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RIEMANNIAN RICCI CURVATURE LOWER BOUNDS

IN METRIC MEASURE SPACES

WITH σ-FINITE MEASURE

LUIGI AMBROSIO, NICOLA GIGLI, ANDREA MONDINO, AND TAPIO RAJALA

Abstract. In a prior work of the first two authors with Savaré, a new Rie-
mannian notion of a lower bound for Ricci curvature in the class of metric mea-
sure spaces (X, d,m) was introduced, and the corresponding class of spaces was
denoted by RCD(K,∞). This notion relates the CD(K,N) theory of Sturm
and Lott-Villani, in the case N = ∞, to the Bakry-Emery approach. In this
prior work the RCD(K,∞) property is defined in three equivalent ways and
several properties of RCD(K,∞) spaces, including the regularization proper-
ties of the heat flow, the connections with the theory of Dirichlet forms and the
stability under tensor products, are provided. In the above-mentioned work

only finite reference measures m have been considered. The goal of this paper
is twofold: on one side we extend these results to general σ-finite spaces, and
on the other we remove a technical assumption that appeared in the earlier
work concerning a strengthening of the CD(K,∞) condition. This more gen-
eral class of spaces includes Euclidean spaces endowed with Lebesgue measure,
complete noncompact Riemannian manifolds with bounded geometry and the
pointed metric measure limits of manifolds with lower Ricci curvature bounds.
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1. Introduction

In a recent paper [4] written jointly with Savaré, the first and second author
introduced a notion of Riemannian Ricci lower bound for metric measure spaces
(X, d,m), relying on the calculus tools they had developed in [3]. This definition,
in the spirit of the CD(K,N) theory proposed by Lott-Villani [25] and Sturm
[32, 33], relies on optimal transportation tools and suitable convexity properties of
the relative entropy functional Entm. In the framework of [4], these conditions are
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enforced by adding the assumption that the so-called Cheeger energy (playing here
the role of the classical Dirichlet energy) is quadratic.

More precisely, the class of RCD(K,∞) spaces of [4] can be defined in three
equivalent ways thanks to this equivalence result (see §2.3 for the precise formulation
of gradient flows involved here, in the metric sense and in the EV IK sense):

Theorem 1.1 ([4]). Let (X, d,m) be a metric measure space with (X, d) complete
and separable, m(X) ∈ (0,∞) and suppm = X. Then the following are equivalent:

(i) (X, d,m) is a strict CD(K,∞) space and the W2-gradient flow Ht of Entm
on P2(X) is additive.

(ii) (X, d,m) is a strict CD(K,∞) space and Ch is a quadratic form on L2(X,m).
(iii) (X, d,m) is a length space and any μ ∈ P2(X) is the starting point of an

EV IK gradient flow of Entm.

This equivalence is crucial for the study of the spaces RCD(K,∞): for instance
the fine properties of the heat flow and the Bakry-Emery condition obtained in [4]
need (ii), while the stability of RCD(K,∞) spaces under Sturm’s convergence [33]
of metric measure spaces (a variant of measured Gromov-Hausdorff convergence)
depends in a crucial way on (iii) and on the stability properties of EV IK flows of
[2].

The aim of this paper is to extend of the theory ofRCD(K,∞) spaces to a class of
σ-finite metric measure spaces. This extension includes fundamental examples such
as the Lebesgue measure in R

n, noncompact Riemannian manifolds with bounded
geometry and the pointed metric measure limits of manifolds with lower Ricci
curvature bounds studied by Cheeger and Colding [11–13]. In our class of spaces
we obtain the perfect analogue of Theorem 1.1 (see Theorem 6.1). Actually, even in
the finite case we improve Theorem 1.1, replacing strict CD(K,∞) with CD(K,∞)
in (i) and (ii); this is possible mainly thanks to the fine results of Section 4.

Let us now briefly and informally explain the terminology implicit in Theorem 1.1
and the technical difficulties arising when one considers σ-finite reference measures
m. Cheeger’s energy Ch can be defined in L2(X,m) by a relaxation procedure

Ch(f) :=
1

2
inf

{
lim inf
h→∞

∫
X

|Dfh|2 dm : fh Lipschitz, fh → f in L2(X,m)

}
,

where |Df | is the slope; see (2.6). Instead of this direct construction, we shall
exclusively work in this paper with another equivalent one (equivalence follows by
Theorem 6.2 of [3]), based on the notion of a weak upper gradient |Df |w; see
Definition 3.2. The weak upper gradient provides integral representation for Ch,
namely

Ch(f) =
1

2

∫
X

|Df |2w dm whenever Ch(f) < ∞.

Since Ch is convex and lower semicontinuous on L2(X,m), its gradient flow htf is
well defined starting from any initial condition. One of the main results of [3] is
the coincidence of ht with the quadratic optimal transport distance semigroup Ht

(the W2 gradient flow of Entm) under the CD(K,∞) assumption. More precisely,
if f ∈ L2(X,m) and

∫
f(x)d2(x, x0) dm(x) is finite, then Ht(fm) = (htf)m; see

Theorem 6.2. This explains the connection between (i) and (ii), where finiteness of
m does not play any role. Passing to the EV IK condition, deeply studied by the
first two authors and Savaré in [2] and by Daneri and Savaré in [15], it amounts
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(see Definition 2.5) to a family of differential inequalities indexed by σ ∈ P2(X):

(1.1)
d

dt

1

2
W 2

2 (μt, σ) ≤ Entm(σ)− Entm(μt)−
K

2
W 2

2 (μt, σ) for a.e. t ∈ (0,∞).

Set μt = (htf)m and let ϕt be Kantorovich potentials from μt to σ. The analysis
in [4] shows that

(1.2)
d

dt

1

2
W 2

2 (μt, σ) ≤ lim
ε↓0

Ch(ft − εϕt)− Ch(ft)

ε

on the one hand, and that the CD(K,∞) condition gives

(1.3) lim
ε↓0

Ch(ϕt − εft)− Ch(ϕt)

ε
≤ Entm(σ)− Ent(μt)−

K

2
W 2

2 (μt, σ)

on the other hand. If Ch is quadratic, then we can formally write that both the right
hand side in (1.2) and the left hand side in (1.3) coincide with −

∫
X
Dft ·Dϕt dm,

thus providing the connection from (ii) to (iii). However, in the derivation of (1.3)
a key role is played by the Sobolev regularity of log ft, that can be easily achieved
if ft ≥ c > 0. But, this assumption is not compatible with the σ-finite case, since ft
is a probability density, and even local space-time lower bounds on ft can hardly be
obtained in our framework, where no finite dimensionality assumption on (X, d,m)
is made. It turns out that this derivation is still possible, but only working in a
time-dependent weighted Sobolev space. Formally we write∫

X

Dft ·Dϕt dm =

∫
X

D log ft ·Dϕt d(ftm)

and, thanks to the energy dissipation estimate

Entm(fTm) +

∫ T

0

∫
X

|Dft|2w
ft

dmdt ≤ Entm(fm),

we know that log ft belongs for a.e. t to the Sobolev space with weight ft. Then
we prove that for a.e. t > 0 the first inequality (1.2) holds, when written in terms
of weighted Sobolev spaces, for any choice of the Kantorovich potential ϕt, while
the second inequality (1.3) holds for at least one. This suffices for the derivation of
(1.1).

Besides the application to σ-finite RCD(K,∞) spaces, several results of this
paper have an independent interest and do not rely on curvature assumptions; see,
for instance, Lemma 2.3 which provides compactness properties of Kantorovich
potentials and Theorem 3.6 which analyzes the weighted Cheeger energies. Also,
it is worthwhile to mention that the existence of geodesics with L∞ bounds in
Section 4 applies to σ-finite CD(K,∞) spaces, i.e. no quadratic assumption on Ch
is needed for the results of the section. Also, since finiteness of m was used in [4]
essentially only for the equivalence of Theorem 1.1, we describe in the last section
the properties of RCD(K,∞) spaces proved in [4], whose proof extends with no
additional effort to the σ-finite case: among them we just mention the Bakry-Emery
condition

|D(htf)|2w ≤ e−2Kt|Df |2w m-a.e. in X.

Further analysis of the Bakry-Emery condition appears in [6]. The extension of the
stability of the RCD(K,∞) condition under Sturm’s metric measure convergence
to the σ-finite case is far from being trivial. We refer to [19] for the positive answer
to this question.
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The paper is organized as follows. In Section 2 we gather a few facts on relative
entropy and optimal transportation, mostly stated without proofs (standard refer-
ences are [1], [2], [34]); the only original contribution is a compactness result for
Kantorovich potentials via De Giorgi’s Γ-convergence stated in Lemma 2.3.

In Section 3 we recall the main results of the theory of weak gradients as devel-
oped by the first two authors with Savaré in [3], emphasizing also the connections
with the points of view developed by Cheeger in [10], Koskela-MacManus in [23]
and Shanmugalingam in [30]. The main result of the section is Theorem 3.6 which
states that, for probability densities ρ = gm with g ∈ L∞(X,m) and Ch(

√
g) < ∞,

roughly speaking weak gradients w.r.t. to m and weak gradients with respect to ρ
are the same, even though no (local) lower bound on g is assumed. Furthermore,
Cheeger’s energy Chρ induced by ρ is quadratic if Ch is quadratic. Section 4 is cru-
cial for the development of (short time) L∞ estimates for displacement interpolation
in CD(K,∞) spaces (see Theorem 4.2 for a precise statement) which are new in
the situation when (X, d) is unbounded and m is not finite. These estimates, which

hold when the density of the first measure decays at least as c1e
−c2d

2(x,x0) for some
c1, c2 > 0 and the second measure has bounded density and support, are obtained
by carefully combining entropy minimization (an approach proposed by Sturm and
then developed by Rajala in [27,28]) and splitting optimal geodesic plans. Section 5
is devoted to the proof of some auxiliary convergence results dealing with entropy,
difference quotients of probability densities and Kantorovich potentials, and bi-
linear form Chρ associated to a measure ρ ∈ P2(X) as in Section 3. Section 6
contains the proof of Theorem 6.1, which provides the equivalence result analogous
to Theorem 1.1 in the present σ-finite setting.

2. Preliminaries

In this section we introduce our notation, including the relative entropy func-
tional Entn in (2.1), the slope |Df | of a function f in (2.6), the one-sided slopes
|D±f | in (2.7), the class ACp(J ;X) of absolutely continuous curves with metric
derivative in Lp(J), the class of geodesics (2.8) and the notions of geodesic and
length space. We then review optimal transport, prove the existence of special Lip-
schitz Kantorovich potentials (Proposition 2.2) and prove a compactness theorem
of Kantorovich potentials (Lemma 2.3).

We assume throughout the paper that (X, d,m) is a metric measure space with
(X, d) complete and separable and m a nonnegative Borel measure finite on bounded
sets and satisfying suppm = X.

We denote by P(X) the space of Borel probability measures on (X, d) and set

P2(X) :=
{
μ ∈ P(X) :

∫
X

d2(x0, x) dμ(x)<∞ for some (and hence all) x0∈X
}
.

Given a nonnegative Borel measure n, the relative entropy functional Entn :P2(X)
→ [−∞,∞] with respect to n is defined as in Sturm’s paper [32] by

(2.1) Entn(μ) :=

⎧⎨
⎩
lim
ε↓0

∫
{ρ>ε} ρ log ρ dn if μ = ρn,

∞ otherwise.

It coincides with
∫
{ρ>0} ρ log ρ dn ∈ [−∞,∞) if the positive part of ρ log ρ is n-

integrable, and it is equal to ∞ otherwise.
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In the sequel we use the notation

(2.2) D(Entn) := {μ ∈ P2(X) : Entn(μ) ∈ [−∞,∞)} .
By Jensen’s inequality, Entn is nonnegative when n ∈ P(X). More generally,

we recall (see [3, Lemma 7.2] for the simple proof) that when n satisfies the growth
condition

(2.3)

∫
X

e−cd2(x0,x) dn(x) < ∞,

for some x0 ∈ X and c ∈ (0,∞), then Entn can bounded from below as follows.

Letting z =
∫
X
e−cd2(x,x0) dn and

(2.4) ñ =
1

z
e−cd2(x,x0)n ∈ P(X), V (x) = d(x, x0),

and using the simple formula for the change of the reference measure

(2.5) Entn(μ) = Entñ(μ)− c

∫
X

V 2 dμ− log z, ∀μ ∈ P2(X),

we see that Entn can be bounded from below in terms of the second moment of μ.
It is important to recall that if (X, d,m) is a CD(K,∞) space (see Definition 4.1),
then the reference measure m always satisfies the growth condition (2.3), as shown
by Sturm in [32, Theorem 4.24].

2.1. Metric structure. We shall denote by Lip(X) the space of Lipschitz func-
tions f : X → R and by Lipb(X) the subspace of bounded Lipschitz functions.

Given f : X → R we define its slope |Df | at x by

(2.6) |Df |(x) := lim sup
y→x

|f(y)− f(x)|
d(y, x)

.

We shall also use, in connection with Kantorovich potentials, the one-sided coun-
terparts of the slope, namely the ascending slope and descending slopes:
(2.7)

|D+f |(x) := lim sup
y→x

[f(y)− f(x)]+

d(y, x)
, |D−f |(x) := lim sup

y→x

[f(y)− f(x)]−

d(y, x)
.

Given an open interval J ⊂ R, an exponent p ∈ [1,∞] and γ : J → X, we say
that γ belongs to ACp(J ;X) if there exists g ∈ Lp(J) satisfying

d(γs, γt) ≤
∫ t

s

g(r) dr ∀s, t ∈ J, s < t.

The case p = 1 corresponds to absolutely continuous curves, denoted AC(J ;X). It
turns out that if γ belongs to ACp(J ;X), there is a minimal function g with this
property, called the metric derivative, and given for a.e. t ∈ J by

|γ̇t| := lim
s→t

d(γs, γt)

|s− t| .

See [2, Theorem 1.1.2] for the simple proof. We say that an absolutely continuous
curve γt has constant speed if |γ̇t| is (equivalent to) a constant.

We call (X, d) a geodesic space if for any x0, x1 ∈ X there exists γ : [0, 1] → X
satisfying γ0 = x0, γ1 = x1 and

(2.8) d(γs, γt) = |t− s|d(γ0, γ1) ∀s, t ∈ [0, 1].
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We will denote by Geo(X) the space of all constant speed geodesics γ : [0, 1] → X,
namely γ ∈ Geo(X) if (2.8) holds. Recall also that the weaker notion of length
space: for all x0, x1 ∈ X and ε > 0 there exists γ ∈ AC([0, 1];X) such that∫ 1

0
|γ̇t| dt < d(x0, x1) + ε.
From the measure-theoretic point of view, when considering measures on

ACp(J ;X) (resp. Geo(X)), we shall consider them as measures on the Polish space
C(J ;X) endowed with the sup norm, concentrated on the Borel set ACp(J ;X)
(resp. closed set Geo(X)). We shall also use the notation et : C(J ;X) → X, t ∈ J ,
for the evaluation map at time t, namely et(γ) := γt.

2.2. Optimal transport. Given μ, ν ∈ P2(X), we define the quadratic optimal
transport distance W2 between them as

(2.9) W 2
2 (μ, ν) := inf

∫
X×X

d2(x, y) dγ(x, y),

where the infimum is taken among all Kantorovich transport plans, namely proba-
bility measures γ on X ×X such that

π1
�γ = μ, π2

�γ = ν.

Here, for μ ∈ P(X), a topological space Y and a μ-measurable map T : X → Y ,
the push-forward measure T�μ ∈ P(Y ) is defined by T�μ(B) := μ(T−1(B)) for
every Borel set B ⊂ Y .

Since (X, d) is complete and separable, the space (P2(X),W2) is complete and
separable. Since the cost d2 is lower semicontinuous, the infimum in the definition
(2.9) of W 2

2 is attained. All plans γ achieving the minimum will be called optimal.
For all μ, ν ∈ P2(X) Kantorovich’s duality formula holds:

(2.10)
1

2
W 2

2 (μ, ν) = sup

{∫
X

ϕ dμ+

∫
X

ψ dν : ϕ(x) + ψ(y) ≤ 1

2
d2(x, y)

}
,

where the supremum is taken among all functions ϕ ∈ L1(X,μ) and ψ ∈ L1(X, ν).
Recall that the c-transform ϕc of ϕ : X → R ∪ {−∞} is defined by

ϕc(y) := inf

{
d2(x, y)

2
− ϕ(x) : x ∈ X

}

and that ψ is said to be c-concave if ψ = ϕc for some ϕ.

Definition 2.1 (Kantorovich potential). We say that a map ϕ : X → R ∪ {−∞}
is a Kantorovich potential relative to (μ, ν) if:

(i) there exists a Borel map ψ : X → R ∪ {−∞} such that ψ ∈ L1(X, ν) and
ϕ = ψc;

(ii) ϕ ∈ L1(X,μ) and the pair (ϕ, ψ) maximizes (2.10).

Notice that the inequality ϕ(x) + ψ(y) ≤ 1
2d

2(x, y), when integrated against an
optimal plan γ, forces the integrability of the positive part of ϕ. For this reason,
in (ii) we may equivalently require integrability of the negative part of ϕ only. In
the next proposition we illustrate some key properties of Kantorovich potentials ϕ
and show how, in the special case when supp ν is bounded, a special choice of ψ
provides better properties of ϕ = ψc.
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Proposition 2.2 (Existence of Kantorovich potentials). If μ, ν ∈ P2(X), then a
Kantorovich potential ϕ = ψc relative to (μ, ν) exists and satisfies

(2.11) ϕ(x) + ψ(y) = 1
2d

2(x, y) for γ-a.e. in (x, y) ∈ X ×X

for any optimal Kantorovich plan γ and

(2.12) |D+ϕ|(x) ≤ d(x, y) for γ-a.e. (x, y).

In addition, if supp ν ⊂ BR(y0) for some R ≥ 1, then a locally Lipschitz Kan-
torovich potential ϕ = ψc exists with ψ ≡ −∞ on X \ supp ν, ψ ≤ R2/2 on supp ν
and

(2.13) |Dϕ|(x) ≤ R+ d(x, y0), |ϕ(x)| ≤ 2R2(1 + d2(x, y0)).

Proof. Since any complete and separable metric space can be isometrically embed-
ded in a complete, separable and geodesic metric space, we can assume with no loss
of generality that the space (X, d) is geodesic. The existence part is well known,
so let us discuss briefly (2.12), the choice of gauge and the regularity properties of
ϕ when ν has bounded support. From (2.11) and the inequality ϕ+ ϕc ≤ d2/2 we
get

ϕ(z)− ϕ(x) ≤ 1

2

(
d2(z, y)− d2(x, y)

)
for all z

for γ-a.e. (x, y), so that |D+ϕ|(x) ≤ d(x, y) for γ-a.e. (x, y).
Now, let us set

ψ̃(x) :=

{
ψ(x) if x ∈ supp ν,

−∞ otherwise,

and ϕ̃ := (ψ̃)c. Since ϕ̃ ≥ ϕ, it is obvious that its negative part is μ-integrable and

that (ϕ̃, ψ̃) is a maximizing pair, so that ϕ̃ is a Kantorovich potential. From

ϕ̃(x) = inf
y∈supp ν

1

2
d2(x, y)− ψ̃(y)

and the inclusion supp ν ⊂ BR(y0) it is immediate to obtain the linear growth
of |Dϕ̃|, in the form stated in (2.13). Finally, possibly adding and subtracting
the same constant to the potentials in the maximizing pair, we can assume that
ϕ̃(y0) = 0. Then, the inequality ψ̃ ≤ 1

2d
2(y0, ·) gives ψ̃ ≤ R2/2 on supp ν. The

linear growth of |Dϕ̃| gives the quadratic growth of |ϕ|, since (X, d) is geodesic. �

In the proof of the next lemma we use De Giorgi’s Γ-convergence. Strictly
speaking, we use Γ−-convergence, the one designed for convergence of minimum
problems. We recall the definition and the basic facts, referring to Dal Maso’s
book [14] for a full account of this theory. If (Y, d) is a metric space and fh :
Y → [−∞,+∞], f : Y → [−∞,+∞] are lower semicontinuous, we say that (fh)
Γ-converges to f and write f = Γ− limh fh if:

(a) for any sequence (yh) ⊂ Y convergent to y ∈ Y , one has lim infh fh(yh) ≥
f(y);

(b) for all y ∈ Y there exists (yh) ⊂ Y convergent to y and satisfying
lim suph fh(yh) ≤ f(y).

It is immediate to check that Γ-convergence is invariant by additive constant per-
turbations. In addition, (a) yields that f �→ infA f is lower semicontinuous w.r.t.
Γ-convergence for any open set A ⊂ Y , while (b) yields that f �→ minK f is upper
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semicontinuous w.r.t. Γ-convergence for any compact set K ⊂ Y . If Y is compact
we can choose A = K = Y to obtain

(2.14) Γ− lim
h→∞

fh = f =⇒ lim
h→∞

min
Y

fh = min
Y

f.

We need one more property of Γ-convergence: if Y is separable, then any sequence of
lower semicontinuous maps fh : Y → [−∞,+∞] admits a Γ-convergent subsequence
fh(k). To see this, let U be a countable basis of open sets of Y and extract with a
diagonal argument a subsequence h(k) such that infU fk(k) has a limit in [−∞,+∞]
for all U ∈ U . Then, the function

f(y) := sup
U�y, U∈U

lim
k→∞

inf
U

fh(k), y ∈ Y,

provides the Γ-limit of fh(k).

Lemma 2.3 (Compactness of Kantorovich potentials). Consider probability den-
sities σ, η = fm, ηn = fnm ∈ P2(X) satisfying the following conditions:

(a) σ has compact support;
(b) fn → f m-a.e. in X and supn fn(x)(1 + d2(x, x0)) ∈ L1(X,m) for some

x0 ∈ X.

Suppose there exist C > 0 and Kantorovich potentials ϕn = ψc
n relative to (ηn, σ)

in the sense of Definition 2.1, satisfying

(2.15) |ϕn(x)| ≤ C(1 + d2(x, x0)) ∀x ∈ X

and

(2.16) ψn ≡ −∞ on X \ supp σ and ψn(x) ≤ C ∀x ∈ X.

Then there exist a subsequence n(k) and a Kantorovich potential ϕ = ψc of the
transportation problem relative to (η, σ) such that ϕn(k) → ϕ pointwise. In addition
(2.15) is fulfilled by ϕ and ψ ≤ C.

Proof. Since X is separable, by the compactness properties of Γ-convergence we can
assume with no loss of generality that −ψn Γ-converges as n → ∞, and we shall
denote by −ψ its Γ-limit. Observe that, since by the definition of Γ-convergence
for every x ∈ X there exists a sequence xn → x such that −ψn(xn) → −ψ(x), ψ
still satisfies (2.16).

By the invariance of Γ-convergence under continuous additive perturbations we
get

(2.17)

(
1

2
d2(x, ·)− ψ

)
= Γ− lim

n→∞

(
1

2
d2(x, ·)− ψn

)
∀x ∈ X.

Because of (2.16) and of the compactness of supp σ, we can use (2.14) to get

(2.18) ϕn(x) = min
X

(
1

2
d2(x, ·)− ψn

)
→ min

X

(
1

2
d2(x, ·)− ψ

)
= ϕ(x),

where the last equality has to be understood as the definition of ϕ(x). Obviously
(2.15) is fulfilled by ϕ, so that ϕ ∈ L1(X, fm). In connection with ψ, obviously its
positive part is σ-integrable.

Now we claim that ϕ = ψc is a Kantorovich potential for the limit transportation
problem (fm, σ). We have to prove that

(2.19)

∫
X

ϕ d(fm) +

∫
X

ψ dσ ≥ 1

2
W 2

2 (fm, σ),
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since this inequality also provides at the same time integrability of the negative
part of ψ. Since by assumption ϕn = ψc

n is a Kantorovich potential for (fnm, σ),
we already know that

(2.20)

∫
X

ϕn d(fnm) +

∫
X

ψn dσ =
1

2
W 2

2 (fnm, σ).

Using (b) it is immediate to check the weak convergence of fnm to fm, so that (see
for instance Proposition 2.5 in [1])

(2.21) W 2
2 (fm, σ) ≤ lim inf

n
W 2

2 (fnm, σ).

Moreover, using (b) and (2.15), the dominated convergence theorem gives

(2.22)

∫
X

ϕn d(fnm) →
∫
X

ϕ d(fm).

Finally, by the very definition of Γ-limit we have

−ψ(x) = inf
{
lim inf
n→∞

−ψn(xn)|xn → x
}
≤ lim inf

n→∞
−ψn(x).

Moreover, by assumption (2.16), −ψn ≥ −C. Hence Fatou’s lemma gives

(2.23) lim sup
n→∞

∫
X

ψn dσ ≤
∫
X

ψ dσ.

Putting together (2.20), (2.21), (2.22) and (2.23) we get (2.19) as desired. �
Let us close this section by discussing the geodesic structure of (P2(X),W2);

see [1, Theorem 2.10] or [24]. If μ0, μ1 ∈ P2(X) are connected by a constant speed
geodesic μt in (P2(X),W2), then there exists π ∈ P(Geo(X)) with (et)�π = μt

for all t ∈ [0, 1] and

W 2
2 (μs, μt)=

∫
Geo(X)

d2(γs, γt) dπ(γ)=(s−t)2
∫
Geo(X)

�2(γ) dπ(γ) ∀s, t ∈ [0, 1],

where �(γ) = d(γ0, γ1) is the length of the geodesic γ. The collection of all the
measures π with the above properties is denoted by OptGeo(μ0, μ1). The measure
π is not uniquely determined by μt, unless (X, d) is nonbranching. The relation
between optimal geodesic plans and optimal Kantorovich plans is given by the fact
that γ := (e0, e1)�π is optimal whenever π ∈ OptGeo(μ0, μ1).

2.3. Gradient flows. In this section we review the notions of gradient flows in
the metric sense, in the EV IK sense and in the classical sense provided, in Hilbert
spaces, by the theory of monotone operators.

Let (Y, dY ) be a complete and separable metric space and K ∈ R. We say that
E : Y → R ∪ {+∞} is K-geodesically convex if for any y0, y1 ∈ D(E) there exists
γ ∈ Geo(Y ) satisfying γ0 = y0, γ1 = y1 and

E(γt) ≤ (1− t)E(y0) + tE(y1)−
K

2
t(1− t)d2Y (y0, y1) for every t ∈ [0, 1].

Definition 2.4 (Metric formulation of gradient flow). Let E : Y → R ∪ {+∞}
be a K-geodesically convex and l.s.c. functional. We say that a locally absolutely
continuous curve [0,∞) � t �→ yt ∈ D(E) is a gradient flow of E starting from
y0 ∈ D(E) if

(2.24) E(y0) = E(yt) +

∫ t

0

1

2
|ẏr|2 +

1

2
|D−E|2(yr) dr ∀t ≥ 0.
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Next we recall a stronger formulation of gradient flows, introduced and exten-
sively studied in [2], [15].

Definition 2.5 (Gradient flows in the EV IK sense). Let E : Y → R∪ {+∞} be a
lower semicontinuous functional, K ∈ R and (0,∞) � t �→ yt ∈ D(E) be a locally
absolutely continuous curve. We say that (yt) is a K-gradient flow for E in the
Evolution Variational Inequalities sense (or, simply, it is an EV IK gradient flow)
if for any z ∈ Y we have

(2.25)
d

dt

d2Y (yt, z)

2
+

K

2
d2Y (yt, z) + E(yt) ≤ E(z) for a.e. t ∈ (0,∞).

If limt↓0 yt = y0 ∈ D(E), we say that the gradient flow starts from y0.

Notice that the derivative in (2.25) exists for a.e. t > 0, since t �→ dY (yt, z) is
locally absolutely continuous in (0,∞).

We recall some basic and useful properties of gradient flows in the EV IK sense
(see Proposition 2.22 in [4]); we also refer to [2, Chap. 4] for more results. In
particular, we emphasize that the maps St : y0 �→ yt, that at every y0 associate the
value at time t ≥ 0 of the unique K-gradient flow starting from y0, give rise to a
continuous semigroup of K-contractions according to (2.26) in a closed (possibly
empty) subset of Y .

Proposition 2.6 (Properties of gradient flows in the EV IK sense). Let Y , E, K,
yt be as in Definition 2.5 and suppose that (yt) is an EV IK gradient flow of E
starting from y0. Then:

(i) If y0 ∈ D(E), then yt is also a metric gradient flow, i.e. (2.24) holds.
(ii) If (ỹt) is another EV IK gradient flow for E starting from ỹ0, then

(2.26) dY (yt, ỹt) ≤ e−KtdY (y0, ỹ0).

In particular, EV IK gradient flows uniquely depend on the initial condition.
(iii) The existence of EV IK gradient flows starting from any point in D ⊂ Y

implies the existence starting from any point in D.

If (Y, dY ) is a Hilbert space with distance induced by the scalar product, the
gradient flow of a lower semicontinuous functional E : Y → R ∪ {+∞} can also be
defined as a locally absolutely continuous map yt : (0,∞) → H satisfying

(2.27)
d

dt
yt ∈ −∂−E(yt) for a.e. t > 0, lim

t↓0
yt = y in H,

where the Frechet subdifferential ∂−E(y) is defined by

(2.28) ∂−E(y) :=

{
ξ ∈ H : lim inf

y′→y

E(y′)− E(y)− 〈ξ, y′ − y〉
dY (y′, y)

≥ 0

}
.

Under a K-convexity assumption the subdifferential can be equivalently defined as
(2.29)

∂−E(y) :=

{
ξ ∈ H : E(y′) ≥ E(y) + 〈ξ, y′ − y〉+ K

2
d2Y (y

′, y) for all y′ ∈ H

}
.

Differentiating the squared distance in (2.25) yields that the EV IK formulation
and (2.27) are equivalent in the Hilbert setting, for K-convex functionals.
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3. Weak gradients and weighted Cheeger energies

In this section we recall the main results of the theory of weak gradients as
developed by the first two authors with Savaré in [3], emphasizing the connections
with the points of view developed by Cheeger in [10], Koskela-MacManus in [23]
and Shanmugalingam in [30]. We prove in Theorem 3.6 the equivalence of weak
gradients defined with reference measures n and m, under suitable assumptions on
the density of n w.r.t. m. We introduce in (3.6) the weighted Cheeger energy
Chn and show in Theorem 3.9 that, under the assumptions of Theorem 3.6, Chn is
quadratic whenever Ch is quadratic.

In the next two definitions we consider test plans and “Sobolev” functions with
respect to a reference nonnegative Borel measure n in X, finite on bounded sets. In
the sequel we shall denote by M this class of measures, including both probability
measures and our reference measure m.

Definition 3.1 (Test plan). We say that π ∈ P(C([0, 1];X)) is a 2-test plan
relative to n ∈ M if:

(i) π is concentrated on AC2([0, 1];X) and the 2-action of π is finite:

A2(π) :=

∫ ∫ 1

0

|γ̇t|2 dt dπ(γ) < ∞.

(ii) There exists C ≥ 0 such that (et)�π ≤ Cn for all t ∈ [0, 1].

The following definition was inspired by Heinonen-Koskela’s concept [21] of an
upper gradient, that we now illustrate. A Borel function G : X → [0,∞] is an
upper gradient of a Borel function f : X → R if

|f(γb)− f(γa)| ≤
∫ b

a

G(γs)|γ̇s| ds

for any absolutely continuous curve γ : [a, b] → X. Since the inequality is invariant
under reparameterization, one can also reduce to curves defined in [0, 1].

Let C (X) be the set of continuous parametric curves C ⊂ X with finite length,
where curves equivalent under reparameterization are identified. Recall that any
such curve C can be written as γ([0, �]), where � is the length of C and γ : [0, �] → X
is Lipschitz with |γ̇| = 1 a.e. in [0, �]. We shall denote by i : AC2([0, 1];X) → C (X)
the natural surjection.

Recall also that the 2-modulus of Γ ⊂ C (X) is defined by
(3.1)

Mod2,n(Γ) := inf

{∫
X

g2 dn : g : X → [0,∞] Borel,

∫
γ

g ≥ 1 for all γ ∈ Γ

}
.

Shanmugalingam proved in [30] that functions with an upper gradient in L2(X, n)
are absolutely continuous along a Mod2,n-a.e. curve in C (X). We also recall the
following simple consequence of (3.1): for any Mod2,n-negligible set Γ there exist
Borel functions rh : X → [0,∞] satisfying

∫
X
r2h dn → 0 and

∫
γ
rh = ∞ for all

γ ∈ Γ. Also, the inequality

Mod2,n
(
{γ :

∫
γ

g ≥ t}
)
≤ 1

t

(∫
X

g2 dn

)1/2

, t > 0,

immediately yields that functions in L2(X,m) have a finite integral on γ for Mod2,n-
a.e. γ.
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Definition 3.2 (The space S2n and weak upper gradients). Let f : X → R, G :
X → [0,∞] be Borel functions. We say that G is a 2-weak upper gradient relative
to n of f if

|f(γ1)− f(γ0)| ≤
∫ 1

0

G(γs)|γ̇s| ds < ∞ for π-a.e. γ

for all 2-test plans π relative to n.
We write f ∈ S2n if f has a 2-weak upper gradient in L2(X, n). The 2-weak upper

gradient relative to n with minimal L2(X, n) norm (the so-called minimal 2-weak
upper gradient) will be denoted by |Df |w,n.

Remark 3.3 (Sobolev regularity along curves). A consequence of S2n regularity is
(see Proposition 5.7 in [3]) the Sobolev property along curves, namely for any 2-test
plan π relative to n the function t �→ f(γt) belongs to the Sobolev space W 1,1(0, 1)
and

| d
dt

f(γt)| ≤ |Df |w(γt)|γ̇t| a.e. in (0, 1)

for π-a.e. γ. Conversely, assume that g is Borel nonnegative, that for any 2-test
plan π the map t �→ f(γt) is W

1,1(0, 1) and that

| d
dt

f(γt)| ≤ g(γt)|γ̇t| a.e. in (0, 1)

for π-a.e. γ. Then, the fundamental theorem of calculus in W 1,1(0, 1) gives that g
is a 2-weak upper gradient of f . �

Because of the absolute continuity condition (et)�π � n imposed on test plans,
it is immediate to check that the property of being in S2n, as well as |Df |w,n, are
invariant under modifications of f in n-negligible sets. Furthermore, these concepts
are easily seen to be local with respect to n in the following sense: if f ∈ S2n, then
f ∈ S2n′ for all measures n′ = n B with B ⊂ X Borel, and |Df |w,n′ ≤ |Df |w,n

n′-a.e. on B: this is due to the fact that test plans relative to n′ are test plans
relative to n. Conversely,

(3.2) f ∈ S2nR
with nR := n BR(x0), sup

R

∫
X

|Df |2w,nR
dnR < ∞ =⇒ f ∈ S2n.

This is due to the fact that any curve is bounded, hence any test plan π relative to n

can be monotonically approximated by test plans concentrated on curves contained
in a bounded set.

Another property we shall need is the locality with respect to f ; see [6] for the
simple proof.

Proposition 3.4 (Locality). Let f1, f2 : X → R Borel and let G1, G2 ∈ L2(X, n)
be 2-weak upper gradients of f1, f2 relative to n respectively. Then

G̃1 :=

{
G1 on {f1 �= f2},
min{G1, G2} on {f1 = f2}

is a 2-weak upper gradient of f1. In particular, by minimality we get

(3.3) |Df1|w,n = |Df2|w,n n-a.e. on {f1 = f2}.
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Weak gradients share with classical gradients many features, in particular the
chain rule [3, Proposition 5.14]

(3.4) |Dφ(f)|w,n = φ′(f)|Df |w,n n-a.e. in X

for all φ : R → R Lipschitz and nondecreasing on an interval containing the image
of f . By convention, as in the classical chain rule, φ′(f) is arbitrarily defined at
all points x such that φ is not differentiable at x, taking into account the fact that
|Df |w,n = 0 n-a.e. on this set of points.

In the sequel we shall adopt the conventions

(3.5) |Df |w := |Df |w,m, S2 := S2m.

In Theorem 3.5 below we analyze in detail the behaviour of |Df |w,n and S2n under
modifications of the reference measure n.

Theorem 3.5. The following properties hold:

(a) If n ∈ M and Γ ⊂ C (X) is Mod2,n-negligible, then any Borel set Γ̃ ⊂
AC2([0, 1];X) such that i(Γ̃) ⊂ Γ is π-negligible for any 2-test plan π
relative to n. In addition, for any Borel and n-negligible set N ⊂ X the
following holds:

Mod2,n
({

γ ∈ C (X) :

∫
γ−1(N)

|γ̇| dt > 0
})

= 0.

(b) If either n ∈ P(X) and f ∈ S2n, or n ∈ M and f ∈ S2n ∩ L1(X, n), there
exist φn ∈ Lipb(X)∩L2(X, n) satisfying φn → f n-a.e. in X and |Dφn| →
|Df |w,n in L2(X, n).

(c) If either n ∈ P(X) and f ∈ S2n, or n ∈ M and f ∈ S2n ∩ L1(X, n), then

there exists a Borel function f̃ coinciding with f out of an n-negligible set
and having an upper gradient in L2(X, n); in addition, there exist upper

gradients Gn of f̃ converging to |Df |w,n in L2(X, n).

Proof. (a) The first statement is a simple consequence of Hölder inequality; see
[3, Remark 5.3]. The second one follows just by taking the function g identically
equal to ∞ on N and null out of N in (3.1).

(b) Using the chain rule (3.4) we reduce the proof to the case of nonnegative
functions f . If f belong to L2(X, n) the existence of φn is one of the main results of
[3]; see Theorem 6.2 therein. In the general case we approximate f by the truncated
functions fN = min{f,N} and use the chain rule again to show |DfN |w,n → |Df |w,n

in L2(X, n). Then, a diagonal argument provides the result.
(c) This is part of the theory developed by Koskela-MacManus in [23] and Shan-

mugalingam in [30]: if fn → f n-a.e. and Gn are upper gradients of fn weakly

convergent to G in L2(X, n), then we can find a Borel function f̃ equal to f n-a.e.

and a Borel function G̃ equal to G n-a.e. such that G̃ satisfies the upper gradi-
ent property relative to f̃ along Mod2,n-a.e. curve. In our case when f ∈ S2n we

may apply statement (b) with G = |Df |w,n and choose fn = φn to find f̃ and G̃.
Then, denoting by Γ the set of curves where the upper gradient property fails and
considering

Gh := G̃+ rh,

where rh ∈ L2(X, n) satisfy
∫
X
r2h dn → 0 and

∫
γ
rε = ∞ for all γ ∈ Γ, we obtain

upper gradients Gh of f̃ approximating |Df |w,n in L2(X, n). �
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Theorem 3.6 (Change of reference measure). Assume that ρ = gm ∈ P2(X) with
g ∈ L∞(X,m) and |D√

g|w ∈ L2(X,m). Then:

(a) f ∈ S2 and |Df |w ∈ L2(X, ρ) imply f ∈ S2ρ and |Df |w,ρ = |Df |w ρ-a.e. in
X;

(b) log g ∈ S2ρ and |D log g|w,ρ = |Dg|w/g ρ-a.e. in X.

Proof. (a) Thanks to the locality properties with respect to m stated after Defini-
tion 3.2 (see in particular (3.2)) we can reduce ourselves to the case when m(X) = 1.
Since the statement is invariant under modification of f and g in m-negligible sets,
by Theorem 3.5(b) we can assume that

√
g and f are absolutely continuous along

Mod2,m-a.e. curve in C (X); even more, we can assume that f has an upper gradient
H with

∫
H2 dm < ∞.

Let us first prove the inequality |Df |w,ρ ≤ |Df |w ρ-a.e. in X. By a truncation
argument we can assume with no loss of generality that f is bounded; under this
assumption we can find bounded Lipschitz functions φn with |Dφn| → |Df |w in
L2(X,m). Since g is bounded it follows that |Dφn| → |Df |w in L2(X, ρ); we can
now use the stability properties of weak upper gradients [3, Theorem 5.12] to obtain
that |Df |w,ρ ≤ |Df |w ρ-a.e. in X.

In order to prove the converse inequality |Df |w,ρ ≥ |Df |w ρ-a.e. in X, we

consider a function f̃ coinciding with f ρ-a.e. in X and an upper gradient L of
f̃ with

∫
L2 dρ < ∞. The converse inequality follows by letting L → |Df |w,ρ in

L2(X, ρ) if we are able to show that

L1(x) :=

{
H(x) if g(x) = 0,

min{H(x), L(x)} if g(x) > 0

is a 2-weak upper gradient of f relative to m. More precisely, we will prove that the
upper gradient inequality with L1 in the right hand side holds along Mod2,m-a.e.
curve. We notice first that

|f̃(γ�(γ))− f̃(γ0)| ≤
∫
γ

L

along Mod2,m-a.e. curve γ satisfying infγ g > 0 (here we are using the invariance
under reparameterization, selecting the arclength one, with �(γ) equal to the length
of γ). Indeed, by definition of 2-modulus, the set{

γ ∈ C (X) : inf
γ

g > 0,

∫
γ

L = ∞
}

is not only Mod2,ρ-negligible, but also Mod2,m-negligible. If we write the upper
gradient inequality in averaged form,

1

ε�(γ)

∫ ε�(γ)

0

|f̃(γ�(γ)−r)− f̃(γr)| dr ≤
∫
γ

L with ε <
1

2
,

and use Theorem 3.5(a) with the m-negligible set N = {f �= f̃} ∩ {g > 0}, we may

replace f̃ with f in the previous inequality. Now we use the absolute continuity of
f along Mod2,m-a.e. curve and pass to the limit along a sequence εk ↓ 0 to get

|f(γb)− f(γa)| ≤
∫
γ

L

along Mod2,m-a.e. curve γ : [a, b] → X with infγ g > 0.
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The set of curves γ ∈ C (X) containing a subcurve γ′ : [a, b] → X with infγ′ g > 0
and |f(γ′

b) − f(γ′
a)| >

∫
γ′ L is Mod2,m-negligible as well. If γ does not belong to

this set and f ◦ γ is absolutely continuous, it is immediate to check (recall that g is
continuous along Mod2,m-a.e. curve) that its derivative is bounded a.e. by L1 ◦γ|γ̇|,
whence the upper gradient inequality along γ follows.

(b) We consider the functions fε = log(g + ε). Since |Dg|2w/g2 ∈ L1(X, ρ) it
is immediate to check that all functions fε satisfy the assumption in (a), hence
fε ∈ S2ρ and |Dfε|w,ρ = |Dfε|w = |Dg|w/(g + ε) ρ-a.e. in X. We can now pass
to the limit as ε ↓ 0 and again use the stability of weak upper gradients to get
|Df |w,ρ ≤ |Dg|w/g ρ-a.e. in X. The converse inequality follows by the chain rule
(3.4) with φ(s) := log(es + 1):

|Dg|w
g + 1

= |Df1|w,ρ = φ′(f)|Df |w,ρ =
g

g + 1
|Df |w,ρ.

�

Remark 3.7. Notice that for the validity of (a) it suffices, as the proof shows, the
existence of a nonnegative function g̃ continuous along a Mod2,m-a.e. curve and
satisfying m({g �= g̃}) = 0. �

We shall define Ch : L1(X,m) → [0,∞], Chn : L1(X, n) → [0,∞] by
(3.6)

Ch(f) :=
1

2

∫
X

|Df |2w dm, f ∈ S2, Chn(f) :=
1

2

∫
X

|Df |2w,n dn, f ∈ S2n,

with the conventions Ch(f) = ∞ on L1(X,m) \ S2, Chn(f) = ∞ on L1(X, n) \ S2n.
We will choose n, as explained in the introduction, to be probability measures.

We shall also denote, whenever Ch (resp. Chn) is a quadratic form, by
(3.7)

E(f, g) :=
1

2

(
Ch(f+g)−Ch(f−g)

) (
resp. En(f, g) :=

1

2

(
Chn(f+g)−Chn(f−g)

))

the associated symmetric bilinear form, defined on S2 ∩ L1(X,m) (resp. S2n ∩
L1(X, n)).

Still under the assumption that Ch is quadratic, as in [4, Definition 4.13] (see
also Gigli’s work [17] for a more general, non-quadratic framework), we can define

(3.8) G(f, g) := lim
ε↓0

|D(f + εg)|2w − |Df |2w
2ε

, f, g ∈ S2,

where the limit takes place in L1(X,m). Notice that G(f, f) = |Df |2w m-a.e. and
that G(·, ·) provides integral representation to E, namely

E(f, g) =

∫
X

G(f, g) dm.

The inequality |D(f + εg)|2w ≤
(
|Df |w + ε|Dg|w

)2
= |Df |2w + 2ε|Df |w|Dg|w +

ε2|Dg|2w provides the bound

(3.9)
∣∣G(f, g)

∣∣ ≤ |Df |w|Dg|w m-a.e. in X.

Also, locality of weak gradients gives

(3.10) G(f, g) = G(f, g′) m-a.e. on {g = g′}.
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We will need a chain rule with respect to the second argument (see [4, Lemma 4.7]
for the simple proof):

(3.11)

∫
X

G(f, φ(g)) dm =

∫
X

φ′(g)G(f, g) dm

for all φ : R → R nondecreasing and Lipschitz on an interval containing the image
of g, with the same convention on the value of φ′(g) mentioned in (3.4). Finally, we
will need the following lemma, whose proof is more delicate: it relies on the chain
rule for G(·, ·) also with respect to the first factor and on the Leibniz rule with
respect to the second factor (see [4] for finite measures and [17, Proposition 4.20]
for the general case).

Lemma 3.8. If Ch is quadratic, then G(·, ·) is a symmetric bilinear form. In
particular

∫
|Df |2wg dm =

∫
G(f, f)g dm is a quadratic form for any nonnegative

g ∈ L∞(X,m).

Theorem 3.9 (Weighted Cheeger energy). Assume that ρ = gm ∈ P2(X) with
g ∈ L∞(X,m) and Ch(

√
g) < ∞. If Ch is a quadratic form, then Chρ is a quadratic

form and
(3.12)

Eρ(log g, ϕ) = E(g, ϕ) for all ϕ : X → R Lipschitz with bounded support.

Proof. By Theorem 3.6(a) and Lemma 3.8, Chρ is a quadratic form on bounded
Lipschitz functions with bounded support. By approximation Chρ is a quadratic
form on bounded Lipschitz functions and eventually, taking Theorem 3.5(b) into
account, on L2(X, ρ).

Let fε = log(g + ε) ∈ S2. Then, again using the independence of weak gradients
upon the reference measure given by Theorem 3.6(a) and (3.11), we get

Eρ(ϕ, fε) = lim
δ↓0

Chρ(ϕ+ δfε)− Chρ(ϕ)

δ
= lim

δ↓0

∫
X

|D(ϕ+ δfε)|2w − |Dϕ|2w
2δ

dρ

=

∫
X

G(ϕ, fε) dρ =

∫
X

G(ϕ, g)
g

g + ε
dm.

Passing to the limit as ε ↓ 0 provides the result, since convergence of the right
hand sides is obvious, while convergence of the left hand sides can be obtained by
working in the vector space H := L2(X, ρ′) ∩ S2ρ endowed with the scalar product

〈h, h′〉 :=
∫
X

hh′ dρ′ + Eρ(h, h
′) with ρ′ :=

1

1 + log2 g
ρ.

This is indeed a Hilbert space because Chρ is easily seen to be lower semicon-
tinuous (since a truncation argument allows the reduction to sequences uniformly
bounded in L∞(X, ρ)) also w.r.t. L2(X, ρ′) convergence; moreover, clearly fε → f
in L2(X, ρ̃), and since their norms are uniformly bounded we have weak convergence
in H. Finally g �→ Eρ(ϕ, g) is continuous in H. �

4. Existence of good geodesics

This section is devoted to the proof of the existence of geodesics in (P2(X),W2)
which are (at least for some initial time interval) better than the ones given directly
by the usual CD(K,∞) inequality given by Lott and Villani [25] and Sturm [32].
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Definition 4.1. We say that (X, d,m) is a CD(K,∞) space if for all μ0, μ1 ∈
D(Entm) (recall (2.2)) there exists a geodesic (μt) ∈ Geo(P2(X)) which satisfies
the convexity inequality
(4.1)

Entm(μt) ≤ (1− t)Entm(μ0) + tEntm(μ1)−
K

2
t(1− t)W 2

2 (μ0, μ1) ∀t ∈ [0, 1].

The idea of constructing good geodesics in CD(K,N) spaces was recently used by
Rajala in [28] to study CD(K,N) spaces with branching geodesics. There the initial
motivation was to obtain geodesics good enough so that the approach of [29] for
proving local Poincaré inequalities could be adapted to these spaces. Constructing
geodesics by selecting midpoints is a standard approach; see for example Gromov’s
proof that the GH limit of length spaces is a length space [20, Proposition 3.8].

Here we modify some of Rajala’s results in [28] and [27] to the setting of this
paper, repeating with some detail the arguments because on some occasions the
adaptation is not trivial. The version of these results which we will need in the
later sections is the following.

Theorem 4.2. Let (X, d,m) be a CD(K,∞) space and let μ0 = ρ0m, μ1 = ρ1m ∈
D(Entm). Assume in addition that μ1 has bounded support and density and that
the density ρ0 satisfies the growth-bound

(4.2) ρ0(x) ≤ c1e
−c2d

2(x,x0) ∀x ∈ X

for some c1, c2 > 0 and x0 ∈ X.
Then there exist t0 ∈ (0, 1) and a geodesic (μt) ∈ Geo(P2(X)) between μ0, μ1

satisfying the convexity inequality (4.1) for all t ∈ [0, 1] and the density bound

(4.3) sup
t∈[0,t0]

||ρt||L∞(X,m) < ∞.

In §4.1 we discuss the convexity of the entropy along intermediate measures
formed by using an inductive process and prove existence of entropy minimizers.
In §4.2 we review some results of Rajala in [27] in CD∗(K,N) spaces. In §4.3 we
prove that the minimizers satisfy density bounds by adapting Rajala’s result in
[28]. Finally, in §4.4 we prove Theorem 4.2 using these ingredients.

4.1. Intermediate measures and the existence of minimizers. The measures
with minimal entropy will be selected from the set of all intermediate measures.
Recall that for any two measures μ0, μ1 ∈ P2(X) the set of all intermediate points
(with a parameter t ∈ (0, 1)) will be denoted by

It(μ0, μ1) = {ν ∈ P2(X) : W2(μ0, ν) = tW2(μ0, μ1)

and W2(μ1, ν) = (1− t)W2(μ0, μ1)}.
It is not difficult to show that the set of t-intermediate points is a convex and closed
subset of P2(X),

Even though the selection process is countable, it will define the whole geodesic
by completion. To get the convexity inequality (4.1) for all times we will then need
the lower semicontinuity of the entropy w.r.t. W2-convergence (a direct consequence
of (2.5) and of the weak lower semicontinuity of Entn in P(X) when n ∈ P(X))
and tightness estimates. Let us now indicate how the first property of the good
geodesics follows easily if we define the geodesic by taking any intermediate point
where (4.1) is satisfied.
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Proposition 4.3. Let μ0, μ1 ∈ P2(X). Suppose that we have selected inductively
at step (n+ 1) measures μt ∈ I t−s

r−s
(μs, μr) satisfying

Entm(μt) ≤
(r − t)

(r − s)
Entm(μs) +

(t− s)

(r − s)
Entm(μr)−

K

2

(t− s)

(r − s)

(r − t)

(r − s)
W 2

2 (μs, μr),

where s < t < r and the times s and r are two consecutive timepoints in the set of
times where the measures have already been selected at step n.

Then (4.1) holds for all μt chosen at the (n + 1)-th step. In particular, if the
closure of the selected times is the whole interval [0, 1], defining μt by completion,
we have a geodesic between μ0 and μ1 along which (4.1) holds.

Proof. Suppose that we have selected a measure μt ∈ It(μ0, μ1) satisfying

Entm(μt) ≤ (1− t)Entm(μ0) + tEntm(μ1)−
K

2
t(1− t)W 2

2 (μ0, μ1)

and after it a measure μts ∈ Is(μ0, μt) satisfying

Entm(μts) ≤ (1− s)Entm(μ0) + sEntm(μt)−
K

2
s(1− s)W 2

2 (μ0, μt).

Then for the measure μts we also have μts ∈ Its(μ0, μ1) and

Entm(μts) ≤ (1− s)Entm(μ0) + sEntm(μt)−
K

2
s(1− s)W 2

2 (μ0, μt)

≤ (1− s)Entm(μ0) + s

(
(1− t)Entm(μ0) + tEntm(μ1)−

K

2
t(1− t)W 2

2 (μ0, μ1)

)

− K

2
s(1− s)W 2

2 (μ0, μt)

= ((1− s) + s(1− t)) Entm(μ0) + tsEntm(μ1)

− K

2

(
ts(1− t) + t2s(1− s)

)
W 2

2 (μ0, μ1)

= (1− ts)Entm(μ0) + tsEntm(μ1)−
K

2
ts(1− ts)W 2

2 (μ0, μ1).

Therefore the claim holds for all the points ti. By the lower semicontinuity of the
entropy it then also holds for the closure. �

Now that we know from Proposition 4.3 that the first property of the geodesic in
Theorem 4.2 is easily satisfied, we turn to the more difficult part of obtaining the
density bound (4.3). To do this we will not only select intermediate measures that
satisfy (4.1), but measures where the entropy is minimal. The obvious first step is
then to prove that there indeed exist such minimizers. In general the set It(μ0, μ1),
though closed, is not compact in (P2(X),W2). However, when we consider a
subset of It(μ0, μ1) with the entropy bounded from above, we have compactness.
In particular, we therefore have the existence of minimizers.

Lemma 4.4. Let μ0, μ1 ∈ P2(X). Then for all t ∈ [0, 1] there exists a minimizer
of the entropy in It(μ0, μ1).

Proof. Without loss of generality we can assume the existence of ν ∈ It(μ0, μ1)
with Entm(ν) < ∞. We know that the entropy is lower semicontinuous and that
It(μ0, μ1) is closed. The claim then follows if we are able to show that the set

K = {μ ∈ It(μ0, μ1) : Entm(μ) ≤ Entm(ν)} ⊂ P2(X)
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is relatively compact in (P2(X),W2). It suffices to prove that the setK is uniformly
2-integrable and tight; see [2, Proposition 7.15]. Let us first prove the uniform 2-
integrability of the set It(μ0, μ1). This follows from the fact that for any μ ∈
It(μ0, μ1) we have∫

X\B(x0,k)

d2(x0, x) dμ ≤
∫
X\B(x0,k/2)

4d2(x0, x) d(μ0 + μ1) → 0, as k → ∞

since μ0, μ1 ∈ P2(X).
Let us next prove that K is tight. If m̃ ∈ P(X) is defined as in (2.4), (2.5) shows

that supμ∈K Entm̃(μ) is finite. Then, tightness of K is a simple consequence of the
equi-integrability of the densities w.r.t. m̃. �

As a technical tool we will need the excess mass functional FC : P2(X) → [0, 1]
which is defined for all thresholds C ≥ 0 as

(4.4) FC(μ) = ‖(ρ− C)+‖L1(X,m) + μs(X),

where μ = ρm + μs with μs ⊥ m. This functional, lower semicontinuous under
weak convergence, was used in [28] to obtain the first good geodesics in CD(K,N)
spaces. The motivation for using the excess mass functional is that its variations
under perturbation of the minimizer are easier to estimate, since one only cares
about the amount of mass exceeding the threshold.

4.2. Localization in transport distance. As we will later see, the task of finding
the first good intermediate measure between μ0 and μ1 is slightly more difficult than
finding the rest of the geodesic. This is due to the fact that after some μt with
t ∈ (0, 1) has been fixed we can consider the transport distances to be essentially
constant. This useful observation was made by Rajala in [27]. It follows from two
simple statements. First when one fixes an intermediate measure, the length of the
curves along which the transport is done gets fixed. This is the content of the next
proposition which was proved in [27, Proposition 1].

Proposition 4.5. Let μ0, μ1 ∈ P2(X) and t0 ∈ (0, 1). Suppose that there exist
constants 0 ≤ C1 ≤ C2 < ∞ and a measure π ∈ OptGeo(μ0, μ1) with

(4.5) C1 ≤ l(γ) ≤ C2 for π-a.e. γ ∈ Geo(X).

Then the bounds in (4.5) hold π̃-a.e. for any π̃ ∈ OptGeo(μ0, μ1) with (et0)�π̃ =
(et0)�π.

In order to use the previous proposition we will need another observation which
is a simple consequence of cyclical monotonicity (cf. Chapter 5 in Villani’s survey
[34] for a review of cyclical monotonicity). Namely, when we work on a part of
the transport with some bounds on the lengths of the curves, this part will not get
mixed with other parts of the measure at any intermediate time. For the proof of
this fact see [27, Lemma 2.5].

Lemma 4.6. Take 0 ≤ C1 ≤ C2 ≤ C3 ≤ C4 ≤ ∞ and define

A1 = {γ∈Geo(X) : C1 ≤ l(γ) ≤ C2} and A2 = {γ∈Geo(X) : C3 < l(γ) ≤ C4}.
Then for any π ∈ OptGeo(μ0, μ1) and any t ∈ (0, 1) there exists a Borel set E ⊂
Geo(X) with π(E) = 0 such that

{(γ, γ̂) ∈ (A1 \ E)× (A2 \ E) : γt = γ̂t} = ∅.
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4.3. Density bounds for the minimizers. The information from the minimizers
of the entropy and of the excess mass functional are obtained with a contradiction
argument. First we assume that there exists a minimizer which does not have the
desired density bound. After this we isolate the part of the minimizer where the
density bound is exceeded and redefine this part of the measure to be something
slightly better. If this new measure is again an intermediate point and we have
strictly decreased the energy we are minimizing (the entropy or the excess mass),
we obtain a contradiction, so the minimizer must satisfy the density bound. To
prove that we indeed get an intermediate point we use the next lemma, whose
proof relies on the joint convexity of (μ, ν) �→ W 2

2 (μ, ν), which was again proved by
Rajala in [28, Lemma 3.5].

Lemma 4.7. Let μ0, μ1∈P2(X). Then for any λ∈(0, 1), any π∈OptGeo(μ0, μ1),
any Borel function f : Geo(X) → [0, 1] with c = (fπ)(Geo(X)) ∈ (0, 1) and any

ν ∈ Iλ

(
1

c
(e0)� (fπ) ,

1

c
(e1)� (fπ)

)
we have

(eλ)� ((1− f)π) + cν ∈ Iλ(μ0, μ1).

The first step which uses the minimization of the excess mass functional FC in
(4.4) is the same one that was taken in [28, Proposition 3.11]. We repeat some
key points of the proof for the convenience of the reader. In [28] the functionals
FC were minimized only in the bounded case. A reduction to this case can also be
made here, and so the following proposition which was proved in a slightly different
form in [28, Proposition 3.9 and Proposition 3.11] will suffice.

Proposition 4.8. Assume that (X, d) is a bounded metric space with a finite mea-
sure m. Let ν0, ν1 ∈ P2(X) and t ∈ [0, 1]. Suppose that there exists a constant
C > 0 so that for any π ∈ OptGeo(ν0, ν1) and A ⊂ X Borel with π(e−1

t (A)) > 0
we have that for the measures

(4.6) ν̂0 =
1

π(e−1
t (A))

(e0)�
(
π e−1

t (A)
)
, ν̂1 =

1

π(e−1
t (A))

(e1)�
(
π e−1

t (A)
)

there exists a measure ν̂ ∈ It(ν̂0, ν̂1) with

(4.7) Entm(ν̂) ≤ log
C

π(e−1
t (A))

.

Then there exists a minimizer μt of FC in It(ν0, ν1) and the minimum value is zero,
so that μt � m and its density is less than C m-a.e. in X.

Proof. Take a threshold C ′ > C. It suffices to prove that the minimum of FC′ in
It(ν0, ν1) is zero and then let C ′ ↓ C. Without loss of generality we may assume that
all minimizers, whose existence is ensured by tightness of It(ν0, ν1) in P(X) and
lower semicontinuity, are absolutely continuous with respect to m. Indeed, suppose
that there is a measure ω ∈ It(ν0, ν1) with a singular part. Let A be an m-negligible
Borel set where the singular part of ω is concentrated. By the assumption of the
proposition together with Lemma 4.7 we can then redefine the part of ω which
is supported on A to be a measure having finite entropy. In particular it will be
absolutely continuous with respect to m. Since we are redefining only the singular
part of ω, the value of the functional FC′ does not increase after the redefinition.
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Assume, contrary to the claim, that the infimum of FC′ in It(ν0, ν1) is positive.
Denote by Mmin ⊂ It(ν0, ν1) the set of minimizers of FC′ in It(ν0, ν1). Applying
the proof of [28, Proposition 3.9] we see that the set Mmin is always nonempty.
Take ν ∈ Mmin for which

(4.8) m({x ∈ X : ρν(x) > C ′}) ≥
(
C

C ′

) 1
4

sup
ω∈Mmin

m({x ∈ X : ρω(x) > C ′}),

where ν = ρνm and ω = ρωm. Let π ∈ OptGeo(ν0, ν1) be such that (et)�π = ν.
There exists δ > 0 so that

m(A) >

(
C

C ′

) 1
2

m(A′)

with

(4.9) A′ = {x ∈ X : ρν(x) > C ′} and A = {x ∈ A′ : ρν(x) > C ′ + δ}.
From the assumption of the proposition we know the existence of a measure

ν̂ = ρ̂m ∈ It(ν̂0, ν̂1) with Entm(ν̂) ≤ log(C/ν(A)), where ν̂0 and ν̂1 are given by
(4.6). By Jensen’s inequality we then have

(4.10) m({ρ̂ > 0}) ≥ ν(A)

C
≥ C ′

C
m(A) ≥

(
C ′

C

) 1
2

m(A′).

We can now consider a new measure ν̃ = ρ̃m defined as the combination

(4.11) ν̃ = ν (X \A) +
C ′

C ′ + δ
ν A+

δ

C ′ + δ
ν(A)ν̂.

By Lemma 4.7 and the convexity of It we have ν̃ ∈ It(ν0, ν1). Due to the definition
of (4.9) we only redistribute some of the mass above the density C ′ when we replace
the measure ν by the measure ν̃, so that ν̃ ∈ Mmin. Let us calculate how much the
excess mass functional changes in this replacement:

FC′(ν)− FC′(ν̃) =

∫
{ρν<C′}

min

{
C ′ − ρν ,

δ

C ′ + δ
ν(A)ρ̂

}
dm.

Because of the minimality of FC′ at ν this integral must be zero. Therefore {ρ̂ >
0}∩{ρν < C ′} is m-negligible. On the other hand, for any y ∈ {ρ̂ > 0}∩{ρν ≥ C ′}
we have ρ̃(y) > C ′ (if y ∈ X \ A this is trivial, if y ∈ A the second term in (4.11)
gives a contribution larger than C ′). This, together with our choice (4.8) of ν, leads
to a contradiction:

m({ρ̃ > C ′}) ≥ m({ρ̂ > 0}) ≥
(
C ′

C

) 1
2

m(A′) ≥
(
C ′

C

) 1
4

sup
ω∈Mmin

m({ρω > C ′}).

�
Next we make another minimization. This time for the entropy itself. A similar

argument was used in [27] to obtain good geodesics in metric spaces satisfying the
reduced curvature dimension condition CD∗(K,N).

Proposition 4.9. Let μ0, μ1 ∈ P2(X) and t ∈ [0, 1]. Suppose that there exists
a constant C > 0 so that for any π ∈ OptGeo(μ0, μ1) and A ⊂ X Borel with
π(e−1

t (A)) > 0 we have that for the restricted measures ν̂0, ν̂1 in (4.6) there exists
a measure ν̂ ∈ It(μ̂0, μ̂1) satisfying (4.7). Then for any minimizer μmin of the
entropy in It(μ0, μ1) we have μmin ≤ Cm.
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Proof. Without loss of generality, we can assume t ∈ (0, 1). Let ν = ρm be one
of the minimizers of the entropy in It(μ0, μ1), which by Lemma 4.4 we know to
exist. By (4.7) with A = X we know that Entm(ν) < ∞. We need only show that
FC(ν) = 0.

Let π ∈ OptGeo(μ0, μ1) be such that (et)�π = ν. Suppose now by contradiction
that FC(ν) > 0, let η > 0 be such that m({ρ > C + 2η}) > 0 and define

C1 =
1

η
[m({ρ > C + η})−m({ρ > C + 2η})] ≥ 0.

Since τ �→ g(τ ) := m({ρ ≥ C + τ}) is nonincreasing, there exists δ ∈ (η, 2η) such
that −g′(δ) ≤ C1. In particular, choosing δ in this way and fixing x0 ∈ X, for
φ ∈ (0, η/3) sufficiently small and R = R(φ) sufficiently large, one has m(L′) <
m(L) + (1 + C1)φ, where

L = {x ∈ B(x0, R) : ρ(x) > C+δ} and L′ = {x ∈ X : ρ(x) ≥ C+δ−3φ}.
Let Γ ⊂ Geo(X) be a cyclically monotone set on which π is supported. Fix

γ̄ ∈ Γ ∩ e−1
t (L) and consider any γ ∈ Γ ∩ e−1

t (L). Using cyclical monotonicity we
get (similarly as in [34, Theorem 8.22])

d2(γ0, γ1) ≤ d2(γ̄0, γ̄1) + d2(γ0, γ1) ≤ d2(γ̄0, γ1) + d2(γ0, γ̄1)

≤ (d(γt, γ1) + diam(L) + l(γ̄))
2
+ (d(γ0, γt) + diam(L) + l(γ̄))

2

=
(
(1− t)2 + t2

)
d2(γ0, γ1) + 2(diam(L) + l(γ̄))d(γ0, γ1)

+ 2(diam(L) + l(γ̄))2.

Since (1− t)2+ t2 = 1−2(1− t)t < 1, the length of the geodesic γ has a bound from
above given in terms of only diam(L) and l(γ̄). Hence the measure π e−1

t (L) is
supported in a uniformly bounded set of curves.

We can use Proposition 4.8 with νi = (ν(L))−1(ei)�π e−1
t (L) to find a measure

ν̃ = ρ̃m ∈ It

(
(e0)�π e−1

t (L)

ν(L)
,
(e1)�π e−1

t (L)

ν(L)

)
with ρ̃ ≤ C/ν(L) m-a.e. in X.

Now consider a new measure ν̂ = ρ̂m defined as the combination

ν̂ = ν (X \ L) + C + δ − φ

C + δ
ν L+

φ

C + δ
ν(L)ν̃.

By Lemma 4.7 we have ν̂ ∈ It(μ0, μ1).
For x ∈ L we have the estimates

ρ̂(x) ≤ C + δ − φ

C + δ
ρ(x) +

φ

C + δ
ν(L)ρ̃(x) ≤ (C + δ − φ)ρ(x) + Cφ

C + δ
(4.12)

= ρ(x) +
(C − ρ(x))φ

C + δ
< ρ(x)− δφ

C + δ

and

(4.13) ρ̂(x) ≥ C + δ − φ

C + δ
ρ(x) > C + δ − φ.

For x ∈ L′ \ L we have

(4.14) ρ̂(x) ≤ ρ(x) +
φ

C + δ
ν(L)ρ̃(x) ≤ ρ(x) +

Cφ

C + δ
< C + δ + φ,
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and for x ∈ X \ L′ we get

(4.15) ρ̂(x) ≤ ρ(x) +
φ

C + δ
ν(L)ρ̃(x) ≤ C + δ − 3φ+

Cφ

C + δ
< C + δ − 2φ.

Write C2 = δ
C+δm(L). Let us estimate the change in the entropy when we replace

ν by ν̂: using the convexity inequality x log x− y log y ≤ (x− y)(log x+ 1) we can
estimate from above Entm(ν̂)− Entm(ν) by∫

X

(ρ̂− ρ)(log ρ̂+ 1) dm =

∫
X

(ρ̂− ρ) log ρ̂dm.

Now, we set w := ρ̂ − ρ, split X as L ∪ (X \ L′) ∪ (L′ \ L) and use the fact that
w ≤ 0 on L and w ≥ 0 on X \ L, the inequalities (4.12), (4.13), (4.14), (4.15) and
eventually the concavity of log to get∫

L

w log (C + δ − φ) dm+

∫
X\L′

w log (C + δ − 2φ) dm

+

∫
L′\L

w log (C + δ + φ) dm

= (log (C + δ − φ)− log (C + δ − 2φ))

∫
L

w dm

+ (log (C + δ + φ)− log (C + δ − 2φ))

∫
L′\L

w dm

≤ − (log (C + δ − φ)− log (C + δ − 2φ))
δφ

C + δ
m(L)

+ (log (C + δ + φ)− log (C + δ − 2φ))
Cφ

C + δ
m(L′ \ L)

< − (log (C + δ − φ)− log (C + δ − 2φ))C2φ

+ (log (C + δ + φ)− log (C + δ − 2φ)) (1 + C1)φ
2

≤− C2φ
φ

C + δ − 2φ
+ (1 + C1)φ

2 3φ

C + δ − 2φ
< 0

for small enough φ ∈ (0, η/3). This contradicts the minimality of the entropy at
ν. �

4.4. Construction of the geodesic.

Proof of Theorem 4.2. In this proof, to avoid a cumbersome notation, we switch to
the exp notation and set C1 := ‖ρ1‖L∞(X,m). Let D > 0 be such that supp(μ1) ⊂
B(x0, D). We will prove the claim with

t0 := min{ c2
2K− ,

1

2
}.

The geodesic is constructed as follows. First we fix the measure μt0 = ρt0m ∈
It0(μ0, μ1) to be a minimizer of the entropy in It0(μ0, μ1). After this we define
the rest of the geodesic for times t ∈ (0, t0) inductively. Suppose that for some
n ∈ N we have defined μk2−nt0 for all k = 0, 1, . . . , 2n. Then for all odd k ∈
N with 0 < k < 2n+1 we define μk2−n−1t0 to be a minimizer of the entropy in
I 1

2
(μ(k−1)2−n−1t0 , μ(k+1)2−n−1t0). We construct the geodesic on the interval (t0, 1]

in a similar way by iteratively selecting the midpoints with minimal entropy. The
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rest of the geodesic is given by completion. Let π ∈ OptGeo(μ0, μ1) be such that
(et)�π = μt for all t ∈ [0, 1].

Since we are selecting minimizers of the entropy among all the possible interme-
diate measures in a CD(K,∞)-space, the selected measures satisfy the convexity
inequality (4.1) between the given endpoint measures. Therefore, by Proposition 4.3
the inequality (4.1) holds for all t ∈ [0, 1].

Let us then concentrate on the entropy estimates assumed in Proposition 4.8 and
Proposition 4.9. Let π ∈ OptGeo(μ0, μ1) and A ⊂ X Borel withM := π(e−1

t0 (A)) >
0, write

μ̂0 = ρ̂0m =
1

M
(e0)�

(
π e−1

t0 (A)
)

and μ̂1 = ρ̂1m =
1

M
(e1)�

(
π e−1

t0 (A)
)
,

and take a measure ν ∈ It0 (μ̂0, μ̂1) which satisfies the convexity inequality (4.1)
between these measures. Now, using (4.2), we have the estimate (with V (x) =
d(x, x0))

Entm(ν) ≤ (1− t0)Entm (μ̂0) + t0Entm (μ̂1) +
K−

2
t0(1− t0)W

2
2 (μ̂0, μ̂1)

≤ t0 log

(
C1

M

)
+ (1− t0)

×
∫
X

ρ̂0(x)

(
log ρ̂0(x) +

K−

2
t0(D + V (x))2

)
dm(x)

≤ t0 log

(
C1

M

)
+ (1− t0)

×
∫
X

ρ̂0(x)
(
log

( c1
M

)
− c2V

2(x) +K−t0(D
2 + V 2(x))

)
dm(x)

≤ log

(
max{C1, c1}

M

)
+K−D2 = log

(
max{C1, c1}exp[K−D2]

M

)
,

since K−t0 ≤ c2 by the choice of t0. By Proposition 4.9 we then have the estimate

‖ρt0‖L∞(X,m) ≤ max{C1, c1}exp[K−D2] ≤ max{C1, c1}exp[(2K− + c2)D
2] =: C.

Next we prove that for all t ∈ [0, t0] we have μt = ρtm with the estimate

(4.16) ρt(γt) ≤ Cexp
[
−1

2
(1− t

t0
)(c2 −K−tt0)�

2(γ)
]

for π-a.e. γ ∈ Geo(X).

First of all the estimate (4.16) is true for t = t0. For t = 0 we have that, thanks to
(4.2), ρ0(γ0) can be estimated from above by

c1exp
[
−c2d

2(γ0, x0)
]
≤ c1exp

[
−c2([�(γ)−D]+)2

]
≤ c1exp

[
−c2

2
�2(γ) + c2D

2
]

≤ Cexp(−c2
2
�2(γ))

and so (4.16) holds also at t = 0.
Suppose that for some n ∈ N the estimate (4.16) holds for all t = k2−nt0 with

k = 0, 1, . . . , 2n. Take an odd integer k with 0 < k < 2n+1. Our aim is to prove
(4.16) for t = k2−n−1t0.
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Let l ∈ (0,∞) and ε > 0 be such that we have M̃ = π({γ : l ≤ l(γ) ≤ l+ε}) > 0.
Then by Proposition 4.5 we know that any measure

π̃ ∈ OptGeo

(
1

M̃
(e0)�π {γ : l ≤ �(γ) ≤ l + ε}, 1

M̃
(e1)�π {γ : l ≤ �(γ) ≤ l + ε}

)
is concentrated on geodesics with lengths in the interval [l, l + ε]. On the other
hand, by Lemma 4.6 we know that

(ek2−n−1t0)�π̃ ⊥ (ek2−n−1t0)�π {γ : �(γ) /∈ [l, l + ε] and γk2−n−1t0 ∈ A}.
Therefore, in proving (4.16) we may separately deal with the parts of the measure

where all the geodesics have lengths in an interval [l, l + ε]. Now take a Borel set
A ⊂ X such that for the measure π̂ = π {γ : l ≤ �(γ) ≤ l+ ε and γk2−n−1t0 ∈ A}
we have M̂ = π̂(Geo(X)) > 0.

Suppose that the measure

ν̃ ∈ I 1
2

(
1

M̂
(e(k−1)2−n−1t0)�π̂,

1

M̂
(e(k+1)2−n−1t0)�π̂

)
satisfies the convexity inequality (4.1). Then

Entm(ν̃) ≤
1

2
Entm(M̂

−1(e(k−1)2−n−1t0)�π̂) +
1

2
Entm(M̂

−1(e(k+1)2−n−1t0)�π̂)

+
K−

8
W 2

2

(
M̂−1(e(k−1)2−n−1t0)�π̂, M̂

−1(e(k+1)2−n−1t0)�π̂
)

≤ 1

2
log

C

M̂
− 1

4
((1− (k − 1)2−n−1)(c2 −K−(k − 1)2−n−1t20)l

2)

+
1

2
log

C

M̂
− 1

4
((1− (k + 1)2−n−1)(c2 −K−(k + 1)2−n−1t20)l

2)

+
K−

8
(2−nt0(l + ε))2

= log
C

M̂
− 1

2
((1− k2−n−1)(c2 −K−k2−n−1t20)l

2) +
K−

8
2−2nt20(2l + ε)ε.

Proposition 4.9 then gives

ρt(γt) ≤ Cexp
[
−1

2
(1− t

t0
)(c2 −K−tt0)l

2 +
K−

8
2−2nt20(2l + ε)ε

]
for π-a.e. γ ∈ Geo(X) with �(γ) ∈ [l, l + ε]. By letting ε ↓ 0 we then obtain (4.16)
for t = k2−n−1t0.

Notice that the estimate (4.16) gives ρt(γt) ≤ Cexp
[
− 1

2 (1−
t
t0
)(c2−K−tt0)�

2(γ)
]

≤ C for all t ∈ [0, t0] for π-a.e γ ∈ Geo(X), which is equivalent to (4.3). �

5. Convergence results

This section is devoted to the proof of some auxiliary convergence results. The
first one deals with entropy convergence. Recall the notation V (x) = d(x, x0).

Lemma 5.1. Let fnm, fm be positive finite measures in X. If fn ↑ f m-a.e. and∫
fV 2 dm < ∞, then

(5.1)

∫
X

fn log fn dm →
∫
X

f log f dm.

The same conclusion holds if fn ↓ f m-a.e. and
∫
f1V

2 dm < ∞.
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Proof. Assume first that m is a finite measure. Let us first consider the case fn ↑ f .
Observe that the function t �→ t log t is decreasing on [0, e−1] and increasing on
[e−1,∞); we write it as the difference φ1 − φ2, with

φ1(t) :=

{
− 1

e if t ∈ [0, 1
e ],

t log t if t ≥ 1
e ,

φ2(t) :=

{
− 1

e − t log t if t ∈ [0, 1
e ],

0 if t ≥ 1
e .

Notice that φi are nondecreasing and bounded from below. Therefore we can apply
the monotone convergence theorem for

∫
φi(fn) dm to conclude. In the case fn ↓ f

the argument is the same.
In the general σ-finite case we use (2.5) to reduce ourselves to the previous case,

noticing that our assumptions on fn imply
∫
fnV

2 dm →
∫
fV 2 dm < ∞. �

Recall that, according to Definition 3.2 and (3.5), the space S2 consists of m-
measurable functions having a weak upper gradient in L2(X,m).

Lemma 5.2. Let x0 ∈ X, μ = fm, σ = gm ∈ P2(X) with f(x) ≤ c1e
−c2d

2(x,x0)

for some c1, c2 > 0, infBR(x0) f > 0 for all R > 0 and g ∈ L∞(X,m) with bounded
support. Let π ∈ OptGeo(μ, σ) be a good geodesic given by Theorem 4.2. Then:

(1) For h ∈ S2 satisfying |Dh|w ∈ L2(X,μ) and

(5.2) |Dh|2w(x) ≤ C(1 + d2(x, x0)) for any x ∈ Bc
R∗(x0)

for some C, R∗ > 0, the following holds (understanding the integrals on
Geo(X)):

(5.3) lim sup
t↓0

∫ ∣∣∣∣h(γt)− h(γ0)

d(γt, γ0)

∣∣∣∣
2

dπ(γ) ≤
∫

|Dh|2w(γ0) dπ(γ).

(2) For all Kantorovich potentials ϕ relative to (μ, σ) with |Dϕ| having linear
growth one has

(5.4) lim
t↓0

ϕ(γ0)− ϕ(γt)

d(γ0, γt)
= lim

t↓0

d(γ0, γt)

t
= |Dϕ|w(γ0) in L2(C([0, 1];X),π).

Proof. (1) Call ft the density of (et)�π, i.e. (et)�π = ftm; we know that for t > 0
sufficiently small, say t ∈ (0, t0), ft exists and there exists a constant C∗ such that
ft ≤ C∗ m-a.e. in X for all t ∈ (0, t0). By the definition of a weak upper gradient,
for any t ∈ (0, t0) and π-a.e. γ one has

∣∣∣∣h(γt)− h(γ0)

d(γt, γ0)

∣∣∣∣
2

≤

(∫ t

0
|Dh|w(γs)|γ̇s|ds

)2

d2(γt, γ0)
≤ 1

t

∫ t

0

|Dh|2w(γs)ds;

therefore applying Fubini’s theorem twice and using the identity (et)�π = ftm we
get

(5.5)

∫ ∣∣∣∣h(γt)− h(γ0)

d(γt, γ0)

∣∣∣∣
2

dπ(γ) ≤
∫ (

1

t

∫ t

0

|Dh|2w(γs)ds
)
dπ(γ)

=

∫
X

(
1

t

∫ t

0

fsds

)
|Dh|2w dm.

The conclusion of the lemma follows once the following claim is proved:

(5.6) lim
t↓0

∫
X

(
1

t

∫ t

0

fsds

)
|Dh|2w dm =

∫
X

|Dh|2wf dm.
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In order to prove the claim we use both the uniform L∞ estimates on ft and the
2-uniform integrability of V 2 w.r.t. ftm. Notice first that the local boundedness of
f−1 implies |Dh|2w ∈ L1(BR(x0),m) for all R > 0; moreover

(5.7) f̄t :=

(
1

t

∫ t

0

fsds

)
→ f in duality with L1(BR(x0),m).

Indeed the weak convergence ftm → fm implies the weak convergence of f̄t to f in
the duality with Cb(BR(x0)); then (5.7) follows by the uniform L∞ bound on f̄t.
Second, observe that (5.2) gives

∣∣∣∣∣
∫
X

f̄t|Dh|2w dm−
∫
BR(x0)

f̄t|Dh|2w dm

∣∣∣∣∣ ≤ C

t

∫ t

0

∫
Bc

R(x0)

(1 + d2(x, x0))fs dmds

→ 0 as R → ∞ uniformly in t ∈ (0, t0);

(5.8)

the second line comes from the observation that the geodesic (fsm)s∈[0,1] is a com-
pact subset in (P2(X),W2), hence tight and 2-uniformly integrable (see [2, Propo-
sition 7.1.5]). The claim (5.6) then follows by combining (5.8) and (5.7).

(2) Observe we are under the assumptions of the Metric Brenier Theorem 10.3
in [3]. Therefore there exists a Borel function L satisfying L(γ0) := d(γ0, γ1) for
π-a.e. γ ∈ Geo(X) and, in addition,

(5.9) |Dϕ|w(x) = |D+ϕ|(x) = L(x) for m-a.e. x ∈ X.

It trivially follows that for π-a.e. γ ∈ Geo(X)

|Dϕ|w(γ0) = d(γ0, γ1) =
d(γ0, γt)

t
for every t ∈ (0, 1).

The missing part is the L2 convergence of difference quotients, proved and stated in
[3] under a different set of assumptions; we adapt the argument to our case, where
|Dϕ| has linear growth. Since by optimality we have for π-a.e. γ that

ϕ(γ0) + ϕc(γ1) =
d2(γ0, γ1)

2
, ϕ(γt) + ϕc(γ1) ≤

d2(γt, γ1)

2
,

we get with a subtraction that

ϕ(γ0)− ϕ(γt) ≥
1− (1− t)2

2
d2(γ0, γ1) =

2t− t2

2
d2(γ0, γ1) for π-a.e. γ.

Therefore, dividing both sides by d(γt, γ0) = td(γ1, γ0), for π-a.e. γ one has

(5.10) lim inf
t↓0

ϕ(γ0)− ϕ(γt)

d(γ0, γt)
≥ d(γ0, γ1) = |Dϕ|w(γ0).

On the other hand, by the definition of ascending slope,

(5.11) lim sup
t↓0

ϕ(γ0)− ϕ(γt)

d(γ0, γt)
≤ |D+ϕ|(γ0).

So, combining (5.9) and (5.10) with (5.11) we get

(5.12) lim
t↓0

ϕ(γ0)− ϕ(γt)

d(γ0, γt)
= |Dϕ|w(γ0) for π-a.e. γ.

Now we claim that

(5.13)
ϕ(γ0)− ϕ(γt)

d(γ0, γt)
⇀ |Dϕ|w ◦ e0 weakly in L2(Geo(X),π).
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Since by assumption |Dϕ| has linear growth, by part (1) of the present lemma we
have

(5.14) lim sup
t↓0

∫ ∣∣∣∣ϕ(γ0)− ϕ(γt)

d(γ0, γt)

∣∣∣∣
2

dπ ≤
∫

|Dϕ|2w(γ0) dπ.

If ψ is a weak limit point of the difference quotients as t ↓ 0, by Mazur’s lemma a
sequence of convex combinations of these difference quotients strongly converges in
L2(Geo(X),π) to ψ. Since a further subsequence converges π-a.e., from (5.12) we
obtain that ψ = |D+ϕ|. By weak compactness, the claim follows.

We conclude by observing that the lower semicontinuity of the norm under weak
convergence together with (5.14) ensure convergence of the L2(Geo(X),π) norms.
Since in Hilbert spaces weak convergence and convergence of the norms give strong
convergence, the lemma is proved. �

Our third result deals with weak convergence in the weighted Cheeger space;
it will be applied to sequences of Kantorovich potentials. In this and in the next
lemma we assume that Ch is quadratic, so that by Theorem 3.9 Chη is quadratic
whenever η = gm ∈ P2(X) with g ∈ L∞(X,m) and with Ch(

√
g) < ∞. Recall that

Eη denotes, according to (3.7), the bilinear form associated to Chη.

Lemma 5.3. Let (X, d,m) have a quadratic Cheeger energy. Let η = gm ∈ P2(X)
with g ∈ L∞(X,m) and Ch(

√
g) < ∞. Consider a sequence (fn) ⊂ S2 with

(5.15) sup
n∈N

∫
X

|Dfn|2w dη < ∞, sup
n∈N

|fn|(x) ≤ C(1 + d2(x, x0)),

and assume that fn → f m-a.e. in X. Then

(5.16) lim
n→∞

Eη(fn, log g) = Eη(f, log g).

Proof. We argue as in Theorem 3.9. Let us consider the weighted measure

η̃ :=
1

1 + V 2
η

and the corresponding weighted Sobolev space H := L2(X, η̃) ∩ S2η, endowed with
the scalar product

〈f, g〉H :=

∫
X

fg dη̃ + Eη(f, g).

Observe that, since L2(X, η̃) is a Hilbert space, in order to check the completeness
of the norm ‖ · ‖H induced by this scalar product it is enough to check the lower
semicontinuity of ‖ · ‖H with respect to strong convergence in L2(X, η̃); but this is
clear since Chη is lower semicontinuous with respect to L2(X, η) convergence and,
on sequences uniformly bounded in L∞(X, η), the finiteness of η turns L2(X, η̃)
convergence into L2(X, η) convergence. By a truncation argument one obtains that
Chη is L2(X, η̃)-lower semicontinuous. We conclude that (H, 〈·, ·〉H) is a Hilbert
space (it is even separable, see [4, Proposition 4.10], but we shall not need this fact
in the sequel).

Now since η ∈ P(X), from the second assumption (5.15) and dominated con-
vergence we have that fn → f strongly in L2(X, η̃). On the other hand, the first
assumption in (5.15) implies that ‖fn‖H is bounded. By reflexivity it follows that
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fn → f weakly in H. The conclusion follows by noticing that, since Ch(
√
g) < ∞,

the map
h �→ Eη(h, log g)

is linear and continuous from H to R. �

In this last result we estimate how much Eρ(log g, ϕ) changes under modifications
of the density g of ρ.

Lemma 5.4. Let η = gm, η′ = g′m ∈ P2(X) with g, g′ ∈ L∞(X,m) and Ch(
√
g),

Ch(
√
g′) finite. Let ϕ : X → R be a locally Lipschitz function whose gradient has

linear growth. Then, setting E := {g �= g′}, one has

|Eη(log g, ϕ)− Eη′(log g′, ϕ)| ≤
(∫

E

|D√
g|2w dm

)1/2(∫
E

|Dϕ|2w dη

)1/2

+

(∫
E

|D
√
g′|2w dm

)1/2(∫
E

|Dϕ|2w dη′
)1/2

.

(5.17)

Proof. By Lemma 5.3 we can assume, by a simple approximation argument, that ϕ
has bounded support. Under this assumption the quantity to be estimated reduces,
thanks to (3.12) and (3.10), to∣∣∣∣

∫
X

G(ϕ, g)−G(ϕ, g′) dm

∣∣∣∣ =
∣∣∣∣
∫
E

G(ϕ, g)−G(ϕ, g′) dm

∣∣∣∣
≤

∫
E

(
|Dg|w|Dϕ|w + |Dg′|w|Dϕ|w

)
dm

and, after dividing and multiplying by
√
g and

√
g′, we can use Hölder’s inequality

to provide the result. �

6. Equivalence of the different formulations of RCD(K,∞)

In this section we prove the following result, extending Theorem 1.1 to σ-finite
metric measure spaces.

Theorem 6.1. Let (X, d,m) be a metric measure space with (X, d) complete, sepa-
rable, m finite on bounded sets and with suppm = X. Then the following properties
are equivalent:

(i) (X, d,m) is a CD(K,∞) space and the semigroup Ht on P2(X) is additive.
(ii) (X, d,m) is a CD(K,∞) space and Ch is a quadratic form on L2(X,m).
(iii) (X, d,m) is a length space, (2.3) holds and any μ ∈ P2(X) is the starting

point of an EV IK gradient flow of Entm.

Any metric measure space (X, d,m) satisfying these assumptions and one of the
equivalent properties (i), (ii), (iii) will be called a (σ-finite) RCD(K,∞) space.

Here Ht is the W2-gradient flow of Entm, according to Definition 2.4 (which is
known to exist and to be unique for any given initial datum in D(Entm); see [16]
and [3]), while ht stands for the gradient flow of Ch in L2(X,m) (or, equivalently,
the EV I0 gradient flow).

Note that the implications (i) to (ii) and (iii) to (i) were already proved by the
first two authors with Savaré in [4], because the same proof works in the σ-finite
setting. The key implication from (ii) (or (i)) to (iii) is given by the derivative of
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quadratic optimal transport distance along the heat flow and of the entropy along
a geodesic, estimated in the next two subsections. Consequently we shall always
assume in this section that Ch is quadratic.

We denote by Δ the infinitesimal generator of the linear semigroup ht, so that

d

dt
htf = Δht for a.e. t > 0.

Also, since Ch is quadratic, Δ is related to the bilinear form E in (3.7) by

(6.1)

∫
X

gΔf dm = E(f, g) ∀g ∈ S2 ∩ L2(X,m), f ∈ D(Δ).

One of the main results of the work of the first two authors with Savaré [3] has
been the following identification theorem in CD(K,∞); see (8.5), Theorem 8.5 and
Theorem 9.3(iii) therein.

Theorem 6.2 (The heat flow as gradient flow). Let (X, d,m) be a CD(K,∞) space
and let f ∈ L2(X,m) be such that μ = fm ∈ P2(X). Then Htμ = htfm for all
t ≥ 0, t �→ Entm(Htμ) is locally absolutely continuous in [0,∞), and

(6.2) − d

dt
Entm(Htμ) = | ˙Htμ|2 =

∫
{htf>0}

|Dhtf |2w
htf

dm for a.e. t > 0.

In other words, one can unambiguously define the heat flow on a CD(K,∞)
space either as the gradient flow of Ch in L2(X,m) or as the W2-gradient flow of
Entm.

6.1. Derivative of W 2
2 (·, σ) along the heat flow. Notice that this result, whose

proof is achieved by a duality argument, requires no curvature assumption. We
need only to assume that Ch is quadratic and that m satisfies the growth condition
(2.3).

Theorem 6.3. Let μ = fm ∈ D(Entm) and define μt := (htf)m = ftm. Let
σ ∈ P2(X) with bounded support. Then, for a.e. t > 0 the following property
holds: for any Kantorovich potential ϕt relative to (μt, σ) whose slope has linear
growth, one has

(6.3)
d

dt

1

2
W 2

2 (μt, σ) = −Eμt
(ϕt, log ft).

Proof. By the energy dissipation estimate (6.2), we have
∫∞
0

Ch(
√
ft) dt < ∞.

Furthermore, the maximum principle proved in Theorem 4.20 of [3] shows that
ft ≤ ‖f‖∞ m-a.e. in X for all t ≥ 0. Also, by Proposition 2.2 the potential ϕt

belongs to L1(X, ν) for all ν ∈ P2(X) and its slope has linear growth. Furthermore,
the L1 estimate is uniform in t and in bounded subsets of P2(X) and the estimate
on the slope depends on σ only.

Thanks to (6.2), the map t �→ ftm is a locally absolutely continuous curve in
P2(X); hence the derivative on the left hand side of (6.3) exists for a.e. t > 0. Also,
the derivative of t �→ ft exists in L2(X,m) and coincides with Δft for a.e. t > 0.
Fix t0 > 0 where both properties hold, which is also a Lebesgue point for Ch(

√
ft).

We now claim that

(6.4) lim
h↓0

∫
X

ψ
ft0 − ft0−h

h
dm = −Eμt0

(ψ, log ft0)
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for all locally Lipschitz functions ψ whose gradient has linear growth. The proof
of (6.4) is easy if we assume, in addition, that ψ has bounded support. Indeed,
h−1(ft0+h − ft0) → Δft0 as h → 0 in L2(X,m), so that (3.12) and (6.1) give

lim
h→0

∫
X

ψ
ft0+h − ft0

h
dm =

∫
X

ψΔft0 dm = −E(ψ, ft0) = −Eμt0
(ψ, log ft0).

For the general case, let χN : X → [0, 1] satisfy Lip(χN ) ≤ 1, χN ≡ 1 on BN (x0)
and χN ≡ 0 on X \ B2N (x0) and define ψN := ψχN . Applying Lemma 6.4 below
with ϕN := ψ − ψN we get

sup
|h|<t0/2

∣∣∣∣
∫

ϕN
ρt0+h − ρt0

h
dm

∣∣∣∣
2

≤ sup
|h|<t0/2

8

h

t0+|h|∫
t0−|h|

Ch(
√
fs)

∫
X

|DϕN |2w dμs ds.

Hence (by our choice of t0 and the 2-uniform integrability of μs)

lim sup
N→∞

sup
|h|<t0/2

∣∣∣∣
∫
X

ϕN
ft0+h − ft0

h
dm

∣∣∣∣ = 0,

which, taking into account that Eμt0
(ψN , log ft0) → Eμt0

(ψ, log ft0) thanks to

Lemma 5.3, implies (6.4).
Now, notice that since ϕt0 is a Kantorovich potential for (μt0 , σ) one has

1

2
W 2

2 (μt0 , σ) =

∫
X

ϕt0 dμt0 +

∫
ϕc
t0 dσ,

1

2
W 2

2 (μt0−h, σ) ≥
∫
X

ϕt0 dμt0−h +

∫
ϕc
t0 dσ for all h such that t0 − h > 0.

Taking the difference between the first identity and the second inequality and using
the claim with ψ = ϕt0 we get

1

2
W 2

2 (μt0+h, σ)−
1

2
W 2

2 (μt0 , σ) ≥ −hEμt0
(log ft0 , ϕt0) + o(h).

Since t �→ W 2
2 (μt, σ) is differentiable at t = t0 we conclude. �

Lemma 6.4. Let μs = fsm be as in the previous theorem and let ϕ : X → R be
locally Lipschitz, with |Dϕ| having linear growth. Then, for [s, t] ⊂ (0,∞) one has

(6.5)

∣∣∣∣
∫

ϕ
ft − fs
t− s

dm

∣∣∣∣
2

≤ 8

t− s

∫ t

s

Ch(
√
fr)

(∫
|Dϕ|2w dμr

)
dr.

Proof. Assume first that ϕ ∈ L2(X,m). Then integrating by parts we get

∣∣∣∣
∫

ϕΔfr dm

∣∣∣∣
2

≤
(∫

|Dϕ|w |Dfr|w dm

)2

≤
∫

|Dϕ|2w dμr

∫ |Dfr|2w
fr

dm,

for all r > 0, and the thesis follows by integration in (s, t). For the general case, we
approximate ϕ by ϕχN , with χN chosen as in the proof of the previous theorem. �
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6.2. Derivative of the entropy along Entm-convex L∞-bounded geodesics.
The goal of this subsection is to prove the following theorem, where both the cur-
vature condition and the fact that Ch is quadratic play a role.

Theorem 6.5 (Entropy inequality). Assume that (X, d,m) is a CD(K,∞) space.
Let η = fm, σ = gm ∈ P2(X) with g uniformly bounded and having compact sup-
port, and f uniformly bounded with Ch(

√
f) < ∞. Then there exists a Kantorovich

potential ϕ from η to σ such that |Dϕ| has linear growth and

(6.6) Entm(σ)− Entm(η)−
K

2
W 2

2 (η, σ) ≥ −Eη(ϕ, log f).

The proof of Theorem 6.5, carried by approximation, is presented at the end of
the subsection; the first crucial step is the following proposition, whose proof relies
on Proposition 2.2 and Lemma 5.2.

Proposition 6.6. Under the assumptions of Theorem 6.5, for δ > 0 call

(6.7) fδ,n = cδ,n[(χ
2
n)η ∨ δe−2cV 2

],

where c is strictly larger than the constant c in (2.3), cδ,n is the normalizing constant
such that fδ,nm is a probability density, and χn is a 1-Lipschitz cut-off function equal
to 1 on Bn(x0) and null outside B2n(x0).

Then there exists a Kantorovich potential ϕδ,n from ηδ,n := fδ,nm to σ satisfying
the growth conditions

(6.8) |ϕδ,n(x)| ≤ C(σ)(1 + d2(x, x0)), |Dϕδ,n|(x) ≤ C(σ)(1 + d(x, x0)),

such that

(6.9) Entm(σ)− Entm(ηδ,n)−
K

2
W 2

2 (ηδ,n, σ) ≥ −Eηδ,n
(ϕδ,n, log fδ,n).

Proof. First of all we are under the assumptions of Theorem 4.2, so let π ∈
OptGeo(ηδ,n, σ) and let (et)�π = μt = ftm, t ∈ [0, 1], be the associated good
geodesic from ηδ,n to σ with a uniform L∞ bound on the density for t ∈ (0, t0) and
the K-convexity of the entropy. Also let ϕ be the Kantorovich potential, given by
Proposition 2.2, with quadratic growth and whose slope has linear growth.

Let us now check that fδ,n satisfies the assumptions of Lemma 5.2. Indeed,
|D log fδ,n| ≤ C(1 + d(x, x0)) whenever d(x, x0) > 2n, because in this set fδn coin-

cides with cδ,nδe
−2cV 2

; in addition, the locality of weak gradients and the partition

X = {χ2
nη > δe−2cV 2} ∪ {χ2

nη ≤ δe−2cV 2} ensure that |D log fδ,n|w ∈ L2(X, ηδ,n)
because the finiteness of Ch(

√
f) ensures that |D log f |w ∈ L2(X, η).

Observe that the convexity of z �→ z log z gives

Entm(μt)− Entm(ηδ,n)

t
≥

∫
X

log fδ,n
ft − fδ,n

t
dm

=

∫
log(fδ,n ◦ et)− log(fδ,n ◦ e0)

t
dπ.

(6.10)

Define the functions Ft, Gt : AC2([0, 1];X) → R as

(6.11) Ft(γ) :=
log(fδ,n ◦ e0)− log(fδ,n ◦ et)

d(γ0, γt)
, Gt(γ) :=

ϕ ◦ e0 − ϕ ◦ et
d(γ0, γt)

.
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Multiplying and dividing the right hand side of (6.10) by d(γ0, γt) we obtain

(6.12) lim inf
t↓0

Entm(μt)− Entm(ηδ,nm)

t
≥ − lim sup

t↓0

∫
Ft(γ)

d(γ0, γt)

t
dπ(γ).

Now we claim that

(6.13) − lim sup
t↓0

∫
Ft(γ)

d(γ0, γt)

t
dπ(γ) = − lim sup

t↓0

∫
FtGtdπ.

The proof of (6.13) follows at once by

(6.14) lim
t↓0

∫ ∣∣∣∣Gt(γ)−
d(γ0, γt)

t

∣∣∣∣
2

dπ = 0 and sup
t≤t0

∫
|Ft|2 dπ < ∞.

The first fact in (6.14) is ensured by (2) of Lemma 5.2, as well as the identity

(6.15)

∫
|Dϕ|2w ◦ e0 dπ = lim

t↓0

∫
|Gt|2dπ.

The second fact in (6.14) is ensured by (1) of the same lemma applied to h = log fδ,n.
Combining (6.12) and (6.13) we get

(6.16) lim inf
t↓0

Entm(μt)− Entm(ηδ,nm)

t
≥ − lim sup

t↓0

∫
FtGtdπ.

Now, applying Lemma 5.2 to h = ϕ+ ε log fδ,n gives that

(6.17)

∫
|D(ϕ+ ε log fδ,n)|2w ◦ e0dπ ≥ lim sup

t↓0

∫
|Gt(γ) + εFt(γ)|2dπ(γ).

Subtracting to (6.17) the equality (6.15) and dividing by ε gives

lim sup
t↓0

∫
GtFt dπ ≤ lim inf

ε↓0

∫
X

|D(ϕ+ ε log fδ,n)|2w − |Dϕ|2w
2ε

fδ,n dm

= Eηδ,n
(log fδ,n, ϕ),

(6.18)

where we again used the uniform bound on the L2 norm of Ft. Combining (6.16)
and (6.18) we obtain

(6.19) lim inf
t↓0

Entm(μt)− Entm(ηδ,n)

t
≥ −Eηδ,n

(log fδ,n, ϕ).

The conclusion follows by (6.19) recalling that, by construction, the entropy is
K-convex along the geodesic (μt)t∈[0,1]; see (4.1). �

Proof of Theorem 6.5. In this proof we denote for brevity a ∨ b = max{a, b}.
For every δ ∈ (0, 1) define the density

(6.20) f̃δ := f ∨ (δe−2cV 2

) and fδ := cδ f̃δ with cδ ↑ 1 as δ ↓ 0

(here c > 0 is the constant in (2.3)), so that f̃δ ≥ f and cδ are the normalizing
constants. We need a further regularization of fδ; to this aim, let χn be standard
cut-off functions, namely 0 ≤ χn ≤ 1, Lip(χn) ≤ 1, χn ≡ 1 on Bn(x0) and χn ≡ 0
on Bc

2n(x0). Then, for every n > 1, δ > 0 we define the densities

(6.21) f̃δ,n := (χ2
nf) ∨ (δe−2cV 2

) and fδ,n := cδ,nf̃δ,n with cδ,n ↓ cδ as n → ∞,
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so that f̃δ,n ≤ f̃δ and cδ,n are the normalizing constants. Of course fδ,n is uniformly

bounded and ηδ,n := fδ,nm ∈ P2(X); moreover Ch(
√
fδ,n) is finite. Indeed by the

chain rule and the locality of the weak gradients we have that

|D
√
fδ,n|w =

√
cδ,n|D(χn

√
f)|w

≤ √
cδ,n

(
χn|D

√
f |w +

√
f |Dχn|w

)
if χ2

nf ≥ δe−2cV 2

,

|D
√
fδ,n|w =

√
δ cδ,n|De−2cV 2 |w

≤ 4c
√
δ cδ,n d(·, x0) e

−2cV 2

otherwise.

Since by assumption Ch(
√
f) < ∞, it follows not only that |D

√
fδ,n|2w are uniformly

bounded in L1(X,m), but also that they are equi-integrable:
(6.22)

sup
δ∈(0,1), n∈N

Ch(
√
fδ,n) < ∞ and Ej ↓ ∅ ⇒ sup

δ∈(0,1), n∈N

∫
Ej

|D
√
fδ,n|2w dm → 0.

Observe that (ηδ,n, σ) has the structure described in Proposition 6.6, so there exists
a Kantorovich potential ϕδ,n from ηδ,n to σ satisfying the growth conditions (6.8)
and such that the entropy inequality holds:

(6.23) Entm(σ)− Entm(ηδ,n)−
K

2
W 2

2 (ηδ,n, σ) ≥ −Eηδ,n
(ϕδ,n, log fδ,n).

Passage to the limit as n → ∞. Consider the transportation problem from
ηδ := fδm to σ. We claim the existence of a Kantorovich potential ϕδ such that

(6.24) Entm(σ)− Entm(ηδ)−
K

2
W 2

2 (ηδ, σ) ≥ −Eηδ
(ϕδ, log fδ).

We would like to pass to the limit as n → ∞ in (6.23). Let us start by considering
the left hand side: applying Lemma 5.1 to η̃δ,n ↑ η̃δ m-a.e, and recalling that
cδ,n ↓ cδ as n → ∞, we get

(6.25) Entm(ηδ,n) → Entm(ηδ) as n → ∞.

It is easy to check that ηδ,n weakly converge to ηδ and have uniformly integrable
2-moments, so by [2, Proposition 7.1.5] we have

(6.26) lim
n→∞

W 2
2 (ηδ,n, σ) = W 2

2 (ηδ, σ).

Now let us show the convergence of the right hand side of (6.23). To simplify the
problem we prove first that

(6.27) lim
n→∞

∣∣Eηδ,n
(ϕδ,n, log fδ,n)−

cδ,n
cδ

Eηδ
(ϕδ,n, log fδ)

∣∣ = 0.

Notice that, saying Aδ := {x ∈ X : f(x) ≥ δe−2cV 2(x)}, we have fδ,n =
cδ,n
cδ

fδ on

the complement (Aδ ∩Bn(x0)) ∪ Ac
δ of Aδ \ Bn(x0). Since Aδ \Bn(x0) ↓ ∅ we can

use (5.17) of Lemma 5.4 to obtain (6.27), taking (6.22) into account.
From (6.27), and taking into account that cδ,n → cδ as n → ∞, in order to prove

the convergence of the right hand side of (6.23), it is enough to show the existence
of a Kantorovich potential ϕδ for (ηδ, σ) such that

(6.28) Eηδ
(ϕδ,n, log fδ) → Eηδ

(ϕδ, log fδ) as n → ∞.

Now we use in a crucial way Lemma 2.3, which ensures the existence of a Kan-
torovich potential ϕδ for (ηδ, σ) and of a subsequence n(k) such that ϕδ,n(k) → ϕδ
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pointwise in X. Recalling that |ϕδ,n| ≤ C(1 + V 2) and that
∫
|Dϕδ,n|2w dηδ is uni-

formly bounded, we are in a position to apply Lemma 5.3 and to conclude that
(6.28) holds. Therefore we proved the convergence of all terms in (6.23), so that
(6.24) holds.
Passage to the limit as δ ↓ 0. The inequality (6.24) passes to the limit as δ ↓ 0:
more precisely, we claim the existence of a Kantorovich potential ϕ from fm to σ
such that

(6.29) Entm(σ)− Entm(η)−
K

2
W 2

2 (η, σ) ≥ −Eη(ϕ, log f).

As in the passage to the limit as n → ∞, Lemma 5.1 easily implies that Entm(ηδ) →
Entm(η); moreover it is easy to check that ηδ weakly converge to η and have uni-
formly integrable 2-moments, so [2, Proposition 7.1.5] gives W2(ηδ, σ) → W2(η, σ).
In order to show the convergence of the right hand side of (6.29) we first prove that

(6.30) lim
δ↓0

|Eηδ
(ϕδ, log fδ)− cδEη(ϕδ, log f)| = 0.

First of all notice that, after calling Aδ := {x ∈ X : f(x) ≥ δe−2cV 2(x)}, we have
fδ = cδf on Aδ. Since X \Aδ ↓ {f = 0} as δ ↓ 0 and |Df |w = 0 m-a.e. on {f = 0},
we can use (5.17) of Lemma 5.4 to show (6.30), taking (6.22) into account.

Now that (6.30) is proved, taking into account that cδ → 1 as δ ↓ 0, it is enough
to prove the existence of a Kantorovich potential ϕ from η to σ such that

(6.31) lim
i→∞

Eη(ϕδi , log f) = Eη(ϕ, log f)

for some sequence δi ↓ 0. Recall that ϕδ were constructed using Lemma 2.3, so
they still satisfy the growth condition (6.8); again applying Lemma 2.3 we get the
existence of a Kantorovich potential ϕ from η to σ and δi ↓ 0 such that ϕδi → ϕ
pointwise in X as i → ∞. Moreover, by (2.12) and f ≤ c−1

δ fδ ≤ 2fδ for δ small
enough, we have∫

X

|Dϕδi |2w f dm ≤ 2

∫
X

|Dϕδi |2wfδi dm ≤ 2W 2
2 (ηδi , σ),

for i large enough. Hence we can apply Lemma 5.3 and conclude that (6.31) holds.
Therefore (6.29) is proved and the proof of Theorem 6.5 is then complete. �

6.3. Proof of Theorem 6.1. The implications from (i) to (ii) and from (iii) to (i)
can be proven exactly as in Theorem 5.1 of [4] (as these proofs need no finiteness
assumption on m), so let us focus on the implication from (ii) to (iii). Note that
Sturm has proven in [32] (see Remark 4.6(iii) therein) that suppm is a length space
for all CD(K,∞) spaces (X, d,m) (his proof, based on an approximate midpoint
construction, does not use the local compactness).

It remains to show that the EV IK-condition holds assuming the CD(K,∞)
condition and the fact that Ch is quadratic. By the contractivity properties of
EV IK-gradient flows stated in Proposition 2.6 it is sufficient to show that μt :=
(htf)m is an EV IK gradient flow for Entm for any initial measure fm ∈ P2(X)
whose density f is bounded and satisfies Ch(

√
f) < ∞. By the maximum principle

proven in [3] (see Theorem 4.20 therein) one has htf ≤ ‖f‖L∞(X,m) m-a.e. in X for
all t ≥ 0; furthermore {μt : t ∈ [0, T ]} is a bounded subset of P2(X) for all T > 0
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and (6.2) gives

(6.32)

∫ ∞

0

Ch(
√
htf) dt < ∞.

By a simple density argument on the class of “test” measures σ in (1.1) (see for
instance [4, Proposition 2.20]), we can restrict ourselves to measures σ of the form
gm with g ∈ L∞(X,m) and supp σ compact.

By (6.3) of Theorem 6.3 we get that for a.e. t > 0, for any choice of a Kantorovich
potential ϕt from μt to σ whose slope has linear growth, one has

(6.33)
d

dt

1

2
W 2

2 (μt, σ) = −Eμt
(ϕt, log htf).

Therefore, to conclude that (1.1) holds, it suffices to show for a.e. t > 0 the
existence of a Kantorovich potential ϕt from μt to σ whose slope has linear growth
and satisfies

(6.34) −Eμt
(ϕt, log htf) ≤ Entm(σ)− Entm(μt)−

K

2
W 2

2 (μt, σ).

This is precisely the statement of Theorem 6.5 (with η = μt), and this concludes
the proof. �

7. Properties of RCD(K,∞) spaces

In this section we state without proof some properties of RCD(K,∞) spaces
whose proofs are given by the first two authors and Savaré in [4]. Their proofs do
not rely on the finiteness assumption of m. Refer to [4] for details of the proofs and
a more complete discussion.

7.1. The heat semigroup and its regularizing properties. In this section we
describe in more detail the properties of the L2-semigroup ht in an RCD(K,∞)
space and the additional information that one can obtain from the identification
with W2-semigroup Ht. By the definition of RCD(K,∞) spaces, we know that for
any x ∈ X there exists a unique EV IK gradient flow Ht(δx) of Entm starting from
δx and related to ht by

(7.1) (htf)m =

∫
f(x)Ht(δx) dm(x) ∀f ∈ L2(X,m).

Since Entm(Ht(δx)) < ∞ for any t > 0, one has Ht(δx) � m, so that Ht(δx)
has a density, that we shall denote by ρt[x]. The functions ρt[x](y) are the so-
called transition probabilities of the semigroup. By standard measurable selection
arguments we can choose versions of these densities in such a way that the map
(x, y) �→ ρt[x](y) is m×m-measurable for all t > 0.

In the next theorem we prove additional properties of the flows. The informa-
tion on both benefits from the identification theorem: for instance the symmetry
property of transition probabilities is not at all obvious when looking at Ht only
from the optimal transport point of view, and heavily relies on (7.1). On the other
hand, the regularizing properties of ht are deduced by duality by those of Ht, using
in particular the contractivity estimate

(7.2) W2(Ht(μ),Ht(ν)) ≤ e−KtW2(μ, ν), t ≥ 0, μ, ν ∈ P2(X,m),
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and the regularization estimates for the Entropy and its slope

(7.3) IK(t)Entm(Ht(μ)) +
(IK(t))2

2
|D−Entm|2(Ht(μ)) ≤

1

2
W 2

2 (μ,m)

which are typical of EV IK-solutions, with IK(t) :=
∫ t

0
eKr dr. Notice also that

(7.2) yields W1(Ht(δx),Ht(δy)) ≤ e−Ktd(x, y) for all x, y ∈ X and t ≥ 0. This
implies that RCD(K,∞) spaces have Ricci curvature bounded from below by K
according to the W1-contractivity property taken as a definition in Ollivier [26] and
Joulin [22].

Theorem 7.1 (Regularizing properties of the heat flow; Theorem 6.1 in [4]). Let
(X, d,m) be a RCD(K,∞) space. Then:

(i) The transition probability densities are symmetric,

(7.4) ρt[x](y) = ρt[y](x) m×m-a.e. in X ×X, for all t > 0,

and satisfy for all x ∈ X the Chapman-Kolmogorov formula

(7.5) ρt+s[x](y) =

∫
ρt[x](z)ρs[z](y) dm(z) for m-a.e. y ∈ X, for all t, s ≥ 0.

(ii) The formula

(7.6) h̃tf(x) :=

∫
f(y) dHt(δx)(y), x ∈ X,

provides a version of htf for every f ∈ L2(X,m), an extension of ht to
a continuous contraction semigroup in L1(X,m) which is pointwise every-
where defined if f ∈ L∞(X,m).

(iii) The semigroup h̃t maps contractively L∞(X,m) in Cb(X) and, in addition,

h̃tf(x) belongs to Cb

(
(0,∞)×X

)
.

(iv) If f : X → R is Lipschitz, then h̃tf is Lipschitz on X as well and Lip(h̃tf) ≤
e−Kt Lip(f).

Theorem 7.2 (Bakry-Émery in RCD(K,∞) spaces; Theorem 6.2 in [4]). For any
f ∈ L2(X,m) ∩ S2 and t > 0 we have

(7.7) |D(htf)|2w ≤ e−2Ktht(|Df |2w) m-a.e. in X.

In addition, if |Df |w ∈ L∞(X,m) and t > 0, then e−Kt
(
h̃t|Df |2w

)1/2
is an upper

gradient of h̃tf on X, so that

(7.8) |D−h̃tf | ≤ e−Kt
(
h̃t|Df |2w

)1/2
pointwise in X,

and f has a Lipschitz version f̃ : X → R, with Lip(f̃) ≤ ‖|Df |w‖∞.

The regularization properties (7.3) of EV IK-flows provide an L logL regular-
ization of the semigroup Ht starting from arbitrary measures in P2(X). When
X is an RCD(K,∞)-space with K > 0, then combining the slope inequality for
K-geodesically convex functionals [2, Lemma 2.4.13]

Entm(μ) ≤
1

2K
|D−Entm|2(μ)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4698 L. AMBROSIO, N. GIGLI, A. MONDINO, AND T. RAJALA

with the identity |D−Entm|2(fm) =
∫
|Df |2w/f dm between slope and Fisher infor-

mation, we get the Logarithmic-Sobolev inequality

(7.9)

∫
X

f log f dm ≤ 1

2K

∫
f>0

|Df |2w
f

dm if
√
f ∈ W 1,2(X, d,m), fm ∈ P(X),

which in particular yields the hypercontractivity of ht; see e.g. [7]. When ht is
ultracontractive, i.e. there exists p > 1 such that

(7.10) ‖htf‖p ≤ C(t)‖f‖1 for every f ∈ L2(X,m), t > 0,

then one can also obtain global Lipschitz regularity for the transition probabili-
ties [4, Proposition 6.4]; see also [18, Proposition 4.4]. The stronger regularizing
property (7.10) is known to be true, for instance, if doubling and Poincaré hold in
(X, d,m); see [31, Corollary 4.2].

We conclude this section with an example of the application of the Bakry-Émery
estimate (7.2), which can be proven following the Γ-calculus tools of Bakry [8]; see
Theorem 6.5 in [4] for a detailed proof.

Theorem 7.3 (Lipschitz regularization). If f ∈ L2(X,m), then htf ∈ S2 for every
t > 0 and

(7.11) 2 I2K(t)|Dhtf |2w ≤ htf
2

m-a.e. in X;

in particular, if f ∈ L∞(X,m), then h̃tf ∈ Lip(X) for every t > 0 with

(7.12)
√
2 I2K(t) Lip(h̃tf) ≤ ‖f‖∞ for every t > 0.

7.2. Connections with Dirichlet forms and Markov processes. Since Ch is
quadratic, lower semicontinuous in L2(X,m) and since |Df |w has strong locality
properties, it turns out that the bilinear form E associated to Ch, whose domain
is from now on restricted from L1(X,m) ∩ S2 to L2(X,m) ∩ S2, is a local Dirichlet
form. In the theory of Dirichlet forms a canonical object is the induced distance,
namely

(7.13) dE(x, y) := sup {|g̃(x)− g̃(y)| : g ∈ D(E), [g] ≤ m} ∀(x, y) ∈ X ×X,

where the function g̃ is the continuous representative in the Lebesgue class of g;
see Theorem 7.2. Another canonical object is the local energy measure, namely the
measure [u] defined by

[u](ϕ) := E(u, uϕ)− 1

2
E(u2, ϕ), ϕ ∈ L2(X,m) ∩ S2.

A consequence of Lemma 3.8 is that [u] = |Du|2wm for all u ∈ L2(X,m) ∩ S2. Also
the distances can be identified:

Theorem 7.4 (Identification of dE and d; Theorem 6.10 of [4]). The function dE
in (7.13) coincides with d on X ×X.

Finally, using a tightness property of E, the theory of Dirichlet forms can be ap-
plied to obtain the representation of transition probabilities in terms of a continuous
Markov process:

Theorem 7.5 (Brownian motion; Theorem 6.8 of [4]). Let (X, d,m) be an
RCD(K,∞) space. There exists a unique (in law) Markov process {Xt}{t≥0} in
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(X, d) with continuous sample paths in [0,∞) and transition probabilities Ht(δx),
i.e.

(7.14) P
(
Xs+t ∈ A

∣∣Xs = x
)
= Ht(δx)(A) ∀s, t ≥ 0, A Borel

for m-a.e. x ∈ X.

7.3. Tensorization. Recall that a metric space (X, d) is said to be nonbranching
if the map (e0, et) : Geo(X) → X2 is injective for all t ∈ (0, 1), i.e., geodesics do
not split.

Theorem 7.6 (Tensorization; Theorem 6.13 of [4]). Let (X, dX ,mX), (Y, dY ,mY )
be metric measure spaces and define the product space (Z, d,m) as Z := X × Y ,
m := mX ×mY and

d
(
(x, y), (x′, y′)

)
:=

√
d2X(x, x′) + d2Y (y, y

′).

Assume that both (X, dX ,mX) and (Y, dY ,mY ) are RCD(K,∞) and nonbranching.
Then (Z, d,m) is RCD(K,∞) and nonbranching as well.

In [6] the first two authors in collaboration with Savaré proved that the tensoriza-
tion property of RCD(K,∞) persists even when the nonbranching assumption on
the base spaces is removed.
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with French summary), Panoramas et Synthèses [Panoramas and Syntheses], vol. 10, Société
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Théorie et applications. [Theory and applications]. MR697382 (85a:46001)

[10] Jeff Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct.

Anal. 9 (1999), no. 3, 428–517, DOI 10.1007/s000390050094. MR1708448 (2000g:53043)
[11] Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded

below. I, J. Differential Geom. 46 (1997), no. 3, 406–480. MR1484888 (98k:53044)
[12] Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded

below. II, J. Differential Geom. 54 (2000), no. 1, 13–35. MR1815410 (2003a:53043)
[13] Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded

below. III, J. Differential Geom. 54 (2000), no. 1, 37–74. MR1815411 (2003a:53044)
[14] Gianni Dal Maso, An introduction to Γ-convergence, Progress in Nonlinear Differential Equa-
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E-mail address: tapio.m.rajala@jyu.fi

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=2915330
http://www.ams.org/mathscinet-getitem?mr=1809341
http://www.ams.org/mathscinet-getitem?mr=1809341
http://www.ams.org/mathscinet-getitem?mr=1387522
http://www.ams.org/mathscinet-getitem?mr=1387522
http://www.ams.org/mathscinet-getitem?mr=2237206
http://www.ams.org/mathscinet-getitem?mr=2237206
http://www.ams.org/mathscinet-getitem?mr=2237207
http://www.ams.org/mathscinet-getitem?mr=2237207
http://www.ams.org/mathscinet-getitem?mr=2459454
http://www.ams.org/mathscinet-getitem?mr=2459454

	1. Introduction
	2. Preliminaries
	3. Weak gradients and weighted Cheeger energies
	4. Existence of good geodesics
	5. Convergence results
	6. Equivalence of the different formulations of 𝑅𝐶𝐷(𝐾,∞)
	7. Properties of 𝑅𝐶𝐷(𝐾,∞) spaces
	Acknowledgement
	References

