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RIGHT-ORDERABLE DECK TRANSFORMATION GROUPS 
F. THOMAS FARRELL 

0. Introduction. Let p : E —» B be a regular covering space such 
that E is path connected, and B is a Hausdorff, paracompact space with 
a countable fundamental group. Also let R denote the real line, and 
q : B X R —• B be projection onto the first factor. 

QUESTION, Does there exist an embedding/ : E -» B X R such that 
the composite off with q is p? 

We show that the answer to this question is yes, if and only if 

77"! Blp#7Tl E is a right-orderable group. 
In addition, if B happens to be a manifold and irl Blp#ni E is 

right orderable, then we show that B X R can be foliated so that at 
least one of its leaves is a one-to-one continuous image of E, and the 
remaining leaves are one-to-one continuous images of intermediate 
covering spaces of B. 

Rubin [10] had previously answered an important case of this 
Question. Namely he considered the universal cover of any space 
homotopically equivalent to a countable wedge of circles. Rubin's 
covering space result played a key role in the proof by R. D. Edwards 
and R. T. Miller [3] that cell-like closed-O-dimensional decomposi
tions of fi3 are R4 factors. Also Edwards and Miller extended Rubin's 
result to answer the above Question when TTÌ Blp#7rl E is a countable 
free group. 

1. Preliminary facts about right-orderable groups. 

1.1. DEFINITION. A right-ordered group is a pair (G, > ) where G is 
a group, and > is a total order on G, such that for all x, y, and z in 
G, x > y implies that xz > yz. A group G is right-orderable, if there 
exists an order > such that (G, > ) is a right-ordered group. 

The following basic facts about right-orderable groups can be found 
in [1] and [4]. 

1.2. Right-orderable groups are torsion-free. 

1.3. Any free group is right-orderable. Also any free abelian group 
is right-orderable. 
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1.4. Any extension of a right-orderable group by a right-orderable 
group is right-orderable. 

1.5. EXAMPLE. By 1.3 and 1.4, the fundamental group of any closed 
2-dimensional manifold, other than the sphere and the projective 
plane, is a right-orderable group. 

We will need the next result in § 2. 

1.6. LEMMA. If S is a countable, totally ordered set, then there is an 
order-preserving injection f: S -» R, such that the image of f is a 
discrete subspace of R. 

PROOF. By adjoining two extra elements ± <» to S, we can form a 
totally ordered set S', with maximal element + » and minimal ele
ment — °o , into which S order-preservingly injects. Hence we may as 
well assume that S has both a maximal and a minimal element. 

Let x0, Xi, x2, ' ' ' be an enumeration of the elements of S, such that 
x0 is its minimal element, and xx is its maximal element; let Sn = 
{Xi | i ^ n}. For each integer n ê 2 , let xn~ be the largest element in 
Sn which is smaller than xn, and let xn

+ be the smallest element in Sn 

which is larger than xn. 
Denote the Cantor middle-third set by C. Then [0, 1] — C is the 

disjoint union of a collection 0 of open intervals. If / is in 0, we de
note its length by \I\ and its midpoint by bj. For each integer n ^ 2, 
let 

A n = {IG*\\I\ = 3i-"}imdBn= { b / I I E A J . 

In addition, define 

B0 = {-2}, Bx = {2}, and B = (J Bn. 
nlK) 

Note that B is a discrete subset of R. Also notice that if n > 1, and 

x, y G U Bi with x > y, 
n>i 

then there exists an element z in Bn such that x > z > y. 
We now inductively define an order-preserving function/: S —> B 

such that / (x n) G Bn. Start by putting f(x0) = - 2 a n d / ^ ) = 2. If 
f(xo)>f(xi)> ' ' *>fixn-i) n a v e already been defined, then let f(xn) be 
the smallest element b in Bn such that/(xn

+) > b > f(xn~). 
The remainder of this section will be used only in § 3. 

1.7. DEFINITION. An order > on a set S is said to be fine if, for each 
pair of points x> y, there exists a third point z such that x > z > y, 
and S contains neither a first nor a last point. 
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1.8. LEMMA. If S is a countable set and > is a fine total order on 
S, then there exists an order-preserving injection f: S—»R whose 
image is dense in R. 

The proof of this fact is left to the reader. It is similar to and easier 
than the proof of Lemma 1.6. 

1.9. LEMMA. If (G, > ) is a countable, right-ordered group, then 
there exists an order-preserving monomorphism f: G -* H where 
(H, > )isa countable right-ordered group and > is a fine order. 

PROOF. Let Q be the additive group of rational numbers, then H 
can be chosen to be the direct sum G © Q lexicographically ordered, 
i.e., (a, b) > (c, d) if and only if either a > c, or a = c and b > d. And 
we can take/(x) to be (x, 0). 

In the next lemma, G has the discrete topology. 

1.10. LEMMA. If Gis a countable, right-orderable group, then R has 
a right G-space structure with at least one of its isotropy subgroups 
trivial. 

PROOF. Let > be an order on G so that (G, > ) is right-ordered. By 
Lemma 1.9, it suffices to consider the case when > is fine. Also, by 
Lemma 1.8, we can identify G with a dense subset of R. We proceed 
to define, for each x in G, a homeomorphism/( , x) : R -* R. For r in 
G, define f(r, x) to equal rx. Since / ( , x) : G —» G is an order-
preserving bijection, and G is dense in R, f( , x) has a unique ex
tension to a homeomorphism of R. And it is easy to check t h a t / : R X 
G —• R is a G-space. 

2. The main result. We begin by fixing some notation and assump
tions to be used throughout this section. Let £ be a path connected 
space with base point e0, and p : E -» B a regular covering space; i.e., 
a principal bundle with discrete structure group. (See [11], page 70, 
for this definition.) Assume that B is a Hausdorff paracompact space 
with a countable fundamental group and base point b0 = p(e0). Use 
G to denote nl (B, fo0)/p#^i (E> eo)- T h e n w e identify G with the 
group of deck transformations as follows. Let T be a deck transforma
tion and choose a path a from e0 to T(e0). Then p composed with a 
is some closed curve y in B based at fc0. The map which sends T to 
the equivalence class represented by y in G is our posited isomorphism. 
Finally, if x G G and S is either a subset or a point of E, then xS de
notes the image of S under the action of x. 
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2.1. LEMMA. If there exists a continuous function h : £ —> R such 
that the map / : £ - > B X R defined by f(a) = (p(a), h(a)) is an in
jection, then G is right-orderable. If in addition, the image off is a 
closed subset ofBX R, then G is either trivial or infinite cyclic. 

PROOF. Define a total order on G as follows: x > y, if and only if 
h(xe0) > h(ye0). We proceed, via proof by contradiction, to show that 
(G, > ) is a right-ordered group. Thus assume that x, y, and z are ele
ments in G such that x> y, but yz > xz. 

Let y be a loop in B based at b0 whose equivalence class in 
iri (B, b0)lp# 7Ti (E, e0) is z. Lift y to paths yx and y2 in E such that 
yi(0) is xe0 andy2(0) is ye0; theny1(l) is xze0 andy2( l) is yze0. 

Consider the function £ : [0,1] -> B defined by £(£) = hy2(t) - hyx(t). 
Since £(1) > 0 > £(0), there exists a real number t0 such that £(£0) 
is zero. Therefore fy\(t0) equals /y2(^o); hence, yi(t0) equals y2(to). 
But two liftings of y which agree at one point must agree everywhere. 
This implies that x equals y, which is the desired contradiction. 

Now we continue under the added assumption that the image off is 
closed. Therefore <p : G —• R defined by <p(x) = h(xe0) is an order-
preserving bijection onto a closed subset S of R. Hence, either > is 
fine, or the positive elements of G form a well-ordered set. The 
second possibility can occur only when G is either trivial or infinite 
cyclic. On the other hand, the first possibility implies that S is perfect. 
And S cannot be perfect since it is a countable set. 

2.2 LEMMA. If B is a locally finite simplicial complex and G is a 
right-orderable group, then there exists a continuous function h : E 
—> R such that the mapf: E —> B X R defined by f(a) = (p(a), h(a)) is 
an embedding. 

PROOF. Put on E the simplicial structure induced from the one of B 
via p, i.e., the Simplexes are the liftings to E of the Simplexes in B, and 
p becomes a simplicial map. For each vertex v of B, choose a point in 
p~ l(v) and denote it by v '. 

Let > be an order on G such that (G, > ) is right-ordered. Then, by 
Lemma 1.6, there is an order-preserving injection <p : G —» R whose 
image is a discrete subset of R. 

We define h on the vertices of E as follows. For each vertex t; of B 
and each element x in G, let h(xv') be <p{x). Then we linearly extend h 
to the rest of E. To be specific, consider the barycentric representation 
of a point c in E, i.e., 

c = fo*oV + *i*i*V + ' * * + tnxnvn', 
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where t{ G. [0 ,1] , x{ G. G, and the v{ are vertices in B, such that 
*0 + *1 + ' ' * + *n = 1 a n d XQVQ '> * l ü l '> * ' *> V n ' flr^ ^ Vertices of 

a simplex in E containing c. Then define h(c) to equal 

fap(*o) + tM*i) + " " + tn<p(xn). 

We will show t h a t / i s an injection. (And leave the reader to check 
that / i s an embedding.) To do this, suppose that c and d are distinct 
elements in E such that p(c) = p(d). And let a be a simplex of B con
taining p(c). Then denote by ax and <r2 *he Simplexes in E such that 
c £(r 1 } d G a 2 , and p ^ ) = p(a2) = o\ Thus there exists an element 
oc in G such that xax = a2 and x~\r2 = ov Let e denote the identity 
element of G, then either x> e or x~l > e; hence, by symmetry, we 
may assume that x > e. 

Let v0,Vi, • • -, vn be the vertices of a, then there exists elements x{ in 
G such that the points xpi' are the verticies of o^; since oca! = a2, 
the vertices of a 2 are the points xx^' where i = 0,1 • • -,n. Thus c 
can be written in barycentric co-ordinates as 

c = *o*oV + M a V + * * * + *»*„«„', 

where each t{ G [0,1] and f0 + *i + ' ' ' + *n = 1; consequently, 

d = ^0xx0t;0' + tiXXiVY ' + • • • + £nxa;nt;n', 

since p(c) = p(d). Therefore, 

h(c) = *0<p(*o) + *i<p(*i) + ' • ' + tn<p(xn), 

while 

h(d) = *0<p(**o) + t&ixxj + • • • + tn<p(xxn). 

But x > e implies that xx{ > xif and <p(xXi) > <p(xi) for i = 0, 
n; hence h(d) > h(c). And this shows tha t / i s an injection. 

2.3. THEOREM. There exists a continuous junction h : E —> R such 
£/*«£ £he map / : E—> B X R defined by / (a) = (p(a), ft(a)) ^ a n 

embedding, if and only if G is a right-orderable group. 

PROOF. There exists a connected, locally finite simplicial complex 
X whose universal covering space p ' : X ' —> X classifies principal 
G-bundles over Hausdorff, paracompact base spaces. (To see this, use 
[8, Th. 5.1] together with [2, Th. 7.5] and [9, Th. 1].) Thus there 
exist continuous functions £ : B —> X and £ ' : E —> X ', such that p 'I ' = 
Up, and such that the function k : E —> B X X ' defined by k(a) = 
(p(a), I f{a)) is an embedding onto a closed subset of B X X '. 
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Assume that G is right-orderable, then Lemma 2.2 is applicable to 
p ' : X ' —> X. Thus we obtain a continuous function h ' : X ' —• R such 
that the m a p / ' : X ' -» X X R defined by f'(a) = (p'(a\h'(a)) is an 
embedding. Let h be the composite of I' with h', then it is easily 
verified tha t / i s an embedding. 

The other half of Theorem 2.3 is an immediate consequence of 
Lemma 2.1. 

2.4. COROLLARY. There exists a continuous function h : E —• R, such 
that the map f: E -+ B X R defined by f(a) = (p(a), h(a)) is a 
homeomorphism onto a closed subset of B X R, if and only if G is 
either trivial or infinite cyclic. 

PROOF. If G is trivial, then h can be chosen to be identically zero. 
If G is infinite cyclic, then the space X used in the proof of Theorem 
2.3 can be taken to be the circle Sl. In which case, X ' is R, and we can 
choose h to b e £ ' . 

The other half of Corollary 2.4 is a consequence of Lemma 2.1. 

3. A foliation of M X R. We recall the definition of a codimension 
one foliation from [7]. (Lawson's paper is a good general reference on 
foliations.) 

3.1. DEFINITION. By a topological codimension one foliation of an 
m-dimension manifold W we mean a decomposition of W into a union 
of disjoint connected subsets {-£*}* e j , called the leaves of the foliation, 
with the following property: Every point in W has a neighborhood U 
and a system of local coordinates x = (x\ • • -,xm) : U-* Rm such 
that for each leaf JLh each component of UC\ X{ is described by an 
equation of the form xm = constant. 

Let p : E—» M be a regular covering space, where M is a manifold, 
E is connected, and G = ni Mlp#iri E is right-orderable. Also let 
q : M X R—> M denote projection onto the first factor. 

3.2. THEOREM. There is a topological codimension one folidation of 
M X R whose leaves X{ are indexed by some set I such that, to each 
iE: I, there corresponds an intermediate covering space p{ : E{ —• M, 
and a continuous bijection fi : E{ -» X{ with p{ = qfi; furthermore, 
there is at least one index i with p{ : E{ —• M equal to p : E —> M. 

PROOF. Put on R the right G-space structure posited in Lemma 1.10. 
(Since M is a connected manifold, G is countable; hence, Lemma 1.10 
is applicable.) Then form the bundle p' : E' —* M with fibre R 
associated to the principal G-bundle p : E —> M. Note that E ' is the 
quotient space of R X E via the identifications (rx, a) = (r, xa), where 
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r Ë R , x Ë G , and a Œ. E. (Here we have reversed, for convenience, 
the customary procedure in which the group of a principal bundle 
acts on the right side of its total space and on the left side of its asso
ciated fibre. See Chapter 4 of [6] for basic material on principal 
bundles.) It is easily seen that E' has a foliation possessing the 
properties described in Theorem 3.2. (The leaves of this foliation are 
in 1-1 correspondence with the orbits of the action of G on R.) 

Let TopR, Top(0,1), and Top [0,1] denote the order-preserving 
homeomorphisms of R, (0,1), and [0,1] respectively. Put on Top[0,1] 
the topology of uniform convergence and topologize Top(0,1) by the 
natural identification of Top(0,1) with Top[0,1]. Fix a homeomor-
phism/: R —> (0,1); identify Top R to Top(0,1) via conjugation with/; 
and thus induce a topology on Top R. (This topology is independent 
of/.) Since G acts on R via elements from Top R, we can enlarge the 
structure group of p ' : E ' —> M from G to Top R. But by Theorem 1.1.1 
of [5] Top R is contractible, hence p' : E'-» M is topologically 
trivial; i.e., there exists a homeomorphism k:E' - » M X R with 
p ' = qk. Thus the foliation of E ' induces, via fc, the desired foliation 
of MX R. 
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