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RIEMANNIAN METRICS WITH LARGE Xx

B. COLBOIS AND J. DODZIUK

(Communicated by Peter Li)

Abstract. We show that every compact smooth manifold of three or more

dimensions carries a Riemannian metric of volume one and arbitrarily large

first eigenvalue of the Laplacian.

Let (Mn, g) be a compact, connected Riemannian manifold of n dimen-

sions. The Laplacian Ag acting on functions on M has discrete spectrum. Let
Xx(g) denote the smallest positive eigenvalue of A^ . Hersch [5] proved that

Xx(g)vol(S2,g)<$n

for every Riemannian metric g on the 2-sphere S2.
In connection with this result, Berger [2] asked whether there exists a constant

k(M) suchthat

(1) Xx(g)vol(Mn,g)2l"<k(M)

for any Riemannian metric on M. Yang and Yau [8] proved that the inequality
above holds for a compact surface S of genus y with k(S) = &n(y + 1).

Subsequently, numerous examples of manifolds were constructed for which

(1) is false (cf. [3] for a discussion and references). In particular, for every

n > 3, the sphere Sn admits metrics of volume one with Xx arbitrarily large

[3, 6]. Bleecker conjectured in [3] that such metrics exist on every manifold
M" if « > 3. In this note we give a very simple proof of Bleecker's conjecture

using known examples and quite general principles. The same result has been

proved independently by Xu [7] by a construction similar to ours. His argument,
however, is much harder than our proof.

Theorem 1. Every compact manifold M" with n > 3 admits metrics g of
volume one with arbitrarily large Xx(g).

Proof. The idea of the proof is very simple. We take a metric go on S" with

vo^S", go) = 1 and Xx(go) > k + 1, where k is a large constant. We excise

from S" a very small ball B(p, n) = Bn and form the connected sum of S"

with M. The resulting manifold is diffeomorphic to M and has a submanifold

£2, with smooth boundary, naturally identified with S" \ Bn . Let gx be an
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arbitrary metric on M whose restriction to Q is equal to go\Sl. We modify

the metric gx making it very small on "most of" M \ Q without altering it
on Q. With the new metric, M looks practically like (Sn, go) in the sense
that all of the topology of M is contained in a part which is metrically very
small. In particular, the smallest positive eigenvalue of this metric is very close

to Xx(g0).
To make this into a rigorous proof we use results of Colin de Verdière [4,

Theorem III. 1] and Anne [1]. Thus, by [1, Theorem 2], if n is chosen suffi-
ciently small, the first positive eigenvalue px of the Laplacian of (£2, go) for

the Neumann boundary conditions is a very good approximation of Xx(go) so

that px > k + j . Let e be a small positive number. Take a sequence of smooth

functions FiyS such that 7}i£|Q = 1, 1 > FI>4 > e, and lim,_00 FiiC(x) = e for

every x £ M \Sl, and consider metrics g,,e = F¡ttgx. Colin de Verdière

showed in the course of proof of Theorem III. 1 of [4] that for every positive

integer J the eigenvalues p¡, j < J, of the Neumann problem for Q can be

approximated to arbitrary accuracy by Xj(g¡,E) by first choosing e sufficiently

small and then i sufficiently large (condition (*) appearing in [4, Theorem
III. 1] is satisfied for some choice of indices and constants since the spectrum of

(Q, go) is discrete). It follows that Xx(g¡tE) > k + \ for appropriate choices of
n, e, and i. Finally, we multiply the metric gitg by a constant to make the
volume equal to one and call the resulting metric g. If the choices of n and
e were sufficiently small and i is sufficiently large then the rescaling factor is

practically equal to one so that Xx (g) > k .      G
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