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Abstract. This paper deals with the boundedness of integral operators and their commutators in the
framework of mixed Morrey spaces. Precisely, we study the mixed boundedness of the commutator [b, Iα],
where Iα denotes the fractional integral operator of order α and b belongs to a suitable homogeneous
Lipschitz class. Some results related to the higher order commutator [b, Iα]k are also shown. Furthermore,
we examine some boundedness properties of the Marcinkiewicz-type integral µΩ and the commutator
[b, µΩ] when b belongs to the BMO class.

1. Introduction

In the last decades a lot of studies on integral operators and partial differential equations have been
carried out. Many authors studied several areas in harmonic analysis, emphasizing real-variable methods,
and leading to the study of prosperous areas of research including the Calderón-Zygmund theory of singular
integral operators and commutators, the Muckenhoupt theory of Ap weight, the Fefferman-Stein theory of
Hp spaces. See for instance the classical book [21] where the author, among other useful contents, discusses
about the Calderón-Zygmund decomposition of locally integrable functions, fractional integration, the
John-Nirenberg class of functions having bounded mean oscillation and develops the essentials of the
Calderón-Zygmund theory of singular integral operators. In the above mentioned book, the author also
deals with the Coifman-McIntosh-Meyer real variable approach to Calderón’s commutator theorem. As an
application of several real-variable methods, in [21], it is treated in detail the problem of the solution to the
Dirichlet and Neumann problems on a C1 domain by means of the layer potential methods.

For a deeper discussion of Calderón-Zygmund theory and weighted norm inequalities, we refer the
reader to [11].

A deep study of the theory of fractional integration is contained in [23], where the authors studied
the fractional integrations and some topics related to mean oscillation properties of functions, including
the classed of Hölder continuous functions and the space of functions having bounded mean oscillation.
It is interesting to point out that the motivation for studying fractional integration is provided by a sub-
representation formula, which in higher dimensions plays a role roughly similar to the one played by the
fundamental theorem of integral calculus in one dimension. The norm estimates for fractional integral
operators derived in [23] are applied to obtain local and global first-order Poincaré-Sobolev inequalities,
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including endpoint cases. In this context it is useful to emphasize that the authors also extended the above
subrepresentation formula for smooth functions to functions with a weak gradient.

Let us fix T > 0 and, for t ∈ [0,T] and 0 < α < n, let us consider the Riesz fractional integral operator of
order α (Riesz potential) defined by

Iα f (x, t) =

∫
Rn

f (y, t)
|x − y|n−α

dy, a.e. in Rn.

For a locally integrable function b, the commutator is defined by

[b, Iα] = b(x, t)Iα f (x, t) − Iα(b f )(x, t), b ∈ L1
loc(Rn

× [0,T]), b(x, t) = b(x).

Adams ([1]) proved that the fractional integral operator is bounded from the classical Morrey space
Lp,λ(Rn) to Lq,λ(Rn). Later, Chiarenza and Frasca ([5]) gave another proof of this boundedness result.

Di Fazio and Ragusa ([9]) showed that if b is in the class BMO(Rn) of functions having bounded mean
oscillation, then for suitable p, q, λ, the commutator [b, Iα] is bounded from the classical Morrey space
Lp,λ(Rn) to Lq,λ(Rn), and conversely, under some restriction on α, if the commutator [b, Iα] is bounded from
Lp,λ(Rn) to Lq,λ(Rn), then b ∈ BMO(Rn).

Continuing this study of commutators, in this paper we prove some new results dealing with the
boundedness of the Marcinkiewicz integral and the boundedness of the commutator associated to such
integral and a function b having bounded mean oscillation.

Let us define these operators, denoting by Sn−1 the unit sphere inRn, n ≥ 2, equipped with the normalized
Lebesgue measure dσ. Let Ω ∈ Lq(Sn−1) with 1 < q ≤ ∞ be homogeneous of degree zero and satisfy the
cancellation property ∫

Sn−1

Ω(x′) dx′ = 0

where x′ = x
|x| for any x , 0.

The Marcinkiewicz integral of higher dimension µΩ is defined by

µΩ( f )(x, t) =


∞∫

0

|FΩ,s(x, t)|2
ds
s3


1
2

,

where

FΩ,s(x, t) =

∫
|x−y|≤s

Ω(x − y)
|x − y|n−1 f (y, t) dy.

In the sequel we consider the commutator [b, µΩ] defined as follows:

[b, µΩ] f (x, t) =


∞∫

0

|Fb
Ω,s(x, t)|

2 ds
s3


1
2

,

where

Fb
Ω,s(x, t) =

∫
|x−y|≤s

Ω(x − y)
|x − y|n−1 [b(x) − b(y)] f (y, t) dy.

Let Sn−1 stand for the unit sphere in Rn, with n ≥ 2, equipped with the normalized Lebesgue measure
dσ.

Stein ([19]) proved that, if Ω ∈ Lip α(Sn−1) (i.e., |Ω(x)−Ω(y)| ≤ |x− y|α), with 0 < α ≤ 1, then µΩ is of type
(p, p), for 1 < p ≤ 2 and of weak type (1, 1).



A. Scapellato / Filomat 34:3 (2020), 931–944 933

The weighted boundedness of Marcinkiewicz integral was firstly studied by Torchinsky and Wang in
[22]. They proved that if Ω ∈ Lip α(Sn−1), for 0 < α ≤ 1, and w ∈ Ap, for 1 < p < ∞, then µΩ is bounded on
Lp(w). In the same paper, Torchinsky and Wang also proved the Lp

−boundedness of the commutator [µΩ, b]
for 1 < p < ∞, if Ω ∈ Lip α(Sn−1), for 0 < α ≤ 1. Ding, Lu and Yabuta in [10] proved the Lp

−boundedness of
the above commutator if Ω ∈ Lq(Sn−1), for 1 < q ≤ ∞.

Following the Stein’s point of view, in his book [20] on singular integrals, the Marcinkiewicz integral is
the key to the Lp boundedness of the operators. Nowadays, although there are many other approaches to
singular integral theory, many authors studied boundedness properties of the Marcinkiewicz integral. For
recent developments of this area, we refer the reader, for example, to the papers [2, 3, 6–8].

In line with the contents of the paper [18], we investigate the boundedness of the operator µΩ, the
commutators [b, µΩ] and higher order commutators on mixed Morrey spaces.

2. Mathematical background

Let us assume that Ω is a bounded open set ofRn such that there exists A > 0 such that |Q(x, ρ)∩Ω| ≥ Aρn

for every x ∈ Ω and ρ ∈ [0,diam(Ω)], being Q(x, ρ) a cube centered in x, with edges parallel to the coordinate
axes and length 2ρ.

First of all we recall the definition of classical Morrey space ([14]).
Let p ∈]1,∞[, λ ∈]0,n[ and f be a real measurable function defined in Ω ⊂ Rn. If | f |p is locally summable

in Ω and the set described by the quantity

1
ρλ

∫
Ω∩Bρ(x)

| f (y)|p dy,

when ρ varies in ]0, diam Ω[ and x varies in Ω, has an upper bound, then we say that f belongs to the
Morrey Space Lp,λ(Ω).

If f ∈ Lp,λ(Ω), we define

‖ f ‖p
Lp,λ(Ω)

:= sup
x∈Ω

0<ρ<diam Ω

1
ρλ

∫
Ω∩Bρ(x)

| f (y)|p dy (1)

and the vector space naturally associated to the set of functions in Lp(Ω) such that (1) is finite, endowed
with the norm (1), is a Banach space.
The exponent λ can take values that are not belonging only to ]0,n[ but the unique cases of real interest are
those for which λ ∈]0,n[.

Similarly we can define the Morrey space in Lp,λ(Rn) as the space of functions such that is finite:

‖ f ‖p
Lp,λ(Rn)

:= sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y)|p dy.

The above defined space is used in the theory of regularity of solutions to nonlinear partial differential
equations and for the study of local behavior of solutions to nonlinear equations and systems (see, for
instance, [15, 16]).

The following definition appears in the recent paper [18].

Definition 2.1. Let 1 < p, q < +∞, 0 < λ < n, 0 < µ < 1. We define the set Lq,µ(0,T,Lp,λ(Ω)) as the class of
functions f : Ω × [0,T]→ R such that the quantity

‖ f ‖Lq,µ(0,T,Lp,λ(Ω)) :=

 sup
t0∈[0,T]
ρ>0

1
ρµ

∫
[0,T]∩(t0−ρ,t0+ρ)

sup
x∈Ω
ρ>0

1
ρλ

∫
Ω∩Bρ(x)

| f (y, t)|p dy


q
p

dt


1
q

, (2)

is finite. The same definition holds if Ω = Rn.
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It can be shown that the linear space naturally of functions f such that (2) is finite endowed with the
norm (2), is a Banach space.

For further details and recent results dealing with the Morrey spaces with mixed norm, we refer the
reader to [4].

Definition 2.2 ([12]). Let f be a locally integrable function defined on Rn. We say that f is in the space BMO(Rn)
of functions having bounded mean oscillation if

sup
B⊂Rn

1
|B|

∫
B

| f (y) − fB|dy < ∞

where B runs over the class of all balls in Rn and fB = 1
|B|

∫
B

f (y)dy.

Let f ∈ BMO(Rn) and r > 0. We define the function

η(r) = sup
ρ≤r

1
|Bρ|

∫
Bρ

| f (y) − fBρ |dy

where Bρ is a ball with radius ρ, ρ ≤ r.
BMO is a Banach space with the norm ‖ f ‖∗ = sup

r>0
η(r).

The following theorem holds.

Theorem 2.3. Let b ∈ BMO(Rn). Then, for any 1 ≤ p < ∞, we have

sup
B

 1
|B|

∫
B

|b(x) − bB|
p dx


1
p

≤ c‖b‖∗.

Definition 2.4 ([17]). We say that a function f ∈ BMO is in the Sarason class VMO(Rn) of functions with vanishing
mean oscillation if

lim
r→0+

η(r) = 0.

The function η is said to be the VMO modulus of f .

Definition 2.5 (Lipschitz space). We define the homogeneous Lipschitz space of order β, 0 < β < 1, by

Λ̇β(Rn) = { f : | f (x) − f (y)| ≤ C|x − y|β}.

The smallest constant C > 0 is the Lipschitz norm ‖ · ‖Λ̇β
.

Let f ∈ L1
loc(Rn), we recall the following Hardy-Littlewood maximal function

M f (x) = sup
ρ> 0

1
|Bρ(x)|

∫
Bρ(x)
| f (y)|dy,

where Bρ(x) is a ball centered at x and with radius ρ.
Given f ∈ L1

loc(Rn) the sharp maximal function is defined by

f ](x) = sup
B⊃{x}

1
|B|

∫
B
| f (y) − fB|dy,

for a.e. x ∈ Rn, where B is a generic ball in Rn.
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Set t ∈ [0,T], f ∈ L1
loc(Rn

× [0,T]) and 0 < η < 1. Let us consider the fractional maximal function

(Mη f )(x) = sup
B⊃{x}

1
|B|1− η

∫
B
| f (y, t) − fB|dy,

for a.e. x ∈ Rn, where B is a generic ball in Rn.
Throughout the paper, we write A . B to mean that there exists a constant C > 0 such that A ≤ CB.

Moreover, we write A ∼ B if there exists a constant C > 1 such that 1
C ≤

A
B ≤ C.

3. Boundedness of the commutator [b, Iα]

In order to prove our theorems we need some technical results. A useful tool is a pointwise inequality
that connect the sharp maximal function and the fractional integral operators. The classical Lp case is
discussed in [21] where the reader can find a proof due to Strömberg of a result of Coifman, Rochberg and
Weiss.

In [9] Di Fazio and Ragusa obtain a similar result in the framework of classical Morrey spaces.

Lemma 3.1 ([9]). Let 0 < α < n, 1 < p < n
α , 0 < λ < n − αp, 1 < r, s < min

(
p, n

α

(
1 − λ

n
1
p

))
and b ∈ BMO(Rn).

Then, there exists a constant C > 0, independent of b and f , such that

([b, Iα]( f ))](x) ≤ C‖b‖∗
[
(M|Iα f |r)

1
r (x) + (M αs

n
| f |s)

1
s (x)

]
for almost all x ∈ Rn and every f ∈ Lp,λ(Rn).

We can naturally extend the previous result to the case f ∈ Lq,µ(0,T,Lp,λ(Rn)), with 0 < µ < 1, 1 < q < ∞.
The next results are contained in [18].

Theorem 3.2. Let 1 < p < +∞, 0 < λ < n, 1 < q′ < +∞, 0 < µ < 1 and f ∈ Lq′,µ(0,T,Lp,λ(Rn)). Then, there exists
a positive constant C, independent of f , such that

‖M f ‖Lq′ ,µ(0,T,Lp,λ(Rn)) ≤ C ‖ f ‖Lq′ ,µ(0,T,Lp,λ(Rn)).

Theorem 3.3. Let 0 < α < n, 1 < p < n
α , 0 < λ < n − αp, 1

q = 1
p −

α
n−λ , 1 < q′ < +∞, 0 < µ′ < 1 and

f ∈ Lq′,µ′ (0,T,Lp,λ(R)n). Then, there exists a positive constant C, independent of f , such that

‖Iα f ‖Lq′ ,µ′ (0,T,Lq,λ(Rn)) ≤ C‖ f ‖Lq′ ,µ′ (0,T,Lp,λ(Rn)).

Theorem 3.4. Let 1 < p, q < ∞, 0 < λ < n, 0 < µ < 1 and f ∈ Lq,µ(0,T,Lp,λ(Rn)). Then, there exists a positive
constant C, independent of f , such that

‖M f ‖Lq,µ(0,T,Lp,λ(Rn)) ≤ C ‖ f ]‖Lq,µ(0,T,Lp,λ(Rn)).

Theorem 3.5. Let 1 < p, q, q1 < ∞, 0 < λ < n, 0 < µ1 < 1 and f ∈ Lq1,µ1 (0,T,Lp,λ(Rn)). Then, for every
η ∈]0, (1 − λ

n ) 1
p [, there exists a positive constant C, independent of f , such that

‖Mη f ‖Lq1 ,µ1 (0,T,Lq,λ(Rn)) ≤ C ‖ f ‖Lq1 ,µ1 (0,T,Lp,λ(Rn))

where 1
q = 1

p −
n η

n−λ .

The next results deal with the boundedness of commutator in two different cases: while in the first we
assume that the multiplication function b has bounded mean oscillation, in the second one we take b in a
homogeneous Lipschitz space.
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Theorem 3.6. Let 0 < α < n, 1 < p < n
α , 0 < λ < n − αp, 1

q = 1
p −

α
n−λ , 1 < q′ < +∞, 0 < µ′ < 1,

f ∈ Lq′,µ′ (0,T,Lp,λ(Rn)) and b ∈ BMO(Rn
× [0,T]), b(x, t) = b(x). Then, [b, Iα] is bounded from Lq′,µ′ (0,T,Lp,λ(Rn))

to Lq′,µ′ (0,T,Lq,λ(Rn)).

Proof. Let us fix

1 < r, s < min
(
p,

n
α

(
1 −

λ
n

) 1
p

)
.

Using Lemma 3.1, Theorems 3.2-3.5, we obtain:

‖[b, Iα] f ‖Lq′ ,µ′ (0,T,Lq,λ(Rn)) ≤ ‖M([b, Iα])( f )‖Lq′ ,µ′ (0,T,Lq,λ(Rn))

≤ C‖([b, Iα]( f ))]‖Lq′ ,µ′ (0,T,Lq,λ(Rn))

≤ C‖b‖∗
[
‖(M|Iα f |r)

1
r ‖Lq′ ,µ′ (0,T,Lq,λ(Rn)) + ‖(M αs

n
| f |s)

1
s ‖Lq′ ,µ′ (0,T,Lq,λ(Rn))

]
≤ C‖b‖∗

[
‖M|Iα f |r‖

1
r

Lq′ ,µ′ (0,T,L
q
r ,λ(Rn))

+ ‖M αs
n
| f |s‖

1
s

Lq′ ,µ′ (0,T,L
q
s ,λ(Rn))

]
≤ C‖b‖∗

[
‖|Iα f |r‖

1
r

Lq′ ,µ′ (0,T,L
q
r ,λ(Rn))

+ ‖| f |s‖
1
s

Lq′ ,µ′ (0,T,L
p
s ,λ(Rn))

]
≤ C‖ f ‖Lq′ ,µ′ (0,T,Lp,λ(Rn)),

and this completes the proof of the theorem.

Theorem 3.7. Let 0 < α < n, 1 < p < n
α , 0 < λ < n − αp, 1

q = 1
p −

α
n−λ , 1 < q′ < +∞, 0 < µ′ < 1,

f ∈ Lq′,µ′ (0,T,Lp,λ(Rn)), 0 < β < 1, 0 < α+β < n and b ∈ Λ̇β(Rn). Then, [b, Iα] is bounded from Lq′,µ′ (0,T,Lp,λ(Rn))
to Lq′,µ′ (0,T,Lq,λ(Rn)).

Proof. We begin by proving a pointwise inequality. Precisely, from the definition of the function space
Λ̇β(Rn) it follows that:

|[b, Iα] f (x, t)| =

∣∣∣∣∣∣∣∣
∫
Rn

(b(x) − b(y)) f (y, t)
|x − y|n−α

dy

∣∣∣∣∣∣∣∣
≤

∫
Rn

|b(x) − b(y)| · | f (y, t)|
|x − y|n−α

dy

≤ C‖b‖Λ̇β(Rn)

∫
Rn

| f (y, t)|
|x − y|n−(α+β)

dy

= C‖b‖Λ̇β(Rn)Iα+β(| f |)(x),

for a.e. (x, t) ∈ Rn
× [0,T].

Then, using Theorem 3.3, we obtain

‖[b, Iα] f ‖Lq′ ,µ′ (0,T,Lq,λ(Rn)) ≤ C‖b‖Λ̇β(Rn)‖Iα+β(| f |)‖Lq′ ,µ′ (0,T,Lq,λ(Rn))

≤ C‖b‖Λ̇β(Rn)‖ f ‖Lq′ ,µ′ (0,T,Lp,λ(Rn))

and the proof is complete.

Let T > 0 and for t ∈ ]0,T[, we consider a higher order commutator operator defined as follows:

[b, Iα]k f (x, t) :=
∫
Rn

∆k
ξb(x) f (ξ, t)

|ξ|n−α
dξ,
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where
∆1
ξb(x) = ∆ξb(x) = b(x + ξ) − b(x), ∆k+1

ξ b(x) = ∆k
ξb(x) − ∆k

ξb(y), k ≥ 1.

Let 0 < β < k ≤ n, k an integer and n be the dimension of the whole space. For β > 0, we say that b
belongs to the Lipschitz space Λ̇β(Rn) if

‖b‖Λ̇β
= sup

x,ξ∈Rn

x,h

|∆k
ξb(x)|

|ξ|β
< ∞, k ≥ 1.

Using the same argument as in Theorem 3.7, it is possible to prove the following result.

Theorem 3.8. Under the same assumptions as Theorem 3.7, if b = b1 + P, where b1 ∈ Λ̇β(Rn) and P is a polynomial
of degree less than k, then [b, Iα]k is bounded from Lq′,µ′ (0,T,Lp,λ(Rn)) to Lq′,µ′ (0,T,Lq,λ(Rn)).

4. Estimates for the Marcinkiewicz integral and its commutator

The main goal of this section is to prove two boundedness results; the first one concerns µΩ, the second
one deals with the commutator [b, µΩ].

Theorem 4.1. Let Ω ∈ Lq(Sn−1) with 1 < q ≤ ∞. Then, for every 1 < p < ∞, 0 < λ < n, 0 < µ < 1, there exists a
positive constant C, independent of f , such that

‖µΩ( f )‖Lq,µ(0,T,Lp,λ(Ω)) ≤ C‖ f ‖Lq,µ(0,T,Lp,λ(Ω)).

Proof. The proof is divided in two steps. In the first step we obtain a classical Morrey-type inequality; in
the second step, integrating and taking the supremum, we achieve the mixed Morrey norm.

First step.
Let us fix a ball B = B(x0, r) ⊆ Rn and let kB = B(x0, kr), for any k > 0. Let f = f1 + f2, where f1 = fχ2B,

f2 = fχ(2B)c and χ2B denotes the characteristic function of B(x0, 2r). Then, using Minkowski inequality, we
have

1

r
λ
p


∫
B

|µΩ f (x, t)|p dx


1
p

≤
1

r
λ
p


∫
B

|µΩ f1(x, t)|p dx


1
p

+
1

r
λ
p


∫
B

|µΩ f2(x, t)|p dx


1
p

= K1(t) + K2(t).

The classical Lp boundedness of Marcinkiewicz integral with rough kernel (see, e.g., [13]) implies that

K1(t) .
1

|B|
λ
np


∫
2B

|µΩ f (x, t)|p dx


1
p

.
(2r)

λ
p

r
λ
p

sup
B⊆Rn

1

(2r)
λ
p


∫
2B

|µΩ f (x, t)|p dx


1
p

.

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p

In order to estimate K2, we observe that, if x ∈ B and y ∈ 2 j+1B \ 2 jB, j ≥ 1, then

|x − y| ≥ |y − x0| − |x − x0| ≥ 2 j−1r.
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Therefore

K2(t) ≤


∞∫

0

∣∣∣∣∣∣∣∣∣
∫

(2B)c∩{y:|x−y|≤s}

Ω(x − y)
|x − y|n−1 f (y, t) dy

∣∣∣∣∣∣∣∣∣
2

ds
s3


1
2

≤

∞∑
j=1


∫

2 j+1B\2 jB

|Ω(x − y)|
|x − y|n−1 | f (y, t)|dy

 ·

∞∫

2 j−1r

ds
s3


1
2

.
∞∑
j=1

1

|2 j+1B|
1
n

∫
2 j+1B\2 jB

|Ω(x − y)|
|x − y|n−1 | f (y, t)|dy.

Let Ω ∈ L∞(Sn−1). Using Hölder inequality we obtain the following estimate:

|µΩ( f2)(x, t)| ≤ C‖Ω‖L∞(Sn−1)

+∞∑
j=1

1

|2 j+1B|
1
n

·
1

|2 j+1B|
n−1

n

∫
2 j+1B

| f (y, t)|dy

. ‖Ω‖L∞(Sn−1)

∞∑
j=1

1
|2 j+1B|

∫
2 j+1B

| f (y, t)1
1
p |1−

1
p dy

. ‖Ω‖L∞(Sn−1)

∞∑
j=1

1
|2 j+1B|

1

(2 j+1r)
λ
p


∫

2 j+1B

| f (y, t)|p1 dy


1
p

(2 j+1r)
λ
p |2 j+1B|

1
p′

. ‖Ω‖L∞(Sn−1)

∞∑
j=1

1
|2 j+1B|

1

(2 j+1r)
λ
p


∫

2 j+1B

| f (y, t)|p1 dy


1
p

(2 j+1r)
λ
p
|2 j+1B|

|2 j+1B|
1
p

. ‖Ω‖L∞(Sn−1)

∞∑
j=1

1
|2 j+1B|

1

(2 j+1r)
λ
p


∫

2 j+1B

| f (y, t)|p1 dy


1
p

(2 j+1r)
λ
p
|2 j+1B|

|2 j+1r|
n
p

. ‖Ω‖L∞(Sn−1)

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p
∞∑
j=1

|2 j+1r|
λ−n

p .

Now, let Ω ∈ Lq(Sn−1), 1 < q < ∞. From Hölder inequality we get

|µΩ( f2)(x, t)| .
∞∑
j=1

1

|2 j+1B|
1
n

∫
2 j+1B\2 jB

|Ω(x − y)|
|x − y|n−1 | f (y, t)|dy

.
∞∑
j=1

1

|2 j+1B|
1
n


∫

2 j+1B\2 jB

|Ω(x − y)|q dy


1
q


∫
2 j+1B\2 jB

| f (y, t)|q′

|x − y|nq′ dy


1
q′

.
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For x ∈ B and y ∈ 2 j+1B \ 2 jB, a direct calculation shows that 2 j−1r ≤ |y − x| < 2 j+2r. Hence
∫

2 j+1B\2 jB

|Ω(x − y)|q dy


1
q

=


∫

2 j−1r≤|z|≤2 j+1r

|Ω(z)|q dz


1
q

=


2 j+1r∫

2 j−1r

∫
Sn−1

|Ω(z)|qρn−1 dσ(z) dρ


1
q

(3)

≤ ‖Ω‖Lq(Sn−1)


2 j+1r∫

2 j−1r

ρn−1 dρ


1
q

. ‖Ω‖Lq(Sn−1)|2
j+1B|

1
q .

We also note that if x ∈ B, y ∈ (2B)c, then |y − x| ∼ |y − x0|. Consequently we have
∫

2 j+1B\2 jB

| f (y, t)|q′

|x − y|nq′ dy


1
q′

≤
1

|2 j+1B|


∫

2 j+1B

| f (y, t)|q
′

dy


1
q′

.

So we have

|µΩ( f2)(x, t)| . ‖Ω‖Lq(Sn−1)

∞∑
j=1

 1
|2 j+1B|

∫
2 j+1B

| f (y, t)|q
′

dy


1
q′

.

Let us now obtain another useful inequality. If p = q′, we have

µΩ( f2)(x, t) . ‖Ω‖Lq(Sn−1)

∞∑
j=1

 1
|2 j+1B|

∫
2 j+1B

| f (y, t)|q
′

dy


1
q′

. ‖Ω‖Lq(Sn−1)

∞∑
j=1

 1
|2 j+1B|

∫
2 j+1B

| f (y, t)|p dy


1
p

≤

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p
∞∑
j=1

|2 j+1r|
λ−n

p .

Thanks to a straightforward calculation, similar to that one in the case Ω ∈ L∞(Sn−1), we have

|µΩ( f2)(x, t)| . ‖Ω‖Lq(Sn−1)

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p
∞∑
j=1

|2 j+1r|
λ−n

p .

Hence, for 1 < q ≤ ∞, 1 < p < ∞, taking into account the estimations above, we have that

K2 .

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p

.
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Combining the inequalities for K1 and K2 and taking the supremum over all balls B ⊆ Rn, we get the
Lp,λ
−estimates.
Second step. From the previous step, we have the classical Morrey inequality

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
|µΩ f (y, t)|p dy


1
p

.

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p

.

Elevating to q, integrating over [0,T] ∩ (t0 − ρ, t0 + ρ), it follows that

∫
[0,T]∩(t0−ρ,t0+ρ)

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
|µΩ f (y, t)|p dy


q
p

dt .
∫

[0,T]∩(t0−ρ,t0+ρ)

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


q
p

dt.

Multiplying the inequality above to 1
ρµ and taking the supremum of both sides and, finally, elevating

both sides to 1
q , we obtain

 sup
t0∈[0,T]

ρ>0

1
ρµ

∫
[0,T]∩(t0−ρ,t0+ρ)

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
|µΩ f (y, t)|p dy


q
p

dt


1
q

.

.

 sup
t0∈[0,T]

ρ>0

1
ρµ

∫
[0,T]∩(t0−ρ,t0+ρ)

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


q
p

dt


1
q

.

and the proof is complete.

Theorem 4.2. Let Ω ∈ Lq(Sn−1) with 1 < q ≤ ∞ and b ∈ BMO(Rn
× [0,T]), b(x, t) = b(x). Then, for every

1 < p < ∞, 0 < λ < n, 0 < µ < 1, there exists a positive constant C, independent of f , such that

‖[b, µΩ]( f )‖Lq,µ(0,T,Lp,λ(Ω)) ≤ C‖ f ‖Lq,µ(0,T,Lp,λ(Ω)).

Proof. Let us fix a ball B = B(x0, r) ⊆ Rn and let kB = B(x0, kr) for any k > 0. Let f = f1 + f2, where f1 = fχ2B
being χ2B the characteristic function of B(x0, 2r). Then, we have

1

r
λ
p


∫
B

|[b, µΩ] f (x, t)|p dx


1
p

≤
1

r
λ
p


∫
B

|[b, µΩ] f1(x, t)|p dx


1
p

+
1

r
λ
p


∫
B

|[b, µΩ] f2(x, t)|p dx


1
p

= K′1(t) + K′2(t), for t ∈ [0,T].

Using the weighted Lp
−estimate (for w ≡ 1) stated in [22], we obtain

K′1(t) . ‖b‖∗

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p

, for t ∈ [0,T].

Now, we deal with the term K′2(t). For any fixed x ∈ B, we have
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|[b, µΩ] f2(x, t)| ≤ |b(x) − bB|


∞∫

0

∣∣∣∣∣∣∣∣∣
∫

(2B)c∩{y:|x−y|≤s}

Ω(x − y)
|x − y|n−1 f (y, t) dy

∣∣∣∣∣∣∣∣∣
2

ds
s3


1
2

+

+


∞∫

0

∣∣∣∣∣∣∣∣∣
∫

(2B)c∩{y:|x−y|≤s}

Ω(x − y)
|x − y|n−1 [b(y) − bB] f (y, t) dy

∣∣∣∣∣∣∣∣∣
2

ds
s3


1
2

:= I + II.

In the proof of Theorem 4.1 we have already proved that

I . |b(x) − bB|

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p n∑

j=1

|2 j+1B|
λ
n −1

p

. |b(x) − bB|

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p n∑

j=1

|2 j+1r|
λ−n

p ,

consequently

1

r
λ
p


∫
B

Ipdx


1
p

.

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p

1

r
λ
p

∞∑
j=1

1

(2 j+1r)
n−λ

p


∫
B

|b(x) − bB|
pdx


1
p

and then, using Theorem 2.3

1

r
λ
p


∫
B

Ipdx


1
p

.

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p
 1
|B|

∫
B

|b(x) − bB|
pdx


1
p

.

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p

‖b‖∗.

On the other hand, we have

II .
∞∑
j=1

1

|2 j+1B|
1
n

∫
2 j+1B\2 jB

|Ω(x − y)|
|x − y|n−1 |b(y) − bB|| f (y, t)|dy

.
∞∑
j=1

1

|2 j+1B|
1
n

∫
2 j+1B\2 jB

|Ω(x − y)|
|x − y|n−1 |b(y) − b2 j+1B|| f (y, t)|dy

+

∞∑
j=1

|b2 j+1B − bB|

|2 j+1B|
1
n

∫
2 j+1B\2 jB

|Ω(x − y)|
|x − y|n−1 | f (y, t)|dy

= III + IV, for t ∈ [0,T].
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If Ω ∈ L∞(Sn−1), using Hölder inequality and Theorem 2.3, we attain

III . ‖Ω‖L∞(Sn−1)

∞∑
j=1

1
|2 j+1B|

∫
2 j+1B

|b(y) − b2 j+1B|| f (y, t)|dy

. ‖Ω‖L∞(Sn−1)

∞∑
j=1

1
|2 j+1B|


∫

2 j+1B

|b(y) − b2 j+1B|
p′1−

p′

p dy


1
p′

·


∫

2 j+1B

| f (y, t)|p · 1dy


1
p

. ‖Ω‖L∞(Sn−1)

 sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p
∞∑
j=1

1
|2 j+1B|

(2 j+1r)
λ
p ·


∫

2 j+1B

|b(y) − b2 j+1B|
p′1−

p′

p dy


1
p′

. ‖Ω‖L∞(Sn−1)

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p
∞∑
j=1

1
|2 j+1B|

(2 j+1r)
λ
p (2 j+1r)

n
p′

. ‖Ω‖L∞(Sn−1)

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p
∞∑
j=1

1
|2 j+1B|

(2 j+1r)
λ
p (2 j+1r)n− n

p

. ‖Ω‖L∞(Sn−1)‖b‖∗

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p
∞∑
j=1

(2 j+1r)
λ−n

p .

If Ω ∈ Lq(Sn−1), using Hölder’s inequality and (3), we gain

III . ‖Ω‖L∞(Sn−1)

∞∑
j=1

1

|2 j+1B|
1
q′


∫

2 j+1B

|b(y) − b2 j+1B|
q′
| f (y, t)|q

′

dy


1
q′

. ‖Ω‖L∞(Sn−1)‖b‖∗

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p
∞∑
j=1

(2 j+1r)
λ−n

p .

Hence, for 1 < q ≤ ∞, we achieve

1

r
λ
p


∫
B

IIIpdx


1
p

. ‖b‖∗

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p

.

In the proof of Theorem 4.1 we reached

1

|2 j+1B|
1
n

∫
2 j+1B\2 jB

|Ω(x − y)|
|x − y|n−1 | f (y, t)|dy .

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p

(2 j+1r)
λ−n

p .

Hence, by an easy calculation, it can be shown that if b ∈ BMO(Rn), then |b2 j+1B − bB| ≤ Cj‖b‖∗. Then,

IV . ‖b‖∗

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p
∞∑
j=1

j(2 j+1r)
λ−n

p .
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From the last inequality it follows that

1

r
λ
p


∫
B

IVpdx


1
p

. ‖b‖∗

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p
∞∑
j=1

j ·
r

n−λ
p

(2 j+1r)
n−λ

p

. ‖b‖∗

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p
∞∑
j=1

j

(2 j)
n−λ

p

. ‖b‖∗

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p

.

Combining the above estimates and taking the supremum over all balls B ⊆ Rn we obtain the classical
Morrey estimate:sup

x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
|[b, µΩ] f (y, t)|p dy


1
p

.

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


1
p

, for t ∈ [0,T]. (4)

Finally, we derive the desired mixed-Morrey estimate. Elevating (4) to q, integrating over [0,T] ∩ (t0 −

ρ, t0 + ρ), it follows that

∫
[0,T]∩(t0−ρ,t0+ρ)

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
|[b, µΩ] f (y, t)|p dy


q
p

dt .
∫

[0,T]∩(t0−ρ,t0+ρ)

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


q
p

dt.

Multiplying the inequality above to 1
ρµ , taking the supremum of both sides and elevating both sides to 1

q
we get  sup

t0∈[0,T]
ρ>0

1
ρµ

∫
[0,T]∩(t0−ρ,t0+ρ)

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
|[b, µΩ] f (y, t)|p dy


q
p

dt


1
q

.

 sup
t0∈[0,T]

ρ>0

1
ρµ

∫
[0,T]∩(t0−ρ,t0+ρ)

sup
x∈Rn
ρ> 0

1
ρλ

∫
Bρ(x)
| f (y, t)|p dy


q
p

dt


1
q

.

and the theorem is completed.
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