RIG, Rochester's Intelligent Gateway:

System Overview

E. Ball, J. Feldman, J. Low,
R. Rashid, and P. Rovner
Computer Science Department
The University of Rochester

TR5

RIG, Rochester's Intelligent Gateway:

System Overview
by
E. Ball, J. Feldman, J. Low, R. Rashid, and P. Rovner
Computer Science Department

University of Rochester

TR5

The RIG system provides convenient access to a

wide range of computing facilities, The system
includes five large mini-computers in a very fast
internal network, disk and tape storage, a

printer/plotter and a number of display terminals.
These are connected to larger campus machines (I1BM
360/65 and DEC KL10) and to the ARPANET. The operating
system and other software support for such a system
present some interesting design problems. This paper
contains a high level technical discussion of the
software designs, many of which will be treated in more

detail in subsequent reports.

"When | opened my eves | saw the Aleph
the place where, without any possible
confusion, all the places in the world
are found, seen from every angle."
--Jorge Luis Borges, "The Aleph"

(translation by Anthony Kerrigan)

In a world where networks of diverse computing
resources are growing and intertwining, there is a pressing
need for systems which provide access to a variety of
computers and serve as intelligent gateways to their use.
In response to our own needs we are developing an operating
system which, after Borges' point containing all other
points, we are calling Aleph. Aleph is based on a simple
message-passing discipline for inter-process communication.
When completed, Aleph will form the framework for
Rochester's Intelligent Gateway (RI1G), a system for uniform
access to a variety of local and remote computing

facilities.

Rochester's Intelligent Gateway Page 2
1. RIG OVERVIEW

At the simplest (moust abstract) level, a gatewaﬁ system
can be seen as a mechanism for connecting terminals to a
variety of computers and computer networks. Much of the
subsequent discussion applies to any such system. At this
abstract level, RIG will look as in Figure 1.

The three large machine connections in Figure 1 (360,
KL10, CERF) are representative of facilities one might
expect to be available locally. The first is the University
batch-processing computer which also has some interactive
capabilities (WYLBUXR, APL). The DEC KL10 is used as a
general purpose time sharing system. CERF (Computer
Engineering Research Facility) %Wdilhelm75% is an
experimental computer designed and being built by the
University of Rochester Department of Electrical
Engineering. All these machines are located several hundred

meters away from the gateway processor.

Two network connections are shown (ARPANET, ETHERNET).
They represent two distinctly different kinds of computer
networks: the ARPANET being a large nationwide network of
research computers, the ETHERNET representing a high speed
(3 inegahertz) in-house network of four GuK, 16 bit word

mini-computers.

Terminals

Magnetic Printer/
Disk Tape Plotter

—

WY/

Eclipse
running
an

Aleph
System

U of R
CERF

ETHERNET

ARPANET

IBM
360/65

DEC KL10

Figure 1. RIG System Overview

Rochester's Intelligent Gateway Page 3

The RIG central processor is a Data General Eclipse --
a relatively powerful mini-computer. The use of a
mini-computer for our gateway provides obvious cost

advantages along with some implementation headaches.

RIG includes facilities for Jlocal file storage and

backup and for printed and plotted output. The availability

of these facilities is basic to the gateway concept. The
RIG user will be able to create and edit files locally, with
all the advantages that local computing offers: a single

familiar editor, fast reliable response and better security
and protection. The user can then choose among several

larger machines to process his file.
2 INTELLIGENT GATEWAYS

These are some of the features we feel must be provided

by an intelligent gateway system:

(1) It must be able to handle a number of terminals,
each of which may be monitoring several tasks in
varying stages of completion. These include editing,
file manipulation, and communiEation with other
computers on either a character by character or file

basis.

Rochester's Intelligent Gateway Page 4

(2) The user should be insulated whenever possible
from the idiosvncrasies of host computers. He should
be provided with a set of locally defined primifives
(e.g. for requesting compilation and loading) which the
gateway can convert into commands meaningful to the

remote host.
(3) Response to modest requests should be rapid.

Certainly the ideal modern general purpose time-sharing
system (GPTSS) should be capable of modification to meet all
of these requirements. There is, however, a good reason not
to turn a GPTSS into a gateway. A GPTSS is designed to
provide reascnable response to any user program which does
not demand excessive resources., The RIG processor 1is not
intended to support arbitrary user programs, Instead, it
provides easy access to remote computers where such programs
may be run. As a result, a gatewav operating system can be
simpler and more efficient than a GPTSS, allowing us to

utilize a smaller, less powerful machine.
B ALEPH -- A GATEWAY OPERATING SYSTEM

Aleph is divided intoc 3 levels -- kernel, foreground,

and background = each with distinct functions and

Commu§ications Interrupt Runs to Availability
with Discipline Completion?
Foreground Standard Yes, except Always
Kernel Multi-programming for hardware
only ;
g available
(~ 10 u Sec) interrupts
Foreground All Polling To a polling Very rapid
' - . access by ma
(~ 1 m Sec) (clean) point %wig%h
Foreground Check- Preemptable Secondary
Background Lk ’
only PRIRLING Storage
(=~ 10 Sec)

Figure 2, Properties of RIG processes at the three levels.

Rochester's Intelligent Gateway Page 5

communication disciplines (Figure 2).

a) Foreground

The foreground is the locus of all RIG activity. RIG
will be required to provide three kinds of service to the
external world: full or half duplex character transmission
be tween terminals and any of the gateway accessible

computers, file transfer operations between any two systems
or peripherals, and process to process communication among
systems. We have chosen to dedicate an independent process

within RIG to each external connection and to establish a

uniform message-passing system for inter-process
communication. Each process has responsibility for
maintaining its external communication protocol and for

performing any conversions necessary to enable it to present
a standard interface to the rest of the system. Thus,
knowledge of the idiosyncrasies of a particular connection

will be required only within the process dedicated to it. A

typical collection of foreground processes is given in
Figure 3. As an example, the Arpanet process depicted in
Figure 3 has wvarious 'ports' of communication to other
processes in the foreground. These correspond to

'connections' between remote systems and processes within
RIG. The use of standardized message formats for character,

file, and process communications, allows the high degree of

Rochester's Intelligent Gateway Page 6

flexibility and modularity necessary to provide practical

communications with widely varying computer systems.

Foreground interprocess communication is effected by a
message queueing and distribution system similar to that
described in (vWalden72). Messages can also be sent to and
from kernel device drivers and background jobs (to be
described later). Typically, a device (e.g. the
printer/plotter) will have a dedicated foreground process
which communicates with other foreground processes and a
kernel driver which actually runs the device. There is no

pre-emption among foreground processes and time-slicing.

Process control is based on a modifiable software priority
scheme. Rescheduling 1is done only at '"clean points"
established by each process individually. This makes

possible much faster context switching than one could have
in a GPTSS, without sacrificing the integrity of the
processes. Foreground processes will always be in main

memory while they are in use.

b) Kernel
The Aleph kernel provides the'basic functions wused by
all processes in the system. These functions include:
(1) control of 1/0 devices

(2) scheduling of foreground and background tasks

information flow o
r 4

- ey — e — A — — —

Printef/
Plotter
Process

-->
File '
System nput

Handler

Tape ARPAnet LEC RLiS
Process Process Process

0

Foreground
Level

.

Printer/

Plotter

Disk Tape W v F’Tﬂina]s

ARPAnet DEC KL10

Figure 3. Typical Aleph process organization

Kernel
Leve!l

\

Kochester's Intelligent Gateway Page 7

(3) inter-process communication

(4) memory management and allocation.

| /0 device drivers are controlled by a conventional
priority interrupt mechanism. Each device driver has
associated with it a single foreground process which handles
| /0 requests from otlier processes in tlhe system. The kernel
level driver can conmunicate directly with this process and
can ‘'awaken' it (force it into the ready queue) if it is

suspended.

The Aleph scheduler selects the highest priority ready
foreground process for execution. If all foreground

processes are suspended, control ©passes to a single

background job until the foreground requires processing.
The scheduler uses no time-slicing or pre-emption in the
foreground. Therefore the foreground is rescheduled only

when the currently executing process relinquishes control
explicitly. | /0 interrupts do not cause rescheduling so the
effects of an |/0~complete are not felt in the foreground

until the next rescheduling.

A foreground process allows rescheduling in one of
three ways:

(1) By sending a message to another process

Rochester's Intelligent Cateway Page 8

(2) By requesting a message from its input queue

(3) By performing a 'clean point' call

Clearly the performance of Aleph will depend upon the
frequency of these rescheduling requests. Because the

systemm functions primarily as an input/output distribution

network very little processing ever occurs without the
necessity of inter-process communication. This means that
most processes effectively time-slice themselves by
continually sending or receiving messages. In the few

situations (such &as formatting) where processing time may be
somewhat greater, we require each process to periodically
relinquish control. Since the Aleph foreground level is not
intended to include 'user' programs (such programs will be
executed on remote machines) such hehavioral requirements

can reasonably be made of the processes in the system.

The advantage to be gained bv designing a
request-driven scheduling system isolated from hardware
interrupts is simplicity. The overhead of context
switching, for interrupts or rescheduling, is reduced to a
minimum., llore impcrtantly, because each process knows that
it loses control only at its own request, it can avoid the
synchronization and critical race probliems that would arise

if it were being time-sliced.

Rochester's Intelligent Gateway Page 9

Communication between processes in the foreground is in

the form of 'messages. Each process has a unique process

number and any other process can send it a message using

this number as an address. The routines that support the
message system are included in the Aleph kernel. These
routines maintain an input queue of messages for each
process in the foreground. When a process requests a

message Aleph removes one from its input queue and returns
it to the caller. If there are no messages waiting, the
caller is suspended until a messaze is sent to it by another
process. Sending a message causes it to be linked into the
receiver's queue, and awakens the receiver if it has been

suspended by & message request.

The address used to specify the destination (or source)
of a message consists of a process number and a port number.
The port mechanism allows a process to define several
logical addresses within itself and communicate with other
processes from each of them (Figure 4). These ports are
normally allocated for communication concerning a single set
of requests., For example, a file system process might
allocate a port to represent a single open disk file. All
messages requesting manipulation of that file would be sent
to that port of the file system process. Since Aleph allows

a process to receive the next message for a specified input

Rochester's Intelligent Gateway Page 10

port, processes can easily control their own input by
assigning ports to logical tasks and can allow the message
switching system to perform any queueing that might be

required.,

Aleph also allows a process to wait for a message to
arrive from a specified process-port, Thus a process can
suspend itself until it has received an acknowledgement that
a critical request has been completed, thereby allowing the

processing of other messages to continue.

In addition to these message primitives, Aleph allows

each process to inspect messages waiting in its input queue

and to receive & particular message from any place 1in the
queue. When requesting a message, a process also has the
option of specifying a timeout period, and iif no message

arrives within that time, Aleph will notify it that a
timeout occurred. This feature enables the system to
recover from error situations in which a process fails to

respond to requests.

The Aleph message protocol confines interactions
between system modules to a well structured format that
discourages poorly defined dependencies between processes.

Because of this structure Aleph is able to provide powerful

rort ot l-fite
#2 #2
Text File
Editor #3 #3 System
#1 #4 (=file 2
Port Port
11 [21
#2 #2
Exec Screen
Process #3 #3 Handler
A £l
Figure 4. Aleph processes: Use of
port numbers
1l byte
et A
f -
Sender's Sender's

Process Mumber

Port Number

Recelver's

Process MNumber

Receiver's
Port Number

Job Tvype
Mumber (format code)
Message |D
Data
Data
Figure 5. Aleph message format

Rochester's Intelligent Gateway Page 11

methods of modifying information flow within the system.
The 'shadow' facility defines a shadow process which
receives a copy of every message sent to a specified target
process. The shadow process can then monitor its actiwity,

gather statistics, maintain logs, etc. without requiring any

modification of the target process. The shadow facilitw can
also be used to debug new versions of system modules. The
'interposer' facility allows a special process to intercept

all messages sent to a particular process or to intercept
all messages originating from it. Thus, an interposer could
intercept all transactions between a pair of processes and
perform additional processing on the messages without
requiring any changes in the code of either process. This
ability to add 'intelligent' processing to any information
path in the system provides the flexibility necessary ¥or a

gateway system,

An Aleph message (Figure 5) contains six 16 bit words
of information. Two words are used to specify the source

and destination addresses (process-port). A one byte !

job
number' identifies the user job that caused the message to
be sent. That is, all messages that are sent in order to
satisfy the requests of one user have that user's job

number. One word contains a system unique 'message ID' that

specifies the meaning of the message. For example, one

Rochester's Intelligent Gateway Page 12

message |ID means 'open a disk file,' and this message would
be recognized as invalid if sent to the printer/plotter
process. Thus, by requiring message ID's to have a unique
system-wide meaning we have simplified debugging
considerably. The one byte 'type' field indicates the
format of the remaining two words of the message. In some
cases these words hold the data of the message (characters,
binary parameters, etc.). For larger transactions these
words define the size and location of a memory buffer which

contains the data to be transferred.

The Aleph memory manager (included in the kernel)
maintains meinory pools from which space for data buffers,
system tables, and BCPL (Currvy72) stack 1is allocated.
Memory in each pool is allocated wusing a boundary tag
system. Each buffer has two 'handles' that can be allocated
to Aleph foreground processes, thus giving them access to
the buffer. Only two processes can have simultaneous access
to a buffer, but any process can elect to transfer |its
access rights to another process. A buffer is returned to
the memory pool only after both of the processes having
access to it release their handles. In a typical example,
the tape drive process might ask the file =system for the
next block of an open file. The file system process would

allocate a buffer with handles for itself and the tape

Rochester's Intelligent Gateway Page 13

process. After filling the buffer, it would send the tape
process a message that the transfer was complete and release
its own handle. When the tape process was finished with the
data it would release its handle and the buffer would be

re-allocated.

For still larger data transfers, two processes can
allocate a group of buffers that pass back and forth between
them. This scheme requires the overhead of buffer

allocation only once, and simplifies the implementation of a

multiply buffered transfer strategy. Because only two
processes have access to any buffer at one time,
synchronization problems involving buffers are relatively

local and easy to understand.

c) Background

Aleph should be able to maintain rapid response to a
large number of widely varied requests, To insure this, we
must explicitly relegate some Jlonger operations to a
background Tlevel. Typical background tasks include file
transfer, long editor searches, etc. as well as
traditionally batch operations such as compiling. Thus a
program setting up a file transfer will be in the
foreground, but the transfer itself will not have guaranteed

response and can be done in the background. It is currently

Rochester's Intelligent Gateway Page 14

planned that background tasks will normally run to
completion. There will be some pre-emptive checkpointing of

background tasks, but this should be kept to a minimum.

L. FOREGROUND SYSTEM FUNCTIONS

By the nature of our design, many of the functions
commonly considered part of an operating system kernel are
in RIG foreground processes., Among these functions are file
system maintenance and peripheral management. We believe
this improves RIG's overall flexibility by increasing its
modularity. In this section we will describe some of the
foreground processes already implemented as part of RIG

which have a direct bearing on our goal of making RIG a true

gateway. In particular we will discuss the RIG screen and
text handling processes. Other RIG processes such as the
various file system handlers, command interpreters and

editors will be discussed in separate reports.

a) Screen Management

An important design goal of our gateway 1is to allow
users to oversee several tasks in wvarying stages of
completion. This kind of facility is important because many

RIG tasks (e.g. file transfers, compilations, the monitoring

Rochester's Intelligent Gateway Page 15

of number crunching programs on host computers, etc.) may
reqguire relatively little supervision and vet take a

disproportionate amount of working time away from the user.

While not commonplace, similar mechanisms have been
included in other systems (e.g. Tenex Telnet). A problem
with previous implementations, however, has been one of

informing the wuser about the progress of his activities.

Typically the wuser has only one logical line of
comnunication. Input and output are both multiplexed in
time, forcing the user to periodically 1look in on each

process to assess its state. His working context is at the
best a long scroll of paper and at worst his fragile short
term memory. Consequently, although it might increase his
useful terminal time, a user may avoid using such a facility
to the fullest simply to prevent himself from being burdened

by its complexity.

b) Screens, Regions, and Subregions

The advent of inexpensive display oriented terminals
suggests a solution to this problem: divide the user's
visible screen into logical regions, each of which may be
dedicated independently to different wuser tasks. Output

could thereby be spatially as well as temporally related,

Rochester's Intelligent Gateway Page 16

permitting the wuser to view the activity of more than one

program at a time (Swinehart73).

We have adopted this solution for our gateway. A
special process called the Screen Handler is responsible for

the allocation of space on each terminal display screen.

In our system a 'screen' is defined to be those 1lines
of text physically visible on a display device. A 'region'
is a rectangular area within a screen in which the output of
a single process may be displayed. A 'subregion' is a
rectangular area within a region which is independent of all
other areas of the screen. Subregions are the basic unit of
screen space allocation. A region is simply a collection of
contiguous subregions belonging to the same Aleph process,
and a screen is a collection of regions visible on the same
display device. No empty space is allowed in the sense that
the physical screen is always allocated completely to one or
more regions, each of which in turn consists of one or more
subregions., New regions and subregions mav be created only
by splitting existing entities into two parts of variable

size.

This hierarchical division of the screen permits us to

satisfy the output requirements of several independent

Rochester's Intelligent Gateway Page 17

processes without compromising the readability of the
display. An 'Executive' process is associated with each
user in the system. This process is the root of the tree of
processes spawned by the user of the system and as such is
the holder of special privileges in communication with the
Screen Handler. The Executive alone, presumably at the
request of the user, performs the task of sectioning the
screen into region;. These regions are allocated to the
processes spawned by the Executive which may then divide
them into subregions as necessary. The result is positional
constancy and spatial integrity of information. Regions of
the screen devoted to user processes do not vary in size or
change position except at the explicit request of the user
acting through the Executive. Moreover, all output
pertinent to the execution of a single process is contiguous
on the screen. A typical 'snapshot' of a screen would look

like Figure 6.

A serious drawback to the wuse of the screen to
effectively inform the user about the state of his work s
the relatively small amount of displayable text available on
most terminals. GCenerally speaking, the entire context of a
user's activities cannot always be visible on a single
screen. Thus it becomes crucial for the mapping of lines to

areas of the screen to be flexible. Important text, as

Rochester's Intelligent Gateway Page 18

selected by the wuser or his program, should always be

visible, but less recent text should not necessarily be

lost. | f that were the case we would have provided the user
with no more than an array of small logical displays to
replace his single physical terminal. It is for this reason

that we have decided to isolate the function of terminal
output from the task of collecting the outgoing information
of an Aleph process. MNo Aleph process ever directly sends a
message to the terminal output handlers. Instead, an Aleph
process modifies a data structure we call a 'pad' which, if
the pad is mapped into a subregion, results in such an

output message.

c) Pads

A pad is both a data structure and an Aleph process.
As a data structure it consists of a variable number of text
lines which could be used, for example, as an input buffer,
a window onto a file or a depository for temporary textual
data. As a process a pad has the ability to send and
receive messages. Through messages it provides a powerful
set of text manipulation primitives to the foreground
process which owns it, including most of the functions
performed by simple text editors, e.g. character and Tline

insertion and deletion, searching and substitution,

Figure 6

System Info: regionl .
(inverse video) 10/25/75 9:58

FehkhddihkhhhkAkhhhidhhhhirhhhhhhhikhkhrhhhhhrhhhhkhhhhhhxk

Compilation region: region2
Fehkdhhdddkhkhhkhhhkhhkhhhhkhkhhkhhhhhkhkrhkhhrhhhhhhhhhhhihihiiiii

File Transfer in progress: region3 (inverse video)
khhhkhhhhhkhhhhhhhrkhkhhhhhhhhdhhirhdiddirhhihhidhikkihiii

Sample editor text

subregionl of regiond

hhhhhhkhhhhhkhkhhhkhhhhhhhhhhhhhhkidhhhhkhhhhhhkhkhhhhihhhrii

? Sample editor command subregion2 of regiond
(inverse video)

Rochester's Intelligent Gateway Page 19

5cro11ing, overwriting, and others. Readers familiar with
Simula may be more comfortable with this concept if they
think of a pad as a Simula class structure. Protection s
afforded to the system because all access to pad data
structures is constrained. At the same time user processes

are provided with a powerful tool for text manipulation.

Not only do pads provide for convenient text
manipulation, they <can also be wused for communication
between a foreground process and a user terminal. The
textual content of a pad may be mapped onto any subregion of
a screen. When this is done, all changes made to the pad
are automatically reflected in changes made to its terminal
image. Because a pad may contain more text than can be
displayed in a given subregion, each pad maintains an
internal pseudo-cursor which points to the current focus of
attention (either as indicated by a cursor motion message
sent by the foreground processes which owns the pad or by
the last change made to the pad). Only that portion of text
about the pad pseudo-cursor which will fit in the subregion
is displayed. Using pad pseudo-cursor motion messages, the
owning foreground process can se}ect which portion of the
pad is to be displayed, providing a working context throuéh

pad commands rather than screen space (a scarce resource!),

Rochester's Intelligent Gateway Page 20

d) Pads and Files

In order to facilitate the use of a pad as a textual
window onto a file, each pad is provided with an input and
an output process-port pair by its owning process.
Scrolling and pad overflow or underflow cause messages to be

sent to these ports resulting in the input or output of new

lines. If an output process-port pair is left unspecified,
all output 1is discarded. The archetypal wuse of this
facility 1is in file manipulation. In this case the pad's

input-output ports correspond to an open file being handled

by an Aleph file proucess (Figure 7).

5. DISTRIBUTED COMPUTING

The major topic omitted from our previous discussions
is the fast internal network of mini-computers. This
currently consists of four machines (which we will call
PALOs) in addition to the Eclipse. Each machine has b64K of
16 bit words, a disk, keyboard, and raster display. |t can
be used either as a stand-alone computer or as a very
powerful terminal connected to RIG. Using the PALO as a
terminal we can experiment with the ARPA network graphics
protocol (Sproull7u) and other 'intelligent terminal'

functions.

Figure 7

Top of file

Pad

' \

{ﬂdf”,/f—A hﬁw Bottom of file

Rochester's Intelligent Gateway Page 21

The four PALOs and the Eclipse are linked by a three
megahertz connection called the Ethernet (Metcalfe75). An
overall system diagram is given in Figure 8. The Ethernet
connection is fast enough to support distributed computing
as well as more standard network operations. One current
project is to use an Eclipse simulator in the PALO as an
alternative background level. A task, e.g. a compilation,
can be sent to a PALO for execution and the result returned
to the Eclipse. The user need not be aware of where his
compilation is performed. There is much more to be done
along these lines, scme of which is discussed in the next

section.

6. INTELLIGENT GATEWAY FUNCTIONS

Very little has been presented so far that would
justify the word 'intelligent' in the middlie of '"RIG.' The
services we have described are themselves in no way
remarkable. One of our basic design goals was that the
system should provide a great deal of help to wusers trying
to cope with myriad systems. Although only a small part of
this facility has been specified in detail, the general

outlines are already clear.

We discussed the division of our users into two

Rochester's Intelligent Gateway Page 22

classes: those whose access to the ~central computing
facility is direct through alpha-numeric display oriented
terminals and those whose major Jlocal resource is a
relatively powerful stand-alone mini-computer linked to our
central facility wvia a three megahertz network. In the
latter case, the benefits of a message switching system in
the central processor are fairly obvious and have been
described by a nuinber of authors, Our message switching
system is potentially the communications skeleton of a
resource sharing computer network, defined by David Walden
to be '"a set of autonoricus, independent computer systems,
interconnected tu permit each computer system to utilize all
the resources of tle other computer systems much as it would
normally call one of its own subroutines" (Walden72).
Processes living on a peripheral computer (one of the PALODs)
can access facilities provided by Eclipse subsystems
(processes) in the same manner that other processes resident
in the Eclipse may access those subsystems =- through
svii tcher iessages. Interprocess communication over the
network can be viewed as a subcase of general switcher
comaunication, illessages des ¢ ined for non—local
prucess-ports need simply be packaged into network mail to
be sent to the appropriate computer, A sample scenario
detailing how this can work in a file system interaction

between a PALO and the Eclipse would proceed as follows:

40MW

64 KW

Mini

64 W

Mini

ARPANET 50 KB

N
P

Mag Diablo
Tape Disks ersetec picy
Ethernet SR i
3000 KB 128 KW
ECLIPSE
DCU - 50 Synchronous
(Nova) Control +
: CRC Board
Asyachronous
Control to
9.6 KB
I I I Co CERF
Al Bhan1umeri c S
ispla |
Termina{s PDP KL/10 3
360/65
7

Figure 3.

RIG Hardware Configuration

Rochester's Intelligent Gateway Page 23

A PALO program would like file status information
concerning a file resident on a disk pack serviced by
the Eclipse. 1|t sends a switcher message over the net
to the file handling process=-port for that device.

This message is received by the Eclipse, converted to a
local message, and posted. The file process receives
this message and responds by sending its reply to the
requesting process-port, This message is then packaged
into network mail for the PALO and sent. The PALO

receives the reply and continues processing.

The fact that the request was being made by a process
outside the local environment was transparent to the file
system program itself. The only interface between the PALOD
and Eclipse processes existed at the level of network
input/output, although it was, of course, necessary for the
PALLO process to be able to understand and use proper
protocol. Some such protocol knowledge would have been

required for any form of communication.

Another example is & user at en alpha-numeric terminal
composing a program to run on .a remote machine. [t is
probably best to use the text editor on the Tlocal machine
(better response, cheaper file storage). The compiler for a

particular high~level language might he on a remote machine.

Rochester's Intelligent Gateway Page 24

It would presumably be sent a correctly formatted text file
and appropriate control commands. A request to 1list the
output will normally be interprated (by an intercessor
process) as a request to get the compiled program back to
the 1local machine for printing, perhaps with character
conversion. |f the code is to be debugged on a remote
machine, one would want to use a character-by-character

protoco]l across the network for the interactive debugger.

One way to view the intelligent gateway concept is5 that
a user should be able to access a remote subsystem without
knowing the operating svstem conventions of the machine on
which the subsystem is running. An obvious extension is to
have the gateway system dvnamically choose the best set of
resources for a given job. This is a natural extension of
what we are doing with our internal network and will

certainly be added to RIG, at least in a rudimentary form,

The overall shape of an intelligent terminal svstem s
becoming clear. There are four principle components:
(1) the user interface:
(2) The data-structure (directory) for keeping
track of sysiem state:
(3) a set of ruies of procedure; and

(4) a response handling capability.

ltochester's Intelligent GCateway Page 25

We will discuss each of these briefly, describing its role

and how we plan to implement it.

In most general terms, the user interface includes many

pieces such as the editor, screen handler, etc. In the
narrow sense considered here, the user interface is a
command language. For an intelligent terminal system, one

would 1like a more expressive and general language than is

common in operating systems design. The user will want to
provide descriptive information and rather complex
instructions in addition to simple command sequences. e

plan to use a compiler-like language and implement it using
a production language (PL) interpreter. The PL system is
natural to use, has a state-table nature, and can easily be

made to accommodate different command lanzuages.

The directory envisioned for RIG is an extension of the
standard file directory which has a number of attributes
such as location, size, format, protection, etc. A RIG
directory extends this idea in two ways: (1) Directory
entries are much richer because of the need to deal with
many different systems; and (2) Entries are included for
several entities (subsystems, parameters, keywords, etc.) in
addition to files, From the point of view of a user, the

directory structure is an associative store. We also expect

Rochester's Intelligent CGateway Page 26

to extend the notion of hierarchical directories to be more
like the context mechanisms (Bobrow73) of the Al languages.
The system should be able to be context sensitive in its

handling of completion, checking, defaulting, etc.

The rules for handling any particular situation in the
RIG environment are not too complex, assuming that one has a
reasonable set of primitives., This gives rise to the hope
that a user can be mede to wunderstand and perhaps change
wvhat is being doune to him. Recent work in Al has vielded a
number of ways of expressing sets of rules of procedure.
These range froum totally undirected axiom schemes, through
situation-action (production) rules to very specific
routines. Cur mode 1 is of about the generality of
Schank=Abelson scripts (Schank?75): there s an expected
sequence of events and actions, but many details are
expected to wvary from case to case. Preliminary efforts
suggest that we can build a readable vet efficient rule
language for at least some simple intelligent terminal
functions. The interpreter for this rule language will be
implemented using the same PL system used for the command

language,

Perhaps the most difficult task of an intelligent

terminal system is responding appropriately to messages from

Rochester's Intelligent Gateway Page 27

other systems. One could, with some justice, treat this as
a restricted natural language understanding task and use the
pertinent methods. We are choosing to try a simpler scheme
based (mirabile dictu) on a PL interpreter. |t seems that
if RIG can keep enough context, then it <can use the
appropriate set of PL tables and handle many responses
without employing complex methods. We do not anticipate
that casual users will learn to write response handlers, but

it shouldn't really be that difficult in most cases.

Each of the four components has been designed to use

the simplest adequate techniques. This makes the
intelligent terminal effort seem more like one in systems
programming than one in Al. Many of the really difficult
problems will involve Al techniques (e.g. trying various

methods for achieving a goal), but we feel that a great deal
of understanding can be attained by constructing a system

which is conceptually straightforward.

References

Bobrow73 Bobrow, D. and Raphael, B. '"New Programming Languages
for Al Research'". ACM Computing Survevs. Vol. 6,

No. 3, 1974. pp.153=-174.

Curry75 Curry, J. BCPL Reference Manual. Xerox Palo Alto

Research Center, 1975.

Metcalfe75 Metcalfe, R.M. and Boggs, D.R. "Ethernet: Distributed
Packet Switching for Local Computer Networks'.

Communications of the ACH forthcoming. 1975.

Schank75 Schank, K. and Abelscn, R. "Scripts, Plans and
Knowledge'. Proceedings of the Fourth |International
Joint Conferences on Artificial Intelligence. 1975,

pp. 153=157.

Sproull7L Sproull, R.F. and Thomas, E. "A MNetwork Graphics

Protocol". SIGGRAPH - ACM. Vol. 8, No. 3, 1974,

Swinehart74 Swinehart, D.C. '"Copilot: A Multiple Process Approach
to Interactive Programming Systems''. PhD thesis,

Stanford University. 1974,

Walden72 Walden, D.C. '"A System for Interprocess Communication
in a Resource Sharing Computer Network!'". Communications

of the ACM, ¥ol. 15, MNo. 4, 1972, pp.221-230.

Wilhelm75 Wilhelm, M. '"Computer Engineering Research Facility"

University of Rochester. 1975.

