

~ 2 |  ~1)3| 11)4 (V% ,~o) = o 

21) i no relation [ 

6. - Classes preserved under conformal changes of metric. 

I n  this section~ we determine which of the 16 classes are preserved under a con- 

formal change of metric.  Let  M be a 7-dimensional manifold with metrics { ,  } and 

{ ,}o .  We assume tha t  these metl ics  are conformally related via 

(6.1) { ,  } o =  e2,<, } ,  

where a ~ 5 (M) .  I t  is well known (see for example [G]~ 1]) t ha t  the connections V ~ 

of {~}o and V of { ,  } are related by  

(6.2} V ~ "  = - V z Y  + (X(~)Y + ( Y ~ ) X - - { X ,  :Y} g r a d a ,  
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for X, 17 e E(M). Here grad a e is is the vector field such tha t  ( X ,  grad a> ----- X a  

for X e E(M). 

Wha t  is a reasonable notion of a conformal relation between two vector cross 

products P and po on M? I t  is clear tha t  the corresponding metrics <,  > and <,  >o 

should be conformally related and tha t  p o _  ]p  for some ] e 9r(M). Assuming this, 

we calculate 

II~~ n i l  ~ IIXA Yll ~ +'~tlXA ~t1== ~'"tlP(XA ni l  ~= ~"IIP(XA ni l  ~ , 

for X,  :Y ~ ~(M).  Thus we must  have ]2 = e~,. This leads us to the following 

DEFINITION. - Let  M be a 7-dimensional I~iemanaian manifold with metrics 

<,>, <,>o conformally related by (6.1). Let  P and /)o be vector cross products 

on M compatible with <,  } and <, >o, respectively. We say tha t  _P and/~o arc con- 

formal ly  related provided 

(6.3) po____ e~,.p. 

Le t  ~, ~o denote the fundamenta l  3-forms corresponding to P and po, and let 

p, po be the corresponding adjoints. Also let (~, ~o denote the coderivatives of <,  >, 

< ,  9 ,  respectively. 

LE~ngA 6.1. - We have 

(6.4) q~o = eS,,(p, 

(6.5) pO= e-"p, 

(6.6) V~176 Y A Z )  = e3"{Vw(~)(XA Y A Z )  --  | ((Xa)q~(WA Y A Z )  - -  
X Y Z  

- <w, X>~(~AZ)~)} ,  

for W, X, Y, Z ~ ~(M), 

(6.7) ~o fO(yAZ) = e~ --  ~P(YAZ) r},  

for Y, Z e ~(M), 

(6.8) 

(6.9) 

po So ~o = p (~qj - -12da , 

d~O= e~"{3daA~ + a~}. 

P~OOF. - Equations (6.4) and (6.5) are obvious consequences of (6.1) and (6.3)~ 

Taking the exterior derivative of (6.4) we get (6.9). Equat ion (6.6) follows from 

(5.4)~ (6.2), and (6.4). Contracting (6.6) we obtain (6.7) and (6.8). 



36 M. ]~EI~N~I~DEZ - A. G ~ Y :  Riemannian mani/olds with structure, etc. 

Next  we introduce a tensor field v tha t  will tu rn  out  to be a conformal invar iant  

for 2-fold vector  cross products .  A similar tensor  field has been in t roduced in [GH] 

for almost  Hermi t i an  manifolds. 

DEF~XTIO~. -- Let  M be a 7-dimensional manifold with metr ic  tensor field <,  > 

and vector  cross product  P.  Then  ~ is the  covar iant  tensor field given by  

(6.10) ~(W, X, Y, Z) = Vw(90)(XA YAZ) - -  

I 
| {p a90(X)90(WA YAZ) -- 3 <W, X> a90(YAZ)} 

12 xYz 

for W, X, Y, Z e ~(M). 

LEY-~  6.2. - Suppose (_P, ( ,  }) and (po, ( ,  >o) are conformMly related. Then 

the corresponding tensor  fields v and ~o satisfy v o  e~%. 

P~oo~. - This follows from lemma 6.1 and equat ion (6.10). 

Le t  ~lL be one of the sixteen classes given in t~ble I. Then  ~ o  will denote the  

class of all manifolds locally conformally related to  manifolds in ~lL. In other  words, 

(M, po, ( ,  >o) e ~lL ~ if and only if for each m e M there  exists an open neighborhood V 

of m such t ha t  (V, po, <,  }o) is co~fformMly related to (V, P, ( ,  >) a ~L. 
Next  we prove 

THEO~EX 6.3. - For  any ~(b given in table I we have 2L~ %04| ~ .  Thus ~ = ~l? 

if and only if ~tD~g ~l~. Hence the  eonformally invar iant  classes are Wd, qDt| 21)~, 

PnOOF. - We can rewrite the defining relations for each of the classes ment ioned 

in the s t a t emen t  of the  theorem in terms of ~, F rom table  I we have 

M e'll), if and only if v = O, 

1 
M e ~1  �9 ~ if and only if * = 1--~ (v' * 90} * 9~ ' 

M e ql)2G ~034 if and only if v(W, X, Y~ Z) - -  ~(X, W, Y, Z) -k 

-}-ffY, W , X , Z ) - - ~ ( Z , W , X , Y ) = O ,  for all W , X , Y ,  Z e ~ ( M ) ,  

M e ~1)~ �9 q)04 if and only if <u , ,  90} = ~(X, X, Y, Z) = O, 

for all X, 17, Z e ~(M) , 

M ~ ~t1310 qll,.O ~134 if and only if ~(W, X, Y, Z) - -  u(X, W, Y, Z) -k 

2 
+ ~(y, w, x ,  z) -- v(z, w, X, I7) = i ~  (~' * 90) (* 90)(w, X, y,  z ) ,  

for all W, X, Y, Z e ~(M) , 

M e '11)~ Q ql)a Q ~1), if and only if v(X, X, Y, Z) = 0,  

for all X, Y, Z e ,~(M) 

M e ~tD~ �9 ql)s �9 ~D4 if and only if <v~, 90} = 0 , 
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7.  - T w o - f o l d  v e c t o r  cross  p r o d u c t s  o n  o r i e n t a b l e  h y p e r s u r f a c e s  o f  R 8. 

In [GI~ 3] it is shown that  every orientable hypersurface M c R s has a 2-fold 

vector cross product. In this section we review this construction and introduce 

some improvements. Also, it will be showa that  M e ~l~| 21)a for any orientable 

hype~surface in R s, any necessary and sufficient conditions for M to belong to ~ 

or ~03 will be given in terms of the second fundamental form of M. 

First we recall 

DEFII~ITIO~. -- Let V be a finite dimensional vector space over R with (positive 

definite) inner product <, ). A 3-]old vector cross product on V is a triline~r mu.p 

P:  V • V • V -> V satisfying the axioms 

(7.1) (_P(w, x, y), w) ---- (_P(w, x, y), x) : (P(w, x, y), y) -- 0 ,  

[llw]l' <w,x> 

(7.2) liP(w, x, y)ll' = llwAxiyll' = det |<w, x> lix[l' <x, y>] ,  
\<w,y> <x, y> IIYlI' / 

for w, x, y e V. 

Just  as with 2-fold vector cross products, P(w, x, y) is antisymmetric in w, x, y 

Hence _P may be extended to a linear mapping _P: A~(V) -+ V. We write P(wAxAy)  

instead of P(w, x, y). 

DEFI~ITION. -- The fundamental 4-form q~ of a 3-fold vector cross product P is 

given by 

(p(wAxAyAz) = <P(wAxAy), z> 

for w, x, y, z e V. 

In [E 1], [W], or [BG] it is shown that  if V has a 3-fold vector cross product 

then necessarily dim V = ~ or 8. When dim V = ~, the study P amounts to the 

study of the volume element of V, namely q~, so we restrict ourselves to the case 

dim V-~ 8. In this case, it is shown in [BG] that  there are two non~somorphie 

3-fold vector cross products P+ and P_. (The reason why there are two distinct 

3-fold vector cross products is that  the Cayley numbers are non-associative.) l~urther- 

more, the automorphism groups of P+ and _P_ are both isomorphic to Spin (7). We 

write ~_+ for fundamental 4-form of _P+. 

There are explicit formulas expressing P+ and P_ in terms of the Cayley numbers. 

!~et x - ~  be the conjugation in Cay (taht is~ "~ = - - x - [ - 2 < x ,  1>1). Then we 



38 M. FF-~'X~D]~Z - A. GRAY: R i e m a n n i a n  mani]olds with structure, etc. 

have [BG], [Z]: 

(7.3) 

(7.4) 

P + ( x / \ y / \ z )  = - - x ( ~ z )  i -  (x ,  y ) z  + (y ,  z ) x -  (x ,  z } y  , 

P _ ( x A y A z )  = - -  (x~)z + (x ,  y ) z  + (y,  z ) x  - -  (x ,  z ) y  , 

for x,  y, z ~ V. 

Le t  V c V be the  pure imagil~ary Cayley numbers,  t h a t  is, V = (1} z. Then V 

has a 2-fold vector  cross product  P given by  (2.4). We shall need to know the rela- 

t ions be tween P and P•  

LEI~r~A 7.1. - For  x,  y,  z ~ V we have 

(7.5) 

(7.6) 

(7.7) 

.P(x Ay )  : _P • /\ x A y )  , 

3P~:(xAy/ \ z )  = ~: P : ( x A y / \ z )  - -  3 ? ( x A y A z )  1 

= :j:: |  - -  3 c f ( x / ~ y A z ) l ,  
x y g  

~• ~ * ~ .  

P~oov.  - (7.5) is immediate  from (7.3) and (7.4) and the fact  t h a t  ~ = - - x  for 

x e  V. For  (7.6) and (7.7), we do P•  and qS.. F rom (2.4) we have 

(7.8) P(xAP(yAz))  = ~ (x(yz) + (y, z )x}  + 3~(x/~yAz)~ , 
~yZ Xy~ 

for x~ y ~ z ~ V .  

(7.9) 

On the other  hand, from (7.3) we get  

3 P + ( x A y A z )  = |  = | {x(yz) + (y ,  z } x }  , 

for x, y, z eV.  F rom (7.8) and (7.9) we obtain (7.6). Then (7.7) follows from (7.6) 

and lemma 2.7. 

Le t  M be an orientable hypersurface of R 8. Then  there  is a globally defined 

uni t  normal  vec tor  field ~ on M. In  [GR 3], ~ 2-fold vector  cross product  on M 

is defined by  means of the  formula 

(7.10) -P(AAB) = P •  

for A, B e ~(M). In  (7.10) we can take ei ther  of the  vector  cross products  P+ or 

P _ .  They  are defined by  means of parallel  t ranslat ion on each tangent  space of 

R s. Thus VP• = 0, where V is the  :giemannian connection of R s. 

Le t  V be the  Riemannian  connection of the  hypersurface M, and let  S" ~s --~ 

-+ ~(M) be the shape operator  (which is equivalent  to the  second fundamenta l  

form). Thus SA = - - V ~ N  for A ~ ~(M). 
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LE~I:A 7.2. - We have 

(7.11) V.4(@(B A C A D ) = -b( .qo)(SA A B A C A D) , 

for A, B, C, D e ~(M). 

P R O O F .  - Using the  fact  t ha t  Vq~_+ = 0 and (7.10), we calculate 

(7.12) V~(~0)(BA CAD) = -- ~+_(SA ABA C A D ) .  

Then (7.11) follows from (7.7) and (7.12). 

LE~r~fA 7.3. - For  any  hypersurface M c R s, ~q~ = O. 

P~ooF. - F rom (7.11) we have for A, B e ~.(M) 

6 

(7.13) ~q0(AAB) = • ~ ( .q~) (SE,AE~AAAB) .  
i = 0  

Choose the local f rame field {Eo, . . . ,Es)  so t h a t  S is diagonalized. Then the r ight  

hand side of (7.13) vanishes. 6 

Then mean curvature  H of a hypersurface is given by  (H,  N )  = ~ (SE~, E~)" 
~=0 

L E n A  7.4. - For  any hypersufface M c R 8, 

(7.14) (V% ,~> = •  N > .  

P~oo~'. - F rom (5.11), (5.13) and (7.11) we have 

6 

(7.15) (V% ,q~)= 4- Z (*qD)(SP(P(E, AE,)AE~)AE, AE, AEk). 
i , J ,k=0 

Then (7.14) follows from (7.15) and lemma 2.7. 

We can now prove 

THEORE~ 7.5. -- Le t  M be an orientable hypersurface of R 8 with 2-fold vector  

cross product  given by  (7.10). Then 

(i) M e  ~ |  ~3;  

(ii) M e  ~' if and only if M is to ta l ly  geodesic; 

(iii) M e  ~ ff and only if M is to ta l ly  umbilic (i.e., M is a pa r t  of a sphere); 

(iv) M e ~ if and only is M is a minimal var ie ty  (i.e., (H,  N )  = 0), 
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P~ooF. - (i) holds because 6~ : 0 by  lemma 7.3. Similarly, (ii) follows (7.11), 

(iii) follows f rom (7.11), and (iv) follows (7.14). 

RE}[A~K. -- In  [GI~ 3] i t  is shown th a t  every  hypersurface M r c R 8 t h a t  is in ~2  

is automat ical ly  in ff by  a different method.  

8. - Complex  vector cross products.  

There is a complex analogue of the  not ion of vector  cross product .  We shall 

use it, toge ther  with an auxil iary construction~ to  find nontr ivial  examples of mani- 

folds in the  class ~0~. 

Fi rs t  we define the concept  of a complex vector  cross product  on ~ vector  space. 

Le t  V be a 2n-dimensional real vector  space equipped with an almost complex 

s t ructure  J and a (positive definite) ilmer product  ( ,  }. We assume th a t  ( ,  } and J 

are compatible in the sense t ha t  ( J x ,  J y }  = (x, y} for x, y e V.  We ex tend  J to  a 

complex tinea.r map J :  V~) C -> V G C. Also let  ( , )  be the  (positive definite) her- 

mi t ian  inner product  on V |  C correspond to ( , )  ; thus  

(x § 1/---- 1 y, u § V----1 v) = (x, u )  § (y,  v) -b V ~-~  { _  (x, v) § (y,  u ) } ,  

for x, y, u, v e V. Final ly iI [[ s will denote  the  norm corresponding to ( , ) .  (Then 

when restricted to V, II II ~ becomes the norm of ( ,  }.) 

DEFI~ITI0:N. - -  An r-/old complex vector cross product on (V, J ,  ( , ) )  is a multi- 

l inear map 

r 

C : ( V |  x . . . x ( V G C ) ~ V |  C 

such that the following conditions are satisfied for x ~  ..., x ~  V ( ~ C :  

(8.1) 

(8.2) 

(8.3) 

(8.4) 

(C(xl ,  ..., x~), xi) = 0 ,  i ----1, ...~ r , 

C(Jx~, x~, ..., x~) = - -  J C ( x l ,  ..., x~) , 

II ~ ( ~ 1 -  V - ~  j x , ,  . . . ,  x~ - V z  i &)II  ~ = 

= s , - , I I  (x,  - V~--TJx,)A...A(x~ - -  V~---1Jx~)11 ~, 

C(xl~ ...~ x,) e V whenever  xl, ..., x~e V .  

Because of (8.1) we see t ha t  C(xl ,  ...~ x~) is an t i symmetr ic  in xl, . . . ,x~, and so 

we actual ly have a linear map C: An(V)  -~ V.  Therefore,  we shall write C(x~A.. .Ax~) 

for C(x~, ... ,  x,).  Also there  is a complex (r -[- 1)-form ~p on V given b y  

~(x~A...Ax,+~) = < r  x,+~> 
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for x~, ..., x~+~V.  In  fact, because of (8.2), y is the sum of forms of types (r + 1, 0) 

and (0, r + l ) .  Thus in case r = n - - 1 ,  ~ is just a complex volume form. 

Complex vector cross products enjoy many of the properties of ordinary vector 

cross products. Eckmann [E 2] has alluded to complex vector cross products, but  

it  is not clear that his definition is the same as ours. 

DEFINITION. - -  We say that an almost Hermitian manifold (M, J,  <, }) has an 

r-fold complex vector cross product C provided each tangent space M~ has an r-fold 

complex vector cross product C~. We require that  the mapping m - ~  C~ be C% 

We note that  each r-fold complex vector cross product on (M, J, < ,} )  gives 

rise to a mapping (the vector cross product) 

r 

c: (~ (~ )  | c)  x ... x (~(M) | C) ~ :~(M) | C 

such that  (8.1)-(8.4) are satisfied. 

Complex vector cross products will be treated extensively in another paper. 

Perhaps, however, it Will be useful to note a couple of examples arising from dif- 

ferential geometry. 

EXA~LE 1. -- Let  M be a 4n-dimensional l~iemannian manifold whose struc- 

tm~e group is reducible to Sp(n).  I t  is well known that  M admits almost complex 

structures I,  J, and K, each compatible with the metric, such that  I J  ---- - -  J I  ~ K,  

etc. Then either I or K can be regarded as a 1-fo14 complex vector cross product 

with respect to the almost complex structure J.  

EX~AVKeLE 2. -- Let M be a 2n-dimensional l~iemannian manifold whose struc- 

ture group is reducible to U(n). Let <, } be the l~iemgnnian metric and J the almost 

complex structure. Then the structure group can be further reduced to S U(n) if 

and only if M has an ( n -  1)-fold complex vector cross product C. The associated 

n-form C is the complex volume form of M, and ~A �9 ~ is the ordinary IMeman- 

nian volume form. I%te also that  if ~ is the K~hler form associated to J then one 

has ~A* ~ - - - -  n !/%. 

EXAMPLE 3. -- Let M be a 6-dimensional nearly K~hler manifold which is not 

K~hlerian. Then it can be verified that  there is a number a such that  the function G 

define4 by 

r ]~) = avAJ )  ]~, 

is a 2-fold complex vector cross product. 

For our purposes the case n ~ 3 in example 2 will be important. The linear 

algebra description of this complex vector cross product can be given entirely in 

terms of real vectors. 
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L E ~  8.1. - I~et V be a 6-dimensional  re~l vector  space with  posi t ive definite 

inner p roduc t  ( , )  and compat ib le  a lmost  complex s t ruc ture  J. Let  C: A~(V) ~ V 

be a l inear  map .  Then the  extension of C to a m a p  fl 'om A~(V|  C) ---> V |  C is a 

complex  vec tor  cross p roduc t  if and only if C h~s the  propert ies  

(8.5) 

(8.6) 

(8.7) 

C,(JxAy) = --  Jg (xAy)  , 

(C(xAy), x)  = O, 

!IC(~Ay)[i~ = Ilxil~/tYil , -  <x, y>'--- <Zx, y>~ , for a l l x ,  y e V .  

We shall  now exploi t  this  l e m m a  to construct  ordinary  vector  cross products  

on cer ta in  7-dimensional manifolds.  

Le t  b~ r be a 6-dimensional  R iemann ian  manifold  whose s t ruc ture  group has 

been reduced to SU(3), and  let  J be the  a lmost  complex s t ruc ture  and  C the  2-fold 

vector  cross product .  Denote  b y  T and  ~ the 2-form and the  3-form associated 

wi th  J and C respect ively.  Then  one has the  following formulas:  

F(X,  Y) = ( J X ,  Y ) ,  ,z(XA XAZ) = (C(XA ]0,  Z> ,  

iI C ( X A  Y)[I '  = ]lXll ~ il ~[I ~  ( X ,  : 0  ~ - ( J X ,  :Y),, 

C(JXA Y) = --  JC(XA Y) , 

(C(XA ~), x )  = o ,  

for X, Y, Z ~ ~(M). 

T~E0~E~r 8.2. - Le t  ,n: E- -~  ~7 be a !~iemannian fiber bundle  with 1-dimen- 

sional fiber. We assume t h a t  E has a globally defined vert ical  vector  field N wi th  

[]2~]1 = I .  Le t  v be  the 1-form dual  to N. Then E has an ordinary  2-fold vector  

cross p roduc t  P and  the  associated 3-form ~ of P satisfies 

(8.8) (p = z* (~)A~ 4- s*(W) �9 

P~ooF. - We use (8.8) to define the  3-form f0 on E, and then  we pu t  

(8.9) ( P ( X A  ]0,  z> = ~(XA Y A Z ) ,  

for X,  ~, Z E ~(E). 

I t  is clear t h a t  P satisfies (5.1); therefore,  i t  suffices to show t h a t  P satisfies (5.2) 

in order to  conclude t ha t  _P is a vec tor  cross product .  

Le t  X,  I7 e ~(E) .  Wi t hou t  loss of general i ty ,  we m a y  suppose t h a t  there  are 

vectol, fields X, 2 E  ~(M) such t h a t  z . ( X )  -~ ~: and ~ . (Y)  -~ /?. Le t  {El, ..., E6, s 
be ~ local o r thonormal  f r ame  on E such t h a t  {/~, ..., J~6} is u local o r thonormal  
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frame on l~, where ~ =  ~, (E. ) )  We calculate as follows: 

6 

HP(XA Y)N' - -  <P(XA Y), N ) ,  4- ~ <P(XA Y), Eo>, 
a = l  

6 

= f(XA :FAN)' + ~ ~(XA YAEo) 2 
a=l 

6 

---- (=*(/~)Av)(XA I/AN) 2 + ~ =*(~)(XA YAEo)' 
a=l 

6 

a=l 

= < J 2 ,  Y>'-[-IIC(2A r)ll' 

= l l X A  :YI] '  �9 

Hence _P is indeed a 2-fold vector  cross product  on E.  

Also we have 

Tm~o]~E~[ 8.3. - Le t  M be any  l~iemannian manifold. Then the tangent  bundle  

T(M) has a complex vector  cross product  C. If  ~ is the fundamenta l  form associated 

with C then  VA*V is the  volume element  of T(M). Also d v -  0. 

P~oor .  - Le t  a: T(M)-+ M be the projection and let  oJ be the  Riemannian 

volume element  of M. Pu t  V = a*(~o) and 

<C(XIA...AX~_~), X,> = tv(X~A...AX.) 

for X1, ..., X~e  2(M).  

I t  is well known tha t  T(M) has an almost complex structm'e J t h a t  takes 

horizontal  vectors into vert ical  vectors,  and vice versa. This fact  implies tha t  C 

satisfies (8.2). I t  is obvious tha t  (8.1) and (8.4) arc sa t is f ied .  Tha t  (8.3) is satisfied 

follows from the fact  t ha t  vA*Y~ is the volume element  of T(M). Final ly  dV= 

= a*(dm) = O. 
We are now ready to give an example of a 7-dimensional m~nifold in 21)2- ft. 

THEOREM 8.4. - Le t  /~  be any S-dimensional nonflat l~iemannian manifold and 

pu t  

E = T(_~) • R. 

Then E ~ ~]),-- ft. 

P~ooF. - F rom theorem 8.3 we know th a t  T(M) has a complex vector  cross 

product  with dyJ = 0. (I t  can be checked tha t  V~0 @ 0 because ~ is not  flat.) Since E 

is a fiber bundle over T(~]~) satisfying the requirements  of theorem 8.2, i t  follows 

t h a t  E has a 2-fold vector  cross product  for which (8.8) is satisfied. 
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For  T(M)  i t  is well known t h a t  dE = O, and we have  jus t  shown t h a t  d~o = 0. 

Obviously  dv = 0, and  so f rom (8.8) i t  follows tha t  d~o = 0. However ,  VE ~ 0, so 

t h a t  V~ :/: 0. Hence  E ~ ql)~ -- ft. 

9. - I n c l u s i o n  re lat ions .  

I n  this  section we establish the  str ictness of some of the  inclusions among  the  

s ixteen classes. 

Tm~oBE~ 9.1. - The following inclusion relat ions are s tr ict :  ff c ql)1, ff c ~ 2 ,  

ql?3U ~4c ~ |  ql)4, ~l)~U ~ U  ~1)4c ql?~@ ql)3| q94. 

P]cooF. - Le t  ~7 denote  the  7-sphere, M~c R 8 a min imal  hypersurface ,  and 

M~c R 8 s hypersur faee  which is ne i ther  locally isometr ic  to S 7 nor to a min imal  

hypersurface .  Le t  3Zr be any  non-flat  3-dimensional  manifold.  Also, let  R% S 7~ 

M ~ M~, and  (T(_M)• R) ~ denote  the  manifolds  R 7, S 7, M , ,  M~, T ( ~ ) •  R with  a 

nont r iv ia l  change of conformal  metr ic .  Then we have  

S ~ e ql)~ -- ff 

R 7~ e ~-- 

S 7~ e ~ @ "~ - -  ~ 1 W  ~ 

(T(_~) x R)o e ~ | " ~ -  ~ u ~ ,  

Thus we have  shown t h a t  9 of ~he inclusion relat ions among  the  16 classes are 

s tr ict .  

JAIl 
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