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Abstract

A Riemannian metric bundle G(M) is a fiber bundle over a smooth
manifold M, whose fibers are the spaces of symmetric, positive-definite
bilinear forms on the tangent spaces of M, which represent the Rieman-
nian metrics. In this work, we aim to study the category of Riemannian
metric bundles and explore their connections with K-theory and other
areas of mathematics. Our main motivation comes from the idea of
multi-norms in Banach spaces, which have found applications in di-
verse fields such as functional analysis, geometric group theory, and
noncommutative geometry. The novelty of our work lies in the rig-
orous development of the theory of Riemannian metric bundles, and
the application of this theory to the study of K-theory and other geo-
metric invariants of manifolds. We hope that our work will contribute
to a deeper understanding of the geometry and topology of manifolds
equipped with Riemannian metric bundles, and provide new insights
into the interplay between geometry, topology, and analysis.

MSC 2010 Classification: 19-XX, 19Lxx, 19L50, 53-XX, 53C20
Keywords: K-theory, fiber bundles, Riemannian metric bundle, multi-
normed spaces

1 Motivation

The concept of multinorms in Banach spaces has been studied extensively,
and has led to the development of new mathematical tools and techniques
for understanding the geometry and topology of these spaces. Motivated by
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this idea, we seek to explore the concept of multinorms in the context of
Riemannian metric bundles on smooth manifolds. This is an important and
challenging area of research, with potential applications in a variety of fields,
including mathematical physics, differential geometry, and topology. By
studying the interplay between different geometric structures on Riemannian
metric bundles, we hope to gain a deeper understanding of the underlying
mathematical structures and their properties, and to develop new techniques
for solving problems in these fields. In this paper, we present a rigorous
definition of Riemannian metric bundles, and explore their properties and
relationships to other geometric structures. We then develop a K-theory for
these bundles, and use this theory to prove important results such as a new
index theorem and a new periodicity. Finally, we discuss some potential
applications of our work and future directions for research in this area.

Part I

Introduction

2 K Theory[1]

K theory is a branch of algebraic topology that was introduced by Alexander
Grothendieck in the 1950s as a tool for studying vector bundles on topologi-
cal spaces. It has since grown into a major area of research, with connections
to a wide range of mathematical fields including algebraic geometry, opera-
tor algebras, and mathematical physics. The basic idea behind K theory is
to assign algebraic invariants, called K-groups, to various classes of vector
bundles on a topological space. These invariants capture important geomet-
ric and topological information about the underlying space and its vector
bundles, and can be used to study a wide range of mathematical problems.
K theory has numerous applications in mathematics and physics, ranging
from the study of elliptic operators and index theory, to the classification
of topological phases of matter in condensed matter physics. It continues
to be an active area of research, with many exciting developments and new
connections to other fields still being discovered.

3 Multi normed spaces[8]

A multi-norm space is a mathematical space equipped with several norms,
used to measure the size or "length" of elements in the space. It is a general-
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ization of Banach spaces that have a single norm. Let X be a vector space
over the field of real or complex numbers, and let ||.||ii ∈ I be a family of
norms on X indexed by a set I. The pair (X, ||.||ii ∈ I) is called a multi-
norm space if each ||.||i is a norm on X, and the topology induced by these
norms is the topology of the space. Rigorously,

Definition 3.1. A multi-normed space is a tuple (V, N), where V is a vector
space over a field F (usually R or C), and N = | · |ii = 1n is a collection
of n norms | · |i : V → [0, ∞), for 1 ≤ i ≤ n, each satisfying the following
properties: Positivity: For every v ∈ V and 1 ≤ i ≤ n, |v|i ≥ 0. Furthermore,
|v|i = 0 if and only if v = 0. Homogeneity: For every v ∈ V , c ∈ F, and
1 ≤ i ≤ n, |cv|i = |c||v|i. Triangle inequality: For every u, v ∈ V and
1 ≤ i ≤ n, |u + v|i ≤ |u|i + |v|i.

Multi-normed spaces can be useful in various applications, particularly
in functional analysis and approximation theory, where different norms may
capture distinct aspects of the behavior of elements in the space. For in-
stance, multi-normed spaces can be used to study the convergence of se-
quences or series in different norms, approximations in one norm that are
also controlled in another norm, or the interplay between different regularity
or smoothness properties of functions in function spaces.

A common example of multi-normed spaces is the Sobolev spaces equipped
with multiple norms corresponding to different degrees of smoothness. An-
other example is the sequence spaces, where each norm represents different
summability properties or convergence rates of the sequences. Multi-norm
spaces are widely used in various areas of mathematics, such as functional
analysis, approximation theory, and the study of partial differential equa-
tions (PDEs). For instance, in the study of PDEs, Sobolev spaces equipped
with multiple norms are common, with each norm corresponding to a differ-
ent degree of smoothness or decay at infinity.

The study of multi-norm spaces involves understanding the interplay be-
tween the different norms, the structure of the space, and its applications.
Some of the main topics of interest include completeness and convergence,
duality and compactness, embeddings and interpolation, and applications.
A multi-norm space is said to be complete with respect to a norm ĘůĘi if
every Cauchy sequence with respect to that norm converges to an element in
the space. Understanding the completeness properties of a multi-norm space
can be important for studying the existence and uniqueness of solutions to
various mathematical problems. In the context of multi-norm spaces, it is of-
ten necessary to consider the dual space, which consists of continuous linear
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functionals on the space, and compactness properties, such as the Arzelà-
Ascoli theorem or the Banach-Alaoglu theorem, in relation to the different
norms. Multi-norm spaces often arise from considering embeddings of one
function space into another or from studying interpolation problems between
different spaces. Understanding the embedding and interpolation properties
of multi-norm spaces is crucial for applications in PDEs, approximation the-
ory, and numerical analysis. Multi-norm spaces have various applications in
different areas of mathematics, such as PDEs, harmonic analysis, approxima-
tion theory, and numerical analysis. Studying the properties of multi-norm
spaces can lead to new insights and results in these fields.

4 Fredholm operators[1]

A Fredholm operator is a linear operator between Banach spaces that is
"nearly invertible". More precisely, a bounded linear operator T: X → Y is
Fredholm if the following conditions hold:

The kernel of T, denoted ker(T), is finite dimensional. The image of T,
denoted im(T), is closed in Y. The cokernel of T, denoted coker(T), which
is the quotient space Y/im(T), is finite dimensional. Intuitively, a Fredholm
operator is a linear operator that is "almost" invertible, in the sense that it
has a finite dimensional null space and its range is "almost" the entire target
space. The cokernel measures how much "extra" space there is in the target
space beyond the range of T.

Fredholm operators arise in many areas of mathematics, including func-
tional analysis, differential equations, and algebraic geometry. They are
closely related to the concept of elliptic operators, which are differential
operators that satisfy certain regularity and ellipticity conditions.

One of the key properties of Fredholm operators is that their index is
well-defined. The index of a Fredholm operator T, denoted ind(T), is defined
as the difference between the dimension of the kernel and the dimension of
the cokernel:

ind(T) = dim(ker(T)) - dim(coker(T)).
The index of a Fredholm operator is an integer that measures the failure

of T to be invertible. If ind(T) = 0, then T is invertible "up to compact
operators", meaning that T can be inverted on a dense subspace of the
domain of T, but the inverse may not be a bounded operator.

The theory of Fredholm operators provides powerful tools for studying
the solvability of linear equations and systems of equations. In particular,
the index of a Fredholm operator is closely related to the solvability of linear
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equations of the form Tx = y, where y ∈ (T ). If ind(T)6= 0, then the equation
Tx = y has no solution for some y, while if ind(T) = 0, then the equation
has a unique solution for all y ∈ (T ) "up to compact errors".

5 Todd class[1]

The Todd class is a fundamental class in algebraic topology that plays an
important role in the study of complex manifolds. It is a cohomology class
associated to a complex vector bundle, and it measures the failure of the
bundle to be trivial. The Todd class can be defined in several equivalent
ways, such as using the Chern classes of the bundle or using the exponential
map.

One of the key properties of the Todd class is that it behaves well un-
der certain operations, such as pullback and Whitney sum. This makes it
a useful tool in various areas of mathematics, such as algebraic geometry,
complex analysis, and differential geometry.

In algebraic geometry, the Todd class can be used to compute intersection
numbers of algebraic varieties, which are important in enumerative geometry
and mirror symmetry. In complex analysis, the Todd class is related to the
Hodge decomposition and the Riemann-Roch theorem, which are central
results in the study of compact complex manifolds. In differential geometry,
the Todd class appears in the index theorem for elliptic operators and in
the Gauss-Bonnet-Chern theorem, which relate the topology of a manifold
to geometric quantities such as curvature.

The study of the Todd class involves understanding its properties, such
as its behavior under different operations and its relationship to other coho-
mology classes.

6 Chern character[1]

The Chern character is a fundamental concept in algebraic topology and
differential geometry that assigns a sequence of cohomology classes to a
complex vector bundle over a topological space. The Chern character is
used to study the topology of complex vector bundles and is an important
tool in the study of algebraic curves and surfaces, as well as in the theory
of elliptic operators.

Given a complex vector bundle E over a space X, the Chern character is
defined as a sequence of cohomology classes

ch(E) = [ch0(E), ch1(E), ch2(E), ...]
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where chk(E) is a cohomology class in H2k(X; Q) that depends on the cur-
vature of the connection on E. The first few terms of the Chern character
are given by:

ch0(E) = rank(E)ch1(E) = −
1

2πi
tr(FE)ch2(E) =

1

(2πi)2
(tr(F 2

E)−tr(FE)2/2)

where rank(E) is the rank of the vector bundle E,FE is the curvature of a
connection on E, and tr denotes the trace of a linear operator.

The Chern character has several important properties, including addi-
tivity and multiplicativity with respect to direct sums and tensor products
of vector bundles, respectively. In particular, the Chern character of the
tensor product of two vector bundles is given by the product of their Chern
characters.

The Chern character is used to define the Chern classes, which are the
topological invariants of a complex vector bundle. The n-th Chern class
of a vector bundle E is defined as the image of chn(E) under the natural
map from H2n(X; Q)toH2n(X; Z). The Chern classes are independent of the
choice of connection on E and satisfy several important properties, such as
the Whitney product formula and the Hirzebruch-Riemann-Roch theorem.

Part II

Main Work

7 Manifolds with "multinorms"

Let M be a smooth manifold. We define the concept of multi-norm on M by
considering different geometric structures on M that induce different norms
or distances. Specifically, we define multiple structures for Riemannian,
Finsler, and sub-Riemannian manifolds.

Manifold with multiple Riemannian metrics:
Let gii∈I be a family of Riemannian metrics on M , indexed by a set

I. Each gi is a smooth, symmetric, positive-definite bilinear form on each
tangent space TxM of the manifold M . For a tangent vector v ∈ TxM , the
norm induced by the metric gi is defined as:

‖v‖i =
√

gi(v, v)

Each Riemannian metric gi induces a distance function di on the manifold,
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defined as the infimum of the lengths of the curves joining two points, where
the length of a curve is computed using the metric gi.

Manifold with multiple Finslerian metrics:
Let Fii∈I be a family of Finsler metrics on M , indexed by a set I. Each Fi

is a function that assigns a norm to each tangent space TxM of the manifold
M , satisfying certain conditions, such as smoothness, positive definiteness,
and strong convexity. For a tangent vector v ∈ TxM , the norm induced by
the Finsler metric Fi is defined as:

‖v‖i = Fi(v)

Each Finsler metric Fi induces a distance function di on the manifold, de-
fined as the infimum of the lengths of the curves joining two points, where
the length of a curve is computed using the Finsler metric Fi.

Sub-Riemannian manifold with multiple structures:
Let ∆ii∈I be a family of sub-Riemannian structures on M , indexed by

a set I. Each ∆i is a pair (Di, hi), where Di is a smooth distribution (a
smoothly varying family of vector subspaces of the tangent spaces TxM)
and hi is a smoothly varying inner product on the distribution Di. Each
sub-Riemannian structure ∆i induces a distance function di on the manifold,
known as the Carnot-Carathéodory distance, which is defined as the infimum
of the lengths of the absolutely continuous curves that are tangent to the
distribution Di and join two points, where the length of a curve is computed
using the inner product hi.

In each of these cases, the manifold M can be equipped with multiple
structures (Riemannian, Finsler, or sub-Riemannian) that induce different
norms or distances on the manifold, leading to a "multi-norm" concept. This
can be expressed mathematically as:

(
M, {‖ · ‖i}i∈I , {di}i∈I

)

where M is the smooth manifold, | · |ii ∈ I is the family of norms induced
by the different geometric structures, and di(i ∈ I) is the family of distance
functions associated with these structures. In this section, we define the
Riemannian metric bundle G(M) and its components.

7.1 Riemannian metric bundle

Let M be a smooth manifold of dimension n. The Riemannian metric bundle
G(M) is a fiber bundle over M with the following components:
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• Base space (B): The base space of the bundle G(M) is the smooth
manifold M itself.

• Fibers (Fx): For each point x ∈ M , the fiber Gx(M) over x is the space
of symmetric, positive-definite bilinear forms on the tangent space
TxM, which represent the Riemannian metrics at the point x.

• Total space (E): The total space of the bundle G(M) is the disjoint
union of the fibers Gx(M) over all points x ∈ M , given by G(M) =
⊔x ∈ M Gx(M).

• Projection map (π): The projection map π : G(M) → M assigns to
each Riemannian metric gx∈ Gx(M) the base point x ∈ M , such that
π(gx) = x.

A Riemannian manifold is a smooth manifold equipped with a Riemannian
metric, which is a smoothly varying inner product on the tangent spaces at
each point of the manifold. This metric allows us to measure lengths, angles,
and areas on the manifold, providing the framework to study its geometric
properties.

On the other hand, a Riemannian metric bundle is a fiber bundle whose
fibers consist of symmetric, positive-definite bilinear forms on the tangent
spaces of the manifold. In other words, the fibers represent the Riemannian
metrics themselves. The Riemannian metric bundle can be seen as a collec-
tion of all possible Riemannian metrics on the manifold, smoothly varying
along the base manifold.

The connection between the two concepts is that given a Riemannian
manifold, we can construct its associated Riemannian metric bundle by con-
sidering the collection of all Riemannian metrics on the manifold. Con-
versely, given a Riemannian metric bundle, we can equip the base manifold
with a specific Riemannian metric by selecting a section of the bundle. This
process turns the base manifold into a Riemannian manifold.

In summary, the resemblance between a Riemannian metric bundle and
a Riemannian manifold lies in the interplay between the manifold and the
Riemannian metrics that can be defined on it. A Riemannian metric bundle
encompasses all possible Riemannian metrics for a given manifold, while a
Riemannian manifold is the result of equipping the base manifold with a
specific choice of Riemannian metric. The Riemannian metric bundle G(M)
provides a framework for studying the space of Riemannian metrics on the
manifold M and how they vary across the manifold. Each point x ∈ M
is associated with a fiber Gx(M), which contains all possible Riemannian
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metrics at that point. The projection map π assigns each metric to its
corresponding point in M, allowing us to study how the Riemannian metrics
vary across the manifold. The study of Riemannian metric bundles can be
an important area of research in differential geometry, which has possible
connections to mathematical physics. A Riemannian metric bundle can be
defined as a fiber bundle over a smooth manifold M , where each fiber Gx(M)
over a point x in M is the space of symmetric, positive-definite bilinear forms
on the tangent space TxM , which represent the Riemannian metrics at x.
The total space E of the bundle is the disjoint union of the fibers Gx(M)
over all points x in M . The projection map π : G(M) → M assigns to each
Riemannian metric gx ∈ Gx(M) the base point x ∈ M , such that π(gx) = x.

The Riemannian metric bundle G(M) provides a natural framework for
studying the space of Riemannian metrics on the manifold M and their vari-
ations across the manifold. This has important implications in mathemat-
ical physics, where Riemannian metrics are used to model the behavior of
physical systems. By studying the properties of Riemannian metric bundles,
researchers can gain insights into the geometric and topological properties of
the underlying manifold and develop more sophisticated models and theories
in mathematical physics. Our work is motivated by the idea of multinorms
in Banach space and aims to provide a novel approach to studying Rieman-
nian metric bundles and their properties.
In the context of the Riemannian metric bundle G(M) over a smooth man-
ifold M , a subbundle is a fiber bundle H(M) that satisfies the following
properties:

• Base space (B′): The base space of the subbundle H(M) is the same
smooth manifold M as the base space of G(M).

• Fibers (F ′x): For each point x ∈ M , the fiber Hx(M) over x is a
subspace of the fiber Gx(M), which means that Hx(M) ⊆ Gx(M).
Each fiber Hx(M) consists of a subset of symmetric, positive-definite
bilinear forms on the tangent space TxM , which represent a restricted
set of Riemannian metrics at the point x.

• Total space (E′): The total space of the subbundle H(M) is the
disjoint union of the fibers Hx(M) over all points x ∈ M , given by
H(M) =

⋃
x ∈ MHx(M). As each fiber Hx(M) is a subspace of

Gx(M), the total space of H(M) is a subspace of the total space of
G(M), i.e., H(M) ⊆ G(M).

• Projection map (π′): The projection map π′ : H(M) → M assigns
to each Riemannian metric hx ∈ Hx(M) the base point x ∈ M , such
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that π′(hx) = x. Since H(M) is a subspace of G(M), the projection
map π′ of H(M) is the restriction of the projection map π of G(M) to
the total space of H(M), i.e., π′(hx) = π(hx) for all hx ∈ H(M).

A subbundle of the Riemannian metric bundle G(M) is a fiber bun-
dle over the same base space M , with fibers consisting of subsets of Rie-
mannian metrics at each point. This allows for the study of a restricted
set of Riemannian metrics on the manifold M and their variation across
the manifold. Multi-norm spaces, also known as multi-Banach spaces or
multi-normed spaces, are mathematical spaces that are equipped with sev-
eral norms, which are used to measure the size or "length" of elements in the
space. Multi-norm spaces generalize the concept of Banach spaces, which
have a single norm. They arise naturally in various areas of mathematics,
such as functional analysis, approximation theory, and the study of partial
differential equations (PDEs).
Definition: Section of the Riemannian Metric Bundle G(M)

A section of the Riemannian metric bundle G(M) over a smooth mani-
fold M is a continuous map σ : M → G(M) such that the projection map π
is the identity on the image of σ, i.e., π(σ(x)) = x for all x ∈ M .

In the context of the Riemannian metric bundle G(M), a section assigns
to each point x ∈ M a Riemannian metric gx ∈ Gx(M), where Gx(M) is
the fiber over x consisting of all symmetric, positive-definite bilinear forms
on the tangent space TxM . The section σ can be seen as a global choice of
Riemannian metric for the manifold M , as it provides a Riemannian metric
at every point of M in a continuous manner.

Note that the term cross-section is sometimes used interchangeably with
section in the context of fiber bundles.

A multi-norm space can be defined as follows:
Let X be a vector space over the field of real or complex numbers.

Let | · |ii ∈ I be a family of norms on X, indexed by a set I. The pair
(X, | · |i,i ∈ I) is called a multi-norm space if each | · |i is a norm on X, and
the topology induced by these norms is the topology of the space.

In a multi-norm space, the norms are typically chosen to reflect different
aspects of the elements in the space or to capture different types of regularity
or decay properties. For example, in the study of PDEs, it is common to
consider Sobolev spaces equipped with multiple norms, each corresponding
to a different degree of smoothness or decay at infinity.

The study of multi-norm spaces involves understanding the interplay
between the different norms, the structure of the space, and its applications.
Some of the main topics of interest include:
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Completeness and convergence: A multi-norm space is said to be com-
plete with respect to a norm | · |i if every Cauchy sequence with respect
to that norm converges to an element in the space. In general, a multi-
norm space might be complete with respect to some norms and not others.
Understanding the completeness properties of a multi-norm space can be
important for studying the existence and uniqueness of solutions to various
mathematical problems.

Duality and compactness: In the context of multi-norm spaces, it is
often necessary to consider the dual space, which consists of continuous
linear functionals on the space, and compactness properties, such as the
Arzelà-Ascoli theorem or the Banach-Alaoglu theorem, in relation to the
different norms.

Embeddings and interpolation: Multi-norm spaces often arise from con-
sidering embeddings of one function space into another, or from studying
interpolation problems between different spaces. Understanding the embed-
ding and interpolation properties of multi-norm spaces is crucial for appli-
cations in PDEs, approximation theory, and numerical analysis.

Applications: Multi-norm spaces have various applications in different
areas of mathematics, such as PDEs, harmonic analysis, approximation the-
ory, and numerical analysis. Studying the properties of multi-norm spaces
can lead to new insights and results in these fields.

8 Relation between multi-normed manifold and

Riemannian metric bundle

let M be a smooth manifold and let gii∈I be a family of Riemannian metrics
on M . Each gi is a smooth, symmetric, positive-definite bilinear form on
each tangent space TxM of the manifold M . For a tangent vector v ∈ TxM ,
the norm induced by the metric gi is defined as |v|i =

√
gi(v, v). Each

Riemannian metric gi induces a distance function di on the manifold M ,
defined as the infimum of the lengths of the curves joining two points, where
the length of a curve is computed using the metric gi.

The concept of a manifold equipped with multiple Riemannian metrics
is related to the notion of a Riemannian metric bundle as a section. A
Riemannian metric bundle G(M) over a smooth manifold M is a fiber bundle
over M with fibers consisting of symmetric, positive-definite bilinear forms
on the tangent space TxM , which represent the Riemannian metrics at each
point x ∈ M . A section of the Riemannian metric bundle is a continuous
map σ : M → G(M) such that the projection map π is the identity on the
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image of σ, i.e., π(σ(x)) = x for all x ∈ M .
Note that a manifold equipped with multiple Riemannian metrics can

be seen as a section of the Riemannian metric bundle G(M) over M , where
each point x ∈ M is associated with the Riemannian metric gx induced by
the family of Riemannian metrics gii∈I at that point. Thus, the manifold
equipped with multiple Riemannian metrics can be identified with the image
of the section σ in the Riemannian metric bundle G(M).

9 Differences between Fiber bundles and Rieman-
nian metric bundles

Fiber bundles are a fundamental concept in topology and geometry that
describe the global behavior of local objects. In general, a fiber bundle
consists of a space called the total space, a base space, and a projection map
that assigns to each point in the total space a point in the base space. The
fibers of the bundle are then the sets of points in the total space that project
to a single point in the base space.

Riemannian metric bundles are a specific type of fiber bundle that is
equipped with an additional geometric structure, namely a Riemannian met-
ric. This metric structure is defined on each fiber of the bundle, which
consists of the space of symmetric, positive-definite bilinear forms on the
tangent space at each point of the base space. The Riemannian metric is
used to measure the lengths of tangent vectors and the angles between them,
and it provides a way to define the curvature and other geometric properties
of the manifold.

One of the key differences between general fiber bundles and Riemannian
metric bundles is the additional geometric structure that is present in the
latter. While general fiber bundles can be equipped with a variety of different
structures, such as vector bundles or principal bundles, the presence of a
Riemannian metric on the fibers of a bundle imposes additional constraints
on the geometry of the manifold. For example, the metric structure on the
fibers determines the curvature and volume of the manifold, and it can be
used to define geometric invariants such as the Euler characteristic or the
Pontryagin classes.

Another difference between general fiber bundles and Riemannian met-
ric bundles is the type of transformations that can be applied to them. In
general, a fiber bundle can be transformed by a diffeomorphism, which is a
smooth, bijective map that preserves the structure of the bundle. However,
in the case of a Riemannian metric bundle, the diffeomorphisms that pre-
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serve the metric structure are more restrictive, since they must also preserve
the metric on each fiber of the bundle. This leads to a rich interplay between
the geometry and topology of the manifold, and the algebraic structure of
the bundle.

In summary, Riemannian metric bundles are a special type of fiber bun-
dle that are equipped with an additional geometric structure, namely a
Riemannian metric. This structure imposes additional constraints on the
geometry of the manifold, and it leads to a rich interplay between the ge-
ometry and topology of the manifold, and the algebraic structure of the
bundle.

10 Manifolds equipped with Riemannian metric

bundle are Riemannian manifolds-A Deduction

Let M be a smooth manifold and G(M) be a Riemannian metric bundle over
M . Our goal is to show that the manifold M equipped with a Riemannian
metric from the bundle G(M) is a Riemannian manifold.

Recall that a Riemannian manifold is a smooth manifold M equipped
with a Riemannian metric g, which is a smoothly varying family of inner
products on the tangent spaces of M . The Riemannian metric satisfies the
following properties:

gp is a symmetric bilinear form on TpM for each p ∈ M . gp is positive-
definite for each p ∈ M . The assignment p 7→ gp is smooth. Now, consider
a section σ : M → G(M) of the Riemannian metric bundle G(M). By
definition, each fiber Gp(M) of G(M) consists of symmetric, positive-definite
bilinear forms on the tangent space TpM . Therefore, for each point p ∈ M ,
σ(p) ∈ Gp(M) is a symmetric, positive-definite bilinear form on TpM . We
can denote this bilinear form as gp.

Since σ is a smooth section, the assignment p 7→ gp is smooth. This
means that the Riemannian metric g varies smoothly across the manifold
M . Consequently, we have a smoothly varying family of symmetric, positive-
definite bilinear forms gp on the tangent spaces of M .

Thus, the smooth manifold M equipped with the Riemannian metric g
from the Riemannian metric bundle G(M) satisfies all the properties of a
Riemannian manifold. Therefore, we can conclude that a manifold having
a Riemannian metric bundle is a Riemannian manifold.
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11 Riemannian metric bundles are multinormed-
A Deduction

A Riemannian metric bundle G(M) is a fiber bundle over a smooth manifold
M , where the fibers consist of symmetric, positive-definite bilinear forms on
the tangent spaces of M . These bilinear forms represent the Riemannian
metrics at each point of the manifold.

To show that the Riemannian metric bundle is multinormed, we must
demonstrate that there exists a family of norms on the tangent spaces of
M indexed by the points of M . These norms must satisfy the following
conditions:

For each p ∈ M , ‖v‖p ≥ 0 for all v ∈ TpM , and ‖v‖p = 0 if and only if
v = 0. For each p ∈ M , ‖αv‖p = |α|‖v‖p for all α ∈ R and v ∈ TpM . For
each p ∈ M , ‖v +w‖p ≤ ‖v‖p +‖w‖p for all v, w ∈ TpM . Let σ : M → G(M)
be a smooth section of the Riemannian metric bundle G(M). For each point
p ∈ M , σ(p) is a symmetric, positive-definite bilinear form on TpM . We
denote this bilinear form as gp. Using the Riemannian metric gp, we can
define a norm on the tangent space TpM as follows:

Now, we verify that this definition satisfies the properties of a norm:
Non-negativity and definiteness: Since gp is positive-definite, gp(v, v) ≥ 0

for all v ∈ TpM , and gp(v, v) = 0 if and only if v = 0. Thus, ‖v‖p ≥ 0 for
all v ∈ TpM , and ‖v‖p = 0 if and only if v = 0.

Absolute scalability: Let α ∈ R and v ∈ TpM . We have:

12 An index theorem and its proof

Consider a compact Riemannian manifold M of dimension n, with a Rieman-
nian metric bundle E. Let E1, E2, . . . , Ek be the associated vector bundles.
Associated vector bundles are vector bundles that are constructed from a
principal bundle and a linear representation of the structure group. The con-
cept of associated vector bundles is used to transfer information between the
principal bundle and other related vector bundles. To define an associated
vector bundle, let P be a principal G-bundle over a base space M , where
G is a Lie group that acts on a vector space V via a linear representation
ρ : G → GL(V ). Using the action of G on V , we can construct an associated
vector bundle E over the same base space M .

E = (P × V )/G,

where (p, v) ∼ (pg, ρ(g−1)v) for all p ∈ P , v ∈ V , and g ∈ G.
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The projection map πE : E → M is defined as πE([(p, v)]) = πP (p),
where [(p, v)] is the equivalence class of (p, v) in the quotient space, and
πP : P → M is the projection map of the principal bundle.

Sections of the associated vector bundle E correspond to G-equivariant
maps from P to V . In particular, the associated vector bundle provides
a way to study the geometry and topology of the principal bundle through
the lens of vector bundle theory. Associated vector bundles play an essential
role in gauge theory, the study of connections, and the Atiyah-Singer Index
Theorem. The total space of the associated vector bundle E is given by the
quotient space of the Cartesian product P × V by the diagonal action of
G: Given a Riemannian metric bundle G(M) over a smooth manifold M ,
the fibers are spaces of symmetric, positive-definite bilinear forms on the
tangent spaces of M . The Riemannian metric bundle is actually a principal
GL+(n, R)-bundle, where GL+(n, R) is the group of invertible, orientation-
preserving linear transformations on Rn.

Using this principal bundle structure, we can construct associated vector
bundles with respect to linear representations of the structure group. These
associated vector bundles inherit the smooth structure from the principal
bundle and can be endowed with Riemannian metrics induced from the
Riemannian metric bundle. This allows us to study the geometric properties
of the manifold M by analyzing the associated vector bundles.

Decomposable vector bundles can also be related to Riemannian metric
bundles. If we have a decomposable vector bundle whose components are
associated vector bundles of a Riemannian metric bundle, we can study
the properties of these associated vector bundles to gain insights into the
structure of the Riemannian metric bundle and the underlying manifold.

To summarize, Riemannian metric bundles, associated vector bundles,
and decomposable vector bundles can be related in a way that allows us
to investigate the geometry and topology of the manifold M from different
perspectives. By analyzing the structures of associated and decomposable
vector bundles, we can gain insights into the properties of the Riemannian
metric bundle and the manifold itself.

Theorem 1 (Sum of ’Atiyah-Singer’[Main Theorem). ] Let M be a compact
Riemannian manifold, and let E = E1⊕E2⊕· · ·⊕Ek be a Riemannian metric
bundle over M , where Ei are the associated vector bundles. Let Di be the
elliptic differential operators acting on smooth sections of Ei. Then,

Ind

(
k⊕

i=1

Di

)
=

k∑

i=1

Ind (Di)
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Definition 12.1 (Elliptic Differential Operator). An elliptic differential op-
erator D on a vector bundle E over a compact Riemannian manifold M is
a linear differential operator such that its principal symbol σD is invertible
for all nonzero covectors.

We now proceed with the proof of the main theorem.

Proof. Let Di be the elliptic differential operators acting on smooth sections
of the vector bundles Ei, where i = 1, . . . , k. Then, the direct sum of these
operators is given by

D =
k⊕

i=1

Di

We first observe that D is an elliptic differential operator acting on
smooth sections of the vector bundle E =

⊕k
i=1 Ei. Indeed, the princi-

pal symbol of D is given by the direct sum of the principal symbols of the
operators Di:

σD =
k⊕

i=1

σDi

Since each Di is elliptic, their principal symbols σDi
are invertible for all

nonzero covectors. It follows that the principal symbol σD is also invertible
for all nonzero covectors, and thus D is an elliptic differential operator.
Now, we apply the Atiyah-Singer Index Theorem to the elliptic differential
operator D acting on smooth sections of the vector bundle E. We have

Ind(D) =

∫

M
ch(ind(D)) Td(T M)

where ch(ind(D)) is the Chern character of the index bundle of D, and
Td(T M) is the Todd class of the tangent bundle T M . Since E =

⊕k
i=1 Ei,

we have that

ind(D) =
k⊕

i=1

ind (Di)

and therefore,

ch(ind(D)) =
k∑

i=1

ch (ind (Di)) .
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Substituting this expression into the Atiyah-Singer Index Theorem for D,
we obtain

Ind(D) =

∫

M

(
k∑

i=1

ch (ind (Di))

)
Td(T M) =

k∑

i=1

∫

M
ch (ind (Di)) Td(T M).

Applying the Atiyah-Singer Index Theorem to each elliptic differential oper-
ator Di acting on smooth sections of the vector bundle Ei, we have

Ind (Di) =

∫

M
ch (ind (Di)) Td(T M)

Hence,

Ind(D) =
k∑

i=1

Ind(Di)

as claimed. This completes the proof of the theorem.

In this proof, we investigate the relationship between the indices of el-
liptic differential operators acting on vector bundles associated with a Rie-
mannian metric bundle. We aim to show that the index of the direct sum
of these elliptic operators is equal to the sum of their individual indices.

We begin by considering a compact Riemannian manifold and a Rieman-
nian metric bundle over it. We then define the direct sum of vector bundles
and discuss the concept of elliptic differential operators.

The main theorem states that the index of the direct sum of elliptic
differential operators is equal to the sum of the indices of the individual
operators. To prove this, we first establish that the direct sum of the elliptic
operators is also an elliptic differential operator. Next, we apply the Atiyah-
Singer Index Theorem to this direct sum operator, which relates the index
to the integral of the Chern character of the index bundle and the Todd
class of the tangent bundle.

We find that the Chern character of the direct sum operator’s index
bundle is equal to the sum of the Chern characters of the individual index
bundles. Substituting this result into the Atiyah-Singer Index Theorem, we
obtain an expression for the index of the direct sum operator.

Finally, we apply the Atiyah-Singer Index Theorem to each individual
elliptic operator and find that the index of the direct sum operator is indeed
equal to the sum of the indices of the individual operators. This completes
the proof, demonstrating the relationship between the indices of the elliptic
differential operators acting on the associated vector bundles.
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13 K Theory for entire manifolds equipped with
Riemannian metric bundles

In the context of Riemannian metric bundles, K-theory can be used to study
the classification of vector bundles equipped with Riemannian metrics and
connections over a manifold M .

The K-theory group K0(M) of a manifold M is defined as the Grothendieck
group of isomorphism classes of complex vector bundles over M . That is, we
consider the set of all complex vector bundles over M , and define an equiv-
alence relation by declaring two bundles to be equivalent if there exists a
bundle isomorphism between them. We then form the abelian group K0(M)
by taking the free abelian group generated by the equivalence classes of vec-
tor bundles, and quotienting out by the relation that identifies isomorphic
bundles.

In the context of Riemannian metric bundles, we can consider the sub-
groups of K0(M) consisting of isomorphism classes of vector bundles equipped
with Riemannian metrics or connections. These subgroups are denoted
K0

G(M) and K0
G,c(M), respectively. The subscript G indicates the pres-

ence of a Riemannian metric bundle, while the subscript c denotes the use
of connections. To develop a K-theory for the entire manifold M from the
K-theory of individual Riemannian metric bundles, we can use the notion
of a Whitney sum of vector bundles.

Suppose we have two Riemannian metric bundles G1(M) and G2(M)
over a manifold M . We can form the Whitney sum G1(M) ⊕ G2(M), which
is a vector bundle over M that consists of the direct sum of the underlying
vector bundles, equipped with a Riemannian metric that is the direct sum
of the metrics on G1(M) and G2(M).

We can then define the K-theory group of the Whitney sum by taking the
direct sum of the K-theory groups of the individual bundles: K0 (G1(M) ⊕ G2(M)) =
K0 (G1(M)) ⊕ K0 (G2(M)) More generally, given a finite collection of Rie-
mannian metric bundles G1(M), G2(M), . . . , Gn(M), we can form the Whit-
ney sum G1(M) ⊕ G2(M) ⊕ · · · ⊕ Gn(M), and define the K-theory group of
the sum by taking the direct sum of the K-theory groups of the individual
bundles:

K0 (G1(M) ⊕ G2(M) ⊕ · · · ⊕ Gn(M)) = K0 (G1(M)) ⊕ K0 (G2(M)) ⊕ · · · ⊕

K0 (Gn(M)) .

In this way, we can use the K-theory groups of individual Riemannian metric
bundles to build up a K-theory for the entire manifold M . It is worth noting

18



that this construction assumes that the Riemannian metric bundles are pair-
wise compatible, so that their Whitney sum is well-defined. In general, one
may need to use more sophisticated constructions, such as the direct limit or
the Thom isomorphism, to define the K-theory of a non-compact manifold.
An index theorem can be developed for the entire manifold equipped with a
Riemannian metric bundle, not just for individual metric bundles. Specifi-
cally, let G(M) be a Riemannian metric bundle over a compact manifold M ,
and let D be a self-adjoint elliptic operator on a Hermitian vector bundle
E over M . Then, the index of D can be expressed in terms of the K-theory
groups of the entire manifold equipped with the Riemannian metric bundle:

ind(D) = Â(M) · ch(E),

where Â(M) is the A-hat genus of the manifold M equipped with the Rie-
mannian metric bundle G(M), and ch(E) is the Chern character of the
vector bundle E.

The A-hat genus is a topological invariant of a manifold equipped with a
Riemannian metric bundle, which can be expressed in terms of the curvature
of the Riemannian metric. The Chern character is a cohomology class that
encodes information about the topological and geometric properties of a
vector bundle.

The index theorem for the entire manifold equipped with a Riemannian
metric bundle follows from the local version of the Atiyah-Singer theorem,
applied to a partition of unity on the manifold. Specifically, we can construct
a partition of unity on the manifold M that is subordinate to a finite cover
of coordinate neighborhoods. Using this partition of unity, we can express
the index of D in terms of the index of D restricted to each coordinate
neighborhood, and then apply the local version of the index theorem to
each neighborhood. This leads to the formula given above for the index of
D in terms of the K-theory groups of the entire manifold equipped with
the Riemannian metric bundle To prove the index theorem for the entire
manifold equipped with a Riemannian metric bundle, we need to show that
the index of a self-adjoint elliptic operator D on a Hermitian vector bundle
E over M can be expressed in terms of the K-theory groups of the entire
manifold equipped with the Riemannian metric bundle G(M). Let Ui be a
finite cover of M by coordinate neighborhoods, and let φi be a partition of
unity subordinate to Ui. We can assume without loss of generality that each
coordinate neighborhood Ui is equipped with a local Riemannian metric
bundle Gi.

Let Di be the restriction of the operator D to the vector bundle E|Ui,
and let Gi||U be the restriction of the Riemannian metric bundle G(M) to
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Ui. Then, by the local version of the index theorem, we have:

indDi = Â(Ui, Gi) · ch (E | {Ui})

where indDi = Â(Ui, Gi) is the A-hat genus of the manifold Ui equipped

with the Riemannian metric bundle Gi||Ui, and ch
(
E| | Ui

})
is the Chern

character of the vector bundle E restricted to Ui. Using the partition of
unity φi we can construct a global section s of E by s =

∑
i φisi, wheresi is

a local section of E over Ui. We can also define a global operator Ds on E
by Ds =

∑
i φiDi. Note that D−s is an elliptic operator on E , and that its

kernel cokernel are finite-dimensional.
To compute the index of D, we consider the operator Ds − D. Let P be

the orthogonal projection from E onto the kernel of Ds, and let Q be the
orthogonal projection from E onto the cokernel of Ds. Then, we have:

Ds − D = P (Ds − D) + (1 − P )(Ds − D) + Q(Ds − D)

The first term on the right-hand side is a compact operator, since it maps the
finite-dimensional space ker(Ds) to the finite-dimensional space coker(Ds).
The second and third terms are Fredholm operators, since they are the
restrictions of Ds − D to the complement of the kernel and cokernel of Ds,
respectively. Therefore, the index of D is given by:

ind(D) = ind(Ds − D) = ind((1 − P )(Ds − D) + Q(Ds − D))

Now, we need to show that the operator (1 − P )(Ds − D) + Q(Ds − D)
can be expressed in terms of the K-theory groups of the entire manifold
equipped with the Riemannian metric bundle G(M). To do this, we use
the fact that the kernel and cokernel of Ds are invariant under the action
of the local Riemannian metric bundles Gi, and hence their direct sum over
all Ui defines a vector bundle over M equipped with the Riemannian metric
bundle G(M).

More precisely, we define a vector bundle K over M equipped with the
Riemannian metric bundle G(M) by:

K =
⊕

i

ker(Di) ⊕
⊕

i

coker(Di)

Then, we have:

(1−P )(Ds−D)+Q(Ds−D) = (1−P )(Ds−D)+Q(Ds−D)|ker(Ds) ⊕ coker(Ds)

= (1 − P )(Ds − D)|ker(Ds) ⊕ Q(Ds − D)|coker(Ds)
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Now, using the local index theorem, we can express the index of the op-
erators (1 − P )(Ds − D)|ker(Ds) and Q(Ds − D)|coker(Ds) in terms of
the K-theory groups of the local Riemannian metric bundles Gi, and hence
in terms of the K-theory groups of the entire manifold equipped with the
Riemannian metric bundle G(M). Specifically, we have:

ind((1 − P )(Ds − D)|ker(Ds)) = Â(M, G) · ch(ker(Ds))

ind(Q(Ds − D)|coker(Ds)) = Â(M, G) · ch(coker(Ds))

where Â(M, G) is the A-hat genus of the manifold M equipped with the
Riemannian metric bundle G(M), and ch(ker(Ds)) and ch(coker(Ds)) are
the Chern characters of the bundles ker(Ds) and coker(Ds), respectively.

Therefore, we have:

ind(D) = ind((1 − P )(Ds − D) + Q(Ds − D))

= Â(M, G) · ch(ker(Ds)) + Â(M, G) · ch(coker(Ds))

= Â(M, G) · ch(E)

where we have used the fact that ker(Ds) and coker(Ds) have the same
Chern character as the vector bundle E, since they are all invariant under
the action of the local Riemannian metric bundlesGi. Therefore, we have
proved that the index of a self-adjoint elliptic operator D on a Hermitian
vector bundle E over M can be expressed in terms of the K-theory groups
of the entire manifold equipped with the Riemannian metric bundle G(M),
completing the proof. The index theorem for Riemannian metric bundles
provides a formula for the index of an elliptic operator on a manifold in terms
of the topological data of the manifold and the associated vector bundle. In
particular, for the Laplace operator ∆ on a spin manifold M equipped with
a Riemannian metric bundle G(M), its index is given by:

ind(∆) =

∫

M
ch(G(M))T d(M)

where ch(G(M)) is the Chern character of the metric bundle G(M) and
T d(M) is the Todd class of the tangent bundle of M .

Now, the square root of the Laplace operator may be obtained by the
same formula with the Chern character and Todd class replaced by the
corresponding quantities for the associated spinor bundle. Let S(M) be the
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spinor bundle associated to the Riemannian metric bundle G(M). Then, the
index of the square root of the Laplace operator on M is given by:

ind(∆1/2) =

∫

M
ch(S(M))T d(M)

where ch(S(M)) is the Chern character of the spinor bundle S(M).

Theorem 2. Let M be a compact Riemannian manifold, and let G(M) be
the Riemannian metric bundle over M. Then the index of the Dirac operator
on G(M) is given by the integral of the A-roof genus of M.

Proof. From the index theorem for Riemannian metric bundles, we have:

ind(D) =

∫

M
ch(E)td(M)

where D is the Dirac operator, E is the spinor bundle over M , and td(M)
is the Todd class of M . By the definition of the Chern character, we have:

ch(E) = ec1(E)

where c1(E) is the first Chern class of E. By the Atiyah-Singer index theorem,
we know that ind(D) is given by the integral of the top Chern form of E.
Thus, we have:

ind(D) =

∫

M
ec1(E)td(M) =

∫

M
ch(E)td(M)

Since the spinor bundle over M is equipped with a natural Riemannian
metric, we can regard it as a section of the Riemannian metric bundle G(M).
Therefore, by the index theorem for Riemannian metric bundles, we have:

ind(D) =

∫

M
A(M)

where A(M) is the A-roof genus of M. Combining this with the previous
equation, we obtain:

∫

M
A(M) =

∫

M
ch(E)td(M)

which implies that the index of the Dirac operator on G(M) is given by the
integral of the A-roof genus of M.

Theorem 1: Riemannian Metric Bundles and the Levi-Civita Connection
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Theorem 3. Let (M, g) be a Riemannian manifold with a Riemannian
metric bundle G(M). Then, there exists a unique torsion-free and metric-
compatible linear connection, called the Levi-Civita connection, on the tan-
gent bundle T M of M .

Proof. To show the existence and uniqueness of the Levi-Civita connection,
we first define the torsion tensor T (X, Y ) = ∇XY − ∇Y X − [X, Y ] and
the metric compatibility condition ∇g(X, Y ) = g(∇XY, Z) + g(Y, ∇XZ) for
vector fields X, Y, Z on M . We aim to find a linear connection ∇ that
satisfies both conditions. Using the Koszul formula, we can define the Levi-
Civita connection ∇ as

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(Z, X))−

Z(g(X, Y )) + g([X, Y ], Z) − g([Y, Z], X) − g([Z, X], Y ),

for all vector fields X, Y, Z on M . It can be verified that the connection ∇
defined by the Koszul formula is indeed torsion-free and metric-compatible.
Thus, the Levi-Civita connection exists.

To show the uniqueness of the Levi-Civita connection, suppose there ex-
ists another connection ∇′ satisfying the torsion-free and metric-compatible
conditions. Then, we have ∇′ − ∇ = 0 due to the uniqueness of the con-
nection satisfying the Koszul formula. This proves the uniqueness of the
Levi-Civita connection.

Theorem 2: Riemannian Metric Bundles and the Hopf-Rinow Theorem

Theorem 4. Let (M, g) be a Riemannian manifold with a Riemannian met-
ric bundle G(M). Then, the following statements are equivalent: M is com-
plete as a metric space. Geodesics on M can be extended indefinitely. Any
two points in M can be connected by a minimizing geodesic.

Proof. (1 ⇒ 2) Let γ : [0, a) → M be a geodesic with an interval [0, a).
Consider a sequence of points tn in [0, a) such that tn → a as n → ∞.
By the completeness of M , there exists a convergent subsequence γ(tnk

)
that converges to a point p ∈ M . Using local existence and uniqueness of
geodesics, we can extend γ beyond a to include p. This shows that geodesics
on M can be extended indefinitely. (2 ⇒ 3) Let p, q ∈ M be any two points.
By the existence of geodesics, there is a geodesic γ : [0, 1] → M such that
γ(0) = p and γ(1) = q. We can extend γ indefinitely in both directions
due to (2). Let d be the infimum of the lengths of all curves connecting
p and q. For any ǫ > 0, there exists a curve σ connecting p and q with
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length L(σ) < d+ ǫ. We can reparameterize σ to create a variation of γ that
preserves the endpoints. By the first variation formula, we have

0 ≤
d2L (γt)

dt2

∣∣∣∣∣
t=0

= −

∫ 1

0
g

(
D

dt

dγt

dt
,
dγt

dt

)
dt

The integral on the right-hand side is non-positive, so L(γ) ≤ L(σ). By tak-
ing the limit as ǫ → 0, we obtain L(γ) ≤ d. Thus, γ is a minimizing geodesic.
(3 ⇒ 1) Let pn be a Cauchy sequence in M . For each pair of consecutive
points pn and pn+1, there exists a minimizing geodesic γn connecting them
due to (3). Let ln = d(pn, pn+1). Consider the sequence

∑n−1
i=1 li, which is a

Cauchy sequence in R. Let sn =
∑n−1

i=1 li. Define a piecewise geodesic curve
γ : [0, ∞) → M by γ(t) = γn(t−sn) for t ∈ [sn, sn+1]. The curve γ is contin-
uous, and by the Arzelà-Ascoli theorem, there exists a uniformly convergent
subsequence γnk

. This subsequence converges to a geodesic γ̃ : [0, ∞) → M .
By construction, the sequence pnk

converges to a point p ∈ M . Since pn is
an arbitrary Cauchy sequence, M is complete.
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