
Riesz pyramids for fast phase-based video magnification

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation Wadhwa, Neal, Michael Rubinstein, Fredo Durand, and
William T. Freeman. “Riesz Pyramids for Fast Phase-Based
Video Magnification.” 2014 IEEE International Conference on
Computational Photography (ICCP) (May 2014).

As Published http://dx.doi.org/10.1109/ICCPHOT.2014.6831820

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/100016

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/100016
http://creativecommons.org/licenses/by-nc-sa/4.0/


Riesz Pyramids for Fast Phase-Based Video Magnification

Neal Wadhwa1 Michael Rubinstein1,2 Frédo Durand1 William T. Freeman1
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Abstract

We present a new compact image pyramid representa-

tion, the Riesz pyramid, that can be used for real-time

phase-based motion magnification. Our new representa-

tion is less overcomplete than even the smallest two orien-

tation, octave-bandwidth complex steerable pyramid, and

can be implemented using compact, efficient linear filters

in the spatial domain. Motion-magnified videos produced

with this new representation are of comparable quality to

those produced with the complex steerable pyramid. When

used with phase-based video magnification, the Riesz pyra-

mid phase-shifts image features along only their dominant

orientation rather than every orientation like the complex

steerable pyramid.

1. Introduction

Numerous phenomena exhibit small motions that are in-

visible to the naked eye. These motions require computa-

tional amplification to be revealed [10, 12, 19, 21]. Manip-

ulating the local phase in coefficients of a complex steer-

able pyramid decomposition of an image sequence is an

effective, robust method of amplifying small motions in

video [19], but complex steerable pyramids are very over-

complete (21 times) and costly to construct, requiring either

a large number of filter taps or a frequency domain construc-

tion where care must be taken to avoid spatial wrap-around

artifacts [11, 15]. The overcompleteness and high cost of

implementing the complex steerable pyramid make current

phase-based video magnification slow to compute.

We present a new image pyramid representation, the

Riesz pyramid, that is suitable for Eulerian phase-based

video magnification, but is much less overcomplete than the

complex steerable pyramid used by Wadhwa et al. [16, 19].

Our new representation produces motion-magnified videos

of comparable quality to those produced using a complex

steerable pyramid, but the videos can be processed in one

quarter of the time, making it more suitable for real-time or

online processing (Figure 1).

The Riesz pyramid is constructed by first breaking the

input image into non-oriented sub-bands using an efficient,

invertible replacement for the Laplacian pyramid, and then

taking an approximate Riesz transform of each band [2, 4].

This processing is done entirely in the spatial domain,

which gives an easy way of avoiding the spatial wrap-

around artifacts present in the frequency domain implemen-

tation of the eight-orientation complex steerable pyramid

used by Wadhwa et al. [19]. Building and collapsing the

Riesz pyramid is efficiently implemented because of shared

computation between bands, symmetry of the filters, and

because the Riesz transform is approximated by two three-

tap finite difference filters. Concretely, it uses less than half

the number of real multiplies required for the spatial do-

main implementation of the two-orientation real steerable

pyramid proposed by Simoncelli and Freeman [15] (this is

the smallest possible real steerable pyramid, and computing

the imaginary part of the pyramid would require additional

processing).

The key insight into why our new representation can be

used for motion magnification is that the Riesz transform is

a steerable Hilbert transformer and allows us to compute a

quadrature pair that is 90 degrees out of phase with respect

to the dominant orientation at every pixel. This allows us to

phase-shift and translate image features only in the direction

of the dominant orientation at every pixel rather than a sam-

pling of orientations like in the complex steerable pyramid.

Felsberg and Sommer [4] introduced the Riesz transform to

the signal processing community and Unser et al. extended

it to a multiresolution framework [18]. Our representation

extends Unser et al. Their framework is not focused on

speed and is implemented entirely in the frequency domain,

while the Riesz pyramid we propose is implemented in the

spatial domain. In addition, we gain further speedups by ap-

proximating the Riesz transform using two three-tap finite

difference filters, whereas Unser et al. opt to use the ideal

frequency domain version of the Riesz transform, which is

slower to compute.

In summary, we present a new representation that can

be used for video magnification that is (a) less overcom-

http://people.csail.mit.edu/nwadhwa/riesz-pyramid
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(a) Input (b) Linear (Wu et al. 2012)

11.7 seconds

(c) CSP (Wadhwa et al. 2013)

92.3 seconds

(d) Riesz Pyramid (this paper)

25.7 seconds

Figure 1. Motion magnification of sinusoidal instabilities in fluid flow during the transition from laminar flow to turbulent flow. The input

(a) is motion-magnified using the linear method of Wu et al. [21] (b) and two phase-based methods, first with an eight orientation octave-

bandwidth complex steerable pyramid [19] (c), and second with our new Riesz pyramid (d). The quality of the video produced using our

new representation (d) is comparable to that produced using the complex steerable pyramid method (c), but is approximately four times

faster to compute. Frames and slices in time along the yellow line from the input and processed sequences are shown. Notice that both

(c) and (d) do not have the intensity clipping artifacts and limited amplification of (b). The running time of each method is shown under its

caption, based on a MATLAB implementation.

plete than even a two-orientation octave-bandwidth com-

plex steerable pyramid, (b) is implemented in the spatial do-

main, which gives an easy way to avoid spatial wrap-around

artifacts associated with frequency domain implementations

of filters, (c) is implemented with efficient, compact linear

filters, and (d) supports real-time phase-based video magni-

fication. We present comparisons with state-of-the-art video

magnification, as well as results on new video sequences.

We also provide a real-time implementation. All the videos

and results are available on the project website.

2. Background

Local Phase and Quadrature Pairs Phase-based video

magnification relies on the ability to manipulate the local

(spatial) phase of image sub-bands. The local phase can be

used to edit local motions in a manner analogous to shift-

ing an image using global phase via the Fourier shift theo-

rem [19].

The local phase of a one-dimensional image sub-band is

computed by first computing the sub-band’s quadrature pair,

a 90 degree phase-shifted version of the sub-band related to

it by the Hilbert transform. The sub-band and its quadrature

pair form the real and imaginary part of a complex number,
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Subband (I) Riesz 1 (R1) Riesz 2 (R2) Subband (I) Orientation (θ)

Quadrature

Pair (Q) Amplitude (A) Orientation (θ) Phase (φ)

(a) Input (b) Riesz Pyramid 

(Cartesian Coordinates)

(c) Riesz Pyramid 

(Cylindrical Coordinates)

(d) Riesz Pyramid 

(Spherical Coordinates)

−π 0 π0 π/2 π 0 π/2 π

Figure 2. Three equivalent representations of the Riesz pyramid. The input is a circle with a sharp edge (a). In (b), the input is decomposed

into multiple spatial sub-bands using an invertible transform, and an approximate Riesz transform is taken of each band to form the Riesz

pyramid. At each scale, the three channels can be thought of as being components in Cartesian coordinates. In (c), they are expressed in

cylindrical coordinates to show the sub-band, its quadrature pair and the local orientation. In (d), they are expressed in spherical coordinates

to show the local amplitude, local orientation and local phase. Note the discontinuity in the orientation, quadrature pair and phase, which

is due to the fact that orientation wraps around from 0 to π. In all three representations, there is a lowpass residual, of which we do not

take the Riesz transform. The orientation and phase are not meaningful in regions of low amplitude (masked out in yellow).

whose argument is the local phase. We can manipulate this

quantity to shift the sub-band arbitrarily. For example, the

quadrature pair of cos(x) is sin(x), its local phase is x and

cos(x− φ) = Real(e−iφ(cos(x) + i sin(x))) (1)

is an arbitrary translation of cos(x).

Two dimensional images can be analyzed in this way us-

ing the complex steerable pyramid, an invertible filter bank,

which first breaks the image into sub-bands corresponding

to different scales and orientations to form the real part of

the pyramid. Then, the imaginary part of the pyramid is

formed by taking the Hilbert transform of each sub-band

along its orientation. The complex steerable pyramid must

break the image into at least two orientations because the

Hilbert transform is fundamentally a one dimensional trans-

form and in two dimensions is only well-defined with re-

spect to a preferred orientation. The fact that there must be

multiple orientations is the reason why the complex steer-

able pyramid is so overcomplete.

Riesz Transform The Riesz transform is the natural

rotation-invariant, two-dimensional generalization of the

one-dimensional Hilbert transform [4]. It can be viewed as

a steerable Hilbert transformer that gives a way to compute

a quadrature pair of a non-oriented image sub-band that is

90 degrees phase-shifted with respect to the dominant ori-

entation at every point. That is, it allows for phase analysis

of non-oriented image sub-bands. The Riesz transform has

been applied in the past for image processing applications

such as segmentation of ultrasound images [1] and demod-

ulation of fringe patterns in interferometric images [7].

Following Unser et al. [18], in two dimensions, the Riesz

transform is a pair of filters with transfer functions

−i
ωx

‖~ω‖
,−i

ωy

‖~ω‖
. (2)

If they are applied to the image sub-band I in Fig. 3(a), the

result is the pair of filter responses, (R1, R2) in Fig. 3(b-c).

The input I and Riesz transform (R1, R2) together form a

triple (the monogenic signal [4]) that can be converted to

spherical coordinates to yield the local amplitude A, local

orientation θ and local phase φ using the equations

I = A cos(φ), R1 = A sin(φ) cos(θ), R2 = A sin(φ) sin(θ).
(3)

The Riesz transform can be steered to an arbitrary orien-

tation, θ0, by multiplication by a rotation matrix
(

cos(θ0) sin(θ0)
− sin(θ0) cos(θ0)

)(

R1

R2

)

. (4)

When the Riesz transform is steered to the local dominant

orientation θ (Fig. 3(d)), the result is a pair whose first com-

ponent Q is

Q = A sin(φ), (5)

a quadrature pair of the input signal that is 90 degrees

phase-shifted with respect to the local dominant orientation

(Fig. 3(e)). The local phase φ (Fig. 3(f)) can be viewed as

the phase of the complex number

Aeiφ = I + iQ (6)



whose real and imaginary part are the input sub-band and

quadrature pair. Alternatively, the local phase can be com-

puted directly from Eq. 3. Further details about the Riesz

transform and an alternate formulation using quaternions

are presented in the technical report [20].

Eulerian Video Magnification In Lagrangian ap-

proaches to motion magnification [10], motion is computed

explicitly and the frames of the video are warped accord-

ingly. Motion estimation, however, remains a challenging

and computationally intensive task. Eulerian video magni-

fication, introduced by Wu et al. [21], is able to amplify

small motions in videos without explicitly computing opti-

cal flow. In their work, the temporal brightness changes in

frame sub-bands are amplified to amplify motions. Because

this method amplifies brightness changes, the total amplifi-

cation is limited and the noise power is amplified linearly

with the amplification factor.

The problems of linear video magnification were mit-

igated by Wadhwa et al., by amplifying temporal phase

variations in the coefficients of a complex steerable pyra-

mid instead of intensity variations [19]. Several papers

have demonstrated that the local phase in bandpass filtered

videos can be used for motion estimation [5,6] and Wadhwa

et al. showed that this link between phase and motion could

be exploited in an Eulerian manner for the purpose of mo-

tion magnification [19]. While the phase-based method is of

higher quality than its predecessor, it is also more expensive

to compute in both space and time because the eight orien-

tation complex steerable pyramid representation it uses is

over 21 times overcomplete. In contrast, the Riesz pyramid

proposed here is only 4 times overcomplete. This is even

less overcomplete than the 5 1
3 times overcomplete two ori-

entation octave-bandwidth complex steerable pyramid, the

smallest complex steerable pyramid.

Wadhwa et al. proposed the use of half and quarter oc-

tave bandwidth pyramids to amplify motions more than is

possible with the octave bandwidth representation. These

representations are approximately a factor of 1.5 and 2.6
more overcomplete than their octave bandwidth counter-

part, respectively, and as a result are significantly slower.

Because this paper is concentrating on speed and elimi-

nating the overcompleteness due to the many orientations

of the complex steerable pyramid, we provide an octave-

bandwidth Riesz pyramid and focus mainly on comparing

to phase-based video magnification with octave-bandwidth

complex steerable pyramids.

3. Riesz Pyramids and Motion Magnification

The Riesz pyramid uses the Riesz transform to do phase

analysis on all scales of an input image by first decompos-

ing the image into multiple sub-bands, each of which corre-

(a) Input (b) Riesz 1 (c) Riesz 2

(d) Orientation (e) Quad. Pair (f) Phase
0 π/2 π π0−π

Figure 3. The input image sub-band (a), its Riesz transform (b-c)

and the orientation (d), quadrature pair (e) and phase (f).

sponds to a different spatial scale, and then taking the Riesz

transform of each sub-band (Fig. 2). An ideal version of the

Riesz pyramid can be built in the frequency domain using

octave (or sub-octave) filters similar to the ones proposed in

Wadhwa et al [19] and the frequency domain Riesz trans-

form [4]. This can be used to magnify motions in videos

faster than a two orientation complex steerable pyramid, but

it requires the use of costly Fourier transforms to construct,

making it unsuitable for online processing. To remedy this

and gain further speedups, we approximate the ideal fre-

quency domain Riesz transform with an approximate Riesz

transform given by two finite difference filters, which is sig-

nificantly more efficient to compute. To avoid using the

Fourier transform in the initial spatial decomposition, we

also introduce a new non-oriented pyramid implemented in

the spatial domain, similar to the Laplacian pyramid [2] but

with wider filters that support a wider range of motion edit-

ing. We describe the approximate Riesz transform and the

spatial decomposition in the following sections.

3.1. Approximate Riesz Transform

In image pyramids, each sub-band is a critically sampled

spatially bandpassed signal with most of the sub-band’s en-

ergy concentrated in a frequency band around ‖~ω‖ = π
2 (the

Nyquist frequency is at ωx = ωy = π). As a result, we can

approximate the Riesz transform with the three tap finite

difference filters [0.5, 0,−0.5] and [0.5, 0,−0.5]T . These

filters have frequency response

−i sin(ωx) ≈ −i
ωx

‖ωx‖
,−i sin(ωy) ≈ −i

ωy

‖ωy‖
, (7)

when ωx, ωy ≈ π
2 . This is similar to the frequency response

of the Riesz transform (Fig. 4). That is, these filters change
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Figure 4. The first channel of the Riesz transform of a pyramid

level’s transfer function (a) is compared to the first channel of our

approximation of the Riesz transform (b). One dimensional slices

along the yellow lines of (a) and (b) are shown in (c). If our ap-

proximation was perfect, (a) and (b) would be identical and the

lines in (c) would coincide.

the phase of the band by 90 degrees in the x and y direc-

tions respectively while not changing the amplitude sub-

stantially. For images, rather than image sub-bands, these

three-tap filters are a better approximation to the derivative.

This is because images have most of their spectral content

concentrated at low frequencies. When ω ≈ 0, we have

−i sin(ω) ≈ −iω, which is the frequency response of the

derivative operator.

In the supplementary material, we provide a way to gen-

erate higher-tap approximations to the Riesz transform us-

ing a technique similar to the one Simoncelli proposed to

find derivative filter taps [13]. In practice, we found that us-

ing two three-tap filters to approximate the Riesz transform

gave motion magnification results that were comparable to

using higher-tap approximations or the frequency domain

implementation of the Riesz transform.

3.2. Spatial Decomposition

Prior to applying the Riesz transform, we decompose

the image into non-oriented sub-bands using an invertible

image pyramid. For the purposes of computational per-

formance, we avoid the Fourier transform, eliminating the

choice of a frequency domain construction (Fig. 5(b)). A

compact space-domain image pyramid we could use is the

Laplacian pyramid [2] (Fig. 5(a)). However, this pyramid

has a very narrow impulse response, which limits the maxi-

(a) Laplacian

Time: 30ms 

(c) New Pyramid

Time: 54ms

Laplacian
Frequency
New Pyr.

00

(d) Impulse Response (e) Window of Filters

Input
Ground Truth
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Figure 5. Different spatial decompositions for our new algorithm.

In the top row, the frequency response of a level of the Laplacian

pyramid (a), a frequency domain pyramid (b), and our new spatial

domain pyramid (c). In the middle row, a one-dimensional cross

section of their impulse responses (d) and windows (e). In the

bottom row, a synthetic Gaussian shifted with our technique us-

ing a Laplacian pyramid, the frequency domain pyramid and our

new pyramid for two amplification factors (f-g). The time in mil-

liseconds to build and collapse a 960× 540 image in MATLAB is

shown underneath the frequency response of each pyramid.

mum amplification the pyramid can support (Fig. 5(d-g)).

To remedy this problem, we design a self-inverting pyra-

mid similar to the Laplacian pyramid but with wider im-

pulse response (Fig. 5(c)). Simoncelli and Freeman [14]

showed that such a pyramid can be constructed from a low-

pass and highpass filter pair that satisfy certain properties.

Rather than using the symmetric, but nonseparable lowpass

and highpass filter taps provided by Simoncelli and Free-

man, we design our own pyramid using a similar technique

to theirs. Our filters use fewer taps than Simoncelli and

Freeman and have additional structure imposed on them,

which makes them very efficient to implement when the

lowpass and highpass filters are jointly applied to the same

input as they are when building the pyramid [9].

As a result, building the proposed pyramid requires a to-



tal of 30 multiplies per pixel per scale. Collapsing the pyra-

mid requires applying the symmetric lowpass and highpass

filter to separate bands and then summing the results for a

total of 42 multiplies per pixel per scale. This results in a to-

tal cost of 72 multiplies per pixel per scale or 96 multiplies

per pixel to build and collapse the pyramid. The approxi-

mate Riesz transform adds 2 multiplies per pixel per scale

or 3 multiplies per pixel for a total of 99 multiplies per pixel.

The taps of our filters and more details on the design and

implementation techniques can be found in the supplemen-

tary materials. A comparison between our new pyramid, a

frequency-domain pyramid and the Laplacian pyramid, is

given in Fig. 5.

4. Motion Processing with the Riesz Tranform

To see how motion can be manipulated with the Riesz

transform, consider a toy model of a single image scale:

a two dimensional oriented sinusoid that is undergoing a

small horizontal motion δ(t),

I(x, y, t) = A cos(ωx(x− δ(t)) + ωyy). (8)

From Eq. 2, the Riesz transform of this sinusoid is the pair

A
(ωx, ωy)

√

ω2
x + ω2

y

sin(ωxx+ ωyy − ωxδ(t)). (9)

From Eq. 5, the quadrature pair Q is

Q(x, y, t) = A sin(ωxx+ ωyy − ωxδ(t)), (10)

which agrees with the one-dimensional case. From Eq. 6,

the local phase and amplitude are

A and ωxx+ ωyy − ωxδ(t). (11)

The local phase φ can be temporally filtered to remove

the DC component ωxx + ωyy and then amplified to yield

αωxδ(t). The input signal can be phase-shifted by this

amount along the dominant orientation

Real(e−iαω1δ(t) (I + iQ)) (12)

to produce a motion-magnified sinusoid

A cos(ωx(x− (1 + α)δ(t)) + ωyy). (13)

4.1. Temporal Filtering and Phase Denoising

In recent Eulerian motion magnification papers, motions

of interest were isolated and denoised with temporal fil-

ters [19, 21]. In addition, Wadhwa et al. further increased

the SNR of the phase signal by spatially denoising it with an

amplitude-weighted spatial blur applied to each sub-band

[19]. We can do both of these things with the Riesz pyra-

mid. However, the local phase φ cannot be naively filtered

(a) Input (b) Phase difference (c) Amplified with (b)

(d) φ cos(θ) difference (e) φ sin(θ) difference (f) Amplified with (d,e)

Figure 6. The motion between the input (a) and a copy shifted

to the left by one half pixel is magnified in two ways. First, the

phase difference of φ (b) is spatially denoised and then used to

magnify the second frame (c). In the bottom row, the difference

in the quantities φ cos(θ) and φ sin(θ) (d-e) are spatially denoised

and then used to amplify the second frame (f). In (b,d,e), low

amplitude regions are masked in yellow, middle gray corresponds

to a difference of zero and only a single sub-band is shown.

(Fig. 6(b,c)) because the local phase is only defined up to

a sign depending on whether the orientation is specified by

an angle θ or its antipode θ + π (Fig. 2(c,d)).

Therefore, instead of filtering the phase φ, we take into

account the orientation when filtering and filter the quanti-

ties

φ cos(θ), φ sin(θ), (14)

which are invariant to the ambiguity between (φ, θ) and

(−φ, θ + π).
After temporal filtering, we can perform an amplitude

weighted blur on these quantities and recombine them to

get

cos(θ)
Aφ cos(θ) ∗Kρ

A ∗Kρ

+ sin(θ)
Aφ sin(θ) ∗Kρ

A ∗Kρ

, (15)

where Kρ is a Gaussian blur kernel with standard deviation

ρ. We then phase-shift as in Eq. 12.

In Fig. 6, we show the difference between spatio-

temporal filtering of φ directly and filtering Eq. 14. The

phase difference (Fig. 6(b)) switches sign on the left and

right side of the circle when the orientation wraps around

from 0 to π. When the phase is subsequently spatially de-

noised, the phase signal at these locations becomes close to

0 causing them to not get magnified (Fig. 6(c)). In contrast,

filtering φ cos(θ) and φ sin(θ) alleviates this problem as the

phase difference does not change signs abruptly (Fig. 6(d-

f)).



Eqs. 14 and 15 follow directly from the quaternion for-

mulation of the Riesz pyramid. That formulation, justifi-

cation for these equations and an existing technique to do

LTI filtering on quaternions [8] are available in a technical

report on the project website [20].

5. Results

Phase-based video magnification with our new repre-

sentation allows users to produce high-quality motion-

magnified videos in real-time. We show several applications

of our algorithm in this section. For all of our results, we

used the approximate Riesz transform (Section 3.1) with the

new spatial domain pyramid (Section 3.2). We converted

the videos to YIQ colorspace and only processed the luma

channel. We specify the temporal bands and amplification

factors we use for each sequence in the supplementary ma-

terial.

A vibrating string on its own makes only a very quiet

sound. As a result, stringed musical instruments are con-

structed so that the string vibrates a soundboard or a hollow

resonating chamber that produces almost all of the audible

sound. In violin, the G string of a violin is played by a bow

and the resulting vibrations were recorded by a high speed

camera at 3000 FPS. This high speed video reveals the intri-

cate motions of the string. However, motion amplification

with our new representation reveals the invisible vibrations

of the soundboard and tailpiece. We suppress amplification

near the string in our result.

A man holding a weight struggles to maintain balance,

but in a 300 frame per second high speed video, balance,

this struggle is not clearly apparent. When we amplify the

motions ten times in a passband between 1.0-8.0Hz, the

man’s struggle becomes visible and we see all the work he

is doing to hold the weight.

When laminar flow becomes turbulent, there is a tran-

sition region in which sinusoidal instabilities grow before

eventually becoming unstable and turbulent [17]. In smoke,

we reveal these sinusoidal instabilities by applying motion

magnification to a column of incense smoke transitioning

from laminar to turbulent flow (Fig. 1).

Chen et al. [3] used local phase to compute the mode

shape of a cantilever beam struck by a hammer from video.

We obtained this sequence, column (Fig. 7(d)), and used

motion amplification to visualize the mode shapes by ampli-

fying the motions in the video along narrow temporal bands.

These mode shapes correspond to the theoretically derived

ones.

Comparisons with Previous Techniques In Fig. 1 and

the supplementary video, we present several comparisons

between phase-based motion magnification using the Riesz

pyramid and using the complex steerable pyramid [19] on

(a) violin (b) balance (c) column

Figure 7. Representative frames from videos in which we amplify

imperceptible motions. The full sequences and results are avail-

able in the supplementary materials.
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Figure 8. A comparison of our new method versus previous Eule-

rian video magnification methods on a synthetic oscillating Gaus-

sian, in which the ground truth amplified motion is known. The

logarithm of the RMSE is shown in color for the linear method

(a), for the complex steerable pyramid phase-based method (b) and

for our new phase-based method (c). We also show slices of the

RMSE vs. amplification (d) and RMSE vs. noise (e) for the three

methods.

natural videos. The Riesz pyramid yields results that are

comparable in quality to those produced with the complex

steerable pyramid, but much faster. To verify this quantita-

tively, we tested phase-based video magnification with our

new representation and the eight orientation complex steer-

able pyramid and linear video magnification on a sequence

of a synthetic oscillating Gaussian, in which the ground

truth motion magnified sequence is known. We computed

the RMSE of these techniques as a function of amplifica-

tion factor α and spatiotemporal image noise σ (Fig. 8).

For all amplification factors and noise levels, the RMSE

for our new representation is very close to that of phase-

based video magnification with the complex steerable pyra-

mid, and substantially better than the linear method [21].

In Table 1, we display the running times of comparable



Video Resolution (h× w × t) Wu et al. [21] Wadhwa et al. [19] 2 Orient. CSP Riesz (Freq.) Riesz (Space)

Type Linear Phase Phase Phase Phase

Domain Space Frequency Frequency Frequency Space

Crane 280× 280× 220 6.0 43.0 15.9 13.6 10.1

Guitar 432×192×300 7.9 60.5 23.5 20.4 14.9

Baby 960×540×300 35.6 325.9 95.7 101.6 75.4

Camera 512×384×1000 46.6 375.7 140.3 122.5 91.5

Violin 480×360×300 12.7 115.8 43.1 34.9 29.3

Balance 272×384×300 7.7 72.7 30.7 23.6 18.3

Smoke 240×600×300 11.7 92.3 32.5 30.6 25.7

Column 200×1056×600 41.7 259.7 95.3 90.8 76.5

Table 1. Running times (in seconds) of comparable MATLAB implementations of phase-based motion magnification, the Riesz pyramid,

and several variants of the complex steerable pyramid. All phase-based methods were run with spatial phase denoising of the same value of

ρ. Video read and write times were not included. As specified in Wadhwa et al. [19], we use an eight orientation octave bandwidth pyramid

(Col. 4). We also present their method using the smallest possible complex steerable pyramid, a two orientation octave bandwidth pyramid

(Col. 5). “Domain” (third row) specifies whether the pyramid was constructed in the spatial or frequency domains. For each sequence, the

fastest phase-based method is highlighted in bold.

MATLAB implementations of linear video magnification

and phase-based video magnification using 8 and 2 orienta-

tion complex steerable pyramids, the Riesz pyramid imple-

mented in the frequency domain (Fig. 5(b)) and the Riesz

pyramid implemented in the spatial domain (Fig. 5(c)).

Using the spatial-domain Riesz pyramid yields the fastest

phase-based method, producing results four to five times

faster than the 8 orientation complex steerable pyramid used

in Wadhwa et al. [19]. It is 20% to 80% faster than even

the two orientation complex steerable pyramid. The spatial-

domain Riesz pyramid is also faster than the frequency do-

main implementation, demonstrating the additional speedup

that our approximate Riesz transform and spatial-domain

decomposition provide.

Real Time Implementation We created a C++ imple-

mentation of phase-based video magnification with the

Riesz pyramid using OpenCV and QT. We can process a

live 640 × 400 pixel video at 25 frames per second on a

laptop with four cores and 16GB RAM (the algorithm uses

only a single CPU core). Because all of the operations are

compact linear filters or element-wise operations, a paral-

lelized or GPU implementation could further increase the

speed. In our real time implementation, we use a Laplacian

pyramid in which the image is blurred and downsampled

with a 5×5 Gaussian kernel (Fig. 5(a)) as the spatial decom-

position because it is efficiently implemented in OpenCV.

In Fig. 9, we show a frame from our real time interface.

A woman uses it to amplify the changes in her facial ex-

pressions, which causes her face to appear caricatured. We

include a demo of our application in the supplementary ma-

terial.

Original Video Processed Video

Figure 9. Our real time implementation in action: a woman’s fa-

cial expressions are amplified and caricatured without artifacts. A

zoom-in of the face is overlayed. The full demo is available in the

supplementary material.

6. Discussion

Sub-octave pyramids: Wadhwa et al. proposed using

half- and quarter-octave bandwidth pyramids to increase

the amount by which motions can be shifted. Since our

new representation focuses on speed, we concentrated on

comparing our technique to an octave-bandwidth complex

steerable pyramid since it is the faster among these decom-

positions. It is possible that our algorithm could be im-

proved further by using non-oriented versions of these sub-

octave bandwidth pyramids as the spatial decomposition in

the Riesz pyramid.

Pros and cons w.r.t. the complex steerable pyramid:

Even though it is computationally more expensive, the

complex steerable pyramid could have advantages over the

Riesz pyramid in some scenarios. For example, the Riesz

pyramid may have trouble at points where there is not a sin-

gle dominant orientation, as demonstrated in Fig. 10. The



(a) Input (b) CSP8

(c) CSP2 (d) RP

Figure 10. An example of an advantage of the complex steerable

pyramid over the Riesz pyramid on a synthetic sequence. The tex-

ture in (a) is the sum of four sinusoids with the same wavelength,

but different orientations (18◦, 72◦, 108◦, 162◦). The texture and

a copy shifted to the right by 0.1 pixels are motion-magnified by

30 times using an eight orientation complex steerable pyramid (b),

a two orientation complex steerable pyramid (c) and the frequency

domain Riesz pyramid (d). Notice how the texture in (b) is more

similar to the original (a) in comparison to (c) and (d). The full

sequences are available in the supplementary material.

input image is a sum of four sinusoids of the same wave-

length, but of different orientations. Thus, the entire im-

age consists of points that do not have a single dominant

orientation. Neither the Riesz pyramid nor the two ori-

entation complex steerable pyramid can properly motion-

magnify this image. However, a complex steerable pyra-

mid with eight orientations can better separate this complex

texture into one dimensional sinusoids, which can then be

motion-magnified more accurately (Fig. 10(b)). In general,

we would expect the Riesz pyramid to perform similarly to

the two orientation complex steerable pyramid as the latter

is also not capable of separating two orientations at a single

point unless they are exactly horizontal and vertical.

Limitations The approximate Riesz transform does not

maintain the power of an input signal like the ideal Riesz

transform does, which can cause minor artifacts. That is, a

signal like cos(x) might get mapped to ((1 + ǫ) sin(x), 0)
where ǫ 6= 0. As a result, the phase signal may not be ex-

actly x, but rather x plus an order ǫ term that might vary

with location x + O(ǫ)f(x). This causes different parts

of the sinusoid to get magnified slightly differently causing

some minor artifacts. The spatial smoothing step (Section

4.1) can be used to smooth out these spatial inconsistencies

and reduce the artifacts. More details are given in the sup-

plementary material.

Our new representation also still suffers from some lim-

itations of the Eulerian motion magnification framework.

For example, in the violin sequence, there are some arti-

facts near the vibrating string no matter which motion mag-

nification method is used. This is because these motions

are relatively large and so are not well-characterized by an

Eulerian framework.

7. Conclusion

We described a new representation, the Riesz pyramid,

that can be used as a much faster replacement for the com-

plex steerable pyramid in phase-based video magnification

without a substantial reduction in quality. Our new repre-

sentation decomposes the image using an invertible octave-

bandwidth pyramid specified by compact, symmetric low-

pass and highpass filters, and then computes an approximate

Riesz transform by using two three-tap finite difference fil-

ters. The Riesz pyramid allows for a real-time implementa-

tion of phase-based motion magnification, and may be use-

ful for other applications where the phase in sub-bands is

important, such as stereo matching and phase-based optical

flow.
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