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Riemannian Procrustes Analysis : Transfer Learning

for Brain-Computer Interfaces
Pedro L. C. Rodrigues, Member, IEEE, Christian Jutten, Fellow, IEEE, and Marco Congedo, Member, IEEE

Abstract—Objective: This paper presents a Transfer Learning
approach for dealing with the statistical variability of EEG
signals recorded on different sessions and/or from different
subjects. This is a common problem faced by Brain-Computer
Interfaces (BCI) and poses a challenge for systems that try to
reuse data from previous recordings to avoid a calibration phase
for new users or new sessions for the same user. Method: We
propose a method based on Procrustes analysis for matching the
statistical distributions of two datasets using simple geometri-
cal transformations (translation, scaling and rotation) over the
data points. We use symmetric positive definite matrices (SPD)
as statistical features for describing the EEG signals, so the
geometrical operations on the data points respect the intrinsic
geometry of the SPD manifold. Because of its geometry-aware
nature, we call our method the Riemannian Procrustes Analysis
(RPA). We assess the improvement in Transfer Learning via
RPA by performing classification tasks on simulated data and on
eight publicly available BCI datasets covering three experimental
paradigms (243 subjects in total). Results: Our results show that
the classification accuracy with RPA is superior in comparison
to other geometry-aware methods proposed in the literature. We
also observe improvements in ensemble classification strategies
when the statistics of the datasets are matched via RPA. Conclu-
sion and significance: We present a simple yet powerful method
for matching the statistical distributions of two datasets, thus
paving the way to BCI systems capable of reusing data from
previous sessions and avoid the need of a calibration procedure.

Index Terms—Brain-Computer Interface, Riemannian geome-
try, Transfer Learning, Covariance Matrices, EEG.

I. INTRODUCTION

A Brain-Computer Interface (BCI) is a system that allows a

person to interact with a machine without any physical interac-

tion. It works by extracting features from neuro-physiological

signals (e.g., the power spectral densities on certain frequency

bands) and assigning them to different classes. These classes

may be associated to cognitive states, sensory responses, etc.,

and the features are chosen so that they are discriminative for

each class. Among the many types of neural signals that have

been used in BCI systems, electroencephalographic (EEG)

recordings have received particular attention and are the focus

of this paper. The success of EEG-based systems comes from

several reasons, such as its low price as compared to other

neuro-physiological modalities, its non-invasiveness, and its

high temporal resolution. However, they also have to cope
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with low signal-to-noise ratio, low spatial resolution [1], and

high cross-session and cross-subject variability [2].

While many signal processing techniques have been devel-

oped to ameliorate the quality of EEG signals and improve

its spatial resolution [3], the cross-session and cross-subject

variability problem have received much less attention. The

standard approach in BCI consists of re-training a statistical

classifier at the beginning of every experimental session with

the help of a sequence of calibration trials, a procedure that

can be time consuming and is clearly suboptimal, since it does

not leverage any information from past experiments. Instead,

“second-generation BCIs” initialize classifiers using Transfer

Learning and update their parameters along sessions, avoiding

the calibration step altogether [1].

We present in this paper a Transfer Learning approach based

on geometrical transformations for matching the statistical

distributions coming from two different experimental sessions,

a source and a target session. For simplicity of exposition,

hereafter we use the term “session” generically, however

source and target may refer to different sessions as well as

different subjects. We perform simple linear transformations,

such as translation, rotation, and scaling, on the data points

of both sessions with the goal of making the shape of their

statistical distributions as similar as possible. Once the distri-

butions are matched, one can expect that a classifier optimized

for the data of the source session will work well enough with

the data from the target session.

The branch of Machine Learning that studies the effects of

mismatches between statistical distributions is called Transfer

Learning [4]. It has been of great interest in several domains

besides BCI, such as in computer vision, where the statistics

of the data may vary due to changes in lighting conditions and

acquisition devices, or in speech processing systems, where the

changes in background noise and the differences in speaker

genders and voice tonalities may affect the statistics of the

signals. In [5], the phenomenon responsible for the drift in

statistical distributions of two datasets was termed covariate

shift and modelled by assuming that the distributions of the

data points can be different for the source and target datasets,

but the conditional distributions of the labels are the same.

Ref. [6] presented real data examples on BCI experiments

and showed that the covariate shift describes well the changes

in statistics for this kind of application. A recent attempt

in the literature on Transfer Learning has been to apply the

theory of Optimal Transport to determine which geometrical

transformations one should perform to match two statistical

distributions, as proposed in [7] and applied to the BCI P300

paradigm in [8]. This approach begins by first defining a
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function that models the cost of transporting a point at location

x to a location y. Then, it solves an optimization problem

that minimizes the total cost of moving each point of the

source dataset and make its statistical distribution as similar

as possible to the distribution of the target dataset. Note that

this is a completely unsupervised procedure and does not rely

on any assumption regarding the statistical distributions of the

datasets.

Another geometrical approach [9] matches the statistical

distributions from the source and target sessions by means

of a re-centering of their data points to the origin of the SPD

space, the identity matrix. During the process of review of this

paper, we came across the work in [10], which also proposes

a Transfer Learning procedure for SPD matrices in the spirit

of [9], but with the main difference that the data points are

re-centered to the midpoint between the geometric means of

the source and target datasets

Besides of distribution matching based on geometrical trans-

formations, there has been mainly two other kinds of proposals

for doing Transfer Learning in the BCI literature [2]. One

is based on the concept of ensemble classifiers [3], [11]–

[13], where the information from multiple source datasets are

combined into a “global” classifier, which is then used to label

the trials from any other target dataset. There has also been

works using Bayesian models to describe the variability of

the statistics on the source datasets and gather information

from multiple datasets [14]. A recent approach that builds

upon such Bayesian methods are the works in [15] and [16],

which use a special form of the P300 experimental paradigm

to do classification with no calibration. There are two main

differences between these approaches and our proposal in this

work. First, our approach is based on matching as much as pos-

sible the information from each source-target pair of datasets.

Thus, it can be used in addition to an ensembling approach

as in [12], which will combine the information from multiple

matched-source subjects. Second, our approach is paradigm-

agnostic and does not rely on any special modification of the

experimental setup where the EEG signals are collected (as

opposed to [16]), a feature that is appealing to a great number

of practionners.

Our approach for distribution matching is based on the con-

cept of Procrustes Analysis (PA) [17], a tool often employed

in statistical shape analysis [18] with applications in text

analysis [19], protein alignment [19], and many other fields.

PA works by first selecting a set of pairs of landmark points

from two different shapes and then performing geometrical

transformations to get these landmarks as close as possible

to each other. In our context, the shapes to be matched are

actually point clouds consisting of high-dimensional statistical

features describing EEG signals, and the landmarks are points

that can be used to describe these statistical distributions (e.g.

the mean, the farthest point from the mean, etc.). Because of its

linear nature in the Euclidean case, and the fact that the oper-

ations are always global (the same rotation/translation/scaling

is applied to all points each time), the space of transforma-

tions that one can cover using Procrustes Analysis does not

include all possible transformations between the statistics of

datasets. Nevertheless, the results that we have obtained on

BCI applications indicate that the set of transformations that

we apply are rich enough to model the covariate shift between

experimental sessions.

A particularity of our work is that we use the spatial

covariance matrices (SCM) of the EEG signals as statistical

features to discriminate between classes. SCMs are symmetric

positive definite matrices (SPD) and as such they are defined

in a Riemannian manifold [20] whose geometry is taken

into consideration during the classification procedure. Such an

approach has proved sucessful in BCI applications in recent

years [21]–[23] and has become part of the state of the art

of the field [2]. The geometric transformations that we use

for matching two statistical distributions are done taking into

account the intrinsic geometry of the SPD manifold as well.

Because of its geometry-aware nature, we call our method

Riemannian Procrustes Analysis (RPA).

RPA can be seen as an evolution of the aforementioned

procedures [9] and [10], with the re-centering step correspond-

ing to the first of a series of geometrical transformations.

Furthermore, the procedures in [9] and [10] are completely

unsupervised, since they do not use any information from the

labels of the data points, whereas RPA benefits from the labels

in the source session (which are all known in advance) as well

as from (at least part of) the labels that become sequentially

available in the target session trial after trial.

We compared the performance of the RPA procedure for

Transfer Learning to that of other distribution-matching meth-

ods proposed in [9], [10] and [7]. The results demonstrate

that the RPA yields a superior classification accuracy in both

simulated and real datasets. We also observe that, in general,

RPA needs a very small amount of labeled trials from the

target dataset to work well. Moreover, it is always superior (or

at least equal) to the performance obtained with calibration,

i.e., simply using the available trials on the target dataset and

not do any transfer from the source.

The remainder of the paper goes as follows: Section II

gives a mathematical formulation for the paradigm of Transfer

Learning that we consider in this work. Section III intro-

duces the tools for manipulating and classifying SPD matrices

in their Riemannian manifold, and Section IV presents the

method of Riemannian Procrustes Analysis. Sections V and VI

discuss the results on simulated and real data, respectively.

Lastly, Section VII concludes the paper.

II. PROBLEM FORMULATION

We consider two datasets, the source (S) and the target (T )

datasets. They are comprised of couples

S =
{
(Ci, yi) for i = 1, . . . ,KS

}
,

T =
{
(C̃i, ỹi) for i = 1, . . . ,KT

}
,

(1)

with Ci, C̃i ∈ R
n×n being data points, and yi, ỹi ∈ {1, . . . , L}

their corresponding class labels; KS and KT are the number

of trials in the source and target sessions respectively. In

this paper, the data points in S and T are always symmetric

positive definite (SPD) matrices and are used to parametrize

EEG multivariate time series [22]. As mentioned before,
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SPD matrices are defined in a Riemannian manifold, so it is

important that operations involving them respect the intrinsic

geometry of this space (see Section III for more information).

Our distribution matching method considers the semi-

supervised Transfer Learning paradigm [4], where one has

knowledge of all the labels from the source dataset and access

to a small subset of labels from the target dataset. Put in

mathematical terms, we assume knowledge of all the labels

from the elements in S and of a small subset Tℓ ⊂ T with

T = Tℓ ∪ Tu and Tℓ ∩ Tu = ∅, (2)

where ℓ stands for labeled and u for unlabeled. We further

assume that Tℓ has at least one example from each class.

This setup describes well applications where a few calibration

points from the target dataset can be used to guide the Transfer

Learning procedure. Another relevant case is online algo-

rithms, where labels are available sequentially and augment

the Tℓ dataset after each time step.

Our goal is to train a classifier that leverages the available

information from S and Tℓ and has good accuracy on the

classification of data points from Tu.

III. BACKGROUND AND NOTATION

This section begins with a brief introduction to concepts of

Riemannian geometry on SPD matrices. Then, we define the

notion of statistical distributions of SPD matrices and review

a simple way to do classification on datasets containing this

type of matrix.

A. The Symmetric Positive Definite manifold

Let P(n) be the set of n× n symmetric positive definite

(SPD) matrices, which is defined as

P(n) =
{
C ∈ R

n×n
∣∣ CT = C, x

TCx > 0, ∀x ∈ R
n
}

.

(3)

Matrices in P(n) lie in a manifold [20], a set of points

with the property that the neighborhood of each C ∈ P(n)
can be bijectively mapped to an Euclidean space, also known

as its tangent space TCP(n). In particular, because P(n) is

an open subspace of the set Sym(n) of symmetric matrices

in R
n×n, we can identify its tangent space as simply being

Sym(n) [24]. If we endow every tangent space of a manifold

with a metric that changes smoothly along its elements, we

say that we have a Riemannian manifold [24]. In this case,

fundamental geometric notions are naturally defined, such as

geodesic (shortest curve joining two points), distance between

two points (length of the geodesic connecting them), the center

of mass of a set of points, etc.

There are several possible choices of metric for P(n) and

each one induces a different geometry that can be more or

less adequate according to the applications we are interested

in. A metric that is particularly relevant is the Affine-Invariant

Riemannian metric (AIRM) [20], defined for η, ξ ∈ TCP(n)
as the inner product

〈η, ξ〉C = tr
(
C−1ηC−1ξ

)
, (4)

where C ∈ P(n) and tr(·) denotes the trace operator. It is well

known [20] that the distance between matrices Ci, Cj ∈ P(n)
induced by (4) is

δ2R(Ci, Cj) =

n∑

k=1

log2(λk) , (5)

where the λk’s are the eigenvalues of C−1
i Cj or of similar

matrix C
−1/2
i CjC

−1/2
i . Because of the many interesting prop-

erties of (5), such as invariance to affine transformations by

any invertible matrix A ∈ R
n×n,

δ2R(Ci, Cj) = δ2R(ACiA
T , ACjA

T ) , (6)

invariance under inversion, etc. [20], the AIRM has found great

popularity in geometry-aware algorithms for processing SPD

matrices [21] [25]. From now on, whenever we refer to P(n)
we will be implicitly considering it has been equipped with

the AIRM.

The center of mass according to distance (5) of a set of

SPD matrices {C1, . . . , CK} is defined as [1]

G
(
{Ci}

K
i=1

)
= argmin

X∈P(n)

K∑

i=1

δ2R(X,Ci) . (7)

In words, G
(
{Ci}

K
i=1

)
is the point in the manifold minimizing

the dispersion (variance) of the set of matrices. Note that when

the Ck’s are actually strictly positive scalars, G
(
{Ci}

K
i=1

)
is

their geometric mean. This explains why many researchers

adopt the term “geometric mean” to refer to the center of mass

of a set of SPD matrices. For three or more matrices, there is

no closed form solution for (7), so one has to resort to iterative

algorithms as the one given in [26]. The above definitions

suffice for the intents of this paper, but the interested reader

will find a thorough treatment of the subject in [20].

B. Statistical distributions in the SPD manifold

In this work, we assume that the data points come from

statistical distributions that can be parametrized just by their

geometric mean and the dispersion of points around it. More

precisely, we assume that the statistical distribution generating

the samples of the dataset is a mixture of Riemannian Gaussian

distributions on the SPD manifold (one for each class) [27].

Under this assumption, we parametrize the statistics of each

dataset defined in (1) using a set consisting of L+2 elements :

the geometric mean M of the dataset, the geometric means Mk

of each of the L classes, and the dispersion d around M . We

have then

ΘS =
{
M,M1, . . . ,ML, d

}
,

ΘT =
{
M̃, M̃1, . . . , M̃L, d̃

}
,

where

M = G({Ci | Ci ∈ S}) ,

M̃ = G({C̃i | C̃i ∈ Tℓ})
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are the center of mass or geometric means of the datasets (all

classes combined),

d =
∑

Ci∈S

δ2R(M,Ci) ,

d̃ =
∑

Ci∈Tℓ

δ2R(M̃, Ci)

are the dispersions around the geometric mean, and

Mk = G({Ci | Ci ∈ S and yi = k}) ,

M̃k = G({C̃i | C̃i ∈ Tℓ and ỹi = k})

are the geometric mean of the trials belonging to each class.

Note that the parameters for the target dataset are estimated

using only the data points from Tℓ.
The law of great numbers from statistics also applies to

datasets containing SPD matrices [20]. In particular, if the

elements of a dataset come from a statistical distribution

with geometric mean M , the center of mass of a set of K
matrices will converge to M as K grows. This implies that in

experimental paradigms where the trials come in sequentially,

it is reasonable to expect that with more trials one will obtain

better and better estimates of the geometric mean.

C. Classification in the SPD manifold

There are many known classifiers for datasets whose el-

ements are SPD matrices [22]. In this paper, we use the

Minimum-Distance to Mean (MDM) classifier [21], which

works as follows: in the training phase, calculate the geometric

means for each class of a training dataset (Dtrain). In the

testing phase, each matrix Ci from the testing dataset (Dtest) is

associated to the label yi of the class mean that is the closest

to Ci. Note that the statistical model described in Section III-B

fits well the MDM classifier, since it assumes that the statistics

of the dataset can be described by the geometric means of its

classes.

IV. TRANSFER LEARNING VIA PROCRUSTES ANALYSIS

This section presents the Riemannian version of the Pro-

crustes Analysis or RPA. We first introduce the concept of

Procrustes Analysis on an Euclidean setting and then describe

how to perform equivalent transformations on the SPD man-

ifold. Then, we justify such operations with the help of a

model relating the statistical distributions of the source and

target datasets. Such model is the main theoretical contribution

of this paper, since it gives a concrete justification for the

geometric operations done in the RPA procedure and allows

for a better comprehension of the assumptions that one has to

make regarding the statistical distributions of the datasets.

A. Matching statistical distributions

A common approach to match two shapes in Euclidean

space is the Procrustes Analysis [17], which works as follows :

suppose we have two sets of landmark points

X =
{
xi ∈ R

n
}m

i=1
and X̃ =

{
x̃i ∈ R

n
}m

i=1
, (8)

and assume there is a linear relationship relating the m pairs

of landmark points as in

x̃i − m̃ = s U
(
xi −m

)
, (9)

where s ∈ R, m, m̃ ∈ R
n, and U ∈ R

n×n is an orthogonal

matrix. The goal of the procedure is to determine the values of

{s,m, m̃, U} so to obtain a new set X̃ (PA) containing points

x̃
(PA)
i that matches exactly with xi, where

x̃
(PA)
i −m =

1

s
UT

(
x̃i − m̃

)
. (10)

Note that the operations transforming x̃i can be interpreted as

a re-centering to zero (subtracting m̃) followed by a stretching

or compression (division by s), and a rotation (multiplication

by UT ); the final re-centering to m is optional, since it is often

more interesting to re-center X to the origin and consider only

the zero-mean matched shapes.

B. Riemannian Procrustes analysis (RPA)

In order to do Procrustes Analysis on SPD matrices, we

have to adapt the steps of re-centering, stretching and rotation

according to the intrinsic geometry of P(n). We call such

procedure Riemannian Procrustes Analysis (RPA) and describe

its steps here below :

1) Re-center matrices to identity: In P(n) the Identity

matrix plays the role of the origin of the space. Therefore,

the first step of RPA is to transform the matrices in S and

T so they are both centered around In (see Fig. 1B). This

amounts to the transformation proposed in [9] if the covariance

matrices used to describe the resting activity of each session

were chosen to be the geometric mean of the trials of each

dataset.

Due to the affine-invariance of (5) and (7), the geometric

mean of the set of re-centered matrices

C
(rct)
i = M−1/2CiM

−1/2 (11)

is In. Moreover, since M̃ is estimated from a subset of points

in Tℓ ⊂ T , the geometric mean of the set of matrices

C̃
(rct)
i = M̃−1/2C̃iM̃

−1/2 (12)

is approximately the identity matrix (it tends to the identity as

the number of elements in Tℓ grows).

We have then two new datasets consisting of re-centered

matrices

S (rct) =
{
(C

(rct)
i , yi) for i = 1, . . . ,KS

}
,

T (rct) =
{
(C̃

(rct)
i , ỹi) for i = 1, . . . ,KT

}
,

(13)

with the indices of the partition T (rct) = T (rct)
ℓ ∪ T (rct)

u being

the same as in (1).

2) Equalize the dispersions on each dataset: The next step

of RPA consists of rescaling the distributions on both datasets

so that their dispersions around the mean are the same (see

Fig. 1C). To do so, we can see from (5) that

δ2R

((
C̃ (rct)

i

)s

, In

)
= s2 δ2R

(
C̃ (rct)

i , In

)
, (14)
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which implies that one can modulate the dispersion of T (rct)

by simply moving each of its matrices along the geodesic

that links it to the identity matrix. Note that the parameter s
plays the same role of the scaling factor in (9). We match the

dispersions from source and target by building a new dataset

T (str) containing the stretched matrices

C̃
(str)
i =

(
C̃

(rct)
i

)s

, (15)

where we require s ∈ R to verify

s2 = d/d̃ . (16)

Note that the re-centering of matrices in Step 1 does not alter

the dispersion of the matrices around their geometric mean,

which means that the stretching step could have been done

before re-centering the matrices in T . However, in this case,

the geodesic move in (15) would have to be done with respect

to M̃ , that is, we would have to use a more involved relation

C̃ (str)
i = M̃1/2

(
M̃−1/2C̃iM̃

−1/2
)s

M̃1/2 . (17)

Note that up to this point no information from the trials’

classes has been used. We say then that the recentering and

stretching operations form the unsupervised part of the RPA

method.

3) Rotate around the geometric mean: The last step con-

sists of rotating the matrices from T (str) around the origin and

matching the orientation of its point cloud with that of S (rct)

(see Fig. 1D). To do so, we note that if U is an orthogonal

matrix, then

δ2R(U
T C̃ (str)

i U, UTU) = δ2R(C̃
(str)
i , In) , (18)

which indicates that the effect of an orthogonal matrix over

a set of matrices centered at the identity is that of a rotation

around their mean. We form a new dataset T (rot) containing

rotated matrices with

C̃
(rot)
i = UT C̃

(str)
i U , (19)

where U is an orthogonal matrix to be determined from the

data. As we will see in the next sub-section, matrix U is

determined using the labels from the trials, so it corresponds

to the supervised part of the procedure.

C. The orthogonal matrix U

The procedure to determine matrix U comes up naturally

once the assumptions of the RPA method are written in

mathematical form. For simplicity, we will first assume that

Tℓ = T . We use the geometric means of the source and target

datasets as landmarks to be matched, so one can write

M̃ = A M AT , (20)

and

M̃k = A Mk AT k ∈ {1, . . . , L} , (21)

where M, M̃,Mk, M̃k are all defined in Section III-B, and

A ∈ R
n×n is an unknown invertible matrix that models the

discrepancies between the statistics of the source and target

datasets. We can rewrite the relation in (20) as

(
M̃1/2M̃1/2

)
= A

(
M1/2M1/2

)
AT , (22)

In = M̃−1/2A
(
M1/2M1/2

)
AT M̃−1/2 , (23)

In =
(
M̃−1/2AM1/2

)(
M̃−1/2AM1/2

)T

, (24)

UUT =
(
M̃−1/2AM1/2

)(
M̃−1/2AM1/2

)T

, (25)

where U is the n × n orthogonal matrix that we want to

determine. Matrix U can then be simply written as

U = M̃−1/2AM1/2 , (26)

where M and M̃ are directly estimated from the data points

as explained in Section III-A, and A remains unknown. To

determine an expression for U only in terms of variables that

can be estimated from the data, we use (26) in (21) to get

M̃k =
(
M̃1/2UM−1/2

)
Mk

(
M̃1/2UM−1/2

)T

, (27)

M̃−1/2M̃kM̃
−1/2 = U M−1/2MkM

−1/2 UT . (28)

Defining the matrices

Gk = M−1/2MkM
−1/2 (29)

and

G̃k = M̃−1/2M̃kM̃
−1/2 , (30)

and using the expression in (20) for M̃ , one can rewrite (28)

as

G̃k = M̃1/2A−TM−1/2GkM
1/2AT M̃−1/2 (31)

and conclude that Gk and G̃k are related via a similarity

transform. Similar matrices having the same eigenvalues, one

can write the eigendecompositions

Gk = QkΛQ
T
k and G̃k = Q̃kΛQ̃

T
k

so that (28) becomes

Q̃kΛQ̃
T
k = U QkΛQ

T
k UT . (32)

Solving (32) for U we obtain

U = Q̃kQ
T
k , (33)

which is ultimately an expression in terms of variables esti-

mated from the dataset. Note that (33) is also the solution to

the following optimization problem

minimize
UTU=In

δ2R

(
G̃k, UGkU

T
)

, (34)

and so it can be interpreted as the orthogonal matrix that acts

to minimize the distance between a modified version of the

class means of the source and target datasets.
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D. Determining U from data

In the previous section, we assumed Tℓ = T . In practice,

however, we have Tℓ ⊂ T , so the estimation of the class means

of the target dataset are only approximations of the real class

means of the statistical distribution. Because of this, instead

of giving preference to a particular noisy estimate of a class

mean to determine U via (33), we obtain it as a solution to the

following optimization problem on the manifold of orthogonal

matrices :

minimize
UTU=In

L∑

k=1

wkδ
2
R

(
G̃k, UGkU

T
)

, (35)

where the wk ∈ [0, 1] are coefficients allowing to balance the

optimization according to the quality of the estimators for the

mean of each class. Note that problem (35) is a generalization

of the Procrustes problem in the SPD manifold proposed

in [28]. We solve (35) using a special form of the steepest-

descent algorithm adapted for optimization procedures on

manifolds, as described in [24]. To do so, we first rewrite

each term of the cost function in (35) as

fk(U) = δ2R

(
G̃k, UGkU

T
)

(36)

and express its Jacobian as

DUL(U) =

L∑

k=1

wk DUfk(U) , (37)

with

DUfk(U) = 4 log
(
G̃kUGkU

T
)
U , (38)

where the derivative of the AIRM distance was obtained

from [29]. On each iteration of the gradient descent procedure,

the vector DUfk(U) is projected onto the tangent space of the

manifold of orthogonal matrices (see [24] for details). We used

the pymanopt package [30] for carrying out the optimization

procedure.

E. Classification on the transformed datasets

Once the datasets have been transformed with RPA, we use

the MDM classifier (see Section III-C) to infer the unknown

labels from the elements in Tu. In the training phase we have

Dtrain = S (rct) ∪
{
(C̃ (rot)

i , ỹi)
∣∣ (C̃i, ỹi) ∈ Tℓ

}
, (39)

and in the testing phase we infer the labels from

Dtest =
{
(C̃ (rot)

i , ỹi)
∣∣ (C̃i, ỹi) ∈ Tu

}
. (40)

F. Summary of the RPA method

Algorithm 1 recapitulates the steps of a classification task

using RPA for matching the statistical distributions of the

source and target datasets.

Algorithm 1: Transfer Learning via RPA

Input: S, Tℓ and Tu as defined in (1) and (2)
Output: accuracy of classification using MDM on Tu

1 Estimate M and M̃ from the data in S and Tℓ

2 Re-center the matrices in S and T using (11) and (12), and form new
datasets

S(rct) and T (rct)
= T (rct)

ℓ
∪ T (rct)

u

3 Calculate the ratio of dispersions in S(rct) and T (rct)
ℓ

as in (16) and use
it to form the new dataset

T (str)
= T (str)

ℓ
∪ T (str)

u

with matrices as described in (15)

4 Estimate matrices Mk and M̃k for k ∈ {1, . . . , L} and obtain the
orthogonal matrix U as a solution from (35)

5 Rotate the matrices from T (str) as in (19) and obtain

T (rot)
= T (rot)

ℓ
∪ T (rot)

u

6 Form the training dataset for the MDM classifier with

Dtrain = S(rct) ∪ T (rot)
ℓ

and get the accuracy of classification on the data points from the test
dataset

Dtest = T (rot)
u

G. An interpretation of the steps in RPA

We give now an interpretation of the steps of RPA in terms

of the statistical distributions of the datasets. Without loss of

generality, we will consider that d = d̃, since the dispersions

can always be made equal prior to the transformations. We

will also assume Tℓ = T for simplicity.

The relations in (20) and (21) define which landmark data

points we should match in the RPA procedure, an approach

that is justified from the fact that we parametrize the statistics

of S and T using their geometric means, as described in

Section III-B. From this observation, one can also conclude

that a simple approach for matching the statistical distributions

of S and T would be to estimate matrix A from the available

data points and apply A−1 to all the elements of T , as in

C̃i 7→ A−1C̃iA
−T . (41)

From (26) we can write

A = M̃1/2UM−1/2 , (42)

where M and M̃ are estimated directly from the dataset,

and the orthogonal matrix U is determined as discussed in

Section IV-C. Applying A−1 to the matrices in T , we get

A−1C̃iA
−T = M1/2

[
UT

(
M̃−1/2C̃iM̃

−1/2
)
U
]
M1/2 ,

(43)

which describes the same steps of RPA: re-center to identity,

stretch (with s = 1) and rotate, followed by a translation of

the mean back to M . From the expressions above, we see that

the sequence of operations in RPA are nicely justified by the

assumptions of our statistical model for the data points.
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V. NUMERICAL ILLUSTRATIONS : SIMULATED DATA

A. The dataset

Our example on simulated data consists of a source and a

target datasets containing 2×2 SPD matrices and belonging to

two classes. Data points from the source dataset are generated

as follows:

1) Generate a random SPD matrix M1 ∈ P(2) and define

it to be the geometric mean of class 1

2) Generate Nt = 100 random SPD matrices around M1

by mapping small random tangent vectors (norm fixed

to ε = 10) from TM1
P(2) back to the SPD manifold.

We associate to each of these matrices the label yi = 1
3) Generate a random SPD matrix M2 whose distance to

M1 is s = 5. This is the geometric mean for class 2

4) Generate Nt = 100 random SPD matrices around M2

by mapping small random tangent vectors (norm fixed

to ε = 10) from TM2
P(2) back to the SPD manifold.

These matrices have a label yi = 2 associated to them

We generate the data points from the target dataset (T )

exactly as for the source dataset, but add an extra translation

step that ensures that the geometric mean of all the matrices

from S will be at a distance d = 8 from the geometric mean

of T .

B. Visualization of the steps of RPA

We use the algorithm of Diffusion maps [31] to obtain

new representations of our data points using only two axis.

This nonlinear dimensionality reduction algorithm works by

first building a matrix with all pairwise distances between

data points. Then, it calculates a new matrix called Laplacian

which contains important information on the geometry of the

low-dimensional manifold where the data points are assumed

to live. The axis for the new data representations are then

obtained from the spectral decomposition of the Laplacian

matrix (see [32] for more details on the algorithm and [33]

for an application on multivariate time series).

Figure 1 illustrates the distribution of data points after each

step of RPA applied to the source and target datasets. In this

example, we consider that we know the labels of all matrices

from the target dataset, i.e., T = Tℓ. Figure 1A shows the

point clouds of each dataset, which are clearly unmatched.

After recentering (Fig. 1B), stretching (Fig. 1C) and rotating

(Fig. 1D), the statistical distributions get matched and the same

classifier can be used on both datasets.

C. Classification accuracy after RPA

We compare the classification accuracy results on the sim-

ulated dataset for six different methods of Transfer Learning.

In each of them, the training and testing datasets are different

but the classifier is always the MDM :

• direct (DCT): direct use of the points from the source

dataset to do classification on the target dataset (no

transformation whatsoever).

• recentering (RCT): transfer learning considering only

the data points of each dataset recentered to In. This

corresponds to step (1) in the RPA procedure and is

similar to what has been done in [9].

• parallel transport (PRL): transfer learning using the

method proposed in [10]. The procedure is analogous to

RCT, but with the points being re-centered to the halfway

point along the geodesic path linking the geometric means

of each dataset instead of the Identity matrix.

• optimal transport (OPT): transfer learning using the

optimal transport approach proposed in [7] and adapted to

take into account the fact that we have data points defined

in the SPD manifold instead of Euclidean vectors.

• RPA: transfer learning with matrices transformed using

RPA, as described in Section IV-B.

• calibration: classification using only the labeled trials

available in the target dataset, with no help from the data

in the source dataset.

We assess the performance of each method via a randomized

cross-validation procedure consisting of:

1) Select 2n random elements from T (n from each class).

These data points define Tℓ
2) Define the test dataset Tu containing the other 200−2n

elements of T
3) Obtain the accuracy of the classification via MDM for

this particular partition of T
4) Repeat the three preceeding steps 10 times and get the

mean accuracy for each method.

The results in Fig. 2 show that the DCT pipeline gives

classification results at chance level (0.5) independently of

the number of matrices available in Tℓ. We also observe

that simply using RCT already greatly improves classification

accuracy, as reported in [9]. Our RPA method further improves

the results. We also observe that PRL has virtually the same

performance as RCT, which is not surprising, since they are

both unsupervised methods based on the idea of re-centering

the datasets to a common point in the SPD manifold. The

results with OPT are equivalent to RCT and PRL as well.

The accuracy with calibration improves when the number

of available labels in the target dataset increases, eventually

converging to the same performance as RPA. This result is not

surprising, because with a sufficient amount of data in Tℓ it is

already possible to train a good classifier without the need of

doing transfer learning.

Our observations in this session are in accordance with

the theoretical results of [34], which says that “if there is

enough target data, then no source data are needed (...). This is

because the possible reduction in error due to additional source

data is always less than the increase in error caused by the

source data being too far from the target data”. Such a result

points to the existence of a certain “saturation” effect in the

quality of transfer learning when too many trials are available

in the target session, a behavior that could be exploited to

decide when to stop transferring information from previous

experimental sessions.

VI. NUMERICAL ILLUSTRATIONS : REAL DATA

The analysis on real data were all done using EEG record-

ings from experiments with Brain-Computer Interfaces (BCI)
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(A)

(C)

(B)

(D)

original recentering

stretching rotation

Fig. 1. Representation of the sequence of operations of RPA applied to a
dataset simulated as described in Section V-A (better visualized with colors).
Each point on the scatter plot represents a SPD matrix and the axes for the
figures were obtained using Diffusion Maps [32]. The filled dots (degree of
transparency set to α = 0.30) represent the target dataset whereas the circles
are the source dataset. Each color represents a class and the black star is
the Identity matrix. (A) Distribution of the SPD matrices in the source and
target datasets as they are originally available and (B) after re-centering their
geometric means to the Identity. In (C) the distribution after the stretching
operation and (D) after the rotation.

Fig. 2. Accuracy of the classification of unlabeled data points from the target

dataset for different methods of transfer learning. The curve shows how the
accuracy for each method evolves when the number of data points in Tℓ
increases. The generation of the data points is explained in Section V-A.

experiments. As usual, the EEG signal is a n-dimensional

multivariate time-series and is denoted by x(t) where each

dimension represents an electrode. Each experimental trial i
lasts a few seconds and is associated to a matrix Xi ∈ R

n×T ,

where T is the number of time samples defining the trial.

To every trial we associate a SPD matrix Ci describing its

multivariate statistics and a label yi indicating what was the

task performed during the trial. The dataset for each subject

is composed of a set of couples (Ci, yi). Our investigation

focuses on the classification accuracy of a MDM classifier

that is trained with the data from a source subject and is

used to classify the signals from a target subject. We compare

TABLE I
MAIN FEATURES DESCRIBING EACH DATASET USED IN THIS WORK.

dataset paradigm subjects classes trials per class reference

PhysionetMI MI 109 2 22 [38]

Cho2017 MI 50 2 100 [39]

SSVEP SSVEP 12 3 8 [37]

P300 P300 24 2 72 and 360 [36]

BNCI2014001 MI 9 4 72 [40]

BNCI2014002 MI 15 2 80 [41]

BNCI2015001 MI 13 2 100 [42]

MunichMI MI 11 2 150 [43]

the performance of such classifier using the different Transfer

Learning strategies described in Section V-C.

A. The datasets

The investigations were carried out on eight datasets cover-

ing three different BCI paradigms. All Motor Imagery datasets

are publicly available and were downloaded and pre-processed

using the MOABB framework [35]. The P300 dataset comes

from experiments performed in our laboratory on the P300-

based game Brain Invaders [36]. The SSVEP dataset was the

same as the one presented in [37]. See Table I for a brief

overview of each dataset’s features.

We estimated the SPD matrices for each BCI paradigm

differently. For the MI datasets, the SPD matrices were the

spatial covariance matrices of the multivariate EEG recordings.

The signals of each trial in the SSVEP paradigm were filtered

using bandpass filters around certain frequencies of interest

and its SPD matrices were diagonal blocks concatenating the

spatial covariance matrices of the filtered signals [1]. For the

P300, the SPD matrix of each trial was obtained using the

approach from [44], where one estimates a special form of

covariance matrix that captures the influence of event-related

potentials in each trial.

B. Comparing cross-subject classification accuracies

In this section, we compare the accuracy of the classification

of trials for each pair of target and source subject. The

classification is done using the MDM classifier and the values

of the accuracies are assessed using the same cross-validation

scheme explained in Section V-C.

We begin with a qualitative analysis of the cross-subject

classification accuracy using a tool from combinatorial data

analysis called seriation [45]. This procedure sorts the lines

and columns of a data matrix in order to make relevant patterns

appear. In our case, the matrix S to be re-ordered contains at its

(i, j) coordinate the accuracy of the classification using subject

i as target and subject j as source. The rows of S are then

sorted in decreasing order of columns sum, and the columns

of this row-sorted-matrix S are rearranged in decreasing order

of their rows sum. The output of this procedure is a new

representation where the pairs of source-target subjects with

the best accuracy are located at the top-left region of the

matrix, while the worst pairs are at the bottom-right region.

Figure 3 shows the results of this seriation procedure on the

PhysionetMI dataset for two sizes of Tℓ (the number of labeled
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target trials) and three different pipelines: DCT, RCT, and

RPA. We observe that with RCT and RPA there are more pairs

of subjects with high values of cross-subject classification than

with DCT. In particular, for RCT and RPA we note that

there are a few target subjects that have very good accuracy

on classification for almost all possible source subjects, a

feature that is possibly related to the performance of each

target subject to classify its own trials (intra-subject accuracy).

This can been interpreted as : subjects that are “good” for

classifying their own data should be “good” for receiving

information from other source subjects. We also observe a

clear improvement in the average value of the cross-subject

classification accuracies when more points are available in Tℓ.
Our next analysis consisted in calculating the mean over

all cross-subject AUC (Area Under the ROC Curve) for each

Transfer Learning pipeline on each dataset. We used these

values as quantitative measures for assessing whether one

pipeline is better than the other on cross-subject classification.

The scores are shown in Table II. We should mention that

only the subjects whose intra-score AUC (i.e., classification

of its own data) was above chance level were used in these

calculations.

Figure 4 shows the results of statistical tests performed

on each pair of methods, allowing for a more substantiated

assessment of the performance of the methods. The statistical

tests comparing method A versus method B were carried

out in the following way: (1) For each source subject j,

we perform a signed paired t-test comparing the scores of

method A to method B along all target subjects. Each of

these tests yield a statistic Tj and a p-value pj is obtained

via permutations tests [46]. (2) We combine the p-values of all

the source subjects using Stouffer’s Z-score method [47]. This

yields a single p-value for the comparison between methods

as well as the direction to which the null hypothesis has been

rejected (i.e., whether method A is better than B or vice-versa).

(3) We adjust p-values of each pairwise comparison using

Holm’s step-down procedure [48] to account for the multiple

comparison problem.

The results in Figure 4 indicate that when there are enough

points in Tℓ (“enough” depending on each dataset), transform-

ing the data points with RCT, PRL or RPA is always better

than not doing any distribution matching (DCT). We also

observe that most of the time there is no statistical significance

between the results with PRL and RCT, as expected, since

they both amount to re-centering the datasets to a new point

in the SPD manifold. For increasing values of N (the number

of labeled trials in the target dataset), RPA gets better in

comparison to almost all other methods, as expected and

observed in Figure 2 for simulated data. Interestingly, OPT

has very poor results in comparison to all other methods,

probably because it does not use any prior hypothesis on

the statistical distributions of the datasets and has to solve a

difficult optimization problem to determine its transportation

plan. Lastly, during our statistical analysis of the results, we

have observed that better results on Transfer Learning via RPA

are often associated to good intra-subject accuracy, since in

this case the estimation of the class means is more stable and

thus the rotation matrix U is better estimated. This explains
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Fig. 3. Accuracies of the cross-subject classification for three different Trans-
fer Learning procedures on the PhysionetMI database. The rows and columns
of each subplot were reordered using the seriation procedure explained in the
text. The colormap shows white for accuracies of 0.5 or less and black when
it is 1.0. The compared methods are described in Section V-C and we consider
the cases when there are one and ten labeled matrices in Tℓ.

why for some databases (e.g. PhysionetMI) the RPA is not

necessarily the best method for Transfer Learning and an

unsupervised approach like RCT has better results.

C. The role of the size of Tℓ

As pointed out in the simulation results from Section V-C,

when the size of Tℓ increases, using Transfer Learning is no

longer relevant, since one may already have enough data to

build a good classifier for the target subject. To investigate this

behavior on our real datasets, we compared the cross-subject

classification accuracy of RPA to that of the calibration

method (see Section V-C for details).

Figure 5 shows a scatter plot comparing the classification

accuracies on the MunichMI dataset. We see that when Tℓ
grows, there are more pairs of subjects for which the classi-

fication using the calibration method on the target subject is

better than doing transfer learning via RPA (28% to 34% of

all the pairs of subjects). However, the location of the cloud of

points in the figure indicates that the Transfer Learning with

RPA is still superior to the Calibration method for most pairs

of subjects. We used a one-sided paired t-test with random

data permutation [46] to compare the accuracies of RPA and

calibration on each dataset for different sizes of the Tℓ. The

null hypothesis of equivalency between the two methods was

rejected (p < 0.01) on almost all tests, the only exception

being for those on the BNCI2014001 dataset. Moreover, for
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TABLE II
MEAN VALUES OF THE CROSS-SUBJECT AUC (AREA UNDER THE ROC CURVE) FOR FIVE PIPELINES (ALL DESCRIBED IN SECTION V-C) ON EIGHT

DIFFERENT DATASETS. PARAMETER N IS THE NUMBER OF TRAINING POINTS AVAILABLE ON THE target DATASET ON EACH SITUATION. THE BEST

METHOD IN EACH INSTANCE IS WRITTEN IN BOLD.

MEAN	AUC

P
h
y
si
o
n
e
tM

I

N DCT RCT PRL OPT RPA

1 0.54 0.61 0.61 0.59 0.56

5 0.55 0.65 0.65 0.60 0.63

10 0.56 0.67 0.67 0.60 0.66

15 0.57 0.68 0.68 0.60 0.67

MEAN	AUC

S
S
V
E
P

N DCT RCT PRL OPT RPA

1 0.64 0.67 0.66 0.59 0.70

2 0.67 0.71 0.71 0.59 0.75

4 0.72 0.76 0.76 0.59 0.80

6 0.74 0.78 0.78 0.57 0.82

MEAN	AUC

C
h
o
2
0
1
7 N DCT RCT PRL OPT RPA

1 0.54 0.59 0.58 0.57 0.54

5 0.55 0.61 0.61 0.57 0.59

10 0.55 0.62 0.62 0.57 0.62

25 0.57 0.64 0.64 0.58 0.66

P
3
0
0

N DCT RCT PRL OPT RPA

6 0.57 0.56 0.56 0.58 0.55

12 0.62 0.64 0.64 0.61 0.63

32 0.71 0.74 0.74 0.67 0.73

48 0.74 0.76 0.76 0.69 0.75

MEAN AUC

N DCT RCT PRL OPT RPA

1 0.58 0.69 0.69 0.65 0.62

6 0.59 0.73 0.73 0.65 0.71

18 0.61 0.76 0.76 0.65 0.76

36 0.64 0.78 0.77 0.66 0.79

MEAN AUC

B
N
C
I2
0
1
4
0
0
1

MEAN	AUC

N DCT RCT PRL OPT RPA

1 0.51 0.56 0.55 0.54 0.57

5 0.51 0.57 0.57 0.55 0.60

10 0.52 0.59 0.58 0.56 0.63

25 0.54 0.62 0.62 0.56 0.65
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N
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0
1
5
0
0
1

MEAN	AUC

N

1
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20
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0.55 0.68 0.67 0.64 0.63

0.56 0.71 0.70 0.64 0.70

0.57 0.72 0.71 0.65 0.72

0.58 0.73 0.72 0.65 0.73

B
N
C
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0
1
4
0
0
2

N DCT RCT PRL OPT RPA

1 0.55 0.63 0.63 0.61 0.55

25 0.58 0.69 0.69 0.62 0.68

50 0.60 0.71 0.71 0.62 0.72

75 0.62 0.72 0.72 0.62 0.73
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Fig. 4. Results of the statistical tests on each pair of pipelines for all possible values of N on each dataset as indicated in Table II (for instance, on Cho2017

we have N1 = 1, N2 = 5, N3 = 10, and N4 = 25). The color/pattern of the squares indicate whether there’s no statistical difference between two methods
(white squares), if the Left method is superior to the Right one (L and R in the legend) (dark gray squares) or the contrary (squares with crossed patterns).
All conclusions are with p < 0.05 corrected via Holm’s adjustement [48]. For instance, we see that for dataset Cho2017, the method RPA is inferior to RCT

when N = 1, but RPA becomes superior when N = 25. Furthermore, for this same dataset, there’s no statistical difference in the comparison between PRL

and RCT for any N .

Fig. 5. Scatter plots comparing the accuracies of the cross-subject classifi-
cation on the MunichMI dataset for the RPA and Calibration methods. We
consider two sizes for Tℓ. The percentage numbers indicate the proportion of
dots above or below the diagonal line.

the tests where H0 was rejected, we observed a superiority of

RPA in comparison to calibration.

D. Combining information from multiple subjects

We investigated how the matching of statistical distributions

via RPA affects the performance of two baseline methods

for gathering information from the data of multiple subjects:

pooling and ensembling. The classification for each target

subject is done using information coming from all other

source subjects available in the database. Following the same

approach as in previous sections, we only considered source

subjects featuring an intra-subject accuracy above chance

level, i.e., subjects in which it is meaningful to use transfer

learning. The experiments were done on the PhysionetMI

dataset with |Tℓ| = 15 labeled trials available for each target

subject and the Cho2017 dataset with |Tℓ| = 25.

The pooling strategy consists of gathering for each target

subject the data from all other source subjects into one big

dataset. Then, a classifier is trained on the pooled dataset and

used to infer the trials from the target subject. We compared

the performance of a MDM classifier when the source subjects

were pooled with no transformation (DCT) to when the

statistical distributions of each source subject were matched

to that from the target subject using RCT or RPA (PRL is

not fit for pooling, since the matrices are not all recentered to

the same place in the SPD manifold). The boxplots in Figure 6

show the distributions of the classification scores of each of

the target subjects. Using pairwise one-sided paired t-test

with random permutations, the null hypothesis of equivalency

between the scores of DCT, RCT, and RPA were all rejected
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Fig. 6. Box plots with the distribution of the classification scores for the
ensembling and pooling strategies for different methods of statistical matching
between datasets. For the Cho2017 dataset we had 25 labeled trials in the
target dataset and for the PhysionetMI there were 15 labeled trials in it.

with p < 10−6 (adjusted for multiple comparisons). The

results show a clear improvement in the average score for

the pooling strategy when using a method for matching the

statistics of the source and target datasets, with differences of

at least 15% between RPA and DCT for both datasets.

Our second analysis considered an ensembling strategy,

where the trials of each target subject were classified using

a majority voting scheme. These votes came from MDM

classifiers trained on all other source subjects and were

weighted equally. The results in Figure 6 show the scores

with each method (including the PRL approach this time).

To compare the scores of each method, we used pairwise

one-sided paired t-tests with random permutations (corrected

for multiple comparisons). The results of the statistical tests

indicate that the ensembling strategy with RPA is superior as

compared to DCT in the PhysionetMI dataset (p < 0.05) but

they are equivalent for the Cho2017 dataset (p = 0.23). The

RCT method is superior to DCT for both datasets (p < 0.01)

whereas the scores with PRL are equivalent to DCT for both

datasets. We see then that the ensembling strategy can also be

improved when adding an extra step for matching the statistics

of the datasets of each pair of source-target subjects.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a new method for over-

coming the negative effects of statistical distribution mismatch

between subjects in BCI classification. Our proposal consists

of a sequence of geometrical transformations on the data

points from two sessions with the intention of making the

shapes of their point clouds in a high-dimensional space as

similar as possible. The inspiration for this method comes

from Procrustes Analysis, however, here the method has been

adapted to the case where the data points are SPD matrices

and live in a Riemannian manifold, which is here proposed

for the first time. Another relevant theoretical contribution

is the mathematical framework proposed in Section IV-B,

which includes the methods in [9] and [10] and extends them,

leading to our RPA method. Such formalism allows for a

better understanding of the intrinsic assumptions regarding the

statistics of the data points during the distribution matching

procedure.

An important aspect of our proposal is that we exploit the

availability of supervised information in the source session as

well as the sequential nature of the trials in the target session.

It should be noted, however, that when no labels are available

for the target session, a re-centering of data points based solely

on the geometric means of each dataset (which does not rely

on any supervised information) already greatly improves the

cross-session and cross-subject classification, as first noted

in [9]. This would be the case, for instance, in BCI applications

for people with extreme motor disability, where the labeling

of classes is very challenging. In this kind of situation, one

may still perform the re-centering and stretching steps of the

RPA method for matching the statistical distributions, turning

the transfer learning procedure into a completely unsupervised

one.

We have assessed the superiority of the RPA method on

several publicly available datasets and have used a heteroge-

neous panel of statistical tools to analyze the results. Also,

we have included in our study other recent contributions from

the literature, leading to a comprehensive comparison of the

performance of state-of-the-art methods. We hope that the

breath of the analysis performed here will be useful as a

reference for future works related to Transfer Learning on

the SPD manifold. In order to foster reproducible research,

complete Python code for the results in this paper is available

at https://github.com/plcrodrigues/RPA.

Future perspectives for this work shall include an online

implementation of our method, where usual drifts in statistics

from signals on the same session would be corrected via distri-

bution matching. An important challenge for such procedure

would be to detect when changes in the statistics occur as

well as when the number of new trials is already large enough

so that no information from data points drawn from previous

statistical distributions are needed. Another interesting line of

work would be to go further in the analysis of Section VI-D

by extending the methods proposed in [12], [14], and [13]

with a statistical matching step based on the RPA. Finally,

another interesting topic to investigate would be to consider a

Transfer Learning approach for matching data from subjects

having different numbers of electrodes.
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