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The RIG system provides convenient access to a 
wide range of computing facilities. The system 
includes five large mini-computers in a very fast 
internal network, disk and tape storage, a 
printer/plotter and a number of display terminals. 
These are connected to larger campus machines (IBM 
360/65 and DEC KLIO) and to the ARPANET. The operating 
system and other software support for such a system 
present some interesting design problems. This paper 
contains a high level technical discussion of the 
softvtare designs, many of which will be treated in more 
deta i 1 in subsequent reports. 



"When I opened my eyes I saw the Aleph 

the place where, without any possible 

confusion, all the places in the world 

are found, seen from every angle." 

--Jorge Luis Borges, "The Aleph ' ! 

<translation by Anthony Kerrigan) 

In a world where networks of diverse computing 

resources are growing and intertwining, there is a pressing 

need for systems which provide access to a variety of 

computers and serve as intelligent gateways to their use. 

In response to our own needs we are developing an operating 

system which, after Borges' point containing all other 

points, we are call ing Aleph. Aleph is based on a simple 

message-passing discipline for inter-process communication. 

~ ~ h e n  completed, Aleph will form the framework for 

Rochester's Intell igent Gateway <RIG), a system for uniform 

access to a variety of local <;lnd remote computing 

faci 1 i ties. 

1  
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1. RI G OVERVI E~I  

At the simplest (must abstract) level , a gateway system 

can be seen as a mechanism for connecting terminals to a 

variety of computers and computer networks. Much of the 

subsequent discussion appl ies to any such system. At this 

abstract level, RIG will look as in Figure 1, 

The three large machine connections in Figure 1 (360 1 

KL10 , CERF) are representative of faci 1 ities one might 

expect to be available locally. The first is the University 

batch-processing computer which also has s o ~ e  interactive 

cap a b i 1 i t j es ( \;4 YLBU,:{ , APL ) . The 0EC I( L1a i suse d a s a 

general purpose time sharing system. CERF (Computer 

Engineering Research Faci 1 ity) %Wilhelm75% is an 

experimental COlllputer designed and being built by the 

University of Roch8ster Department of Electrical 

Eng i nee r i ng . All the s e r,l a chi ne s are 10 cat e d s eve r a 1 hun d red 

meters away f r o ~  the gateway processor. 

Two network connections are shown (ARPANET , ETHERNET). 

They represent two distinctly different kinds of computer 

networks: the ARPANET being a large nationwide network of 

res ear c h co (11 put e r s , the ETHE RNET rep res e n tin g a h ig h s pee d 

(3 megahertz) in-house network of four G4K , 16 bit word 

mini-computers. 
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Figure 1. RIG System Overview 
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The RIG central processor is a Data General Eclipse 

a relatively powerful mini-computer. The use of a 

mini-computer for our gateway provides obvious cost 

advantages along with some implementation headaches. 

RIG includes facilities for local file storage and 

backup and for printed and plotted output. The avai labil ity 

of these facilities is basic to the gateway concept. The 

RIG user will be able to create and edit files locally, ","ith 

all the advantages that local computing offers: a single 

familiar editor, fast rel idble response and better security 

and protection. The user can then choose among several 

larger machines to process his file. 

2 . I NT ELL I GENT Gr~  T UJAYS 

These are some of the features we feel must be provided 

by an intell igent gateway system: 

(1) It must be able to handle a number of terminals, 

each of which may be monitoring several tasks in 

varying stages of completion. These include editing, 

fi le manipulation, and comr,lunication wi th other 

computers on either a character by character or fi le 

basis. 
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(2) The user should be insulated whenever possible 

from the idiosyncrasies of host computers. He should 

be provided with a set of locally defined primitives 

( e . g. for r e que s tin g com p i 1at ion and loa din g) wh i c h the 

gateway can convert into commands meaningful to the 

remote host. 

(3) Response to modest requests should be rapid. 

Certainly the ideal modern general purpose time-sharing 

system (GPTSS) should be capable of modification to meet all 

of these requirements. There is, however, a good reason not 

to turn a GPTSS into a gateway. A GPTSS is designed to 

provide reasonable response to any user program which does 

not demand excessive resources. The RIG processor is not 

intended to support arbitrary user programs. Instead, it 

provides easy access to remote computers where such programs 

may be run. As a result, a gateway operating system can be 

simpler and more efficient than a GPTSS, allowing us to 

utilize a smaller, less powerful machine. 

3. ALEPH -- A GATEWAY OPERATING SYSTEM 

Aleph is divided into 3 levels kernel, foreground, 

and background each with distinct functions and 
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communication disciplines (Figure 2), 

a) Foreground 

The foreground is the locus of all RIG activity. RIG 

wi 11 be requi red to provide three kinds of service to the 

external world: full or half duplex character transmission 

between terminals and any of the gateway accessible 

computers, fi le transfer operations between any t\I/O systems 

or peripherals, and process to process communication among 

systems. We have chosen to dedicate an independent process 

within RIG to each external connection and to establish a 

uniform message-passing system for inter-process 

communication. Each process has responsibi 1 ity for 

maintaining its external communication protocol and for 

performing any conversions necessary to enable it to present 

a standard interface to the rest of the system. Thus, 

knowledge of the idiosyncrasies of a particular connection 

will be required only within the process dedicated to it. A 

typical collection of foreground processes is given in 

Figure 3. As an example, the Arpanet process depicted in 

Figure 3 has various 'ports' of communication to other 

processes in the foreground. These correspond to 

'connections' between remote systems and processes within 

RIG. The use of standardized message formats for character, 

fi le, and process communications, al lows the high degree of 
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flexibi lity and modularity necessary to provide practical 

communications with widely varying computer systems. 

Foreground interprocess communication is effected by a 

message queueing and distribution system similar to that 

described in ( ~ l a l d e n 7 2 ) ,  ~ ~ e s s a g e s  can also be sent to and 

from kernel device drivers and background jobs (to be 

described later), Typically, a device (e.g. the 

printer/plotter) ~ " i  11 have a dedicated foreground process 

which communicates with other foreground processes and a 

kernel driver which actually runs the device. There is no 

pre-emption among foreground processes and time-sl icing. 

Process control is based on a modifiable software priority 

scheme. Reschedul ing is done only at II c l ean points ll 

established by each process individually. This makes 

possible much faster context switching than one could have 

in a GPTSS, without sacrificing the integrity of the 

processes. Foreground processes will always be in main 

memory whi le they are in use. 

b) Kernel 

The Aleph kernel provides the basic functions used by 

all processes in the system. These functions include: 

(1) control of I/O devices 

(2) schedul ing of foreground and background tasks 
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(3) inter-process communication 

(4) memory lnanager,lent and allocation. 

I/O device drivers are controlled by a conventional 

priority interrupt mechanism. Each device driver has 

associated with it a single foreground process which handles 

I/O requests from otJ-rer processes in the system. The kernel 

level driver can communicate directly with this process and 

can 1 awa ke n·1 it (force it into the ready queue) if it is 

suspended. 

The Aleph scheduler selects the highest priority ready 

foreground process for execution. I f all foreground 

processes are suspenued, control passes to a single 

background job unti 1 the foreground requi res processing. 

The scheduler uses no time'-slicing or pre-emption in the 

foreground. Therefore the foreground is rescheduled only 

when the currently executing process relinquishes control 

explicitly. I/O interrupts do not cause rescheduling so the 

effects of an I/O-complete are not felt in the foreground 

unti 1 the next reschedul ing. 

A foreground process al lows reschedul i ng in one of 

three ways: 

(1) By sending a message to another process 
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(2) By requesting a message from its input queue 

(3) By performing a 'clean point' call 

Clearly the performance of Aleph V1 ill depend upon the 

frequency of these rf.:schedul i ng requests. Because the 

systern functions iJriiTlarily as an input/output distribution 

network very 1 i ttle processing ever occurs without the 

necessity of inter-process cO:;lmunication. This means that 

IllOSt processes effectively time-slice themselves by 

continually sending or receiving messages. In the few 

s j tuat ions ( S U C ~ I  as for"I'lat t i ng) where process i ng time may be 

somewhat greater, we require each process to periodically 

relinquish control. Since the tlleph foreground level is not 

intended to includE.: 'user' programs (such programs wi 11 be 

executed on reillote Illdch i nes) such behavioral requirements 

can reasonabl y be made of the processes in the system. 

The advantage to be gained by designing a 

reques t-d r i \fen schedu 1 i ng system isolated from hardware 

interrupts is simplicity. The overhead of context 

sV/i tch i ng , for i nterrupt.s o ( 1- esc h e ci u 1 i ng I is reduced to a 

1·lore importar.tly, becc,use each process knows that 

it loses control only at its ovm request.. it can avoid the 

synchronization and critical race rJroblems that would arise 

if it V,Jere being time-sl iced. 
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Communication between processes in the foreground is in 

the form of 'messages. I Each process has a unique process 

number and any other process can send it a message using 

this number as an address. The routines that support the 

message system are included In the Aleph kernel. These 

routines maintain an input queue of messages for each 

process in the foreground. When a process requests a 

message Aleph removes one from its input queue and returns 

it to the caller. If there are no messages waiting, the 

caller is suspended until a message is sent to it by another 

process. Sending a message causes it to be 1 inked into the 

receiver1s queue, and awakens the receiver if it has been 

suspended by a message request. 

The address used to specify the destination (or s o u ~ c e )  

of a message consists of a process number and a port number. 

The port mechanism allows a process to define several 

logical addresses ~ " i t r l i n  itself and communicate with other 

processes from each of them (Figure 4). These ports are 

normally allocated for communication concerning a single set 

of requests. For example, a fi le system process miight 

al locate a port to represent a single open disk fi leo All 

messages requesting manipulation of that fi le would be sent 

to that port of the file system process. Since Aleph al]ows 

a process to receive the next message for a specified input 
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port, processes can easily control their own input by 

assigning ports to logical tasks and can allow the message 

switching system to perform any queueing that might be 

requ ired. 

Aleph also allows a process to wait for a message to 

arrive from a specified process-port. Thus a process can 

suspend itself until it has received an acknowledgement that 

a critical request has been completed, thereby allowing the 

processing of other lilessages to continue. 

In addition to these message primitives, Ale ph all 0\'1 s 

each process to inspect messages \"aiting in its input queue 

and to receive a particular message from any place in the 

queue. When requesting a message, a process also has the 

option of specifying a timeout period, and jf no message 

arrives within that time, Aleph will notify it that a 

timeout occurred. This feature enables the system to 

recover from error situations in Ii/hich a process fails to 

respond to requests. 

The Aleph message protocol confines interactions 

bet\"een system f;lodules to a \"ell structured format that 

discourages poorly defined dependencies between processes. 

Because of this structure Aleph is able to provide powerful 
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methods of modifying information flow within the system. 

The 'shadow' faci 1 ity defines a shadow process ~ h i c h  

receives a copy of every message sent to a specified target 

process. The shadow process can then monitor its a c t i ~ i t y ,  

gather statistics, maintain logs, etc. without requiring any 

modification of the target process. The shadow facil i t ~  can 

also be used to debug new versions of system modules. The 

'interposer' facility allows a special process to intercept 

all messages sent to a particular process or to intercept 

all messages originating fro:n it. Thus; an interposer could 

intercept all transactions between a pai r of processes and 

perform additional processing on the messages witthout 

requiring any changes in the code of either process. This 

ability to add 'intelligent' processing to any information 

path in the system provides the flexibility necessary "for a 

gateway system. 

An Aleph message (Figure 5) contains six 16 bit words 

of information. Two words are used to specify the source 

and destination addresses (process-port). A one byte 'job 

number' identifies the user job that caused the message to 

be sent. That is, all messages that are sent in orderr to 

satisfy the requests of one user have that user's job 

number. One word contains a system unique 'message 10' that 

specifies the meaning of the message. For example; one 
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message 10 means 'open a disk file,' and this message It/ould 

be recognized as invalid if sent to the printer/plotter 

process. Thus, by requiring message 10'5 to have a unique 

system-wide meaning we have simpl ified debugging 

considerably. The one byte 'type' field indicates the 

format of the remaining two words of the message. In some 

casest he s e vw r ds hold the da tao f the me s sage (c ha rae t e r s , 

binary parameters, etc.). For larger transactions these 

words define the size and location of a memory buffer which 

contains the data to be transferred. 

The Aleph memory manager (included in the kernel) 

maintains mei;lory pools from It/hich space for data buffers, 

system tables, and BCPL (Curry72) stack is allocated. 

Memory in each pool is al located using a boundary tag 

system. Each buffer has two lhandles' that can be allocated 

to Aleph foreground processes, thus giving them access to 

the buffer. Only two processes can have simultaneous access 

to a buffer, but any process can elect to transfer its 

access rights to another process. A buffer is returned to 

the memory pool only after both of the processes having 

access to it release their handles. In a typical example, 

the tape drive process might ask the file system for the 

next block of an open file. The file system process would 

allocate a buffer with handles for itself and the tape 
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process. After filling the buffer, it would send the tape 

process a message that the transfer was complete and release 

its own handle. When the tape process was finished with the 

data it would release its handle and the buffer would be 

re-allocated. 

For still larger data transfers, two processes can 

al locate a group of buffers that pass back and forth between 

them. This scheme requires the overhead of buffer 

allocation only once, and simpl ifies the implementation of a 

multiply buffered transfer strategy. Because only two 

processes have access to any buffer at one time, 

synchronization problems involving buffers are relatively 

local and easy to understand. 

c) Background 

Aleph should be able to maintain rapid response to a 

large number of widely varied requests. To insure this, we 

must expl icitly relegate some longer operations to a 

background level. Typical background tasks include fi le 

transfer, long editor searches, etc. as well as 

traditionally batch operations such as compi 1 ing. Thus a 

program setting up a file transfer will be in the 

foreground, but the transfer itself wi 11 not have guaranteed 

response and can be done in the background. It is currently 
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planned that background tasks will normally run to 

completion. There will be some pre-emptive checkpointing of 

background tasks, but this should be kept to a minimum. 

4. FOREGROUND SYSTEM FUNCTIONS 

By the nature of our design, ~ a n y  of the functions 

commonly considered part of an operating system kernel are 

in RIG foreground processes. Among these functions are fi le 

system maintenance and peripheral management. We bel ieve 

this improves RIGls overall flexibility by increasing its 

modularity. In this section we will describe some of the 

foreground processes already implemented as part of RIG 

which have a di rect bearing on our goal of making RIG a true 

gateway. In particular we will discuss the RIG screen and 

text handl i ng processes. Other iii G processes such as the 

various file system handlers, command interpreters and 

editors Itlill be discussed in separate reports. 

a) Screen Management 

An important design goal of our gateway is to al low 

users to oversee several tasks in varying stages of 

completion. This kind of facility is important because many 

RIG tasks (e.g. file transfers, compilations, the monitoring 
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of number crunching programs on host computers, etc.) may 

require relatively little supervision and yet take a 

disproportionate amount of working time away from the user. 

Whi le not commonplace, similar mechanisms have been 

included in other systems (e.g. Tenex Telnet). A problem 

with previous implementations, however, has been one of 

informing the user about the progress of his activities. 

Typically the user has only one logical line of 

communication. Input and output are both multiplexed in 

time, forcing the user to periodically look in on each 

process to assess its state. His working context is at the 

best a long scroll of paper and at worst his fragile short 

term memory. Consequently, although it might increase his 

useful terminal time, a user may avoid using such a facility 

to the fullest simply to prevent himself from being burdened 

by its complexity. 

b) Screens, Regions, and Subregions 

The advent of inexpensive display oriented terminals 

suggests a solution to this problem: divide the userls 

visible screen into logical regions, each of which may be 

dedicated independently to different user tasks. Output 

could thereby be spatially as Ir/ell as temporally related,. 
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permitting the user to view the activity of more than one 

program at a time (Swinehart73). 

We have adopted this solution for our gateway. A 

special process called the Screen Handler is responsible for 

the allocation of space on each terminal display screen. 

In our system a 'screen' is defined to be those lines 

of text physically visible on a display device. A 'region' 

is a rectangular area within a screen in which the output of 

a single process may be displayed. A 'subregion' is a 

rectangular area within a region It'hich is independent of all 

other areas of the screen. Subregions are the basic unit of 

screen space allocation. A region is simply a collection of 

contiguous subregions belonging to the same Aleph process, 

and a screen is a collection of regions visible on the same 

display device. No empty space is allo'rJed in the sense that 

the physical screen is always allocated completely to one or 

more regions, each of which in turn consists of one or more 

subregions. New regions and subregions may be created only 

by splitting existing entities into two parts of variable 

size. 

This hierarchical division of the screen permits us to 

satisfy the output requi rements of several independent 
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processes without compromising the readabil ity of the 

display. An 'Executive' process is associated with each 

user in the system. This process is the root of the tree of 

processes spawned by the user of the system and as such is 

the holder of special privi leges in communication with the 

Screen Handler. The Executive alone, presumably at the 

request of the user, performs the task of sectioning the 

screen into regions. These regions are allocated to the 

processes spawned by the Executive which may then divide 

them into subregions as necessary. The result is positional 

constancy and spatial integrity of information. Regions of 

the screen devoted to user processes do not vary in size or 

change position except at the expl icit request of the user 

acting through the Executive. Moreover, all output 

pertinent to the execution of a single process is contiguous 

on the s c r e en. A t ypica 1 's nap s hot' 0 f a s c r e e n \"! 0 u 1d 100 k 

1 i ke F i gu re 6. 

A serious drawback to the use of the screen to 

effectively inform the user about the state of his work is 

the relatively small amount of displayable text avai lable on 

mo s t t e rmin a 1s . Gen era 1 1y s pea king, the en t ire con t ext 0 f a 

user's activities cannot always be visible on a single 

screen. Thus it becomes crucial for the mapping of 1 ines to 

areas of the screen to be flexible. Important text, as 
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selected by the user or his program, should always be 

visible, but less recent text should not necessarily be 

lost. If that were the case we would have provided the user 

with no more than an array of small logical displays to 

replace his single physical terminal. It is for this reason 

that we have decided to isolate the function of terminal 

output from the task of collecting the outgoing information 

of an Aleph process. No Aleph process ever directly sends a 

message to the terninal output handlers. Instead, an Aleph 

process modifies a data structure voJe call u 'pad' which, if 

the pad is mapped into a subregion, results in such an 

output message. 

c) Pa d s 

A pad is both a data structure and an Aleph process. 

As a data structure it consists of a variable number of text 

lines which could be used, for example, as an input buffer, 

a window onto a fi le or a depository for temporary textual 

data. As a process a pad has the abi 1 ity to send and 

receive messages. Through messages it provides a powerful 

set of text manipulation primitives to the foreground 

process which owns it. including most of the functions 

performed by simple text editors, e.g. character and line 

insertion and deletion, searching and substitution, 
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scrolling, overwriting, and others. Readers familiar with 

Simula may be more comfortable with this concept if they 

think of a pad as a Simula class structure. Protection is 

afforded to the system because all access to pad data 

structures is constrained. At the same time user processes 

are provided with a powerful tool for text manipulation. 

Not only do pads provide for convenient text 

manipulation, they can also be used for communication 

between a foreground process and a user terminal. The 

textual content of a pad may be mapped onto any subregion of 

a screen. When this is done, all changes made to the pad 

are automatically reflected in changes made to its terminal 

image. Because a pad may contain more text than can be 

displayed in a given subregion, each pad maintains an 

internal pseudo-cursor which points to the current focus of 

attention (either as indicated by a cursor motion message 

sent by the foreground processes which owns the pad or by 

the last change made to the pad). Only that portion of text 

about the pad pseudo-cursor which will fit in the subregion 

is displayed. Using pad pseudo-cursor motion messages, the 

owning foreground process can select which portion of the 

pad is to be displayed, providing a working context through 

pad commands rather than screen space (a scarce resource!). 
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d) Pads and Fi les 

In order to faci 1 itate the use of a pad as a textual 

v ~ i n d o v ~  onto a file, each pad is provided with an input and 

an output process-port pai r by its mming process. 

Scrol.l ing and pad o v e r f l o ~ "  or underflow cause messages to be 

sent to these ports resulting in the input or output of new 

lines. If an output process-port pair is left unspecified, 

all output is discarded. The archetypal use of this 

facility is in file manipulation. In this case the pad's 

input-output ports correspond to an open file being handled 

by an Aleph file prucess (Figure 7). 

5. OISTRI BUTEO COMPUTI NG 

The major topic omitted from our previous discussions 

is the fast internal network of mini-computers. This 

currently consists of four machines (which we will call 

PALOs) in addition to the Eclipse. Each machine has 64K of 

lEi bit words, a disk, keyboard, and raster display. It can 

be used either as a stand-alone computer or as a very 

p m ~ e r f u 1  terminal connected to I<IG. Using the PALO as a 

terminal we can experiment with the ARPA network graphics 

protocol (Sproul174 ) and other Ii nte 11 i gent termi nal t 

functions. 
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The four PALOs and the Eel ipse are 1 inked by a three 

megahertz connection called the Ethernet CMetcalfe75). An 

overall system diagram is given in Figure 8. The Ethernet 

connection is fast enough to support distributed computing 

as well as more standard network operations. One current 

project is to use an Eclipse simulator in the PALO as an 

alternative background level. A task, e.g. a compi lation, 

can be sent to a PALO for execution and the result returned 

to the Eclipse. The user need not be aware of where his 

compilation is performed. There is much more to be done 

along these 1 ines, some of which is discussed in the next 

section. 

6. INTELLIGENT GATEWAY FUNCTIONS 

Very 1 ittle has been presented so far that would 

jus t i f y the wo r d 'i n tel 1 i gen t' i nth e mid d 1e 0 f 'R IG.' The 

services we have described are themselves in no way 

remarkable. One of our basic design goals was that the 

system should provide a great deal of help to users trying 

to cope with myriad systems. Although only a small part of 

this facility has been specified in detail, the general 

outl i nes are al ready clear. 

We discussed the division of our users into two 
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classes: those whose access to the central computing 

facility is direct through alpha-numeric display oriented 

terminals and those whose major local resource is a 

r e 1a t i vel y poItle rf u 1 s tan J - a 10 n e min i - comput e r 0' inkedt 0 0 u r 

central facf 1 ity via a three megahertz network. I n the 

latter c a s e ~  the benefits of a message switching system in 

the central processor are fai rly obvious and have been 

described by a nUinber of authors. Our message sv"itching 

system is potentially the communications skeleton of a 

resource sharing computer n e t w o r k ~  defined by David Walden 

to be " a set of a u t o i l o ; o , l O U S ~  independent computer s y s t e m s ~  

interconnected tv permi t each computer system to uti 1 i ze all 

the resources of tl,e other cornputer systems much as it would 

no rma 1 1yea 1 1 0 n e 0 fit s ovm sub r 0 uti n e s 11 ( vJ a 1den 72 ) . 

Processes living on a peripheral computer (one of the PALOs) 

can access facilities provided by Eclipse subsystems 

(processes) in the same ~ a n n e r  that other processes resident 

in the Ecl ipse may access those subsystems -- through 

svJitcher messages. Interprocess communication over the 

network can be viewed as a subcase of general switcher 

destined for non-local 

prucess-ports need sir,wly be packaged into nehlOrk mai 1 to 

be sent to the appropriate computer. A sample scenario 

detailing how this can \/vork in a file system interaction 

betltleen a PALO and thE: tcl ipse waul d proceed as follo1rlS: 
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A PALO program would 1 ike file status information 

concerning a fi le resident on a disk pack serviced by 

the Ecl ipse. It sends a switcher message over the net 

to the file handling process-port for that device. 

This message is received by the Ecl ipse, converted to a 

local message, and posted. The file process receives 

this message and responds by sending its reply to the 

requesting process-port. This message is then packaged 

into network ma i 1 for the PALO and sent. The PALO 

receives the reply and continues processing. 

The fact that the request was being made by a process 

outsfde the local environment was transparent to the file 

system program itself. The only interface between the PALO 

and Eclipse processes existed at the level of network 

input/output, although it livas, of course, necessary for the 

PALO process to be able to understand and use proper 

protocol. Some such protocol knowledge would have been 

requi red for any form of communication. 

Another example is a user at en alpha-numerfc terminal 

composing a program to run ona remote machine. It is 

probably best to use the text editor on the local machine 

(better response, cheaper file storage). The compiler for a 

particular high-level language might be on a remote machine. 



Rochester's Intelligent Gateway  Page 24 

It would p r e s u ~ a b l y  be sent a correctly formatted text file 

and appropriate control commands. A request to 1 ist the 

output will nor,llally be interpreted (by an intercessor 

process) as a request to get the compi led program back to 

the local machine for printing, perhaps with character 

conversion. If tile code is to be debugged 011 a remote 

machine, one would want to use a character-by-character 

protocol across the netvl/ork for the interactive debugger. 

One way to view the intelligent gateway concept is that 

a user should be able to access a remote subsystem without 

knowing the operating system conventions of the machine on 

which the subsystel,l is running. i\n obvious extension is to 

have the gatevJay system dynamically choose the best set of 

resources for a given job. This is a nat ra'j extensfon of 

"'Ihat "Ie are doing wi th our internal network. and wi 11 

c e r t a i n 1y be add edt 0 RIG, a t 1e a s tin a r u dime n tar y for rn . 

The overall shape of an intell igent terminal syst<em is 

becoming clear. There are four principle components: 

(1)  the user interface; 

(2)  The data"structure (di rectory) fo,- keep ing 

track of system state; 

(3)  a set of rules of procedure; and 

(4)  a response handl ing capabi 1 Ity. 
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We will discuss each of these briefly, describing its role 

and how we plan to implement it. 

In most general terms, the user interface includes many 

pieces such as the editor, screen handler, etc. In the 

narrow sense considered here, the user interface is a 

command language. For an inte'lligent terminal system, one 

~ " o u l d  like a more expressive and general language than is 

common in operating systems design, The user will 'r/ant to 

provide descriptive information and rather complex 

instructions in addition to simple command sequences. \ve 

plan to use a compiler-like language and implement it using 

a production language (PU interpreter, The PL system is 

natural to use, has a state-table nature; and can easily be 

made to accommodate different command languages. 

The directory envisioned for RIG is an extension of the 

standard fi le directory which has a number of attributes 

such as location, size, format, protection, etc, A RIG 

directory extends this idea in two ways: (1) Directory 

entries are much richer because of the need to ~ e a l  with 

many different systems; and (2) En,tries are included for 

several entities (subsystems; parameters, keywords, etc,) in 

addition to files. From the point of view of a user, the 

directory structure is an associative store. We also expect 
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to extend the notion of hierarchical di rectories to be more 

like the context mechanisms (Bobrm/73) of the AI languages. 

The system should be able to be context sensitive in its 

han d 1 i ng 0 f c a illp 1e t i 0 n " c he c kin g Ide fa u 1tin g ,etc . 

The rules for handling any particular situation in the 

f(IG envi ronment are not too complex, assuming that one has a 

reasonable set of pri:'liti'les. This gives rise to the hope 

that a user can be made to understand and perhaps change 

what is being Jone to him. Recent work in AI has yielded a 

number of ways of expressing sets of rules of procedure. 

The seran g e f r u ril tot all y u n d ire c t e J a x ion s c heme Sit h r 0 ugh 

situation-action (production) rules to very specific 

routines. Our model is of about the generality of 

Schank-Abel son scr i pts (Schank75); the re is an expected 

sequence of events and actions, but many detai ls are 

expected to vary from case to case. Prel iminary efforts 

suggest that we can build a readable yet efficient rule 

language for at least some simple intel'l igent terminal 

functions. The interpreter for this rule language "'Jill be 

implemented us i ng the same PL system used fOI' the cOlnmand 

language. 

Perhaps the most difficult task of an intelligent 

terminal system is responding appropriately to messages froin 
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other systems. One could, with some justice, treat this as 

a restricted natural language understanding task and use the 

pertinent methods. We are choosing to try a simpler scheme 

based (mirabile dictu) on a PL interpreter. It seems that 

if RIG can keep enough context, then it can use the 

appropriate set of PL tables and handle many responses 

without employing complex methods. We do not anticipate 

that casual users will learn to write response handlers, but 

it shouldn't really be that difficult in most cases. 

Each of the four components has been designed to use 

the simplest adequate techniques. This makes the 

intell igent terminal effort seem more 1 ike one in systems 

programming than one in AI. Many of the really difficult 

problems will involve AI techniques (e.g. trying various 

methods for achieving a goal), but we feel that a great deal 

of understanding can be attained by constructing a system 

which is conceptually straightforward. 
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