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RIGHT COIDEAL SUBALGEBRAS OF NICHOLS ALGEBRAS

AND THE DUFLO ORDER ON THE WEYL GROUPOID

I. HECKENBERGER AND H.-J. SCHNEIDER

Abstract. We study graded right coideal subalgebras of Nichols algebras of

semisimple Yetter-Drinfeld modules. Assuming that the Yetter-Drinfeld mod-

ule admits all reflections and the Nichols algebra is decomposable, we construct

an injective order preserving and order reflecting map between morphisms of

the Weyl groupoid and graded right coideal subalgebras of the Nichols alge-

bra. Here morphisms are ordered with respect to right Duflo order and right

coideal subalgebras are ordered with respect to inclusion. If the Weyl groupoid

is finite, then we prove that the Nichols algebra is decomposable and the above

map is bijective. In the special case of the Borel part of quantized enveloping

algebras our result implies a conjecture of Kharchenko.

Introduction

It is well-known that quantum groups do not have “enough” Hopf subalgebras.

Instead the larger class of right (or left) coideal subalgebras should be studied.

A right coideal subalgebra E ⊂ A of a Hopf algebra A with comultiplication ∆

is a subalgebra of A with ∆(E) ⊂ E ⊗A.

1. Right coideal subalgebras of quantized enveloping algebras U
≥0.

Let g be a semisimple complex Lie algebra, Π a basis of its root system with

respect to a fixed Cartan subalgebra, and U = Uq(g) the quantized enveloping

algebra of g in the sense of [Jan96, Ch. 4]. We assume that q is not a root of

unity. Let U+ and U0 be the subalgebras of U generated by the sets {Eα |α ∈ Π}

and {Kα, K−1
α |α ∈ Π}, respectively, and let U≥0 = U+U0. For any element w of

the Weyl group W of g let U+[w] ⊂ U+ be the subspace defined in [Jan96, 8.24]

in terms of root vectors constructed via Lusztig’s automorphisms. We prove in

Thm. 7.3, see also Cor. 6.13, the following:

The map w 7→ U+[w]U0 defines an order preserving bijection between W and

the set of all right coideal subalgebras of U≥0 containing U0, where right coideal

subalgebras are ordered by inclusion and W is ordered by the Duflo order. If
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E1 ⊂ E2 are right coideal subalgebras of U≥0 containing U0, then E2 is free over

E1 as a right module.

Recall that if w1, w2 are elements in W , then w1 ≤D w2 in the (right) Duflo

order if and only if any reduced expression of w1 can be extended to a reduced

expression of w2 beginning with w1.

In particular, the number of right coideal subalgebras of U≥0 containing U0 is

equal to the order of the Weyl group W . This last statement was conjectured by

Kharchenko in [Kha09] for simple Lie algebras g. The conjecture was proven for

g of type An [KS08], Bn [Kha09] and G2 [Pog09] by combinatorial calculations

using Lyndon words. In these papers right coideal subalgebras are classified in

terms of certain subsets of positive roots.

The subspaces U+[w] ⊂ U+ are familiar objects in quantum groups. Among

others, they are used by Lusztig [Lus93] to establish a PBW basis for U+, by De

Concini, Kac and Procesi [CKP95] to introduce quantum Schubert calculus, and

are identified by Yakimov [Yak09] as quotients of quantized Bruhat cell translates

[Jos95, Gor00]. It was essentially well-known that U+[w]U0 is a right coideal sub-

algebra of U≥0: proofs and indications in this direction can be found in [LS90],

[CKP95, 2.2], [CP92, 9.3], [AJS94]. The arguments often use case by case con-

siderations and reduction to the rank two case, and sometimes they work only

in the h-adic setting. The algebras U+[w] are known to depend only on w and

not on the chosen reduced expression of w, see e. g. [Lus93, 40.2.1] and [Jan96,

8.21]. With our systematic approach to graded right coideal subalgebras we of-

fer a new way to study U+ without the usual case by case considerations, and

intrinsically characterize the algebras U+[w] and their ordering with respect to

inclusion. With the necessary modifications, our results also apply to the small

quantum groups of semisimple Lie algebras where q is a root of unity, and to

multiparameter versions of U , see Cor. 6.17 and Rem. 7.4.

2. Right coideal subalgebras of Nichols algebras. The paper is written in

the very general context of Nichols algebras B(M) of semisimple Yetter-Drinfeld

modules M ∈ H
HYD, where H is an arbitrary Hopf algebra with bijective antipode.

Nichols algebras, also called quantum symmetric algebras, see [Ros98], appear as

fundamental objects in the classification theory of Hopf algebras [AS98, AS02,

AS05], in particular of Hopf algebras which are generated by group-like and skew-

primitive elements. For example, in the setting of quantized enveloping algebras,

M = ⊕α∈ΠkEα is a Yetter-Drinfeld module over U0, and B(M) = U+. Finite-

dimensional Nichols algebras of diagonal type are classified in [Hec09]. Recently,

much progress in the understanding of finiteness properties of Nichols algebras of
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nonabelian group type has been achieved, see e. g. [AFGV09b, AFGV09a], [HS08]

and references therein.

In rather general situations (if M admits all reflections, see Sect. 6) one can

associate a Weyl groupoid W(M) to M , see [AHS08], [HS08]. In case of the

Borel part of a quantized Kac-Moody algebra g, W(M) is essentially the Weyl

group of g. Under the assumption that W(M) is finite, we prove in Cor. 6.13

a PBW-theorem for the Nichols algebra B(M) and its right coideal subalgebras,

where the subalgebra generated by a root vector in the quantum group case is

replaced by the Nichols algebra of a finite-dimensional irreducible Yetter-Drinfeld

module. As a consequence we can show that the real roots associated withW(M)

satisfy the axioms of a root system in the sense of [HY08b], see also [HS08]. In

Thm. 6.14 we provide generalizations of results of Levendorskii and Soibelman

[LS90, LS91] on coproducts and commutators of root vectors. Our proofs are

new even for U+, since they are free of case by case calculations, and do not use

the braid relations for Lusztig’s automorphisms.

We note that a PBW-theorem for right coideal subalgebras of character Hopf

algebras (where the braiding is diagonal) is obtained by Kharchenko in terms of

Lyndon words, see [Kha08]. For Nichols algebras of diagonal type a PBW theorem

in the spirit of Lusztig was proven by the first author and Yamane [HY08a].

The main results in this paper rely on the crucial coproduct formula in Thm. 4.2.

For quantum groups this formula amounts to an explicit computation of the

braided coproduct of U+ in the image of Tα(U+) as a subalgebra of U . Our for-

mula has the advantage to involve only algebra maps, and hence it is well-suited

to study coideal subalgebras.

To provide more details, let θ ∈ N, let M1, . . . , Mθ be finite-dimensional irre-

ducible objects in H
HYD, and M = (M1, . . . , Mθ). The goal is to understand the

Nichols algebra

B(M) = B(M1 ⊕ · · · ⊕Mθ)

as a Hopf algebra in the braided category H
HYD. Let Z

θ be the free abelian group

of rank θ with standard basis α1, . . . , αθ. The Nichols algebra B(M) is Z
θ-graded

where deg(Mi) = αi for all 1 ≤ i ≤ θ.

First we define reflection operators Ri, 1 ≤ i ≤ θ. Assume that for all j 6= i,

aM
ij = −max{m | (adMi)

m(Mj) 6= 0} <∞.

Define aM
ii = 2. Then (aM

ij )i,j∈{1,...,θ} is a generalized Cartan matrix. Let sM
i ∈

Aut(Zθ) be the corresponding reflection. Define Ri(M)i = M∗
i , and

Ri(M)j = (adMi)
−aM

ij (Mj) for all j 6= i,
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and let Ri(M) = (Ri(M)1, . . . , Ri(M)θ). Finally let KM
i = B(M)coB(Mi), where

the coinvariant elements are defined with respect to the projection of B(M) onto

B(Mi). By [AHS08, Thm. 3.12] there is an algebra isomorphism

ΩM
i : KM

i #B(M∗
i )→ B(Ri(M))

which is the identity on all Rj(M)j ⊂ KM
i #B(M∗

i ). By the coproduct formula

in Thm. 4.2, ΩM
i becomes an isomorphism of Z

θ-graded braided Hopf algebras.

In Prop. 7.1 we show that in the quantum group case the inverse of ΩM
i can

be identified with Lusztig’s automorphism Tαi
restricted to U+.

Assume that all iterations of the construction M 7→ Rj(M) are well-defined.

In [AHS08], [HS08, Thm. 6.10] the Weyl groupoid W(M) of M is defined. The

objects of W(M) are sequences of isomorphism classes [N ] = ([N1], . . . , [Nθ])

where the sequence of Yetter-Drinfeld modules (N1, . . . , Nθ) is obtained from M

by iterating the operations Rj. The morphisms are generated by elementary

reflections sN
i : Ri(N) → N . Then our main result on right coideal subalgebras

in the general case, see Thm. 6.15 and Cor. 6.17, says the following.

Assume that the Weyl groupoid of M is finite. Then there exists an order pre-

serving bijection κ
M between the set of morphisms of W(M) with target [M ] and

the set of N
θ
0-graded right coideal subalgebras of B(M)#H containing H, where

right coideal subalgebras are ordered with respect to inclusion and the morphisms

are ordered by the Duflo order.

The map κ
M also exists for non-finite W(M), if we assume that B(M) is

decomposable, see Def. 6.8. Then κ
M is always injective, order preserving and

order reflecting by Thm. 6.12.

Acknowledgement. The first author would like to thank S. Kolb for inter-

esting discussions on coideal subalgebras of Uq(g).

1. Weyl groupoids and the Duflo order

Recall the definition of the Weyl groupoid of a root system from [CH09, Sect. 2],

see also [HS08, Sect. 5].

Let I be a non-empty finite set and (αi)i∈I the standard basis of Z
I . Let X

be a non-empty set, and for all i ∈ I and X ∈ X let ri : X → X be a map and

AX = (aX
jk)j,k∈I a generalized Cartan matrix. The quadruple

C = C(I,X , (ri)i∈I , (A
X)X∈X ),

is called a Cartan scheme if

(C1) r2
i = id for all i ∈ I,

(C2) aX
ij = a

ri(X)
ij for all X ∈ X and i, j ∈ I.
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Let C = C(I,X , (ri)i∈I , (A
X)X∈X ) be a Cartan scheme. For all i ∈ I, X ∈ X

define sX
i ∈ Aut(ZI) by

sX
i (αj) = αj − aX

ij αi for all j ∈ I.

Recall that a groupoid is a category where all morphisms are isomorphisms.

The Weyl groupoid of C is the groupoid W(C) with Ob(W(C)) = X , where the

morphisms are generated by all sX
i (considered as morphism in Hom(X, ri(X))

with i ∈ I, X ∈ X . Then s
ri(X)
i sX

i = idX in Hom(X, X). We will write si instead

of sX
i if X is uniquely determined by the context.

For any groupoid G and any X ∈ Ob(G) let

Hom(G, X) = ∪
Y ∈Ob(G)

Hom(Y, X) (disjoint union).

Let C be a Cartan scheme and let X ∈ X . Following [Kac90, §5.1] we say that

∆X re = {w(αi) | i ∈ I, w ∈ Hom(W(C), X)}(1.1)

is the set of real roots (of X), where w ∈ Hom(W(C), X) is interpreted as an

element in Aut(ZI). A real root α ∈ ∆X re is called positive, if α ∈ N
I
0. The set

of positive real roots is denoted by ∆X re
+ .

Remark 1.1. Weyl groupoids associated to Nichols algebras satisfy additional

properties which do not follow from the axioms of Cartan schemes, see Thm. 6.15.

For example, cf. [CH09, Pf. of Thm. 6.1], let X = {X1, X2, X3}, I = {1, 2},

r1(Xi) = Xσ(i), r2(Xi) = Xτ(i), where σ = (1 2), τ = (2 3). Let

AX1 =

(
2 −1

−3 2

)

, AX2 =

(
2 −1

−4 2

)

, AX3 =

(
2 −1

−4 2

)

.

Then C(I,X , (ri)i∈I , (A
X)X∈X ) is a Cartan scheme with finitely many real roots

∆X1 re ={±1,±2,±12,±122,±123,±1223,

± 1324,±1325,±1425,±1427,±1527,±1528},

∆X2 re ={±1,±2,±12,±122,±123,±1223,

± 124,±125,±1225,±1227,±1327,±1328},

∆X3 re ={±12−1,±1,±2,±12,±122,±122,

± 123,±1223,±124,±1324,±1225,±1325},

where kα1 + lα2 is abbreviated by 1k2l for all k, l ∈ Z. Observe that ∆X3 re

contains the real root α1−α2, and hence C(I,X , (ri)i∈I , (A
X)X∈X ) does not admit

a root system in the sense of the following definition.
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We say that

R = R(C, (∆X)X∈X )

is a root system of type C if C = C(I,X , (ri)i∈I , (A
X)X∈X ) is a Cartan scheme and

∆X ⊂ Z
I , where X ∈ X , are subsets such that

(R1) ∆X = (∆X ∩ N
I
0) ∪−(∆X ∩N

I
0) for all X ∈ X ,

(R2) ∆X ∩ Zαi = {αi,−αi} for all i ∈ I, X ∈ X ,

(R3) sX
i (∆X) = ∆ri(X) for all i ∈ I, X ∈ X ,

(R4) (rirj)
mX

i,j (X) = X for all i, j ∈ I and X ∈ X such that i 6= j and

mX
i,j := #(∆X ∩ (N0αi + N0αj)) is finite.

If R(C, (∆X)X∈X ) is a root system of type C, then W(R) := W(C) is called

the Weyl groupoid of R. The elements of ∆X
+ := ∆X ∩ N

I
0 and ∆X

− := −∆X
+

are called positive and negative roots, respectively. Note that (R3) implies that

w(∆Y ) = ∆X for all X, Y ∈ X and w ∈ Hom(Y, X).

Recall that a groupoid G is connected, if for all X, Y ∈ Ob(G) the set Hom(Y, X)

is non-empty. It is finite, if Hom(G) is finite.

The following claim was proven in [CH09, Lemma2.11].

Lemma 1.2. Let C be a Cartan scheme and R a root system of type C. Assume

that W(R) is connected. Then the following are equivalent.

(1) ∆X is finite for at least one X ∈ Ob(W(R)).

(2) ∆X re is finite for at least one X ∈ Ob(W(R)).

(3) Hom(W(R), X) is finite for at least one X ∈ Ob(W(R)).

(4) The groupoid W(R) is finite.

Further, (1)–(3) hold for one X ∈ Ob(W(R)) if and only if they hold for all

X ∈ Ob(W(R)).

Remark 1.3. The equivalence of (1), (2), and (4) was stated and proven in [CH09,

Lemma2.11]. Clearly, (4) implies (3). For the proof of the implication (4)⇒(1)

in [CH09, Lemma2.11] one needs only to assume (3), and hence all claims of

Lemma 1.2 are equivalent.

Let C be a Cartan scheme and R a root system of type C. Then R is called

finite, see [CH09, Def. 2.20], if ∆X is finite for all X ∈ Ob(W(R)). If W(R) is

connected, then this is equivalent to the conditions in Lemma 1.2.

Let ℓ denote the length function on Weyl groupoids of root systems: for each

X ∈ X and each w ∈ Hom(W(R), X) let

ℓ(w) = min{m ∈ N0 | there exist i1, . . . , im ∈ I with w = idXsi1 · · · sim}.
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Proposition 1.4. [CH09, Prop. 2.12] Let C be a Cartan scheme and R a root

system of type C. Let X ∈ X , m ∈ N0, and i1, . . . , im ∈ I such that ℓ(w) = m

for w = si1 · · · sim ∈ Hom(W(R), X). Then the roots

βk = idXsi1 · · · sik−1
(αik), k ∈ {1, 2, . . . , m},

are positive and pairwise distinct. If R is finite and w ∈ Hom(W(R), X) is the

unique longest element, then {βk | 1 ≤ k ≤ ℓ(w)} = ∆X
+ .

Prop. 1.4 implies in particular that the set of roots of a finite root system

is uniquely determined by its Cartan scheme and coincides with the set of real

roots.

Definition 1.5. Let X and I be non-empty sets, (ri)i∈I a family of maps ri :

X → X , and (mX
i,j)i,j∈I,X∈X a family of numbers in N ∪ {∞} such that mX

i,i = 1

and (rirj)
mX

i,j (X) = X for all X ∈ X and i, j ∈ I with mX
i,j < ∞. 1 Let G

be a groupoid with Ob(G) = X , and let (sX
i )i∈I,X∈X be a family of morphisms

sX
i ∈ Hom(X, ri(X)). We say that (G, (sX

i )i∈I,X∈X ) satisfies the Coxeter relations

if

s
rj(rirj)

mX
i,j−1

(X)
i s

(rirj)
mX

i,j−1
(X)

j . . . s
rirj(X)
j s

rj(X)
i sX

j
︸ ︷︷ ︸

2mX
i,j factors

= idX(1.2)

for all X ∈ X and i, j ∈ I with mX
i,j < ∞. In particular, Eq. (1.2) means for

i = j that s
ri(X)
i sX

i = idX for all X ∈ X and i ∈ I.

LetW be a groupoid and (sX
i )i∈I,X∈X a family of morphisms as above. We say

that (W, (sX
i )i∈I,X∈X ) is a Coxeter groupoid, if

(1) (W, (sX
i )i∈I,X∈X ) satisfies the Coxeter relations, and

(2) for each pair (G, (tXi )i∈I,X∈X ) satisfying the Coxeter relations (with the

same X , I, (ri) and (mX
i,j) as forW) there is a unique functor F :W → G

such that F is the identity on X = Ob(W) = Ob(G) and F (sX
i ) = tXi for

all i ∈ I, X ∈ X .

The universal property of a Coxeter groupoid (W, (sX
i )i∈I,X∈X ) implies that

Hom(W) is generated by the morphisms sX
i ∈ Hom(X, ri(X)), where i ∈ I and

X ∈ X .

For the rest of this section let C = C(I,X , (ri)i∈I , (A
X)X∈X ) be a Cartan scheme

and let R = R(C, (∆X)X∈X ) be a root system of type C.

Theorem 1.6. [HY08b, Thm. 1] For all i, j ∈ I and X ∈ X let

mX
i,j = #(∆X ∩ (N0αi + N0αj)).

1This slight extension of notation is compatible with (R4) and (C1).
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Then (W(R), (sX
i )i∈I,X∈X ) is a Coxeter groupoid with respect to (mX

i,j).

Definition 1.7. For all X ∈ X , m ∈ N and (i1, . . . , im) ∈ Im let ΛX
+ () = ∅ and

βk = s
ri1

(X)

i1
s

ri2
ri1

(X)

i2
· · · s

rik−1
···ri2

ri1
(X)

ik−1
(αik) ∈∆X , k ∈ {1, 2, . . . , m},

ΛX(i1, . . . , im) = (βk)k∈{1,2,...,m},

ΛX
+ (i1, . . . , im) =

{
λ ∈∆X

+ |#{k ∈ Z | 1 ≤ k ≤ m, λ = ±βk} is odd
}
.

Lemma 1.8. Let m ∈ N, i1, . . . , im ∈ I, X ∈ X , and Y = ri1(X). Then

ΛX
+ (i1, . . . , im) =

{

sY
i1
(ΛY

+(i2, . . . , im)) ∪ {αi1} if αi1 /∈ ΛY
+(i2, . . . , im),

sY
i1

(
ΛY

+(i2, . . . , im) \ {αi1}
)

if αi1 ∈ ΛY
+(i2, . . . , im).

Proof. The claim follows from Def. 1.7 and basic properties of the map sY
i1
. �

The sets ΛX
+ (i1, . . . , im) ultimately describe the elements of Hom(W(R), X).

Proposition 1.9. Let X ∈ X , m, m′ ∈ N0 and i1, . . . , im, i′1, . . . , i
′
m′ ∈ I. The

following are equivalent.

(1) ΛX
+ (i1, . . . , im) = ΛX

+ (i′1, . . . , i
′
m′),

(2) si1 · · · sim = si′1
· · · si′

m′
in Hom(W(R), X).

Moreover, #ΛX
+ (i1, . . . , im) = ℓ(idXsi1 · · · sim).

Proof. Let V denote the category with Ob(V) = X and morphisms

Hom(Y, Z) =
{(

ΛZ
+(j1, . . . , jn), idZsj1 · · · sjn

)
|

n ∈ N0, j1, . . . , jn ∈ I, rj1 · · · rjn
(Y ) = Z

}

for all Y, Z ∈ X . Composition of morphisms is defined via concatenation:
(
ΛZ

+(j1, . . . , jn), idZsj1 · · · sjn

)
◦

(
ΛY

+(k1, . . . , kp), idY sk1 · · · skp

)

=
(
ΛZ

+(j1, . . . , jn, k1, . . . , kp), idZsj1 · · · sjn
sk1 · · · skp

)

for all Y, Z ∈ X , n, p ∈ N0 and j1, . . . , jn, k1, . . . , kp ∈ I with Z = rj1 · · · rjn
(Y ).

First we prove that V is indeed a category.

Let n, n′, p, p′ ∈ N0, j1, . . . , jn, j′1, . . . , j
′
n′, k1, . . . , kp, k′

1, . . . , k
′
p′ ∈ I and Z ∈ X

such that

ΛZ
+(j1, . . . , jn) = ΛZ

+(j′1, . . . , j
′
n′), ΛY

+(k1, . . . , kp) = ΛY
+(k′

1, . . . , k
′
p′),

and idZsj1 · · · sjn
= idZsj′1

· · · sj′
n′

, where Y = rjn
· · · rj1(Z). The definition of ΛZ

+

implies that

ΛZ
+(j1, . . . , jn, k1, . . . , kp) =ΛZ

+(j1, . . . , jn, k
′
1, . . . , k

′
p′),(1.3)

ΛZ
+(j1, . . . , jn, k1, . . . , kp) =ΛZ

+(j′1, . . . , j
′
n′ , k1, . . . , kp),(1.4)
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and hence the composition is independent of the choice of representatives. Clearly,

the composition is associative, and (ΛZ
+(), idZ) is the identity for any Z ∈ X ,

and hence V is a category. Moreover, Hom(V) is generated by the morphisms

(ΛZ
+(i), s

ri(Z)
i ) with i ∈ I and Z ∈ X , which are invertible since ΛZ

+(i, i) = ∅.

Thus V is a groupoid.

Let Z ∈ X and i, j ∈ I. Assume that mZ
i,j <∞. Then

ΛZ
+(i, j, i, j, . . . , i, j

︸ ︷︷ ︸

2mZ
i,j entries

) =∅,(1.5)

since the entries βk of ΛZ(i, j, i, j, . . . , i, j) are the elements of (Zαi + Zαj)∩∆Z ,

each appearing with multiplicity one, see [HY08b, Lemma6]. In the special case,

where i = j, we have ΛZ(i, i) = (αi,−αi). Hence the pair

(V, ((ΛZ
+(i), s

ri(Z)
i ))i∈I,Z∈X )

satisfies the Coxeter relations in the sense of Def. 1.5. By Thm. 1.6, there is a

functor from W(R) to V which maps s
ri(Z)
i to (ΛZ

+(i), s
ri(Z)
i ) for each Z ∈ X and

i ∈ I. This proves the implication (2)⇒(1) in the claim of the lemma.

We prove (1)⇒(2). Assume that ΛX
+ (i1, . . . , im) = ΛX

+ (i′1, . . . , i
′
m′). Using that

ΛZ
+(i, i, j1, . . . , jn) = ΛZ

+(j1, . . . , jn), idZsisisj1 · · · sjn
= idZsj1 · · · sjn

for all Z ∈ X and n ∈ N0, i, j1, . . . , jn ∈ I, we may assume that m′ = 0. By

the first part of the lemma we may restrict to the case when idXsi1 · · · sim is a

reduced expression, that is, ℓ(idXsi1 · · · sim) = m. Then we have to show that

m = 0. The roots

s
ri1

(X)

i1
· · · s

rik−1
···ri1

(X)

ik−1
(αik) ∈ ∆X ,

where 1 ≤ k ≤ m, are pairwise distinct and positive by Prop. 1.4. Hence the as-

sumption ΛX
+ (i1, . . . , im) = ∅ implies the desired claim m = 0. The last assertion

of the lemma follows from the first one and from Prop. 1.4. �

Let X, Y ∈ X , w ∈ Hom(Y, X), m ∈ N0, and i1, . . . , im ∈ I such that w =

si1 · · · sim . Let ΛX
+ (w) = ΛX

+ (i1, . . . , im). This notation is justified by Prop. 1.9.

Corollary 1.10. Let X, Y ∈ X , w ∈ Hom(Y, X), and i ∈ I. Then

ℓ(sX
i w) =

{

ℓ(w) + 1 if αi /∈ ΛX
+ (w),

ℓ(w)− 1 if αi ∈ ΛX
+ (w).

Proof. By Prop. 1.9, ℓ(sX
i w) = ℓ(w)+1 if and only if #Λ

ri(X)
+ (sX

i w) = #ΛX
+ (w)+1.

Then the claim holds by Lemma 1.8. �
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Definition 1.11. Let X ∈ X . For all Y, Z ∈ X and x ∈ Hom(Y, X), y ∈

Hom(Z, Y ) we write x ≤D xy (in Hom(W(R), X)) if and only if ℓ(xy) = ℓ(x) +

ℓ(y). Then ≤D is a partial order on Hom(W(R), X) which is called the (right)

Duflo order.

The definition stems from the corresponding notion for Weyl groups of semisim-

ple Lie algebras, see [Mel04], [Jos95, A 1.2]. The Duflo order is also known as the

weak order [BB05].

Remark 1.12. As for the right Duflo order for Weyl groups, ≤D is the weakest

partial order on W(R) such that x ≤D xsi for all x ∈ Hom(W(R)) and i ∈ I

with ℓ(x) < ℓ(xsi).

The following theorem gives a characterization of the right Duflo order.

Theorem 1.13. Let X ∈ X and let w1, w2 ∈ Hom(W(R), X). Then w1 ≤D w2

if and only if ΛX
+ (w1) ⊂ ΛX

+ (w2),

Proof. We proceed by induction on ℓ(w1). If w1 = idX , then ΛX
+ (w1) = ∅ and

w1 ≤D w2, and hence the claim holds. If ℓ(w1) = 1, then w1 = s
ri(X)
i for

some i ∈ I, and hence ΛX
+ (w1) = αi. By definition, w1 ≤D w2 if and only if

ℓ(w2) = 1 + ℓ(sX
i w2). Hence the claim holds by Cor. 1.10.

Assume now that ℓ(w1) > 1. Let i ∈ I with ℓ(w1) = ℓ(w) + 1 for w = sX
i w1.

Then

αi ∈ ΛX
+ (w1)(1.6)

by Cor. 1.10. Thus Lemma 1.8 implies that ΛX
+ (w1) ⊂ ΛX

+ (w2) if and only if

αi ∈ ΛX
+ (w2) and Λ

ri(X)
+ (sX

i w1) ⊂ Λ
ri(X)
+ (sX

i w2).(1.7)

Induction hypothesis, (1.6) and Cor. 1.10 imply that the relations in (1.7) are

equivalent to

ℓ(sX
i w2) = ℓ(w2)− 1, ℓ(sX

i w2) = ℓ(sX
i w1) + ℓ(w−1

1 w2).(1.8)

Since (1.8) implies that w1 ≤D w2, the if part of the claim holds. Further,

w1 ≤D w2 implies that

ℓ(sX
i w2) ≤ ℓ(sX

i w1) + ℓ(w−1
1 w2) = ℓ(w1)− 1 + ℓ(w−1

1 w2) = ℓ(w2)− 1,

that is, that (1.8) holds. Therefore the only if part of the claim holds as well. �
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2. Braided Hopf algebras and Nichols algebras

Let k be a field and let H be a Hopf algebra over k with bijective antipode.

Let H
HYD denote the category of Yetter-Drinfeld modules over H .

Let R be a bialgebra in H
HYD. We use the Sweedler notation for the coaction

δ : R → H ⊗ R and the coproduct ∆R : R → R ⊗ R in the following form:

δ(r) = r(−1) ⊗ r(0), ∆R(r) = r(1) ⊗ r(2) for all r ∈ R.

Let R be a Hopf algebra in H
HYD with antipode SR. Let R#H be the bosoniza-

tion of R, see e. g. [AHS08, Sect. 1.4]. Recall that R#H is a Hopf algebra with

projection πH : R#H → H , and

(r#h)(r′#h′) = r(h(1) · r
′)#h(2)h

′,(2.1)

r(−1) ⊗ r(0) = πH(r(1))⊗ r(2), r(1) ⊗ r(2) = r(1)r(2)
(−1) ⊗ r(2)

(0)(2.2)

for all r, r′ ∈ R, h, h′ ∈ H , where ∆(a) = a(1) ⊗ a(2) for all a ∈ R#H .

Let S denote the antipode of the Hopf algebra R#H . Then

SR(r) = r(−1)S(r(0)), S(r) = S(r(−1))SR(r(0)) for all r ∈ R,(2.3)

and SR ∈ End(R) is a morphism in H
HYD satisfying

SR(rs) =SR(r(−1) · s)SR(r(0)),(2.4)

∆R(SR(r)) =SR(r(1)
(−1) · r

(2))⊗ SR(r(1)
(0))(2.5)

for all r, s ∈ R. If S is bijective, then the map S−1
R : R→ R,

S−1
R (r) = S−1(r(0))r(−1) for all r ∈ R(2.6)

is a morphism in H
HYD and is inverse to SR. Moreover,

S−1(r) = S−1
R (r(0))S

−1(r(−1)) for all r ∈ R.(2.7)

In this case, Eqs. (2.4), (2.5) are equivalent to

S−1
R (rs) =S−1

R (s(0))S
−1
R (S−1(s(−1)) · r),(2.8)

∆R(S−1
R (r)) =S−1

R (r(2)
(0))⊗ S−1

R (S−1(r(2)
(−1)) · r

(1))(2.9)

for all r, s ∈ R.

Remark 2.1. (i) Let A be a Hopf algebra. Then Aop is a Hopf algebra if and only

if the antipode S of A is bijective. In this case S−1 is the antipode of Aop.

(ii) Let B be a bialgebra in H
HYD with a coalgebra filtration

k1 = B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ B, ∪∞n=0Bn = B.
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Then B is a Hopf algebra in H
HYD, and the antipodes of B and B#H are bijective.

Indeed,

H ⊂ B1#H ⊂ B2#H ⊂ · · · ⊂ B#H

is a coalgebra filtration of B#H and

Hop ⊂ (B1#H)op ⊂ (B2#H)op ⊂ · · · ⊂ (B#H)op

is a coalgebra filtration of (B#H)op. Since H and Hop are Hopf algebras, B#H

and (B#H)op are Hopf algebras by [Mon93, Lemma 5.2.10]. By Part (i) the

antipode of B#H is bijective. Hence SB is bijective with inverse given in Eq. (2.6)

(for R = B). �

Let E ⊂ R be a subspace. We say that E is a right coideal subalgebra of R

in H
HYD if E ⊂ R is a subobject in H

HYD and a subalgebra (containing 1) with

∆R(E) ⊂ E ⊗ R. If H is the trivial 1-dimensional Hopf algebra, we follow the

traditional terminology and call E a right coideal subalgebra of R.

Let G be a group. We say that a right coideal subalgebra E of a (braided)

Hopf algebra R is G-graded, if R = ⊕g∈GRg is a G-graded algebra and E =

⊕g∈G(E∩Rg). For any G-graded algebras A, B, and any algebra map f : A→ B

we say that f is a homomorphism of G-graded algebras, if f(Ag) ⊂ Bg for all

g ∈ G.

Lemma 2.2. Let B ⊂ R be a Hopf subalgebra in H
HYD. Assume that there exists

a morphism π : R → B of Hopf algebras in H
HYD such that π|B = idB. Let

Rco B = {r ∈ R | r(1) ⊗ π(r(2)) = r ⊗ 1}. Let E ⊂ R be a right coideal subalgebra

in H
HYD such that B ⊂ E. Then the multiplication map (Rco B ∩E)⊗B → E is

an isomorphism.

Proof. The inverse of the multiplication map is given by

E → (Rco B ∩ E)⊗ B, r 7→ r(1)SR(π(r(2)))⊗ π(r(3))

for all r ∈ E. �

Proposition 2.3. Let R be a Hopf algebra in H
HYD.

(i) Let E ⊂ R. If E is a right coideal subalgebra of R in H
HYD, then E#H is

a right coideal subalgebra of R#H.

(ii) Let E ′ be a right coideal subalgebra of R#H with H ⊂ E ′. Then E = E ′ co H

is a right coideal subalgebra of R in H
HYD with E ′ = E#H.

(iii) Let G be a group, and assume that the algebra R = ⊕g∈GRg is G-graded

and Rg ∈
H
HYD for all g ∈ G. Then R#H = ⊕g∈G(R#H)g is G-graded with

(R#H)g = Rg#H. Let E ⊂ R be a subobject in H
HYD. Then E is a G-graded

subalgebra of R if and only if E#H is a G-graded subalgebra of R#H.
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Proof. (i) and (iii) follow from Eqs. (2.1), (2.2). (ii) is a special case of Lemma 2.2

with H = k1 and B = H . �

Let V ∈ H
HYD. Assume that dimk V <∞. Then V ∗ ∈ H

HYD with the following

properties:

〈h · f, v〉 =〈f, S(h) · v〉,(2.10)

f(−1)〈f(0), v〉 =S−1(v(−1))〈f, v(0)〉,(2.11)

for all h ∈ H , v ∈ V , f ∈ V ∗, see e.g. [AHS08, Sect. 1.2]. Let B(V ) and

B(V ∗) denote the Nichols algebra of V and V ∗, respectively. These are N0-graded

braided Hopf algebras in H
HYD with degree 1 parts B1(V ) ≃ V , B1(V ∗) ≃ V ∗ and

with k as degree 0 part. Since the antipode of H is bijective, the antipodes of

B(V ), B(V ∗), B(V )#H and B(V ∗)#H are bijective by Remark 2.1(ii).

The evaluation map between V ∗ and V induces a bilinear form

〈·, ·〉 : B(V ∗)× B(V )→ k,(2.12)

see [AHS08, Sect. 1.5] for the origins. This pairing is non-degenerate, and it

satisfies the equations

〈1, 1〉 = 1, 〈f, v〉 =0 for all f ∈ Bk(V ∗), v ∈ Bl(V ), k 6= l, and(2.13)

〈h · f, v〉 =〈f, S(h) · v〉,(2.14)

f(−1)〈f(0), v〉 =S−1(v(−1))〈f, v(0)〉,(2.15)

〈f, vw〉 =〈f (1), w〉〈f (2), v〉,(2.16)

〈fg, v〉 =〈g, v(2)〉〈f, v(1)〉(2.17)

for all f, g ∈ B(V ∗), v, w ∈ B(V ), h ∈ H .

Let {bα} and {bα} be N0-graded dual bases of B(V ∗) and B(V ), respectively.

Eqs. (2.14)-(2.17) imply the following for all h ∈ H , v ∈ B(V ), f ∈ B(V ∗).

ε(h)
∑

α

bα ⊗ bα =
∑

α

h(1) · bα ⊗ h(2) · b
α,(2.18)

∑

α

S(h) · bα ⊗ bα =
∑

α

bα ⊗ h · bα,(2.19)

∑

α

1⊗ bα ⊗ bα =
∑

α

bα(−1)b
α

(−1) ⊗ bα(0) ⊗ bα
(0),(2.20)

∑

α

bα(−1) ⊗ bα(0) ⊗ bα =
∑

α

S(bα
(−1))⊗ bα ⊗ bα

(0),(2.21)

∑

α

vbα ⊗ bα =
∑

α

bα ⊗ 〈b
α(2), v〉bα(1),(2.22)
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∑

α

bαv ⊗ bα =
∑

α

bα ⊗ 〈b
α(1), v〉bα(2),(2.23)

∑

α

bα ⊗ bαf =
∑

α

〈f, bα
(1)〉bα

(2) ⊗ bα,(2.24)

∑

α

bα ⊗ fbα =
∑

α

〈f, bα
(2)〉bα

(1) ⊗ bα,(2.25)

∑

α,β

bα ⊗ bβ ⊗ bβbα =
∑

γ

∆B(V )bγ ⊗ bγ .(2.26)

Let K ∈
B(V )#H

B(V )#H
YD. We write

δB(V )#H(x) = x[−1] ⊗ x[0](2.27)

for the left coaction of B(V )#H on x ∈ K. Then K ∈ H
HYD, where the action is

the restriction of the action of B(V )#H to H , and the coaction is

δ = (πH ⊗ id)δB(V )#H ,

and πH : B(V )#H → H is the canonical projection. Let δB(V ) : K → B(V )⊗K,

δB(V )(x) = x[−1]S(x[0](−1))⊗ x[0](0) for all x ∈ K.(2.28)

We use modified Sweedler notation for δB(V ) in the form

δB(V )(x) = x(−1) ⊗ x(0) for all x ∈ K.(2.29)

The map δB(V ) is H-linear and H-colinear via diagonal action and coaction. We

are going to study the right action of B(V )#H on K defined by

x ⊳ v = S−1(v) · x for all v ∈ B(V )#H , x ∈ K.(2.30)

Lemma 2.4. Let K ∈
B(V )#H

B(V )#H
YD.

(i) Let x ∈ K, v, w ∈ B(V ) and h ∈ H. Then

h · (x ⊳ v) =(h(1) · x) ⊳ (h(2) · v),(2.31)

δ(x ⊳ v) =x(−1)v(−1) ⊗ x(0) ⊳ v(0),(2.32)

(x ⊳ v) ⊳ w =x ⊳ vw.(2.33)

(ii) For all f ∈ V ∗ and x ∈ K let ∂L
f (x) = 〈f, x(−1)〉x(0). Then ∂L

f (x) ∈ K and

∂L
f (x ⊳ v) = ∂L

f (x) ⊳ v + 〈S−1(x(−1)) · f, v(1)〉x(0) ⊳ v(2) − 〈f, v(2)〉x ⊳ v(1)(2.34)

for all f ∈ V ∗, x ∈ K, v ∈ B(V ).

(iii) Suppose that K is a B(V )#H-module algebra. Then

(xy) ⊳ v = (x ⊳ v(2)
(0))(S

−1(v(2)
(−1)) · (y ⊳ v(1)))(2.35)

for all v ∈ B(V ) and x, y ∈ K.
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Proof. (i) By the relations of B(V )#H ,

h · (x ⊳ v) =hS−1(v) · x = S−1(vS(h)) · x = S−1(S(h(1))(h(2) · v)) · x

=S−1(h(2) · v) · (h(1) · x) = (h(1) · x) ⊳ (h(2) · v).

Using the Yetter-Drinfeld structure of K we obtain that

δ(x ⊳ v) =δ(S−1(v) · x) = πH(S−1(v)(1)x[−1]S(S−1(v)(3)))⊗ S−1(v)(2) · x[0]

=πH(S−1(v(3))x[−1]v(1))⊗ S−1(v(2)) · x[0]

=πH(x[−1]v(1))⊗ S−1(v(2)) · x[0] = x(−1)v(−1) ⊗ x(0) ⊳ v(0),

where the fourth relation follows from v ∈ B(V ), and the last one from the

definitions of δ and ⊳. Eq. (2.33) holds since S−1 is an algebra antiautomorphism

of B(V )#H .

(ii) Let f ∈ V ∗, v ∈ B(V ), and x ∈ K. Let ϑ : B(V ∗)#H → B(V ∗) be the

linear map with ϑ(w#h) = wε(h) for all w ∈ B(V ∗), h ∈ H . It is well-known

that ϑ(w) = w(1)πH(S(w(2))) for all w ∈ B(V ∗)#H . We get

∂L
f (x ⊳ v) = 〈f, (x ⊳ v)(−1)〉(x ⊳ v)(0) (2.28)

= 〈f, ϑ(S−1(v(3))x[−1]v(1))〉x[0] ⊳ v(2)

= 〈f, ϑ(S−1(v(3))πH(x[−1]v(1)))〉x[0] ⊳ v(2)

+ 〈f, ϑ(πH(S−1(v(3)))x[−1]πH(v(1)))〉x[0] ⊳ v(2)

+ 〈f, ϑ(πH(S−1(v(3))x[−1])v(1))〉x[0] ⊳ v(2)

= 〈f, ϑ(S−1(v(2)))〉x ⊳ v(1) + 〈f, ϑ(x[−1])〉x[0] ⊳ v + 〈f, ϑ(x(−1)v(1))〉x(0) ⊳ v(2)

= 〈f, S−1(v(3))πH(v(2))〉x ⊳ v(1) + ∂L
f (x) ⊳ v + 〈f, x(−1) · ϑ(v(1))〉x(0) ⊳ v(2)

(2.6)
= 〈f, S−1

B(V )(v(2))〉x ⊳ v(1) + ∂L
f (x) ⊳ v + 〈f, x(−1) · v

(1)〉x(0) ⊳ v(2)

= −〈f, v(2)〉x ⊳ v(1) + ∂L
f (x) ⊳ v + 〈S−1(x(−1)) · f, v(1)〉x(0) ⊳ v(2)

which proves (ii). In the latter transformations, the third equation follows from

the fact that f is of degree 1 in B(V ∗), and hence the pairing of a homogeneous

product with f vanishes if the sum of the degrees of the factors is not 1. Further,

the fourth equation is obtained from (id⊗πH)∆(v) = v⊗1 and from the definition

of ϑ. In the fifth equation, the definition of ϑ and of ∂L
f (x) is used. The last

equation comes from Eq. (2.14) and the facts that f has degree 1 and each

element of V is primitive.
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(iii) Let v ∈ B(V ) and x, y ∈ K. Then

(xy) ⊳ v =S−1(v) · (xy) = (S−1(v(2)) · x)(S−1(v(1)) · y)

=(S−1(v(2)
(0)) · x)(S−1(v(1)v(2)

(−1)) · y)

=(x ⊳ v(2)
(0))(S

−1(v(2)
(−1)) · (y ⊳ v(1)))

since K is a B(V )#H-module algebra. �

We extend the definition of ∂L
f given in Lemma 2.4. Note that B(V ) is a

coalgebra. For any left B(V )-comodule L and any f ∈ V ∗ let ∂L
f : L→ L be the

map defined by

∂L
f (x) = 〈f, x(−1)〉x(0) for all x ∈ L,(2.36)

where δB(V )(x) = x(−1) ⊗ x(0).

Lemma 2.5. Let L be a left B(V )-comodule. Let L0 ⊂ L and let 〈L0〉 be the

smallest left B(V )-subcomodule of L containing L0. Then 〈L0〉 is the smallest

subspace of L which contains L0 and is stable under the maps ∂L
f , f ∈ V ∗.

Proof. By assumption,

〈L0〉 = span
k
{g(x(−1))x(0) | x ∈ L0, g ∈ B(V )∗}.

The non-degeneracy of the pairing 〈·, ·〉 between B(V ∗) and B(V ), see (2.12),

implies that

〈L0〉 = span
k
{〈g, x(−1)〉x(0) | x ∈ L0, g ∈ B(V ∗)}.

Eq. (2.17) further implies that

〈L0〉 =spank{〈f1 · · · fk, x
(−1)〉x(0) | x ∈ L0, k ∈ N0, f1, . . . , fk ∈ V ∗}

=span
k
{∂L

f1
· · ·∂L

fk
(x) | x ∈ L0, k ∈ N0, f1, . . . , fk ∈ V ∗}.

This proves the lemma. �

3. The algebra map R

Let V, V ′ ∈ H
HYD and W = V ⊕ V ′ with dimk W < ∞. Let π : B(W )#H →

B(V )#H denote the Hopf algebra projection corresponding to the decomposition

W = V ⊕ V ′, and let

K =B(W )coB(V )#H = {x ∈ B(W ) | (id⊗ π)∆B(W )#H(x) = x⊗ 1}(3.1)

be the algebra of right coinvariants with respect to the right coaction of B(V )#H .

Then K is a braided Hopf algebra in
B(V )#H

B(V )#H
YD, and hence the results in the

previous section apply.
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Recall from [AHS08, Def. 2.5, Remark 2.7] that K#B(V ∗) is an algebra in H
HYD

such that the multiplication map K ⊗ B(V ∗)→ K#B(V ∗) is an isomorphism of

left K-modules and right B(V ∗)-modules, and

(1#f)(x#1) = 〈f (2), π(x(1))〉x(2)
(0)#S−1(x(2)

(−1)) · f
(1)(3.2)

for all f ∈ B(V ∗), x ∈ K. For brevity we will often write xf instead of x#f for

all x ∈ K and f ∈ B(V ∗). Note that if f ∈ V ∗ and x ∈ K then

(3.3)
(1#f)(x#1) =〈f, x(1)〉x(2)#1 + x(0)#S−1(x(−1)) · f

=∂L
f (x)#1 + x(0)#S−1(x(−1)) · f

by Eqs. (3.2), (2.36).

Let ad denote the left adjoint action of B(W )#H on itself. Assume that

dim(adB(V )#H)(x) <∞ for all x ∈ V ′. Since K is generated as an algebra by

(adB(V )#H)(V ′), see [AHS08, Prop. 3.6], the left adjoint action of B(V )#H on

K is locally finite.

Let R : K ⊗K → K ⊗ (K#B(V ∗)) be the linear map with

R(x⊗ y) =
∑

α

x ⊳ bα ⊗ bαy(3.4)

for all x, y ∈ K, where {bα} and {bα} are dual bases of the N0-graded algebras

B(V ∗) and B(V ), respectively, and ⊳ is defined in Eq. (2.30). By the local finite-

ness of the left adjoint action of B(V )#H on K, the sum in Eq. (3.4) is finite for

all x, y ∈ K. Since 1 ⊳ v = ε(v)1 for all v ∈ B(V )#H , we conclude that

R(1⊗ y) = 1⊗ y for all y ∈ K.(3.5)

Let R : K ⊗K#B(V ∗)→ K ⊗K#B(V ∗) be the linear map with

R(x⊗ y) =
∑

α

x ⊳ SB(W )(bα)⊗ bαy(3.6)

for all x ∈ K and y ∈ K#B(V ∗). Then

RR(x⊗ y) = x⊗ y for all x, y ∈ K.(3.7)

Indeed,

RR(x⊗ y) =R
(∑

α

x ⊳ bα ⊗ bαy
)

=
∑

α,β

x ⊳ bαSB(W )(bβ)⊗ bβbαy

=
∑

γ

x ⊳ b(1)
γ SB(W )(b

(2)
γ )⊗ bγy =

∑

γ

x⊗ ε(bγ)b
γy = x⊗ y,

where the third equation follows from Eq. (2.26).
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Lemma 3.1. For all x, y ∈ K and h ∈ H,

h ·R(x⊗ y) =R(h(1) · x⊗ h(2) · y),(3.8)

δR(x⊗ y) =x(−1)y(−1) ⊗R(x(0) ⊗ y(0)).(3.9)

Proof. By Eqs. (3.4), (2.18) and (2.31),

h ·R(x⊗y) =
∑

α

h(1) · (x ⊳ bα)⊗ (h(2) · b
α)(h(3) · y)

=
∑

α

(h(1) · x) ⊳ (h(2) · bα)⊗ (h(3) · b
α)(h(4) · y)

=
∑

α

(h(1) · x) ⊳ bα ⊗ bα(h(2) · y) = R(h(1) · x⊗ h(2) · y)

for all h ∈ H and x, y ∈ K. Similarly, Eqs. (3.4), (2.32) and (2.20) imply that

δR(x⊗y) = δ
(∑

α

x ⊳ bα ⊗ bαy
)

=
∑

α

x(−1)bα(−1)b
α

(−1)y(−1) ⊗ x(0) ⊳ bα(0) ⊗ bα
(0)y(0)

=
∑

α

x(−1)y(−1) ⊗ x(0) ⊳ bα ⊗ bαy(0) = x(−1)y(−1) ⊗R(x(0) ⊗ y(0))

for all x, y ∈ K. �

The vector space K ⊗K is an algebra in H
HYD with product

(x⊗ y)(z ⊗ w) = x(ad π(y(1)))(z)⊗ y(2)w(3.10)

for all x, y, z, w ∈ K. Note that this is the usual product of K⊗K in
B(V )#H

B(V )#H
YD.

Similarly, K#B(V ∗)⊗K#B(V ∗) is an algebra in H
HYD with product

(x⊗ y)(z ⊗ w) = x(y(−1) · z)⊗ y(0)w(3.11)

for all x, y, z, w ∈ K#B(V ∗).

Theorem 3.2. The map R : K⊗K → K#B(V ∗)⊗K#B(V ∗) is an algebra map

in H
HYD.

Proof. The map R is a morphism in H
HYD by Lemma 3.1. Further,

R((x⊗ y)(1⊗ z)) = R(x⊗ yz)

=
∑

α

x ⊳ bα ⊗ bαyz = R(x⊗ y)(1⊗ z) = R(x⊗ y)R(1⊗ z)
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for all x, y, z ∈ K by Eq. (3.5). Hence it suffices to show that

R((x⊗ 1)(y ⊗ 1)) =R(x⊗ 1)R(y ⊗ 1),(3.12)

R((1⊗ x)(y ⊗ 1)) =R(1⊗ x)R(y ⊗ 1)(3.13)

for all x, y ∈ K. Let x, y ∈ K. Then

R(x⊗ 1)R(y ⊗ 1)
(3.4)
=

(∑

α

x ⊳ bα ⊗ bα
)(∑

β

y ⊳ bβ ⊗ bβ
)

(3.11)
=

∑

α,β

(x ⊳ bα)(bα
(−1) · (y ⊳ bβ))⊗ bα

(0)b
β

(2.21)
=

∑

α,β

(x ⊳ bα(0))(S
−1(bα(−1)) · (y ⊳ bβ))⊗ bαbβ

(2.26)
=

∑

γ

(x ⊳ b(2)
γ (0))(S

−1(b(2)
γ (−1)) · (y ⊳ b(1)

γ ))⊗ bγ

(2.35)
=

∑

γ

(xy) ⊳ bγ ⊗ bγ (3.4)
= R(xy ⊗ 1).

This proves Eq. (3.12). Further,

R((1⊗x)(y ⊗ 1))
(3.10)
= R((x[−1] · y)⊗ x[0])

(3.4)
=

∑

α

(x[−1] · y) ⊳ bα ⊗ bαx[0]
(2.30)
=

∑

α

y ⊳ (S(x[−1])bα)⊗ bαx[0]

(3.2)
=

∑

α

y ⊳ (S(x[−1])bα)⊗ 〈bα(2), π(x[0]
(1))〉x[0]

(2)
(0)(S

−1(x[0]
(2)

(−1)) · b
α(1))

(2.22)
=

∑

α

y ⊳ (S(x[−1])π(x[0]
(1))bα)⊗ x[0]

(2)
(0)(S

−1(x[0]
(2)

(−1)) · b
α)

=
∑

α

y ⊳ (Sπ(x(1))π(x(2))SπH(x(3))bα)⊗ x(5)(S
−1πH(x(4)) · b

α)

(2.19)
=

∑

α

y ⊳ (SπH(x(1))(πH(x(2)) · bα))⊗ x(3)b
α

=
∑

α

y ⊳ (bαS(x(−1)))⊗ x(0)b
α (2.30)

=
∑

α

x(−1) · (y ⊳ bα)⊗ x(0)b
α

(3.11)
= (1⊗ x)

(∑

α

y ⊳ bα ⊗ bα
)

(3.4),(3.5)
= R(1⊗ x)R(y ⊗ 1).

This proves Eq. (3.13), and the proof of the theorem is completed. �
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4. Reflections of Nichols algebras

Let θ ∈ N and I = {1, 2, . . . θ}. Let Fθ denote the set of θ-tuples of finite-

dimensional irreducible objects in H
HYD, and let Xθ denote the set of θ-tuples of

isomorphism classes of finite-dimensional irreducible objects in H
HYD. For each

M = (M1, . . . , Mθ) ∈ Fθ let [M ] = ([M1], . . . , [Mθ]) ∈ Xθ denote the correspond-

ing θ-tuple of isomorphism classes.

Let {α1, . . . , αθ} be the standard basis of Z
θ. For all M = (M1, . . . , Mθ) ∈ Fθ

define an algebra grading by N
θ
0 on the Nichols algebra B(M) := B(M1⊕· · ·⊕Mθ)

by deg Mj = αj for all j ∈ I, see [AHS08, Rem. 2.8]. We call this the standard

N
θ
0-grading of B(M).

Let i ∈ I and M ∈ Fθ. Let

KM
i =B(M)coB(Mi)#H .(4.1)

Clearly, Mj ⊂ KM
i for all j ∈ I \ {i}. As in [HS08, Def. 6.4] we say that M is

i-finite if (adB(Mi)#H)(Mj) is finite-dimensional for all j ∈ I \ {i}. Note that

if N ∈ Fθ with [M ] = [N ] then M is i-finite if and only if N is i-finite.

Proposition 4.1. [AHS08, Prop. 3.6] Let i ∈ I and M ∈ Fθ. Assume that M is

i-finite.

(i) The algebra KM
i is generated by ⊕j∈I\{i}(adB(Mi))(Mj).

(ii) The left adjoint action of B(Mi) on KM
i is locally finite.

Let us recall some crucial definitions introduced in [AHS08, Sect. 3.4]. Let i ∈ I

and M ∈ Fθ. If M is not i-finite, let Ri(M) = M . Otherwise let aM
ij ∈ Z, where

j ∈ I, and M ′ = (M ′
1, . . . , M

′
θ) ∈ (H

HYD)θ be given by

aM
ij =

{

2 if j = i,

−max{m | (adMi)
m(Mj) 6= 0} if j 6= i,

(4.2)

M ′
i = M∗

i , M ′
j = (ad Mi)

−aM
ij (Mj) for all j ∈ I \ {i}.(4.3)

and let

sM
i ∈ Aut(Zθ), sM

i (αj) = αj − aM
ij αi for all j ∈ I.(4.4)

By [AHS08, Thm. 3.8], M ′
j is finite-dimensional and irreducible for all j ∈ I, and

hence M ′ ∈ Fθ. Let Ri(M) = M ′ in this case. Note that [Ri(M)] = [Ri(N)] in

Xθ for all N ∈ Fθ with [N ] = [M ]. Thus we may define

ri([M ]) = [Ri(M)],

and these definitions provide us with maps Rj : Fθ → Fθ, rj : Xθ → Xθ for all

j ∈ I. Further, if N ∈ Fθ with [M ] = [N ] and M is i-finite, then aM
ij = aN

ij for all
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j ∈ I, and sM
i = sN

i . Thus we may write a
[M ]
ij and s

[M ]
i instead of aM

ij and sM
i if

needed.

Let i ∈ I and M ∈ Fθ. Assume that M is i-finite. Let

ΩM
i : KM

i #B(M∗
i )→ B(Ri(M))(4.5)

be the unique algebra map which is the identity on all M ′
j ⊂ KM

i #B(M∗
i ), where

j ∈ I — see [AHS08, Prop. 3.14]. Then ΩM
i is a map in H

HYD and

ΩM
i (xα) ∈ B(Ri(M))sM

i (α)(4.6)

for all xα ∈ KM
i #B(M∗

i ) of degree α ∈ Z
θ, where KM

i ⊂ B(M) is graded by the

standard grading of B(M) and deg M∗
i = −αi. Further, ΩM

i is bijective and

SB(Ri(M))Ω
M
i (KM

i ) = K
Ri(M)
i(4.7)

by the last paragraph of the proof of [AHS08, Thm. 3.12]. By [AHS08, Eq. (3.37)]

the restriction of SB(Ri(M))Ω
M
i to Mj defines an isomorphism

ϕM
ij : Mj → R2

i (M)j , j ∈ I \ {j},

in H
HYD, and there is a canonical isomorphism ϕM

ii : Mi → R2
i (M)i = M∗∗

i in
H
HYD, see [AHS08, Rem. 1.4]. Let

ϕM
i = (ϕM

ij )j∈I : M → R2
i (M)(4.8)

be the family of these isomorphisms.

The following property of ΩM
i will be one of the main ingredients to characterize

right coideal subalgebras of Nichols algebras.

Theorem 4.2. Let M ∈ Fθ and i ∈ I. Assume that M is i-finite. Then the

following diagram is commutative:

(4.9)

KM
i

∆
KM

i−−−→ KM
i ⊗KM

i

R
−→ KM

i ⊗ (KM
i #B(M∗

i ))

ΩM
i



y



yΩM

i ⊗ΩM
i

B(Ri(M))
∆B(Ri(M))

−−−−−−→ B(Ri(M))⊗ B(Ri(M))

that is,

∆B(Ri(M))Ω
M
i (x) = (ΩM

i ⊗ ΩM
i )R∆KM

i
(x)(4.10)

for all x ∈ KM
i .

Proof. For all j ∈ I \ {i} and k ∈ N let

Lj = (adB(Mi))(Mj), Lk
j = (ad Mi)

k−1(Mj).(4.11)
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Then

∆B(M)(x)− x⊗ 1 ∈B(Mi)⊗ Lj(4.12)

for all j ∈ I \ {i} and x ∈ Lj by [AHS08, Eq. (3.11)].

By [AHS08, Prop. 3.14], ΩM
i : KM

i #B(M∗
i )→ B(Ri(M)) is an algebra map. By

Thm. 3.2, R is an algebra map. By Prop. 4.1(i), KM
i is generated as an algebra by

∪j 6=iLj . Hence it suffices to prove that Eq. (4.10) holds for all x ∈ Lj , j ∈ I \ {i}.

Let j ∈ I \ {i} and let x ∈ Lj. Eq. (4.12) implies that ∆KM
i

(x) = 1⊗ x + x⊗ 1.

Hence

(ΩM
i ⊗ ΩM

i )R∆KM
i

(x) = 1⊗ ΩM
i (x) +

∑

α

ΩM
i (x ⊳ bα)⊗ bα(4.13)

by Eqs. (3.4), (3.5) and since ΩM
i |B(M∗

i ) = id.

Since M is i-finite, Prop. 4.1(ii) tells that the left adjoint action of B(Mi) on

KM
i is locally finite. Then [AHS08, Thm. 3.8] can be applied, that is, L

1−aM
ij

j

generates Lj as a B(Mi)-comodule. By Lemma 2.5 it suffices to show that the

set of solutions of Eq. (4.10) contains L
1−aM

ij

j and is stable under the maps ∂L
f for

all f ∈M∗
i .

Suppose first that x ∈ L
1−aM

ij

j . Then

(ΩM
i ⊗ ΩM

i )R∆KM
i

(x) = 1⊗ ΩM
i (x) + ΩM

i (x)⊗ 1 = ∆B(Ri(M))(Ω
M
i (x))

by Eq. (4.13) and since ΩM
i (x) ∈ Ri(M)j . Thus the set of solutions of Eq. (4.10)

contains L
1−aM

ij

j .

Let k ∈ N, k ≤ 1− aM
ij . Assume that Eq. (4.10) holds for all x ∈ Lk

j . That is,

∆B(Ri(M))Ω
M
i (x) = 1⊗ ΩM

i (x) +
∑

α

ΩM
i (x ⊳ bα)⊗ bα for all x ∈ Lk

j .(4.14)

Let y ∈ Lk
j and f ∈ M∗

i . We have to prove that Eq. (4.14) holds for x = ∂L
f (y).

Since ∂L
f (y) = fy − y(0)(S

−1(y(−1)) · f) in KM
i #B(M∗

i ) by Eq. (3.3), and since

ΩM
i is an algebra map in H

HYD with ΩM
i |B(M∗

i ) = id, we obtain that

∆B(Ri(M))Ω
M
i (∂L

f (y)) = ∆B(Ri(M))(fΩM
i (y)− ΩM

i (y(0))(S
−1(y(−1)) · f))

= (f ⊗ 1 + 1⊗ f)
(

1⊗ ΩM
i (y) +

∑

α

ΩM
i (y ⊳ bα)⊗ bα

)

−
(

1⊗ ΩM
i (y(0))

+
∑

α

ΩM
i (y(0) ⊳ bα)⊗ bα

)

(1⊗ S−1(y(−1)) · f + S−1(y(−1)) · f ⊗ 1).
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By applying the product rule in B(Ri(M))⊗ B(Ri(M)) this becomes

∆B(Ri(M))Ω
M
i (∂L

f (y)) = 1⊗ (fΩM
i (y)− ΩM

i (y(0))(S
−1(y(−1)) · f))

+ f ⊗ ΩM
i (y)− y(−1)S

−1(y(−2)) · f ⊗ ΩM
i (y(0))

+
∑

α

(fΩM
i (y ⊳ bα)⊗ bα + f(−1) · Ω

M
i (y ⊳ bα)⊗ f(0)b

α)

−
∑

α

ΩM
i (y(0) ⊳ bα)⊗ bα(S−1(y(−1)) · f)

−
∑

α

ΩM
i (y(0) ⊳ bα)(bα

(−1)S
−1(y(−1)) · f)⊗ bα

(0).

In the last expression, the first line equals 1⊗ΩM
i (∂L

f (y)) and the second is zero.

We rewrite all other terms such that the second tensor factors contain only bα.

Eqs. (2.25) and (2.15) and the definition of ⊳ yield that
∑

α

f(−1) · Ω
M
i (y ⊳ bα)⊗ f(0)b

α =
∑

α

f(−1) · (〈f(0), bα
(2)〉ΩM

i (y ⊳ bα
(1)))⊗ bα

=
∑

α

〈f, bα
(2)

(0)〉S
−1(bα

(2)
(−1)) · Ω

M
i (y ⊳ bα

(1))⊗ bα

=
∑

α

〈f, bα
(2)

(0)〉Ω
M
i (y ⊳ bα

(1)bα
(2)

(−1))⊗ bα =
∑

α

〈f, bα(2)〉Ω
M
i (y ⊳ bα(1))⊗ bα,

Eq. (2.24) implies that
∑

α

ΩM
i (y(0) ⊳ bα)⊗bα(S−1(y(−1)) · f) =

∑

α

〈S−1(y(−1)) · f, bα
(1)〉ΩM

i (y(0) ⊳ bα
(2))⊗bα,

and from Eq. (2.21) we conclude that
∑

α

ΩM
i (y(0) ⊳ bα)(bα

(−1)S
−1(y(−1)) · f)⊗ bα

(0)

=
∑

α

ΩM
i (y(0) ⊳ bα(0))(S

−1(y(−1)bα(−1)) · f)⊗ bα.

On the other hand,

(ΩM
i ⊗ ΩM

i )R∆KM
i

(∂L
f (y)) = (ΩM

i ⊗ ΩM
i )R(1⊗ ∂L

f (y) + ∂L
f (y)⊗ 1)

= 1⊗ ΩM
i (∂L

f (y)) +
∑

α

ΩM
i (∂L

f (y) ⊳ bα)⊗ bα.

Comparing coefficients in front of bα we conclude that Eq. (4.14) holds for x =

∂L
f (y) if equation

(4.15)
f(y ⊳ b) + 〈f, b(2)〉(y ⊳ b(1))− 〈S

−1(y(−1)) · f, b(1)〉y(0) ⊳ b(2)

−(y(0) ⊳ b(0))(S
−1(y(−1)b(−1)) · f) =∂L

f (y) ⊳ b
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holds in KM
i #B(M∗

i ) for all b ∈ B(Mi). Using Eq. (3.2) with f ∈M∗
i , Eq. (4.15)

becomes equivalent to

∂L
f (y ⊳ b) = −〈f, b(2)〉y ⊳ b(1) + 〈S−1(y(−1)) · f, b(1)〉y(0) ⊳ b(2) + ∂L

f (y) ⊳ b.

The latter is true by Lemma 2.4(ii). Thus Eq. (4.14) (and hence Eq. (4.10)) holds

for x = ∂L
f (y) and hence for all x ∈ Lj . This finishes the proof of the theorem. �

5. Right coideal subalgebras of Nichols algebras

Let θ ∈ N and M = (M1, . . . , Mθ) ∈ Fθ. Let K(M) denote the set of all

N
θ
0-graded right coideal subalgebras of B(M) in H

HYD, where B(M) is graded by

the standard N
θ
0-grading, see Sect. 4.

For all α ∈ Z
θ let tα = tn1

1 · · · t
nθ

θ ∈ N0[t
±1
1 , . . . , t±1

θ ], where α =
∑

i∈I
niαi. For

any N ∈ Fθ and any N
θ
0-graded object X = ⊕α∈Nθ

0
Xα ⊂ B(N) in H

HYD let

HX(t) =
∑

α∈Nθ
0

(dim Xα)tα ∈ N0[[t1, . . . , tθ]](5.1)

be the (multivariate) Hilbert series of X.

There is a Z-linear action of GL(θ, Z) on Z[t±1
1 , . . . , t±1

θ ] via gtα = tg(α) for

all g ∈ GL(θ, Z), α ∈ Z
θ. This extends to a partially defined Z-linear action

of GL(θ, Z) on Z[[t1, . . . , tθ]]: the action of each g ∈ GL(θ, Z) is well-defined on

the subring of Z[[t1, . . . , tθ]] consisting of those formal power series
∑

α∈Nθ
0
aαtα,

where aα ∈ Z for all α and aα = 0 if g(α) /∈ N
θ
0.

We start our considerations of right coideal subalgebras with general lemmata.

Lemma 5.1. Let M ∈ Fθ and let E be an N
θ
0-graded right coideal of B(M) in

H
HYD. If E 6= k1, then there exists i ∈ I such that Mi ⊂ E.

Proof. Let pr1 : B(M) → M1 ⊕ · · · ⊕ Mθ be the N0-graded projection to the

homogeneous elements of degree 1. Recall that the map

(pr1 ⊗ id)∆B(M) : ⊕∞
n=1B

n(M)→ (M1 ⊕ · · · ⊕Mθ)⊗ B(M)

is injective. By assumption, ∆B(M)(E) ⊂ E ⊗ B(M), and E 6= k1. Thus

0 6= (pr1 ⊗ id)∆B(M)(E) ⊂
(
E ∩ (M1 ⊕ · · · ⊕Mθ)

)
⊗ B(M)

and hence E ∩ (M1⊕· · ·⊕Mθ) 6= 0. Since E is N
θ
0-graded, there exists i ∈ I such

that E∩Mi 6= 0. Since E ∈ H
HYD and Mi ∈

H
HYD is irreducible, this implies that

Mi ⊂ E. �

Lemma 5.2. Let M ∈ Fθ, i ∈ I, and E ∈ K(M). Then Mi 6⊂ E if and only if

SB(M)(E) ⊂ KM
i .
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Proof. The homogeneous subspace of KM
i of degree αi is 0, hence SB(M)(E) ⊂ KM

i

implies that Mi 6⊂ E. Conversely, assume that Mi 6⊂ E and let π : B(M) →
B(Mi) be the canonical map. Then Mi 6⊂ π(E) since E is N

θ
0-homogeneous. Since

π(E) is a right coideal of B(Mi), we conclude that π(E) = k1 by Lemma 5.1 and

hence

π(SB(M)(E)) = k1.(5.2)

On the other hand, SB(M)(E) is a left coideal subalgebra of B(M), and by Eq. (5.2)

it is contained in B(M)coB(Mi) = KM
i which proves the lemma. �

Corollary 5.3. Let M ∈ Fθ, i ∈ I, and E ∈ K(Ri(M)). Assume that M is

i-finite and Ri(M)i 6⊂ E. Then (ΩM
i )−1(E) ⊂ KM

i .

Proof. Since M is i-finite the map ΩM
i is bijective, see Sect. 4. Since Ri(M)i 6⊂ E,

Lemma 5.2 yields that

SB(Ri(M))(E) ⊂ K
Ri(M)
i = SB(Ri(M))Ω

M
i (KM

i ),(5.3)

where the last equation holds by Eq. (4.7). The relation (5.3) gives the claim. �

Lemma 5.4. Let M ∈ Fθ and i ∈ I. Suppose that M is not i-finite. Then there

exist infinitely many N
θ
0-graded right coideal subalgebras of B(M) in H

HYD which

do not contain any Mj with j ∈ I \ {i}.

Proof. Let k ∈ I\{i} such that dim(adB(Mi))(Mk) =∞. For all n ∈ N let En be

the subalgebra of B(M) generated by (adBn(Mi))(Mk) and Mi. By assumption,

En 6= 0 for all n ∈ N. By construction, En ⊂ Em for all m ≤ n and

(En)αk+mαi
=

{

0 if m < n,

(adBn(Mi))(Mk) if m = n.
(5.4)

Hence E1 ⊃ E2 ⊃ · · · is a strictly decreasing sequence of nontrivial N
θ
0-graded

subalgebras of B(M) in H
HYD with En ∩M = Mi for all n ∈ N. It remains to

prove that each En is a right coideal of B(M). But this is true since ∆B(M)(x) ∈

En ⊗ B(M) for each generator x of En by Eq. (4.12). �

Recall that KM
i is a Hopf algebra in the braided category

B(Mi)#H

B(Mi)#H
YD. Its co-

multiplication is denoted by ∆KM
i

. Assume that M is i-finite. Regard KM
i #B(M∗

i )

as a Hopf algebra in H
HYD, such that the algebra map ΩM

i : KM
i #B(M∗

i ) →

B(Ri(M)) is an isomorphism of Hopf algebras in H
HYD.

Lemma 5.5. Let M ∈ Fθ and i ∈ I. Assume that M is i-finite. Let F ⊂ KM
i be

a subalgebra in H
HYD. Then the following are equivalent:

(1) FB(Mi) is a right coideal subalgebra of B(M) in H
HYD.
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(2) F is a right coideal subalgebra of KM
i in

B(Mi)#H

B(Mi)#H
YD, and (ad Mi)(F ) ⊂ F .

(3) F is a right coideal subalgebra of KM
i #B(M∗

i ) in H
HYD.

Proof. Assume (1) and let E = FB(Mi). Then F = E∩KM
i , and (adMi)(F ) ⊂ F

since Mi ⊂ E. Let π : B(M)→ B(Mi) be the canonical map. Since

∆KM
i

(x) = x(1)SB(Mi)π(x(2))⊗ x(3) for all x ∈ KM
i ,

we obtain that ∆KM
i

(E∩KM
i ) ⊂ E⊗KM

i . This proves (2). Similarly, (2) implies

(1).

Assume (2). By definition and Thm. 4.2 the restriction of the comultiplication

of KM
i #B(M∗

i ) to KM
i is given by the map

KM
i

∆
KM

i−−−→ KM
i ⊗KM

i

R
−→ KM

i ⊗ (KM
i #B(M∗

i )).

Hence F is a right coideal subalgebra of KM
i #B(M∗

i ) in H
HYD.

Conversely, assume (3). Let π′ = ε⊗ idB(M∗
i ) : KM

i #B(M∗
i )→ B(M∗

i ). Then π′

is an algebra map by Eq. (3.2). Let x ∈ F . Since F is a right coideal subalgebra

of KM
i #B(M∗

i ) and (id⊗ π′)∆KM
i

(x) = x⊗ 1 for all x ∈ KM
i , it follows that

F ⊗ B(M∗
i ) ∋ (idKM

i
⊗ π′)R∆KM

i
(x) =

∑

α

S−1
B(Mi)#H

(bα) · x⊗ bα.

Since F is also an H-module, F is stable under the adjoint action · of B(Mi).

Since R∆KM
i

(F ) ⊂ F ⊗ (KM
i #B(M∗

i )) by assumption, it follows from (3.7) that

F is a right coideal subalgebra of KM
i in

B(Mi)#H

B(Mi)#H
YD. �

Recall from Eq. (4.8) that for all i ∈ I and M ∈ Fθ, ϕM
i : M → R2

i (M) is

a family of isomorphisms of objects in H
HYD. Let B(ϕM

i ) : B(M) → B(R2
i (M))

be the induced isomorphism of braided Hopf algebras in H
HYD. The following

theorem is the key result in the proof of Thms. 6.12, 6.15. When M is i-finite we

will use the isomorphisms

KM
i #B(M∗

i )
ΩM

i−−→ B(Ri(M)),

K
Ri(M)
i #B(Ri(M)∗i )

Ω
Ri(M)
i−−−−→ B(R2

i (M))
B(ϕM

i )
←−−−− B(M)

to define bijections between the right coideal subalgebras of B(M) and of B(Ri(M)).

Theorem 5.6. Let M ∈ Fθ and i ∈ I. Assume that M is i-finite. Then the

maps σM
i : K(M)→ K(Ri(M)) defined for all E ∈ K(M) by

σM
i (E) =

{

ΩM
i (E ∩KM

i ) if Mi ⊂ E,

(Ω
Ri(M)
i )−1(B(ϕM

i )(E))B(Ri(M)i) if Mi 6⊂ E,
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and σ̄
Ri(M)
i : K(Ri(M))→ K(M) defined for all E ∈ K(Ri(M)) by

σ̄
Ri(M)
i (E) =

{

B(ϕM
i )−1(Ω

Ri(M)
i (E ∩K

Ri(M)
i )) if Ri(M)i ⊂ E,

(ΩM
i )−1(E)B(Mi) if Ri(M)i 6⊂ E,

are bijective. More precisely, the following hold.

(1) For all E ∈ K(M), Mi ⊂ E if and only if Ri(M)i 6⊂ σM
i (E). For all

E ∈ K(Ri(M)), Ri(M)i ⊂ E if and only if Mi 6⊂ σ̄
Ri(M)
i (E).

(2) σ̄
Ri(M)
i σM

i = idK(M), σM
i σ̄

Ri(M)
i = idK(Ri(M)).

Proof. By Cor. 5.3 the maps σM
i and σ̄

Ri(M)
i are well-defined in the sense that

σM
i (E) ⊂ B(Ri(M)) for all E ∈ K(M) and σ̄

Ri(M)
i (E) ⊂ B(M) for all E ∈

K(Ri(M)). It remains to prove (1) and that σM
i maps K(M) to K(Ri(M))

and σ̄
Ri(M)
i maps K(Ri(M)) to K(M). Then the equations in (2) follow from

Lemma 2.2.

We prove that σM
i (E) ∈ K(Ri(M)) for all E ∈ K(M), and that the part of (1)

regarding σM
i holds. The analogous claims for σ̄

Ri(M)
i can be shown similarly.

Let E ∈ K(M). Assume first that Mi ⊂ E, and let F = E ∩ KM
i . Since

KM
i is an N

θ
0-graded algebra in H

HYD, F is an N
θ
0-graded subalgebra of B(M) in

H
HYD. Further, E = FB(Mi) by Lemma 2.2. By Lemma 5.5 (1)⇒(3), and since

ΩM
i : KM

i #B(M∗
i ) → B(Ri(M)) is an isomorphism of N

θ
0-graded Hopf algebras

in H
HYD, we conclude that ΩM

i (F ) ∈ K(Ri(M)). Further, Ri(M)i 6⊂ ΩM
i (F ) by

(4.6) and since (E ∩KM
i )−αi

= 0.

Assume now that Mi 6⊂ E. Since B(ϕN
i ) : B(N) → B(R2

i (N)) is an isomor-

phism of N
θ
0-graded braided Hopf algebras, we conclude that R2

i (M)i 6⊂ E and

B(ϕM
i )(E) ∈ K(R2

i (M)). Further, R2
i (M) is i-finite. Let F = (Ω

Ri(M)
i )−1(B(ϕM

i )(E)).

Then F ⊂ K
Ri(M)
i by Cor. 5.3. Further, F is an N

θ
0-graded subalgebra of K

Ri(M)
i

and a right coideal subalgebra of K
Ri(M)
i #B(Ri(M)∗i ) in H

HYD by the definition

of the braided Hopf algebra structure of K
Ri(M)
i #B(Ri(M)∗i ). By Lemma 5.5

(3)⇒(1), σM
i (E) = FB(Ri(M)i) ∈ K(Ri(M)). Clearly, Ri(M)i ⊂ σM

i (E), and

hence we are done. �

Corollary 5.7. Let M ∈ Fθ, i ∈ I, and E1, E2 ∈ K(M). Assume that M is

i-finite and that HE1 = HE2. Then HσM
i (E1) = HσM

i (E2).

Proof. Note that Mi = B(M)αi
is irreducible in H

HYD. Hence Mi ⊂ E1 if and

only if Mi ⊂ E2, since HE1 = HE2 . Assume first that Mi ⊂ E1. By Lemma 2.2,

El ≃ (El ∩KM
i )⊗ B(Mi) as N

θ
0-graded objects in H

HYD for l ∈ {1, 2}. Hence the

claim follows from Thm. 5.6 and (4.6). The case Mi 6⊂ E1 is treated similarly. �
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Corollary 5.8. Let M ∈ Fθ and let i ∈ I. Then K(M) is finite if and only if

K(Ri(M)) is finite. In this case M is i-finite, and K(M) and K(Ri(M)) have the

same cardinality.

Proof. If M is not i-finite, then Ri(M) = M , and hence K(M) = K(Ri(M)) is

infinite by Lemma 5.4. If M is i-finite, then the claim follows from the bijectivity

of σM
i in Thm. 5.6. �

6. Construction of right coideal subalgebras

Let θ ∈ N and M = (M1, . . . , Mθ) ∈ Fθ. Let

Fθ(M) = {Ri1 · · ·Rin(M) |n ∈ N0, i1, . . . , in ∈ I},

Xθ(M) = {ri1 · · · rin([M ]) |n ∈ N0, i1, . . . , in ∈ I}

where Ri and ri, i ∈ I, are defined in Sect. 4. We say that M admits all reflections,

if N is i-finite for all N ∈ Fθ(M) and i ∈ I. This is for example the case

if (M1 ⊕ · · · ⊕ Mθ)
⊗m is semisimple in H

HYD for all m ≥ 1 and the Gelfand-

Kirillov dimension of B(M) is finite, see [HS08, Thms. I, III]. Also, Cor. 5.8 and

the definition of Fθ(M) yield the following.

Proposition 6.1. Let M ∈ Fθ. Assume that K(M) is finite. Then M admits

all reflections.

Recall from [AHS08] the following crucial result.

Theorem 6.2. [AHS08], [HS08, Thm. 6.10] Let M ∈ Fθ. If M admits all reflec-

tions, then C(M) = (I,Xθ(M), (ri|Xθ(M))i∈I, (A
X)X∈Xθ(M)) is a Cartan scheme.

Therefore, if M ∈ Fθ(M) and M admits all reflections, then we may attach

the Weyl groupoidW(M) :=W(C(M)) to M . Later on, for brevity we will write

ri instead of ri|Xθ(M).

In this section we associate a right coideal subalgebra EN(w) of B(N) to any

N ∈ Fθ(M) and w ∈ Hom(W(M), [N ]).

Recall that k1 ∈ K(N) for all N ∈ Fθ. By Thm. 5.6, σ̄
Ri(N)
i : K(Ri(N)) →

K(N) is a bijection for all N ∈ Fθ and i ∈ I, where N is i-finite.

Definition 6.3. Let M ∈ Fθ. Assume that M admits all reflections. For all

N ∈ Fθ(M), m ∈ N0, i1, . . . , im ∈ I, let EN () = k1 and

EN(i1, . . . , im) = σ̄
Ri1

(N)

i1
σ̄

Ri2
Ri1

(N)

i2
· · · σ̄

Rim ···Ri1
(N)

im
(k1) ∈ K(N).

Lemma 6.4. Let M ∈ Fθ. Assume that M admits all reflections. Let N ∈

Fθ(M), m ∈ N0, and i1, . . . , im ∈ I. Then EN(i1, . . . , im) is the unique element

E ∈ K(N) with HE = HEN (i1,...,im).
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Proof. By Thm. 5.6,

σ
Rim−1

···Ri1
(N)

im
· · ·σN

i1
(EN(i1, . . . , im))

= σ
Rim−1

···Ri1
(N)

im
· · ·σN

i1
σ̄

Ri1
(N)

i1
· · · σ̄

Rim ···Ri1
(N)

im
(k1) = k1.

Let E ∈ K(N) with HE = HEN (i1,...,im), and let E ′ = σ
Rim−1

···Ri1
(N)

im
· · ·σN

i1
(E).

By Cor. 5.7 the Hilbert series of E ′ and of σ
Rim−1

···Ri1
(N)

im
· · ·σN

i1
(EN(i1, . . . , im))

coincide. Hence HE′ = 1, and therefore E ′ = k1. Thus

E = σ̄
Ri1

(N)

i1
· · · σ̄

Rim ···Ri1
(N)

im
(E ′) = σ̄

Ri1
(N)

i1
· · · σ̄

Rim ···Ri1
(N)

im
(k1) = EN(i1, . . . , im).

This proves the lemma. �

Definition 6.5. Let M ∈ Fθ. Assume that M admits all reflections. Let N ∈

Fθ(M), m ∈ N0 and i1, . . . , im, j ∈ I. Let T
Rj(N)
j : B(Rj(N)) → B(N) be the

composition of the linear maps

B(Rj(N))
(ΩN

j )−1

−−−−→ KN
j #B(N∗

j )
id⊗ε
−−→ KN

j ⊂ B(N).

For all 1 ≤ l ≤ m define β
[N ]
l (i1, . . . , im) ∈∆[N ] re and Nl(i1, . . . , im) ∈ H

HYD by

β
[N ]
l (i1, . . . , im) = s

ri1
([N ])

i1
s

ri2
ri1

([N ])

i2
· · · s

ril−1
···ri1

([N ])

il−1
(αil),

Nl(i1, . . . , im) = T
Ri1

(N)

i1
T

Ri2
Ri1

(N)

i2
· · ·T

Ril−1
···Ri2

Ri1
(N)

il−1
(Ril−1

· · ·Ri2Ri1(N)il)

(where βN
1 (i1, . . . , im) = αi1 , and N1(i1, . . . , im) = Ni1).

We say that (i1, . . . , im) is N -admissible if for all 1 ≤ k ≤ m − 1 and 1 ≤ l ≤

m− k,

αik 6= β
rik

···ri2
ri1

([N ])

l (ik+1, . . . , im).

Equivalently, (i1, . . . , im) is N -admissible if and only if

β
[N ]
l (i1, . . . , im) 6= −β

[N ]
k (i1, . . . , im) for all 1 ≤ k < l ≤ m.(6.1)

Lemma 6.6. Let M ∈ Fθ, and assume that M admits all reflections. Let m ∈ N0,

i1, . . . , im ∈ I and N ∈ Fθ(M). Assume that (i1, . . . , im) is N-admissible. For all

1 ≤ l ≤ m let βl = β
[N ]
l (i1, . . . , im), and Nβl

= Nl(i1, . . . , im). Then

(1) β1, . . . , βm are pairwise distinct elements in N
θ
0.

(2) For all 1 ≤ l ≤ m, Nβl
⊂ EN(i1, . . . , im) is a finite-dimensional irreducible

subobject in H
HYD of degree βl, and Nβl

≃ Ril−1
· · ·Ri2Ri1(N)il in H

HYD.

(3) For all 1 ≤ l ≤ m, the subalgebra k〈Nβl
〉 of B(N) generated by Nβl

is

isomorphic to B(Nβl
) as an algebra and as an N

θ
0-graded object in H

HYD,

where Nβl
has degree βl.

(4) The multiplication map k〈Nβm
〉 ⊗ · · · ⊗ k〈Nβ1〉 → EN(i1, . . . , im) is an

isomorphism of N
θ
0-graded objects in H

HYD.



30 I. HECKENBERGER AND H.-J. SCHNEIDER

Proof. The cases m = 0, 1 are clear since Nαi1
= Ni1 , and EN(i1) = B(Ni1)

by Thm. 5.6. Let m > 1 and assume that (i1, . . . , im) is N -admissible. Then

(i2. . . . , im) is Ri1(N)-admissible. To prove the Lemma for (i1, . . . , im) we may

assume by induction that (1)–(4) hold for (i2, . . . , im), that is, if we define

γl = s
ri2

ri1
([N ])

i2
s

ri3
ri2

ri1
([N ])

i3
· · · s

ril
···ri2

ri1
([N ])

il
(αil+1

),

Ri1(N)γl
= T

Ri2
Ri1

(N)

i2
T

Ri3
Ri2

Ri1
(N)

i3
· · ·T

Ril
···Ri2

Ri1
(N)

il
(Ril · · ·Ri2Ri1(N)il+1

)

for all 1 ≤ l ≤ m− 1, then

(a) γ1, . . . , γm−1 are pairwise distinct elements in N
θ
0.

(b) For all 1 ≤ l ≤ m − 1, Ri1(N)γl
⊂ ERi1

(N)(i2, . . . , im) ⊂ B(Ri1(N)) is an

irreducible finite-dimensional subobject in H
HYD of degree γl.

(c) For all 1 ≤ l ≤ m−1, the subalgebra k〈Ri1(N)γl
〉 of B(Ri1(N)) generated

by Ri1(N)γl
is isomorphic to B(Ri1(N)γl

) as an algebra and as an N
θ
0-

graded object in H
HYD, where Ri1(N)γl

has degree γl.

(d) The multiplication map

k〈Ri1(N)γm−1〉 ⊗ · · · ⊗ k〈Ri1(N)γ1〉 → ERi1
(N)(i2, . . . , im)

is an isomorphism of N
θ
0-graded objects in H

HYD.

By Definition 6.3

σ̄
Ri1

(N)

i1
(ERi1

(N)(i2, . . . , im)) = EN(i1, . . . , im).

By assumption, αi1 6= γl for all 1 ≤ l ≤ m−1. Hence by degree reasons it follows

from (d) that Ri1(N)i1 6⊂ ERi1
(N)(i2 . . . , im), since by (b) Ri1(N)γl

has degree γl

for all 1 ≤ l ≤ m− 1, and γ1, . . . , γm−1 ∈ N
θ
0 by (a). Then

σ̄
Ri1

(N)

i1
(ERi1

(N)(i2, . . . , im)) = (ΩN
i1

)−1(ERi1
(N)(i2, . . . , im))B(Ni1),

and (ΩN
i1

)−1(ERi1
(N)(i2, . . . , im)) ⊂ KN

i1
by Thm. 5.6. Thus the multiplication

map

(6.2) (ΩN
i1

)−1(ERi1
(N)(i2, . . . , im))⊗ B(Ni1)→ EN (i1, . . . , im)

is bijective. Moreover the restriction of the map T
Ri1

(N)

i1
to ERi1

(N)(i2, . . . , im) is

the restriction of the algebra isomorphism (ΩN
i1

)−1. Therefore we obtain from (d)

that the multiplication map

k〈T
Ri1

(N)

i1
(Ri1(N)γm−1)〉 ⊗ · · · ⊗ k〈T

Ri1
(N)

i1
(Ri1(N)γ1)〉 →

T
Ri1

(N)

i1
(ERi1

(N)(i2, . . . , im))

is bijective. Since T
Ri1

(N)

i1
(Ri1(N)γl

) = Nβl+1
for all 1 ≤ l ≤ m − 1, (4) follows

from the bijectivity of the map in Eq. (6.2).
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Note that s
ri1

([N ])

i1
(γl) = βl+1 for all 1 ≤ l ≤ m − 1. By (4.6) the subspace

T
Ri1

(N)

i1
(Ri1(N)γl

) = (ΩN
i1

)−1(Ri1(N)γl
) = Nβl+1

of B(N) has degree βl+1 for all

1 ≤ l ≤ m− 1. By definition Nβ1 = Ni1 has degree β1 = αi1 . It now follows from

(4) that βl ∈ N
θ
0 for all 1 ≤ l ≤ m. Thus (1) holds by the characterization of

N -admissibility via Eq. (6.1). Finally, (2) and (3) follow from (b) and (c) since

(ΩN
i1

)−1 is an algebra isomorphism in H
HYD, and the change of grading is given

by (4.6). �

Lemma 6.7. Let M ∈ Fθ, and assume that M admits all reflections. Let m ∈ N0,

i1, . . . , im ∈ I and N ∈ Fθ(M). For all 1 ≤ l ≤ m let βl = β
[N ]
l (i1, . . . , im).

(1) Let j ∈ I and assume that αj /∈ {β1, . . . , βm} and that (i1, . . . , im) is

N-admissible. Then (j, i1, . . . , im) is Rj(N)-admissible.

(2) Assume that αj ∈ {β1, . . . , βm} for all j ∈ I and that (i1, . . . , im) is N-

admissible. Then EN(i1, . . . , im) = B(N).

(3) Assume that C(M) is the Cartan scheme of a root system. Then (i1, . . . , im)

is N-admissible if and only if id[N ]si1 · · · sim is a reduced expression.

Proof. (1) holds by definition, and (2) follows from Lemma 6.6 (2) since Nj ⊂

EN(i1, . . . , im) for all j ∈ I implies that EN(i1, . . . , im) = B(N).

Suppose in (3) that (i1, . . . , im) is N -admissible. Then id[N ]si1 · · · sim is a re-

duced expression by Lemma 6.6 (1) and Prop. 1.9. Conversely, suppose that

id[N ]si1 · · · sim is a reduced expression. Then β1, . . . , βm are pairwise distinct ele-

ments in N
θ
0 by Prop. 1.4. Hence (i1, . . . , im) is N -admissible. �

We recall a notion from [HS08].

Definition 6.8. Let N ∈ Fθ. Then the Nichols algebra B(N) of N is called

decomposable if there exist a totally ordered index set (L,≤) and a family (Wl)l∈L

of finite-dimensional irreducible N
θ
0-graded objects in H

HYD such that

(6.3) B(N) ≃ ⊗l∈LB(Wl)

as N
θ
0-graded objects in H

HYD, where deg Ni = αi for 1 ≤ i ≤ θ.

In such a decomposition the isomorphism classes of the Yetter-Drinfeld modules

Wl and their degrees in N
θ
0 are uniquely determined by [HS08, Lemma 4.7], and

we define the positive roots ∆
[N ]
+ and the roots ∆[N ] of [N ] by

∆
[N ]
+ = {deg(Wl) | l ∈ L},

∆[N ] = ∆
[N ]
+ ∪ −∆

[N ]
+ .

In [HS08] we showed
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Theorem 6.9. [HS08, Thm. 6.11] Let M ∈ Fθ and assume that M admits all

reflections and that B(M) is decomposable. Then B(N) is decomposable for all

N ∈ Fθ(M), and R(M) = (C(M), (∆X)X∈Xθ(M)) is a root system of type C(M).

Corollary 6.10. Let M ∈ Fθ and assume that M admits all reflections and that

B(M) is decomposable. Let N ∈ Fθ(M) and λ ∈∆
[N ] re
+ .

(1) There is exactly one l(λ) ∈ L with λ = deg Wl(λ) in (6.3).

(2) Let P ∈ Fθ(M), w = id[N ]si1 · · · sim ∈ Hom([P ], [N ]) be a reduced expres-

sion and i ∈ I such that w(αi) = λ. Let Nλ = Nm+1(i1, . . . , im, i) ⊂ B(N).

Then deg Nλ = λ, Wl(λ) ≃ Pi ≃ Nλ in H
HYD, and k〈Nλ〉 ∼= B(Wl(λ)) as

algebras and N
θ
0-graded objects in H

HYD.

(3) Let j ∈ I, µ = sN
j (λ), Q = Rj(N), and assume that λ 6= αj. Similarly

to Nλ in (2), define Qµ using a reduced expression of an element w′ ∈

Hom(W(M), [Q]). Then Nλ ≃ Qµ in H
HYD.

Proof. (1) is shown in [HS08, Lemma 7.1 (1)], and in (2), Wl(λ) ≃ Pi by [HS08,

Lemma 7.1 (2)]. Since id[N ]si1 · · · sim is a reduced expression, (i1, . . . , im) is N -

admissible by Lemma 6.7 (3). Then (i1, . . . , im, i) is N -admissible: Indeed, λ =

β
[N ]
m+1(i1, . . . , im, i) ∈ N

θ
0, and hence it differs from all −β

[N ]
l (i1, . . . , im, i) with

1 ≤ l ≤ m by Lemma 6.6 (1). The remaining part of (2) follows from Lemma 6.6

since P ≃ Rim · · ·Ri1(N).

Now we prove (3). Since λ 6= αj, µ ∈∆
[P ] re
+ , and hence Qµ can be defined. By

(2), Qµ is independent of the choice of w′. Hence we may choose w′ = sjw. Then

(2) yields that Nλ ≃ Pi and Qµ ≃ Pi in H
HYD, which proves the claim. �

In the next lemma, which will be needed for Thm. 6.12, we follow the notation

in Cor. 6.10. For each λ ∈ ∆
[N ] re
+ we choose wλ ∈ Hom(W(M), [N ]), a reduced

expression id[N ]sj1 · · · sjn
of wλ, and i ∈ I such that wλ(αi) = λ. Then we define

(6.4) Nλ = Nn+1(j1, . . . , jn, i) ⊂ B(N).

By Cor. 6.10, the isomorphism class of Nλ ∈
H
HYD does not depend on wλ and i.

Lemma 6.11. Let M ∈ Fθ and N ∈ Fθ(M). Assume that M admits all reflec-

tions and that B(M) is decomposable. Let m ∈ N0, i1, . . . , im ∈ I. Then there

exists an isomorphism

EN (i1, . . . , im) ≃ ⊗
λ∈Λ

[N]
+ (i1,...,im)

B(Nλ)

of N
θ
0-graded objects in H

HYD.

Proof. We proceed by induction on m. Since EN () = k1, the claim holds for

m = 0.
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Assume now that m > 0. Let P = Ri1(N), and assume that

E := EP (i2, . . . , im) ≃ ⊗
λ∈Λ

[P ]
+ (i2,...,im)

B(Pλ).(6.5)

Case 1: αi1 /∈ Λ
[P ]
+ (i2, . . . , im). Then Pi1 6⊂ E by degree reasons, and (ΩP

i1
)−1(E) ⊂

KN
i1

by Cor. 5.3. Hence

EN(i1, . . . , in) = σ̄P
i1
(E) =(ΩN

i1
)−1(E)B(Ni1) ≃

(

⊗
λ∈Λ

[P ]
+ (i2,...,im)

B(Pλ)
)

⊗ B(Ni1)

in H
HYD. Here the first two equations follow by definition, and the isomorphism

is obtained from Lemma 2.2 and since (ΩN
i1

)−1 is a morphism in H
HYD. Now,

deg Pλ = sP
i1
(λ) for all λ ∈ Λ

[P ]
+ (i2, . . . , im) by (4.6). Further, NsP

i1
(λ) ≃ Pλ in

H
HYD by Cor. 6.10 (3). Thus the claim follows from Lemma 1.8.

Case 2: αi1 ∈ Λ
[P ]
+ (i2, . . . , im). Then E ≃ (E ∩ KP

i1
) ⊗ B(Pi1) as N

θ
0-graded

objects in H
HYD by Lemma 2.2, and hence

E ∩KP
i1
≃ ⊗

λ∈Λ
[P ]
+ (i2,...,im)\{αi1

}

B(Pλ)(6.6)

as N
θ
0-graded objects in H

HYD by Eq. (6.5) and [HS08, Lemma 4.8]. Therefore

EN(i1, . . . , in) =σ̄P
i1
(E) = B(ϕN

i1
)−1

(
ΩP

i1
(E ∩KP

i1
)
)
≃ ⊗

λ∈Λ
[P ]
+ (i2,...,im)\{αi1

}

B(Pλ)

as N
θ
0-graded objects in H

HYD, where deg Pλ = sP
i1
(λ), see (4.6). Indeed, the first

two equations hold by definition, and the isomorphism follows from Eq. (6.6) and

since ΩP
i1

and B(ϕN
i1

) are morphisms in H
HYD. By Cor. 6.10 (3) we may replace

Pλ by NsP
i1

(λ), and then the claim follows from Lemma 1.8. �

Theorem 6.12. Let M ∈ Fθ, and assume that M admits all reflections and that

B(M) is decomposable. Let N ∈ Fθ(M). Then for all w ∈ Hom(W(M), [N ]) the

right coideal subalgebra

EN(w) = EN(i1, . . . , im) ⊂ B(N),

where m ≥ 0 and 1 ≤ i1, . . . , im ≤ θ such that w = id[N ]si1 · · · sim, is independent

of the choice of i1, . . . , im. The map

κ
N : Hom(W(M), [N ])→ K(N), w 7→ EN(w),

is injective, order preserving, and order reflecting, where the set of morphisms

Hom(W(M), [N ]) is ordered by the right Duflo order and right coideal subalgebras

are ordered with respect to inclusion.
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Proof. To prove that κ
N is a well-defined map, assume that w = id[N ]si1 · · · sim =

id[N ]sj1 · · · sjn
in Hom(W(M), [N ]), where 1 ≤ i1, . . . , im, j1, . . . jn ≤ θ, m, n ≥ 0.

By Prop. 1.9, Λ
[N ]
+ (i1, . . . , im) = Λ

[N ]
+ (j1, . . . , jn). Hence by Lemma 6.11 the

Hilbert series of EN(i1, . . . , im) and of EN(j1, . . . , jn) coincide, and by Lemma

6.4 EN(i1, . . . , im) = EN(j1, . . . , jn).

Let w, w′ ∈ Hom(W(M), [N ]) with EN(w) = EN (w′). Then Λ
[N ]
+ (w) =

Λ
[N ]
+ (w′) by Lemma 6.11 and [HS08, Lemma 4.7]. Therefore w = w′ by Prop. 1.9.

Thus κ
N is injective.

By Thm. 1.13 κ
N is order preserving and order reflecting if and only if the

following are equivalent for all w1, w2 ∈ Hom(W(M), [N ]).

(1) EN(w1) ⊂ EN(w2),

(2) Λ
[N ]
+ (w1) ⊂ Λ

[N ]
+ (w2).

To prove the equivalence of (1) and (2) we proceed by induction on ℓ(w1). If

w1 = id[N ], then EN(w1) = k1, Λ
[N ]
+ (w1) = ∅ and hence (1) and (2) are both

true. If ℓ(w1) = 1, then w1 = s
ri([N ])
i for some i ∈ I. Then Λ

[N ]
+ (w1) = αi

and EN(w1) = B(Ni). Hence (2) is equivalent to (1) by Lemma 6.11, since if

Ni ⊂ EN(w2), then EN(w1) = B(Ni) ⊂ EN(w2). Assume now that ℓ(w1) > 1.

Let i ∈ I with ℓ(w1) = ℓ(w) + 1 for w = sN
i w1. Then

αi ∈ Λ
[N ]
+ (w1)(6.7)

by Cor. 1.10. Therefore Lemma 1.8 implies that (2) holds if and only if

αi ∈ Λ
[N ]
+ (w2) and Λ

ri([N ])
+ (sN

i w1) ⊂ Λ
ri([N ])
+ (sN

i w2).(6.8)

Since αi = Λ
[N ]
+ (s

ri([N ])
i ), the induction hypothesis gives that the relations in

(6.8) are equivalent to Ni ⊂ EN(w2), ERi(N)(sN
i w1) ⊂ ERi(N)(sN

i w2). Since

Ni ⊂ EN (w1) by Lemma 6.11 and by (6.7), the latter is equivalent to (1) by

Thm. 5.6. �

Corollary 6.13. Let M ∈ Fθ, N ∈ Fθ(M), and assume that M admits all

reflections and that B(M) is decomposable. Let w1, w2 ∈ Hom(W(M), [N ]) with

EN(w1) ⊂ EN(w2). Then there are m, n ∈ N0, m ≤ n, and i1, . . . , in ∈ I such

that w1 = id[N ]si1 · · · sim and w2 = id[N ]si1 · · · sin are reduced expressions. Let

βl = β
[N ]
l (i1, . . . , in), Nβl

= Nl(i1, . . . , in)

for all 1 ≤ l ≤ n. Then

(1) For all 1 ≤ l ≤ n, Nβl
⊂ B(N) is an irreducible finite-dimensional subob-

ject in H
HYD of degree βl, and βk 6= βl for all k 6= l.
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(2) For all 1 ≤ l ≤ n, the subalgebra k〈Nβl
〉 of B(N) generated by Nβl

is

isomorphic to B(Nβl
) as an algebra and as an N

θ
0-graded object in H

HYD,

where Nβl
has degree βl.

(3) The multiplication maps

k〈Nβn
〉 ⊗ · · · ⊗ k〈Nβ1〉 → EN(w2),

k〈Nβm
〉 ⊗ · · · ⊗ k〈Nβ1〉 → EN(w1)

are bijective. In particular, EN(w2) is a free right module over EN(w1).

Proof. By Thm. 6.12 w1 ≤D w2. Hence by definition of the Duflo order, any

reduced presentation w1 = id[N ]si1 · · · sim of w1 can be extended to a reduced

presentation w2 = id[N ]si1 · · · sim · · · sin of w2. Then (1),(2) and (3) follow from

Lemma 6.6 and Lemma 6.7 (3). �

The following results generalize properties of commutators and coproducts of

PBW generators of quantized enveloping algebras.

Theorem 6.14. Let M ∈ Fθ, N ∈ Fθ(M), and assume that M admits all

reflections and that B(M) is decomposable. Let n ∈ N0, i1, . . . , in ∈ I, and

w = id[N ]si1 · · · sin ∈ Hom(W(M), [N ]) such that ℓ(w) = n. For all 1 ≤ l ≤ n let

βl ∈∆[N ] re and Nβl
⊂ B(N) as in Lemma 6.6. Then in EN(w)

xy − (x(−1) · y)x(0) ∈ k〈Nβl−1
〉k〈Nβl−2

〉 · · ·k〈Nβk+1
〉(6.9)

for all 1 ≤ k < l ≤ n, x ∈ Nβk
, y ∈ Nβl

, and

∆B(N)(x)− x⊗ 1 ∈ k〈Nβl−1
〉k〈Nβl−2

〉 · · ·k〈Nβ1〉 ⊗ B(N)(6.10)

for all 1 ≤ l ≤ n, x ∈ Nβl
.

Proof. By Cor. 6.13 and the definition of the Nβl
, for the proof of Eq. (6.9) it is

enough to consider the case k = 1, l = n. In that case

xy − (x(−1) · y)x(0) = (adx)(y) ∈ KN
i1
∩EN (w) = k〈Nβn

〉k〈Nβn−1〉 · · ·k〈Nβ2〉,

since y ∈ KN
i1

and x ∈ Ni1 . Further, deg (adx)(y) = β1 + βn. But βm 6= β1 = αi1

for all 2 ≤ m ≤ n, and hence (ad x)(y) has no summand with a factor in k〈Nβn
〉.

Now we prove Eq. (6.10). Since EN(w′) ∈ K(N) for all w′ ∈ Hom(W(M), [N ]),

by Cor. 6.13 it suffices to consider the case l = n. Since ∆B(N) is N
θ
0-graded and

B(N) is a connected coalgebra, (that is z ∈ B(N), deg z = 0 implies that z ∈ k,)

the claim follows by degree reasons. �

Theorem 6.15. Let M ∈ Fθ. Then the following are equivalent.

(1) K(M) is finite.
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(2) M admits all reflections and the length of N-admissible sequences, where

N ∈ Fθ(M), is bounded.

(3) M admits all reflections and ∆[M ] re is finite.

Assume the equivalent conditions (1) – (3). Then B(M) is decomposable,R(M) =

(C(M), (∆X re)X∈Xθ(M)) is a finite root system of type C(M), and for all N ∈

Fθ(M), the map

κ
N : Hom(W(M), [N ])→ K(N)

is bijective.

Proof. Assume (2), and let t ∈ N such that t ≥ m for all N ∈ Fθ(M) and all

N -admissible sequences (i1, . . . , im). We prove (1), (3) and the second half of the

theorem.

Suppose an m-tuple (i1, . . . , im) of elements in I is P -admissible for some P ∈

Fθ(M). If there exists an element j ∈ I such that αj 6= β
[P ]
l (i1, . . . , im) for all

1 ≤ l ≤ m, then (j, i1, . . . , im) is Rj(P )-admissible by definition, and t ≥ m + 1.

Let N ∈ Fθ(M). By the previous paragraph, there is a largest integer m ≥ 1

such that there is a P -admissible sequence (im, . . . , i1) with P = Rim · · ·Ri1(N).

Hence EP (im, . . . , i1) = B(P ) by Lemma 6.7 (2), and by Lemma 6.6 there is an

isomorphism of N
θ
0-graded objects in H

HYD

(6.11) B(Pγm
)⊗ · · · ⊗ B(Pγ1)

∼= B(P ),

where γ1, . . . , γm are pairwise distinct elements in N
θ
0. This means that the Nichols

algebra of P is decomposable. Hence B(M) is decomposable by [HS08, Lemma

6.8], and the root system R(M) exists by Thm. 6.9. Moreover R(M) is finite,

and for all objects X ∈ Xθ(M), 2m = |∆X re| and m = |∆X re
+ |. This proves (3).

We note that id[P ]sim · · · si1 is a reduced expression by Lemma 6.7 (3). There-

fore the inverse id[N ]si1 · · · sim is a reduced expression. It cannot be extended

to a reduced expression id[Rj(N)]sjsi1 · · · sim , 1 ≤ j ≤ θ, by Lemma 6.6 (1)

since m = |∆
Rj(N) re
+ |. Thus by Lemma 6.7 (1),(2), EN (w0) = B(N), where

w0 = id[N ]si1 · · · sim .

By Thm. 6.12, κ
N is injective. To prove surjectivity of κ

N , let E ∈ K(N). Let

w ∈ Hom(W(M), [N ]) be a shortest element such that E ⊂ EN(w). Such a w

exists, since R(M) is finite, hence Hom(W(M), [N ]) is finite by Lemma 1.2 and

E ⊂ EN(w0) = B(N). We prove by induction on ℓ(w) that E = EN (w).

Assume first that ℓ(w) = 0. Then k1 ⊂ E ⊂ EN(id[N ]) = k1 and hence

E = EN (id[N ]).

Assume now that ℓ(w) > 0. Then E 6= k1 by the minimality of w. By

Lemma 5.1 there exists i ∈ I such that Ni ⊂ E. Then Ni ⊂ EN (w), and hence

w = s
ri([N ])
i w′ by Cor. 6.13 with w1 = s

ri([N ])
i and w2 = w, where w′ = sN

i w and
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ℓ(w) = ℓ(w′) + 1. Further, σN
i (E) ⊂ σN

i (EN(w)) = ERi(N)(w′) by Thm. 5.6.

Hence

σN
i (E) = ERi(N)(w′′)

for some w′′ ∈ Hom(W(M), ri([N ])) by induction hypothesis. Thus

E = σ̄
Ri(N)
i (σN

i (E)) = σ̄
Ri(N)
i (ERi(N)(w′′)) = EN(siw

′′).

Hence κ
N is bijective. In particular, κ

M is bijective. Therefore (1) holds since

Hom(W(M), [M ]) is finite by Lemma 1.2.

Finally we prove (1) ⇒ (2) and (3) ⇒ (2).

Assume (1) and let t = #(K(M)). First, M admits all reflections by Prop. 6.1.

Hence #(K(M)) = #(K(N)) = t for all N ∈ Fθ(M) by Cor. 5.8. It follows from

Lemma 6.6 (4) that for all N ∈ Fθ(M) the length of N -admissible sequences

(i1, . . . , im) is bounded by t since EN(i1, . . . , ik) 6= EN (i1, . . . , il) for all k, l with

1 ≤ k < l ≤ m.

Assume (3). Let t = #(∆M re). Since the Weyl groupoid is connected it follows

that #(∆M re) = #(∆N re) = t for all N ∈ Fθ(M). By Lemma 6.6 the length of

admissible sequences is bounded by t. �

Corollary 6.16. Let M ∈ Fθ. Assume that M admits all reflections and that

∆[M ] re is finite. Then B(M) is decomposable andR(M) = (C(M), (∆X re)X∈Xθ(M))

is a finite root system of type C(M). Let w ∈ Hom(W(M), [M ]) be a longest ele-

ment. Let m = ℓ(w) and let w = id[M ]si1 · · · sim be a reduced decomposition. For

each l ∈ {1, . . . , m} let βl ∈ ∆
[M ]
+ and Nβl

⊂ B(M) as in Lemma 6.6. Then for

each l ∈ {1, . . . , m} the identity on Nβl
induces an isomorphism k〈Nβl

〉 ≃ B(Nβl
)

of N
θ
0-graded objects in H

HYD, where Nβl
has degree βl. Further, the multiplication

map

k〈Nβm
〉 ⊗ · · · ⊗ k〈Nβ2〉 ⊗ k〈Nβ1〉 → B(M)

is an isomorphism of N
θ
0-graded objects in H

HYD.

Proof. The first claim is proven in Thm. 6.15. The rest follows from Lemma 6.6

and Lemma 6.7 (3). �

Corollary 6.17. Let M ∈ Fθ. Assume that M admits all reflections and that

∆[M ] re is finite. Then there exist order preserving bijections between

(1) the set of N
θ
0-graded right coideal subalgebras of B(M)#H containing H,

(2) the set of N
θ
0-graded right coideal subalgebras of B(M) in H

HYD,

(3) Hom(W(M), [M ]),

where right coideal subalgebras are ordered with respect to inclusion and the set

Hom(W(M), [M ]) is ordered by the right Duflo order.
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Proof. See Thm. 6.15 for the bijection between (2) and (3) and Prop. 2.3 for the

bijection between (1) and (2). �

Remark 6.18. Assume that W(M) is standard, that is, for each N ∈ Fθ(M) we

have aN
ij = aM

ij for all i, j ∈ I. Then Hom(W(M), [M ]) can be identified with the

Weyl group W of g, see [CH09, Thm. 3.3(1)].

7. Right coideal subalgebras of U≥0

In this section we are going to establish a close relationship between the maps

T
Rj(M)
j , see Def. 6.5, and Lusztig’s automorphisms Tα of quantized enveloping

algebras. Let g be a finite-dimensional complex semisimple Lie algebra and let

Π be a basis of the root system with respect to a fixed Cartan subalgebra. Let

W be the Weyl group of g and let (·, ·) be the invariant scalar product on the

real vector space generated by Π such that (α, α) = 2 for all short roots in each

component. For each α ∈ Π let dα = (α, α)/2. Let U = Uq(g) be the quantized

enveloping algebra of g in the sense of [Jan96, Ch. 4]. More precisely, let k be

a field with char(k) 6= 2, and if g has a component of type G2, then assume

additionally that char(k) 6= 3. Let q ∈ k with q 6= 0 and qn 6= 1 for all n ∈ N. As

a unital associative algebra, U is defined over k with generators Kα, K−1
α , Eα, Fα,

where α ∈ Π, and relations given in [Jan96, 4.3]. By [Jan96, Prop. 4.11] there is

a unique Hopf algebra structure on U such that

∆(Eα) =Eα ⊗ 1 + Kα ⊗Eα, ε(Eα) =0,(7.1)

∆(Fα) =Fα ⊗K−1
α + 1⊗ Fα, ε(Fα) =0,(7.2)

∆(Kα) =Kα ⊗Kα, ε(Kα) =1.(7.3)

For all m ∈ N, α ∈ Π let qα = qdα , [m]α = (qm
α −q−m

α )/(qα−q−1
α ), [m]!α =

∏m
i=1[i]α

and E
(m)
α = Em

α /[m]!α, F
(m)
α = F m

α /[m]!α. By [Jan96, 8.14] there exist unique

algebra automorphisms Tα, α ∈ Π of U such that

Tα(Kα) =K−1
α , Tα(Kβ) =KβK

−aαβ
α ,(7.4)

Tα(Eα) =− FαKα, Tα(Fα) =−K−1
α Eα,(7.5)

Tα(Eβ) =ad(E
(−aαβ)
α )Eβ , Tα(Fβ) =

−aαβ∑

i=0

(−qα)iF (i)
α FβF

(−aαβ−i)
α ,(7.6)

α 6= β, where ad denotes the usual left adjoint action of U on itself.

As in [Jan96, 4.6, 4.22], let U+ and U≥0 be the subalgebras of U generated by

the sets {Eα |α ∈ Π} and {Kα, K−1
α , Eα |α ∈ Π}, respectively.

Recall that U+ ∈ U0

U0YD via the left action ad|U0 and left coaction

δ(Eα1 · · ·Eαk
) = Kα1 · · ·Kαk

⊗ Eα1 · · ·Eαk
, k ∈ N0, α1, . . . , αk ∈ Π.
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Identify now Π with I = {1, . . . , θ}, where θ = #Π is the rank of g. Let α ∈ Π.

Following the notation in Sect. 4 we obtain that M = (k Eβ)β∈Π ∈ Fθ and that

Rα(M) = (Rα(M)β)β∈Π ∈ Fθ, where

Rα(M)β =

{

k ad(E
(−aαβ)
α )Eβ if β 6= α,

(k Eα)∗ if β = α.
(7.7)

Let ϑα : M1 ⊕ · · · ⊕Mθ → Rα(M)1 ⊕ · · · ⊕ Rα(M)θ,

ϑα(Eβ) =

{

ad(E
(−aαβ)
α )Eβ if β 6= α,

(q−3
α − q−1

α )−1E∗
α if β = α

(7.8)

for all β ∈ Π, where E∗
α ∈ (kEα)∗ such that E∗

α(Eα) = 1. Note that

δ(ϑα(Eβ)) = KβK
−aαβ
α ⊗ ϑα(Eβ) for all α, β ∈ Π.(7.9)

In particular, [M ] 6= [Rα(M)] in Xθ. Nevertheless ϑα is an isomorphism of braided

vector spaces. Indeed, the braiding c satisfies

c(Eβ ⊗ Eγ) =ad(Kβ)Eγ ⊗ Eβ = q(β,γ)Eγ ⊗Eβ ,

c(ϑα(Eβ)⊗ ϑα(Eγ)) =ad(KβK
−aαβ
α )ϑα(Eγ)⊗ ϑα(Eβ)

=q(β−aαβα,γ−aαγα)ϑα(Eγ)⊗ ϑα(Eβ) = q(β,γ)ϑα(Eγ)⊗ ϑα(Eβ)

for all β, γ ∈ Π because of the W -invariance of (·, ·). Hence B(ϑα) : B(M) →

B(Rα(M)) is an isomorphism of N
θ
0-graded algebras and coalgebras.

Proposition 7.1. Let α ∈ Π. Let ια : KM
α #B(M∗

α)→ U be the linear map with

ια(x#(E∗
α)m) = (q−1

α − q−3
α )mx(FαKα)m for all x ∈ KM

α , m ∈ N0. Then ια is an

injective algebra map, and the following diagram is commutative.

B(M) = U+ Tα−−−→ U

B(ϑα)



y

x

ια

B(Rα(M)) −−−−→
(ΩM

α )−1
KM

α #B(M∗
α)

(7.10)

Proof. We first prove that ια is an algebra map. By definition, ια|KM
α #1 and

ια|1#B(M∗
α) are algebra maps. By Prop. 4.1 (i), the algebra KM

α is generated by

the elements ad(E
(n)
α )Eβ, β ∈ Π \ {α}, 0 ≤ n ≤ −aαβ , and the algebra B(M∗

α) is

generated by E∗
α. Further,

∂L
E∗

α
(ad(E(n)

α )Eβ) =E∗
αad(E(n)

α )Eβ − (ad(E(n)
α )Eβ)(K−n

α K−1
β · E

∗
α)

=E∗
αad(E(n)

α )Eβ − q(nα+β,α)(ad(E(n)
α )Eβ)E∗

α
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for all β ∈ Π \ {α} and 0 ≤ n ≤ −aαβ by Eq. (3.3), where ∂L
E∗

α
(x) = 〈E∗

α, x(1)〉x(2)

for all x ∈ KM
α . By [Jan96, 8A.5(2)] we obtain that ∂L

E∗
α
(Eβ) = 0 and

∂L
E∗

α
(ad(E(n)

α )Eβ) =qn−1
α (1− q

−2(−aαβ−n+1)
α )ad(E(n−1)

α )Eβ

for all β ∈ Π \ {α} and 1 ≤ n ≤ −aαβ . Since FαKαEβ = q(α,β)EβFαKα for all

β ∈ Π \ {α}, it suffices to prove that the following relations hold in U .

qn−1
α (1− q

−2(−aαβ−n+1)
α )ad(E(n−1)

α )Eβ

= (q−1
α − q−3

α )(FαKαad(E(n)
α )Eβ − q(nα+β,α)(ad(E(n)

α )Eβ)FαKα),

where β ∈ Π \ {α} and 1 ≤ n ≤ −aαβ . The latter equations follow from [Jan96,

8.9 (2)].

The injectivity of ια follows immediately from the triangular decomposition of

U . Since all maps in the diagram (7.10) are algebra maps, it is enough to check

that the diagram commutes on the algebra generators Eβ, β ∈ Π, of U+. This

follows directly from the definitions of the maps involved. �

Remark 7.2. Prop. 7.1 implies that the PBW basis of U+ given in [Jan96, Thm. 8.24]

coincides with the PBW basis in Cor. 6.16. Let us indicate a proof.

First observe that W(M) is standard, since M is a Yetter-Drinfeld module of

Cartan type [AHS08, Rem. 3.27]. This means that for each N ∈ Fθ(M) we have

aN
ij = aM

ij for all i, j ∈ I. Hence Hom(W(M), [M ]) can be identified with the Weyl

group W of g, see [CH09, Thm. 3.3(1)].

Let α, β, γ ∈ Π such that ℓ(sαsβsγ) = 3. There exists a commutative diagram

B(M)

B(ϑγ)



y

B(Rγ(M))
T

Rγ(M)
γ
−−−−→ B(M)



y B(ϑβ)



y

B(RγRβ(M))
T

RγRβ(M)
γ
−−−−−−→ B(Rβ(M))

T
Rβ(M)

β
−−−−→ B(M)



y



y B(ϑα)



y

B(RγRβRα(M))
T

RγRβRα(M)
γ
−−−−−−−−→ B(RβRα(M))

T
RβRα(M)

β
−−−−−−→ B(Rα(M))

T
Rα(M)
α−−−−→ B(M)

such that the unlabelled vertical arrows are isomorphisms of N
θ
0-graded algebras

and coalgebras. The existence of such maps can be concluded by considering

Fθ as a category, where morphisms between M, N ∈ Fθ are bijective maps f :

M1⊕· · ·⊕Mθ → N1⊕· · ·⊕Nθ preserving the braiding and satisfying f(Mi) ⊂ Ni
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for each i ∈ I. Then Ri : Fθ → Fθ becomes a functor, and for example the vertical

arrow left to B(ϑβ) is just B(Rγ(ϑβ)). The PBW generators of B(M) constructed

in Cor. 6.16 arise as images (at the lower right corner) of appropriate generators

of the Nichols algebras in the lower line. Similarly, the PBW generators of B(M)

arise by applying the maps Tα, Tβ , . . . appropriately to the algebras B(M) at the

diagonal. Then Prop. 7.1 gives that the images obtained this way coincide.

Let w be an element of the Weyl group W , let m = ℓ(w), and let sα1 · · · sαm

be a reduced decomposition of w. Recall from [Jan96, 8.24] that U+[w] ⊂ U+ is

the linear span of the products

Eam

βm
· · ·Ea2

β2
Ea1

β1
, a1, . . . , am ∈ N0,(7.11)

where Eβl
= Tα1 · · ·Tαl−1

(Eαl
) for all 1 ≤ l ≤ m.

Theorem 7.3. The map κ from W to the set of right coideal subalgebras of U≥0

containing U0, given by κ(w) = U+[w]U0, is an order preserving bijection.

Proof. Subalgebras of U≥0 containing U0 are N
θ
0-graded by the non-degeneracy of

(·, ·) and since q is not a root of 1. Thus the claim is a special case of Cor. 6.17,

see also Rem. 6.18 for the interpretation of W and Rem. 7.2 for the equality of

the PBW generators in (7.11) and in Cor. 6.16. �

Remark 7.4. In view of Cor. 6.17, the claim of Thm. 7.3 holds also for multipa-

rameter deformations of g if qα is not a root of 1 for all α ∈ Π. Similarly, if qα is

a root of 1 for all α ∈ Π, then the claim of Thm. 7.3 holds for the (multiparame-

ter version of) small quantum groups, if we restrict ourselves to N
θ
0-graded right

coideal subalgebras.
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