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Abstract—A novel method of rights protection for categorical data through watermarking is introduced in this paper. New watermark

embedding channels are discovered and associated novel watermark encoding algorithms are proposed. While preserving data quality

requirements, the introduced solution is designed to survive important attacks, such as subset selection and random alterations. Mark

detection is fully “blind” in that it doesn’t require the original data, an important characteristic, especially in the case of massive data.

Various improvements and alternative encoding methods are proposed and validation experiments on real-life data are performed.

Important theoretical bounds including mark vulnerability are analyzed. The method is proved (experimentally and by analysis) to be

extremely resilient to both alteration and data loss attacks, for example, tolerating up to 80 percent data loss with a watermark

alteration of only 25 percent.
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1 INTRODUCTION

RIGHTS protection for categorical data is important in
scenarios where it is sensitive and valuable and about

to be outsourced. A good example is a data mining
application, where data is sold in pieces to parties
specialized in mining it (e.g., sales patterns database, oil
drilling data, financial data). Other scenarios involve, for
example, online B2B interactions (e.g., airline reservation
and scheduling portals) in which data is made available for
direct, interactive use (see Fig. 2). Given the nature of these
scenarios, it is hard to associate originator rights with the
data in use. Information Hiding and Watermarking can be
used to solve this issue and provide a tool for resilient
Rights Assessment.

1.1 Rights Assessment through Information Hiding

Digital Watermarking as a method of Rights Assessment
deploys Information Hiding to conceal an indelible “rights
witness” (“rights signature,” watermark) within the digital
Work to be protected (see Fig. 1). The soundness of such a
method relies on the assumption that altering the Work in
the process of hiding the mark does not destroy the value of
the Work, and that it is difficult for a malicious adversary
(“Mallory”) to remove or alter the mark beyond detection
without destroying the value of the Work. The ability to
resist attacks from such an adversary (mostly aiming at
removing the embedded watermark) is one of the major
concerns in the design of a sound watermarking solution.

But how does the ability to prove rights in court relate to
our final desiderata, namely to protect those rights? Why not
simply publish a digest of the Works to be protected in a
newspaper, just before releasing them, enabling us to prove
later on in court that at least they were in our possession at

the time of publication? In the following, we address these
and other related issues.

1.1.1 Rights Protection through Assessment

The ability to prove/assess rights convincingly in court
constitutes a deterrent to Mallory. It thus becomes a tool for
rights protection if counter-incentives and legal conse-
quences are set high enough. But because information
hiding does not provide means of actual access control, the
question of rights protection still remains. How are rights
protected here?

It is intuitive that such a method would only work if the
rightful rights-holder (Alice) actually knows about Mal-
lory’s misbehavior and is able to prove to the court that:
1) Mallory possesses a certain Work X and 2) X contains a
“convincing” (e.g., very rare with respect to the space of all
considered similar Works) and “relevant” (e.g., a string
stating “# by Alice”) watermark.

What watermarking does not offer is a direct deterrent. If
Alice does not have the knowledge of Mallory’s illicit
possession of the Work and/or if it is impossible to actually
prove this possession in court beyond reasonable doubt,
then watermarking cannot be deployed directly to prevent
Mallory.

If, however, Information Hiding is aided by additional
access control level levers, it can become very effective. For
example, if, in order to derive value from the given Work
(e.g., watch a video tape), Mallory has to deploy a known
mechanism (e.g., use video player), information hiding
could be deployed to enable such a proof of possession, as
follows. One simple example would involve modifying the
video player so as to detect the existence of a watermark and
match it with a set of credentials and/or “viewing tickets”
(that can be purchased) associated with the player’s owner.
If no match is found, the tape is simply not played back.

This is just one of many scenarios where watermarking
can be deployed in conjunction with other technologies to
aid in managing and protecting digital rights. Of course,
this scenario is simplistic and relies on the assumption that
the cost of reverse engineering this process is far higher
than the potential derived illicit gain. However, this is
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essential in that it illustrates the game theoretic economic
nature at the heart of the watermarking proposition and of
information security in general.

Watermarking is a game with two adversaries, Mallory
and Alice. At stake lies the value inherent in a certain
Work X, over which Alice owns certain rights. When Alice
releases X, she deploys watermarking for the purpose of
ensuring that one of the following holds:

. She can always prove rights in court over any copy
or valuable derivate of X (e.g., segment),

. any existing derivate Y of X, for which she cannot
prove rights does not preserve any significant value
(derived from the value in X), and

. the cost to produce such an unwatermarked (for
which she cannot prove rights) derivate Y of X that
is still valuable (with respect to X) is higher than its
value.

1.2 Information Hiding versus Newspaper Digests

Apparently, Alice could simply publish a (cryptographic)
digest of X in a newspaper, thus being able to at least claim
a time stamp of possession of X later on. Why not deploy
this as a rights assessment tool instead of information

hiding? There are many reasons why it would not work,
including: 1) scalability issues associated with the need for a
trusted third party (newspaper), 2) the cost of publishing a
digest for each released Work, and 3) scenarios when the
fact that the Work is watermarked should be kept secret
(stealthiness), etc.

Maybe the most important reason is that Mallory can
now claim that his ownership of the Work precedes X0s

publication date and that Alice simply (modified it and)
published a digest. It would then be up to the court to
decide if Mallory is to be believed or not, which is hardly an
encouraging scenario for Alice. This could work if there
existed a mechanism for the mandatory publication of
digests for each and every valuable Work, which is again
probably impractical due to both costs and lack of
scalability.

It becomes clear that deploying such aids (digests) as
rights assessment tools makes sense only in the case of the
Work being of value only unmodified. In other words, if it
does not tolerate any changes (without losing its value) and
Mallory is caught in possession of an identical copy,Alice can
successfully prove in court that she possessed the original at
the time of its publication, but she cannot prove more.
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Fig. 1. (a)Digital Watermarking conceals an indelible “rights witness” (“rights signature,” watermark) within the digitalWork to be protected. (b) In court,
a detection process is deployed to prove the existence of this “witness” beyond reasonable doubt (confidence level) and, thus, assess ownership.

Fig. 2. Rights Assessment is useful when valuable content is to be sold/outsourced to potentially untrusted parties, even if rightfully licensed. (a)Mallory
breaches the data license and sells the data or derivatives thereof to Jane, a third party. (b) Data partitions are outsourced (e.g., for data mining).



1.3 Relational Data

While extensive efforts have focused on various aspects of
DBMS security, including access control techniques as well
as data security issues [1], [2], [3], [10], [12], [13], [14], [16],
[17], [18], [19], [21], little has been done to enable the ability
to assert rights over outsourced relational data. Notably,
Kiernan and Agrawal in [15] and Sion et al. in [25]
introduced solutions for rights protection of numeric
relational content through information hiding.

A natural continuation of these efforts derives from the
realization that there are a multitude of applications that
operate with categorical data and would benefit from a
method of rights protection for such data types. In this
paper, we propose and analyze this issue of rights
protection for categorical relational content.

Main challenges in this new domain derive from the fact
that one cannot rely on “small” alterations (such as the ones
deployed in the work on numeric data types) to the data in
the embedding process. Any alteration can be potentially
significant. This discrete characteristic of the data requires
the discovery of fundamentally new bandwidth channels
and associated encoding algorithms. Additionally, since the
associated data types do not have fixed, well-defined
semantics (as compared to multimedia) and may be
designed for machine ingestion, identifying the available
“bandwidth” for watermarking becomes as important as
the actual encoding algorithms.

Our solution proves to be resilient to various important
classes of attacks, including subset selection and random
item(s) alterations. The main contributions of this work
include:

1. the proposal and definition of the problem of
watermarking categorical data,

2. the discovery and analysis of new watermark
embedding channels for relational data with catego-
rical types,

3. the design of novel associated encoding algorithms,
and

4. the experimental evaluation thereof.

The paper is structured as follows: In Section 2, we
present our main data and adversary models. Section 3
introduces the main solution, outlines alternatives, and
discusses the basic algorithm vulnerability to data altering
attacks. Section 4 gradually introduces algorithm improve-
ments handling particular scenarios while Section 5 outlines
and explores various additional issues. Section 6 presents
our experimental setup and results and Section 7 concludes.

2 MODEL

We choose to keep our model concise but representative.
Our data schema includes a set of discrete attributes fA;Bg
and a primary data key K, which is not necessarily
discrete. Any attribute X 2 fA;Bg can yield a value out of
nX possibilities. (e.g., city names, airline names). Thus, our
schema is ðK;A;BÞ.

Let the number of tuples in the database be N . For any
categorical attribute X, we naturally have bðnXÞ � bðXÞ. Let
TjðXÞ be the value of attribute X in tuple j. Let fa1; . . . ; anA

g
be the discrete potential values of attribute A. These are
distinct and can be sorted (e.g., by ASCII value). Let fAðajÞ
be the normalized (to 1:0) occurrence frequency of value aj

in attribute A. fAðajÞ models the defacto occurrence
probability of value aj in attribute A.

2.1 Notations and Primitives

Throughout this paper, we repeatedly use a set of notations
and security primitives. In the following, we summarize
some of the more frequent ones.

For any value (e.g., numeric) x, let bðxÞ be the number of
bits required for its accurate representation andmsbðx; bÞ be
its most significant b bits. If bðxÞ < b, we left-pad x with
ðb� bðxÞÞ zeroes to form a b-bit result. Similarly, lsbðx; bÞ is
used to denote the least significant b bits of x. If by wm we
denote a watermark to be embedded of length jwmj, wm½i�
will then be the ith bit of wm. Let set bitðd; a; bÞ be a
function that returns value d with the bit position a set to
the truth-value of b. In any following mathematical
expression, let the symbol “&” signify a bit-AND operation.

A special defacto secure construct we are leveraging is the
one-way cryptographic hash. If crypto hashðÞ is a crypto-
graphic secure one-way hash, of interest are two of its
properties: 1) it is computationally infeasible, for a given
value V 0, to find a V such that crypto hashðV Þ ¼ V 0 (one-
wayness) and 2) changing even one bit of the hash input
causes random changes to the output bits (i.e., roughly half of
them change even if one bit of the input is flipped). Examples
of potential candidates for crypto hashðÞ are the MD5 or the
SHA class of hashes. For more details on cryptographic
hashes, consult [22]. Let HðV ; kÞ ¼ crypto hashðk;V ; kÞ
(where “;” denotes concatenation).

2.2 The Adversary

There is a set of attacks that can be performed by evil
Mallory with the purpose of defeating the watermark while
preserving the value in the data. Moreover, these perceived
attacks may be the result of normal use of the data by the
intended user. In order to be effective, the watermarking
technique has to consider these scenarios and be able to
survive them. In the following, we discuss challenges
specifically associated with categorical data types.

A1. Horizontal Data Partitioning. Mallory can randomly
select and use a subset of the original data set that might
still provide value for its intended purpose.

A2. Subset Addition. Mallory adds a set of tuples to the
original data. This addition is not to significantly alter
the useful (from Mallory’s perspective) properties of the
initial set versus the result.

A3. Subset Alteration. Altering a subset of the items in the
original data set such that there is still value associated
with the result. In the categorical data framework, subset
alteration is intuitively quite expensive from a data-value
preservation perspective. One has also to take into
account semantic consistency issues that become im-
mediately visible because of the discrete nature of the
data.

A4. Vertical Data Partitioning. In this attack, a valuable
subset of the attributes are selected (by vertical partition-
ing) by Mallory. The mark has to be able to survive this
partitioning. The encoding method has to feature a
certain attribute-level property that could be recovered
in such a vertical partition of the data. We believe that,
while vertical data partitioning attacks are possible and
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also very likely in certain scenarios, often, value is to be
found in the association between a set of relation
attributes. These attributes are highly likely to survive
such an attack, as the final goal of the attacker is to
produce a still-valuable result.

A5. Attribute Remapping If data semantics allow it,
remapping of relation attributes can amount to a power-
ful attack that should be carefully considered. In other
words, if Mallory can find an, at least partial, value-
preserving mapping from the original attribute data
domain to a new domain, a watermark should hopefully
survive such a transformation. The difficulty of this
challenge is increased by the fact that there naturally are
an infinity of transformations available for a specific data
domain. Determining a value-yielding one is both data
and consumer dependent. This is thus an intractable task
for the generic case. One special case is primary key
remapping. In Section 4.3, we discuss the particular case
of bijective mappings.
Given the attacks above, several properties of a successful

solution surface. For immunityagainstA1, thewatermarkhas
to be embedded in overall data properties that survive subset
selection. If the assumption ismade that the attack alterations
do not destroy the value of the data, then A3 should be
defeatable by embedding the primitive mark in resilient
global data properties. Since it adds new data to the set,
defeating A2 seems to be the most difficult task, as it implies
the ability to identify potential uses of the data (for the
attacker). This is especially so in the case of categorical data,
where we suspect the main attack will focus not as much on
expensive data alterations but more on data addition.

3 CATEGORICAL DATA

The discrete nature of our data domain results in an
inherent limitation in the associated entropy. In order to
enable watermarking, we first aim to discover appropriate
embedding channels. Then, we propose new encoding
methods able to leverage the newly discovered bandwidth.

3.1 Challenges

Given our research in the numerical domain, the first
impulse was to build an extension of it for nonnumeric
attributes. This would start by establishing a mapping
between the nonnumeric domain and a numeric one,
followed by a translation of the input data A to a set of
numbers N (after all, any data can be represented as a string
of bits). In the next step, the numeric watermarking method
is deployed on the translated data N and a watermarked
version of it (N 0) is obtained. If the mapping features certain
properties (e.g., has an inverse), the algorithm can then
translate this watermarked version (N 0) back into the
original data domain (according to the inverse mapping)
and produce A0, a watermarked version of A. The assump-
tion here is that there exists a mapping that is stable and is
suitable. For example, in the case of A being an attribute
containing multimedia JPEG images (possibly under the
form of BLOB fields), this mapping might be exactly the
DCT1 (or a combination of the significant DCT coefficients).

The detection algorithm will function similarly, by translat-
ing the suspected watermarked input data to the numeric
domain (using the inverse transform) and deploying the
numeric detection process on the translation.

Unfortunately, depending on the actual data domain,
nonnumeric relational data will feature a different set of
data value and quality metrics and associated uses. For
many applications, this will make it difficult to directly
apply the above idea. Let us consider, for example, the case
of changing the value of a categorical DEPARTURE_CITY
attribute from “Chicago” to “Bucharest.” This is likely to
affect the data quality of the result more than a simple
change in a numeric domain. There are no “epsilon”
changes in this domain. This discrete characteristic of the
data requires discovery of fundamentally new bandwidth
channels and associated encoding algorithms.

3.2 Bandwidth Channels

In the case of categorical data, however, (and not necessarily
in any other continuous data domain) there exists a natural,
solid semantic association between A, the rest of the
schema’s categorical attributes (e.g., B), and the data’s
primary keyK. This association derives from the fact that, in
most cases, there exists no concept of “minor” changes. We
propose to make use of the encoding bandwidth found in
these associations between categorical attributes (including
possibly the primary key). Additionally, while direct-
domain embedding does not seem to have enough entropy
potential, we will leverage a related dimension, the value
occurrence frequency-transform, (attribute frequency histo-
gram) as an additional (or alternate) encoding channel.

Our next objective is to provide an embedding method
that is able to resiliently hide information in the attribute
association outlined above (while preserving guaranteed
data distortion bounds).

Because the discrete nature of the data domain makes it
such that any watermark-related data alteration can be
potentially significant, intuitively, one would desire to
minimize the number of such alterations while maximizing
the resilience of the encoding to potential attackers and
transforms. Additionally, if there exists a certain distance
metric in the attribute value domain, then another desider-
ata of interest would be to upper bind some function of the
distances of all performed alterations (see Section 5.2).

3.3 Algorithms

Surviving vertical partitioning attacks is important and
requires a careful consideration of the attribute association
used in the embedding process. Selecting the appropriate
attributes is challenging as one has to determine many
possible valuable features to be found in the data that
would still be preserved after vertical partitioning. This is
why we propose an initial user-level assessment step in
which a set of attributes are selected that are likely to
survive vertical partitioning attacks (see Section 3.4 for an
extended discussion). In the extreme case, 1) just one
attribute and the primary key are going to survive. A milder
alternative, 2) assumes that several (e.g., two) categorical
attributes and the primary key survive the partitioning
process. Apparently, a watermarking method for 1) presents
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1. Discrete Cosine Transform. A frequency-domain transform used in the
compression process of JPEG images, quantifying an image into a set of
coefficients.



the disadvantage of a direct primary key-dependency. In
Section 3.4, we further expand on this.

Let us propose an encoding method for 1), in which we
encode a watermark in the bandwidth derived from the
association between the primary key and a categorical
attribute A (see Fig. 4). In Section 5, we analyze 2).

3.3.1 Mark Encoding

At mark encoding time, we assume the following input: A
relation with at least a categorical type attribute A (to be
watermarked), a watermark wm and a set of secret keys (k1,
k2), and other parameters (e.g., e) used in the embedding
process. The algorithm starts by discovering a set of “fit”
tuples determined directly by the association between A
and the primary relation key K. These tuples are then
considered for mark encoding.

Step One. We say that a tuple Ti is “fit” for encoding iff
HðTiðKÞ; k1Þ mod e ¼ 0, where e is an adjustable encoding
parameter determining the percentage of considered tuples
and k1 is a secret maxðbðNÞ; bðAÞÞ-bit key. In other words, a
tuple is considered “fit” if its primary key value satisfies a
certain secret criteria (similar criteria are found in various
frameworks, e.g., [15]).

Note: The fit tuples set contains roughly N
e
elements. The

parameter e can be controlled at embedding time to adjust
the trade-off between the level of data alteration and mark
resilience. See Section 3.5 for a more detailed analysis.

Note on Error Correction. Because, often, the available
embedding bandwidth N

e
is greater than the watermark

bit-size jwmj, we can afford the deployment of an error
correcting code (ECC) that, upon embedding, takes as
input a desired watermark wm and produces as output a
string of bits wm data of length N

e
containing a redundant

encoding of the watermark, tolerating a certain amount of
bit-loss, wm data ¼ ECC:encodeðwm;N

e
Þ. At decoding

time, the ECC takes as input (a potentially altered)
wm data and produces the (most likely) corresponding
wm, wm ¼ ECC:decodeðwm data; jwmjÞ. There are a multi-
tude of error correcting codes to choose from. As this
does not constitute the main contribution of this research,
in our implementation, we deploy majority voting codes.
Let wm data½i� be the ith bit of wm data. Thus, before
embedding, our algorithm starts by deploying the error
correcting code first to compute the bits to be embedded
wm data ¼ ECC:encodeðwm;N

e
Þ.

Step Two. For each “fit” tuple Ti, we encode one bit by
altering TiðAÞ to become TiðAÞ ¼ at, where

t ¼ set bit

�

msbðHðTiðKÞ; k1Þ; bðnAÞÞ; 0;

wm data msb HðTiðKÞ; k2Þ; b
N

e

� �� �� ��

and k2 is a secret key k2 6¼ k1. In other words, we are
generating a secret value of bðnAÞ bits (depending on the
primary key and k1) and then forcing its least significant bit
to a value according to a corresponding (random, depend-
ing on the primary key and k2) position in wm data.

Note: The use of a second different key here ensures that
there is no correlation between the selected tuples for
embedding (selected also by k1) and the corresponding bit
value positions in wm data (selected by k2). Such a
correlation would potentially cause certain bits to be never
considered in the embedding process. In summary, the new
attribute value is selected by the secret key k1, the
associated relational primary key value, and a correspond-
ing bit from the watermark data wm data.

The “fitness” selection step provides several advantages.
On the one hand, this ensures the secrecy and resilience of
our method; on the other hand, it effectively “modulates”
the watermark encoding process to the actual attribute-
primary key association. Additionally, this is the place
where the cryptographic safety of the hash one-wayness is
leveraged to defeat court-time attacks in which Mallory
claims that the data in dispute is not actually watermarked
but that, rather, certain values for k1, k2 were searched for to
yield the watermark.

Note: When computing t (i.e., selecting a new value for
TiðAÞ), there can be (arguably rare) cases when we select the
same wm data bit to embed. The pseudorandom nature of
HðTiðKÞ; k2Þ guarantees, on average, that a large majority of
the bits in wm data are going to be embedded at least once.2

Alternately, we could keep an on-the-fly hash-table/
mapping (with N

e

� �

entries, see Figs. 3b and 5b) between
TiðKÞ values and the actual considered bit index in
wm data. This mapping can be used at detection time to
accurately detect all wm data bits. In this case, also, we do
not require an extra watermark bit selection key (k2).
Although we use this alternative in our implementation, for
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2. The ulterior step of error correction can tolerate such small changes.



simplicity and conciseness reasons we are not going to
discuss it here.

The advantage of using HðTiðKÞ; k2Þ in selecting the
wm data bit to embed becomes clear when we discuss data
loss alterations. Because the selected bit is directly related
only to the currently considered tuple, this method naturally
survives subset selection and data addition attacks. More on
this in Section 6.

While it does a good job in watermark embedding, data
alteration is an expensive operation because it effectively
destroys valuable data. There are also other data transforma-
tions that we canmake use of, each with a different degree of
associated data distortion and benefits. For a discussion on
an alternative (i.e., data addition), see Section 4.4.

3.3.2 Mark Decoding

In the decoding phase, we assume the following input: the
potentially watermarked data, the secret keys k1, k2, and e.
We then use the same criteria for discovering “fit” tuples.
That is, we say that a tuple Ti is “fit” for encoding iff
HðTiðKÞ; k1Þ mod e ¼ 0.

The first aim of the decoding algorithm is to discover the
embedded wm data bit string. For each “fit” tuple Ti, with
TiðAÞ ¼ at, we set

wm data msb HðTjðKÞ; k2Þ; b
N

e

� �� �� �

¼ t&1:

Once wm data (possibly altered) is available, the error
correcting mechanism is invoked to generate the (“clo-
sest,” most likely) corresponding watermark wm ¼

ECC:decodeðwm datajwmjÞ.

3.4 Multiple Attribute Embeddings

The above encoding method makes use of the bandwidth
present in the association between the primary key and the
categorical type attribute A. It does not touch the primary
key attribute but rather relies on modulating A through
minor alterations (and data additions, see Section 4.4).

In the following, we extend this algorithm to provide
more generality and resilience, in particular to attacks of the
type A4 (vertical data partitions). In a possible attack
scenario, Mallory partitions the data in such a way as to
preserve only two attributes (multisets) and no primary key
(see Fig. 6).

Defeating this scenario leads to a natural extension.
Instead of relying on the association between the primary
key and A, the extended algorithm considers all pairs3 of
attributes and embeds a watermark separately in each of
these associations. In other words, if the original water-
marking method reads markðK;AÞ for a schema composed
of the primary keyK andA, in the case of a ðK;A;BÞ schema,
we apply the watermark several times, for example,
markðK;AÞ; markðK;BÞ; markðA;BÞ. In each case, we treat
one of the attributes as a primary key (see Section 3.3), while
maintaining the rest of the algorithm in place. This provides
protection against A4 attacks and allows for more resilience
in the rest of the scenarios (as there are more rights
“witnesses” to testify). In addition, it effectively “breaks”
the previous algorithm’s dependency of the primary key.

Several issues need to be resolved. One apparent
problem is the issue of interference. If we watermark the
pair ðK;AÞ and then aim to watermark ðK;BÞ, everything
seems to work out fine as the modified attributes A;B are
different. With the exception of semantic consistency issues
that would need to be handled (as they would also be in the
initial case, see Section 5), the two encodings seem to be
independent. But, in the case of additionally watermarking
the pair ðA;BÞ, modifying B suddenly interferes with the
alterations occurring in the ðK;BÞ case.

Although the level of interference is likely to be very low,
especially in large data sets,4 there exists a solution to this
problem. Maintaining a hash-map at watermarking time,
“remembering” modified tuples in each marking pass,
allows the algorithm (extended accordingly) to avoid tuples
and/or values that were already considered.

Additionally, when considering the association between
two attributes A;B as an encoding channel for a watermark,
if values in B were already altered during a previous
encoding, instead of deploying markðA;BÞ (which would
result in further alterations to B), we propose the deploy-
ment of markðB;AÞ. While still encoding the mark in the
association between A and B, by modifying A (assumed
unmodified yet, otherwise it doesn’t matter anyway), we
effectively “spread” the watermark throughout the entire
data, increasing its level of resilience.

Moreover, if data constraints allow, we propose water-
marking each and every attribute pair by first building a
closure for the set of attribute pairs over the entire schema
that minimizes the number of encoding interferences while
maximizing the number of pairs watermarked. The con-
struction of such an “interference graph” is shown in Fig. 7.

Note: The discrete nature of categorical attributes
complicates the watermarking process of a pair ðA;BÞ in
which a categorical attribute A is used as a primary key (in
the initial algorithm). In the extreme case,A can have just one
possible value which would upset the “fit” tuple selection
algorithm. It remains to be investigated if a pair-closure can
be constructed over the schema such that no categorical
attributes are going to be used as primary key place-holders.
See Section 4.1 for a related analysis and extension.
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Fig. 4. Overview of multibit watermark encoding.

3. For simplicity, we consider pairs for now, but believe that an arbitrary
number of attributes could be considered.

4. As the probability of the same tuple to be considered again in the
second encoding is low, see also Section 3.5.



3.5 Analysis: False Positives and Vulnerability to
Attacks

In order to fight false-positive claims in court, we ask: What

is the probability of a given watermark of length jwmj will be

detected in a random data set of size N? The natural

assumption is that jwmj < N
e
(enough bandwidth).

It can be easily proved that this probability is ð1
2
Þjwmj. In

case multiple embeddings are used (e.g., majority voting)

and all available bits are utilized, this probability decreases

even more to ð1
2
Þ
N
e . For example, in the case of a data set with

N ¼ 6;000 tuples and with e ¼ 60, this probability is

approximately 7:8� 10�31.
In the absence of additional information, Mallory, faced

with the issue of destroying the watermark while preser-

ving the value of the data, has only one alternative

available, namely, a random attack (here, we discuss data

alteration attacks). We ask: What is the probability of success of

such an attack? In other words, if an attacker randomly alters

a total number of a data tuples and succeeds in each case to

flip the embedded watermark bit with a success rate p, what

is the probability of success of altering at least r; r < a watermark

bits in the result, P ðr; aÞ? This metric illustrates the relation-

ship between attack vulnerability and embedding band-

width. It can be shown that

P ðr; aÞ ¼
X

a

i¼r

ðai Þ � pa � ð1� pÞa�i
:

Remember that only every eth tuple (on average) is
watermarked, thus, Mallory effectively attacks only an
average of a

e
tuples actually watermarked. If r > a

e
, then

P ðr; aÞ ¼ 0. In the case of r < a
e
, we have the corrected

version

P ðr; aÞ ¼
X

ða
e
Þ

i¼r

a
e

i

� �

� pi � ð1� pÞð
a
e
Þ�i

: ð1Þ

Consider r ¼ 15, p ¼ 70 percent (it is quite likely that when
Mallory alters a watermarked tuple, it will destroy the
embedded bit), a ¼ 1;200 (20 percent of the tuples are altered
by the attacker, jwmj ¼ 10, and e ¼ 60 (jwm dataj ¼ 100).
This is likely a highly value-damaging operation overall.
Such an attack is unlikely because Mallory cannot afford
destroying the data beyond use.We present it for illustration
purposes as it makes the case even stronger.

Because we have an effectively binomial distribution
experiment with Xi ¼ 1, with probability p and Xi ¼ 0,

with probability 1 � p. E½Xi� ¼ p, varðXiÞ ¼ E½X2
i � �

ðE½Xi�Þ
2 ¼ . . . ¼ p� ð1� pÞ, by using the central limit

theorem [20], we can derive that fð
P

XiÞ, where

f
X

Xi

� �

¼

P

Xi �
a
e
� p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
e
� p� ð1� pÞ

p ð2Þ

effectively behaves like a normal distribution Nð0; 1Þ (when
a
e
� p � 5 and a

e
� ð1� pÞ � 5). In other words, the prob-

ability that ð
P

XiÞ > r (attack altering at least r bits) can be
rewritten as the probability of fðXiÞ > fðrÞ. Because of the
normal behavior of fðxÞ (we know fðrÞ), we can estimate
this probability by normal distribution table lookup. Thus,
we get P ð15; 1;200Þ � 31:6 percent.

Let us assume that the error correcting code tolerates an
average of tecc ¼ 5 percent alterations to the underlying data
and that the alteration propagation is uniform and stable.
Intuitively, what we mean is that if one bit in wm data is
altered above the tecc bound, then a stable average of jwmj

jwm dataj

bits are altered in the resulting error corrected watermark
wm ¼ ECC:decodeðwm data; jwmjÞ. The final watermark is
then incurring only an average fraction of

r
N
e

� tecc

 !

�
jwmj

jwm dataj

alteration. In our case, this is only 1:0 percent, correspond-
ing to an average of 1:0 bit in the watermark. Thus, in order
to modify one bit in the watermark, Mallory has to alter at least
20 percent of the data and even then has only a success rate of
31:6 percent! This analysis was done in a highly attack-
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Fig. 5. (a) Decoding Algorithm (b) Alternative using embedding map.

Fig. 6. Defeating vertical partitioning.



favorable scenario in which error correction can only handle
5 percent alterations in wm data.

Because data alteration is expensive, naturally, we aim
to minimize the number of altered tuples in the water-
marking process. If we define attack vulnerability as the
probability P ðr; aÞ1 to succeed in altering one bit in the
final watermark (wm), and the number of altered tuples is
defined by the ratio N

e
, we ask: What is the relationship

between the required number of fit tuple encodings (i.e., available
bandwidth) and attack vulnerability? In other words, what is
the minimum number of alterations we have to allow (and
perform) in the watermarking phase that would guarantee
a certain upper bound on the overall attack vulnerability?

If we assume that Mallory cannot afford to modify more
than 10 percent of the data items (a ¼ 600) and we set a
maximum tolerable threshold � ¼ 10 percent for P ðr; aÞ1
(P ðr; aÞ1 < �), let us compute the minimum required e to
guarantee these bounds (the other values are as above). By
using (2) and doing a normal distribution table lookup, we
derive that (for � ¼ 10 percent) we have to satisfy

r� a
e
� p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
e
� p� ð1� pÞ

p ¼ 1:28;

which results in e � 23. In other words, we have to alter
only � 4:3 percent of the data to guarantee these bounds!

4 IMPROVEMENTS

4.1 Correlation Attacks

The solution above features a particular issue of concern in
certain casesofmultiattributeembeddingswhere twononkey
attributes areused in the encoding, i.e.,mark(A,B). Becauseof
the correlation between the watermarking alteration (the
newly selected value TiðBÞ ¼ bt) and its actual location
(determined by the fitness selection, HðTiðAÞ; k1Þ, and e),
sometimes Mallory can mount a special attack with the
undesirable result of revealing some of the mark bit
embedding locations. This occurs if the fitness criteriadecides
that aparticularvalueofAyieldsa tuple fit and thatvalueofA
appears then in multiple (statistically significant number of)
different tuples. This is possible only ifA is not a primary key
but rather another categorical attribute (with repeating
duplicate values).

The attack then proceeds by first realizing that, despite
the one-wayness of the deployed hash function HðÞ, in fact,
A is the only variable that determines both the bit
embedding location (tuple “fitness”) and its value. If
Mallory is able to detect this correlation for potential
candidates (tuples), it would quickly lead to exposing some
of the ones carrying a watermark bit. But how does he check
for the correlation? Mallory can simply build a set of “hash
buckets” (see Fig. 8) for each separate value of A (yielding
the same value of HðTiðAÞ; k1Þ) and count (for all matching
tuples) if there is a statistical bias for a certain value (e.g.,
“true”) of the least significant bit of t (see Section 3.3.1). If
such a bias is discovered, e.g., if a majority of LSB values are
“true,” then Mallory suspects (rightfully so) that the
respective tuples are “fit” and a watermark bit of “true”
(for example) is embedded in those locations. Mallory can
now obliterate the embedding in these tuples by randomi-
zation, leading to a loss of the corresponding watermark bit.

In other words, if, as a result of the extension proposed in
Section3.4, twoattributesAandBareused inawatermarking
process, markðA;BÞ (and the data set contains many “fit”
tuples with repeated values for attribute A), Mallory can
discover the association between the individual unique
values of A and the bit-embeddings in B. He can then use
this discovered association to randomize the embeddings
and effectively remove the corresponding watermark bits.
Thus, the problem lies here in the correlation between the
actual bit location and the bit value, correlation induced by
the fact that a single variable (A) determines both of these and
this variable can have repeated values for different tuples,
allowing for a “bucket counting” attack as described above.

One solution to this issue would be to simply restrict the
fitness selection criteria for tuples so as to only include the
ones with attribute T ðAÞ values that do not have a
significant number of repeats throughout the data. A more
radical idea would be to simply search the space of
potential k1 values until the fitness criteria results in
selecting tuples with different values for A.

Note: These solutions work only if A indeed does contain
a significant number of nonrepeating values in the data. In
any case, this problem has the potential to introduce a
significant reduction in available encoding bandwidth. An
interesting extreme scenario occurs in the case of binary
attributes, i.e., attributes with only two possible values. If,
for example, A can only take values in the f0; 1g set (e.g.,
quite likely in many data mining sets), intuitively, it cannot
be used as a first argument in anmarkðX;Y Þ operation (that
is, it cannot play the pseudo primary key role). This is so
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Fig. 7. Handling multiple marks interference.
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due to the fact that the fitness selection criteria (controlled
by X) is going to either 1) fail to discover any fit tuples (i.e.,
resulting in no available encoding bandwidth), 2) possibly
partition the entire data set into two, namely, a subset of
“fit” tuples (e.g., corresponding to the TiðAÞ ¼ 1 values) and
the rest or 3) deem all tuples fit in which case the entire data
set is going to be altered in a potential watermarking
operation. This case is interesting because it illustrates the
impact of nX (the cardinality of the first attribute’s possible
values set) on the markðX;Y Þ operation.

4.1.1 Multiple Embeddings

There exists a refinement that would overcome many of the
above. What if the actual watermark were to consist of a
combination of several different embeddings, each, in turn,
being an encoding using a different k1 value (see Fig. 9).
While each of these “low impact” encodings would be
weaker than the original solution, their combined “sum”
can be made (arguably) arbitrarily strong(er) by increasing
their number. At the same time, correlation attacks would
be defeated.

If, for example, we embed two watermarks with different
keys ðk11; k

1
2Þ and ðk21; k

2
2Þ, the correlation attack cannot be

performed “across” the encodings, as the HðTiðAÞ; k
1
1Þ and

HðTiðAÞ; k
2
1Þ values are not going to be consistent with each

other, making “bucket counting” impossible.
One price to pay is the amount of computation required

at each step to decode all of the potential watermarks.
Another issue of (arguably) minor concern could be the fact
that the same tuple might be considered in multiple
encodings, in which case, some of these will suffer a mark
loss. A mark interference graph (see Fig. 7) can be deployed
to avoid such collisions.

The new algorithm defeating correlation detection
through multiple embeddings is illustrated in Fig. 10. In
Fig. 10a, the val seen cnt (together with local seen cnt½�)
hash-tables are used to avoid multiple uses of the same
values of K (within the same embedding round), thus
simply inhibiting the appearance of biases that can be
detected by Mallory. This mechanism also avoids the
interference between different (successive) watermark
embeddings as it “skips” all instances which were already
“touched” by previous encodings and only considers
“fresh” tuples. The extended algorithm in Fig. 10b then

applies this “low-impact encoding” in Fig. 10a an arbitrary
number of times (determined by its parameter M) with
separate keys resulting in an output without any detectable
correlations.

The separate keys fk11; k
2
1; k

3
1; . . . ; k

i
1gand fk12; k

2
2; k

3
2; . . . ; k

i
2g

are generated from the initial k1; k2 pair by a classic
cryptographic key construction used for encryption in block
ciphers, namely, the countermode (CTR). In this description,
E is any arbitrary keyed encryption method (e.g., AES) and
nonce is a random one-time use secret (to be considered part
of the algorithm input secrets, including the k1; k2 pair). For
more details, please refer to [6].

Note: We included this key generation mechanism here
as an implementation suggestion. From a rights assessment
point of view, how these keys are generated is out of the
current scope. In the simplest case, they could as well be
directly provided as input to the algorithm instead.

4.2 On-the-Fly Quality Assessment

In the relational framework, it is important to preserve
structural and semantic properties of the data. Because, by
its very nature, watermarking alters its input, we have to
provide a mechanism ensuring that these alterations are not
degrading the data beyond usability. Preserving data
quality requires the ability to express and enforce data
constraints. Sometimes it is undesirable or even impossible
to directly map higher level semantic constraints into low
level (combined) change tolerances for individual tuples or
attributes.5 The practically infinite set of potential semantic
constraints that can be desired/imposed on a given data set
makes it such that versatile, “data goodness” (i.e., semanti-
cally) assessment methods are required. Thus, we propose
to extend the marking algorithm with semantic data
constraints awareness.

We introduced and successfully analyzed this idea (an
instance of consumer driven encoding) in [24]. Each property
of the database that needs to be preserved is written as a
constraint on the allowable change to the data set. The
watermarking algorithm is then applied with these con-
straints as input and reevaluates them continuously for
each alteration. A backtrack log (see Fig. 11) is kept to allow
undo operations in case certain constraints are violated by
the current watermarking step.

4.3 Bijective Attribute Remapping

Consider the scenario of an attack in which the categorical
attribute A is remapped through a bijective function to a
new data domain. In other words, the fa1; . . . ; anA

g values
are going to be mapped into a different set fa1

0; . . . ; anA

0g.
The assumption here is that, fromMallory’s perspective, the
remapped data still features enough value that can be
banked upon.6

The problem of remapping becomes clear in the mark
detection phase when, after tuple fitness selection, the bit
decoding mechanism will fail, being unable to determine t
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Fig. 9. Defeating correlation attacks revisited (multiple embeddings).

5. It should be noted that not all constraints of the database need to be
specified. A practical approach would be to begin by specifying a upper
bound on the percentage of allowable data alterations. Further semantic or
structural constraints that the user would like to preserve can be added to
these basic constraints.

6. Even more, Mallory could sell a secret secure black-box “reverse
mapper” together with the remapped data to third parties, still producing
revenue.



such that TjðAÞ ¼ at. It will instead determine a t value that
maps to the fa1

0; . . . ; anA

0g value set. Thus, our main
challenge is to discover the mapping (or a major part of
it) and apply its inverse in the detection phase.

Unless the items in the initial set fa1; . . . ; anA
g feature a

peculiar distinguishing property, intuitively, this task is
impossible for the general case, as there are a large number
of possible mappings. Nevertheless, over large data sets, we
argue that a such distinguishing property might exist,
namely the value occurrence frequency for the items in
fa1; . . . ; anA

g. We propose to sample this frequency in the
suspected (remapped) data set and compare the resulting
estimates (E½fAðaj

0Þ�j2ð1;nAÞ
) with the known occurrence

frequencies (ðfAðajÞÞj2ð1;nAÞ
). Next, we sort both sets and

associate items by comparing their values. For example, if

the closest value to E½fAðai
0Þ� (in the set E½fAðaj

0Þ�j2ð1;nAÞ
) is

fAðajÞ (in the set ðfAðajÞÞj2ð1;nAÞ
), then we add i ! j to the

inverse mapping to be used at watermark decoding time

(see Fig. 12).

4.4 Data Addition

While it does a good job in watermark embedding, data
alteration is an expensive operation because it effectively
destroys valuable data. There are also other data transfor-
mations that we can make use of, each with a different
degree of associated data distortion and benefits. In
particular, data addition seems to be a promising candidate.
Intuitively, it features a much lower data distortion rate (no
actual alterations) and, thus, presents potentially higher
benefits. On the other hand, there likely exists an upper
bound on the number of tuples that can be added to the
data. Let padd be the upper bound on the allowed additional
percentage of tuples to be added. We propose that, in
addition to the initial data-altering step, we artificially
“inject” watermarked tuples that conform to the “fitness”
criteria (while conforming to the overall data distribution in
order to preserve stealthiness).

But isn’t data addition of “fit” tuples inhibited by the
one-way nature of the used cryptographic hash? Not
exactly. Because e effectively “reduces” the fitness criteria
testing space to a cardinality of e, we can afford to
massively produce random tuple values (within the
appropriate attribute data domain) and test for “fitness.”
On average (depending on the randomness of the tuple
producing mechanism), one in every e tuples should
conform (as the values are evaluated modulo e).

If a percentage of padd artificially produced tuples are to

be added to the data, the watermark is effectively enforced

with an additional padd �N bits. See Section 3.5 for an

analysis on the impact of watermark bits on the encoding
resilience.

5 DISCUSSION

5.1 Vertical Partitioning Revisited

While most vertical partitioning attacks can be handled by a

multiple attribute embedding solution as described in

Section 3.4, consider an extreme vertical partitioning attack

scenario in which Mallory only preserves a single (catego-

rical) attribute A (a multiset).
An intuitive assumption is that nA (the number of

possible values in A) is much smaller than N , thus, A (by

itself) is naturally containing many duplicate values.

Because there is probably very little value associated with

knowing the set of possible values of fa1; . . . ; anA
g, the main

market-able value of A (in Mallory’s eyes) is (arguably) to

be found in one of the only remaining characteristic

properties, namely, the value occurrence frequency dis-

tribution ½fAðaiÞ�i2ð1;nAÞ
. If we could devise an alternative

watermark encoding method for this set, we would be able

to associate rights also to this aspect of the data, thus

surviving this extreme partitioning attack.
Note: If the data value occurrences are uniformly

distributed (often unlikely, imagine airport or product

codes), distinguishing among these values will not work

and (arguably) there is nothing one can do to watermark

that result.
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Fig. 10. Extended Algorithm: (a) Awareness of previous values is included in the low-impact encoding (the val seen cnt hash-table). (b) Handling
correlation detection through multiple layers of embeddings (embedding algorithm shown, base decoding is similar to Fig. 5a).

Fig. 11. Data quality is continuously evaluated. A backtrack log aids

undo operations in cases where the watermark embedding would violate

quality constraints (see also [24]).



In [24], we introduced a watermarking method for
numeric sets that is able to minimize the absolute data
alteration in terms of distance from the original data set. We
propose to apply this method here to embed a mark in the
occurrence frequency distribution domain (see Fig. 13). One
concern we should consider is the fact that, in the
categorical domain, we are usually interested in minimizing
the number of data items altered, whereas, in the numeric
domain, we aim to minimize the absolute data change. It is
fortunate that, because ½fAðaiÞ�i2ð1;nAÞ

are values modeling
occurrence frequency, a solution minimizing absolute data
change in this (frequency) domain naturally minimizes the
number of items changed in the categorical value domain.
Other concerns include issues such as multimark inter-
ference (with the other encodings), which can be solved by
an approach similar to the one in Section 3.4 using
embedding markers and/or deploying a mark interference
graph/tree (see Fig. 7).

5.2 Minimizing Alteration Distance

An interesting problem to consider is the case when, for a
given “fit” tuple, certain alterations would be preferred to
others. For example, if the given attribute represents airport
names, intuitively, it is likely that an alteration changing
”Chicago, O’Hare” into ”Las Vegas” produces more
damage overall than one that would result in ”Chicago,
Metro.” In other words, what if there exists a certain
distance metric model for the values within a categorical
attribute and the encoding is to minimize a (e.g.,) sum (for
each change in the data) of these associated alteration
distances.

This scenario canbe easilydealtwith through thedesignof
a data quality plugin that continuously evaluates the amount
of damage already performed and allows only the alterations
that conform. However, such a solution suffers from several
issues. For one, upon encountering a “fit” tuple that doesn’t
conform to this quality metric, the only alternative available
to the data quality plugin is to simply veto the proposed
modification. Depending on the restrictiveness of the desired
alteration distance upper bound, this will yield fewer tuples
that can be used in the marking process, thus resulting in a
reduced bandwidth. Additionally, a condition like the one
above (sum of all alteration distances to not exceed max-
imum) is not easy to implement so as to result in a resilient

embedding. A trivial imple-mentation would simply allow
all alterations until the sum exceeds a certain upper bound.
But, in this case, if the data is read sequentially, thiswill result
in a data set watermarked only in a portion at its beginning,
after which most of the alterations will be denied. A smarter
version would be to “spread” the allowed modifications
throughout the data, which, in turn, would require the data
quality plugin to allow encoding only to some of the good
“fit” tuples, to “save” some of the allowed alteration distance
for future ones. Thiswouldhopefully result in the coverageof
the entire data.

But what if we could modify the encoding method so as
to naturally accommodate such a case? We propose to
modify the tuple alteration criteria to result not in one value
for t in the selection of TiðAÞ ¼ at (see Section 3.3.1), but
rather in an entire set of � < nA potential candidate values.
Let us define

t0 ¼ set bit

�

msbðHðTiðKÞ; k1Þ; bðnA � �ÞÞ; 0;

wm data msb HðTiðKÞ; k2Þ; b
N

e

� �� �� ��

and

St0 ¼ fatjmsbðt; nA � �Þ ¼ msbðt0; nA � �Þg:

Then, at each encoding step for a fit tuple i, its new
value TiðAÞ is selected from St0 so as to minimize the
alteration distance.

In other words, we “divide” the set of potential discrete
values for A into nA

�
subsets of � elements (sharing the first

bðnA � �Þ most significant bits). Each t0 value then selects a
certain subset St0 , and the final corresponding TiðAÞ is
constructed by selecting the “closest” (in terms of the above
discussed alteration distance metric) data value in St0 .

The number and size of the subsets are controlled
through a choice of an appropriate �. To the extreme, if
� ¼ nA � 1, only two such subsets exist (i.e., one subset with
values having the most significant bit of their index “true”
and the other subset with the rest).

5.3 Blindness, Incremental Updates, and Streams

Our watermarking method is blind in that it doesn’t require
the original data in the detection process. This is important,
because it is unrealistic to assume the original data available
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after a longer time elapses, especially in the case of massive
data sets.

The method supports incremental updates naturally. As
updates occur to the data, the resulting tuples can be
evaluated on the fly for “fitness” and watermarked accord-
ingly. Therefore, the encoding also (gracefully) handles data
streaming in which tuples are available only in a one-pass
streaming model with limited storage space and processing
power. This makes it ideal for a transparent deployment
scenario in which a black box “sits” at the data “exit” point
and continuously watermarks outgoing information.

5.4 MultiLayer Self-Reenforcing Marks

The above solution (and any symmetric/single-key water-
marking method) is vulnerable to a scenario in which
Mallory (who might have participated in a public court
hearing) finds out the key that was used to watermark a
given Work. He can then use the key to remove the
watermark and have illicit access to the original version.

Work in asymmetric multimedia watermarking [4], [5],
[7], [8], [9], [11], [26] deploys different keys for detection
(public) and embedding (secret). The design of an asym-
metric version of our solution is to be subject to future
research. Now, however, we propose a draft idea that seems
to handle this scenario reasonably well.

The idea is to simply embed multiple weak watermarks
with different secret keys and reveal in court only a certain
subset of these, enough to satisfy the convince-ability
requirements. Having these keys would only enable the
removal of the corresponding watermarks and nothing
more. The data will still feature the remaining ones, which
will hopefully be enough for the next court hearing instance.

Yet another idea would be to embed multiple self-
reenforcing pairs of watermarks ðw1; w2Þi with different keys
ðk11; k

1
2; k

2
1; k

2
2Þi, such that altering w2 will result in enforcing

w1 (see Fig. 14). The feasibility, details, and benefits of such a
method are to be subject to future investigation. Space
constraints prevent further elaboration here.

5.5 Categorical and Numerical Data Types

In many applications, a combination of categorical and
numerical relational data types are manipulated. Can we

design a method for rights assessment that considers this
potential type-mix directly? While the trivial approach
would be to treat these data types separately (e.g., deploy
numeric methods [15], [25] for numeric types, etc.), it is
(arguably) of interest to explore how/if these methods can
be combined, if a new method is to be designed, and if it is
of benefit to do so.

Why would one provide a rights protection method that
works on a data set composed of two different types of
data? Let us assume, for example, a schema ðA;BÞ which
contains an attribute A of a numeric continuous type and an
attribute B of a categorical type. What could be achieved by
such a (combined) proof mechanism that could not be
achieved by the individual application of the separate
methods for each type (e.g., numeric for attribute A and
categorical for B)? One answer is that a rights assessment
mechanism for combined data types would possibly also
prove that the associated data sets were actually produced
“together.” Achieving such a proof could be of significant
interest, for example, if the intrinsic value of the data lies in
the actual combination of the two data types. Another
answer would have to do with the existence of a primary
key, in the case when the considered data appears under the
form of associated multisets and does not contain a primary
key with unique values.

How could one go about designing such a solution?
While extensive details are out of scope here, let us briefly
indulge in this exploration. One idea would be to
“associate” the two attributes by encoding a watermark in
B using A as a first argument in a normal encoding
procedure for categorical types,markðA;BÞ. In fact, it seems
there are no modifications necessary to enable this. Thus, a
solution is provided by the current work, in effect, water-
marking the ðA;BÞ pair by using B as a watermark carrier
and A as associative reference.

However, there might be scenarios where A cannot be
used as a first argument (e.g., in multiple layers of numeric
watermarks it would be changed by another encoding). It
would also be (arguably) of interest to modifyA instead ofB
in the watermarking process because of the potential of less
significant damage in the case of minor numeric alterations
to A (as opposed to discrete changes in the categorical
domain). Because the existing numeric domain methods
[15], [25] require a resilient, unchanging primary key, this
becomes especially challenging. Could somehow the values
in B (maybe combined with information from the associated
A values) offer enough entropy for the construction of a
primary key? In other words, can we use a combination of
BþmsbðAÞ to construct a primary key to deploy numeric
watermarking for A? Or does this require more complex
constructs? This is a subject for future research.

5.6 Multiple Data Sources

Let us now discuss how our solution handles the case of
data sets derived from multiple data sources. This scenario
could be of significant interest for example in the case of an
EquiJOIN performed between two data sets, ðA;BÞ,
unwatermarked and ðB;CÞ, watermarked (plain new data
addition was already discussed previously). Does the
watermark survive? The short answer is likely yes. Because
the watermark encoding relies on a bias in the association
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Fig. 14. Handling an informed Mallory.



between B and C, it can be naturally retrieved from the
JOIN result under certain reasonable assumptions.

The first assumption is that B is preserved in the JOIN
result. Otherwise, the watermark cannot be retrieved. The
second assumption has to do with the fact that, due to the
effect of the JOIN, the detected encoding will be likely
weaker than the original as some values of B in the
ðB;CÞ data set would not survive in the JOIN result (if these
values don’t appear in ðA;BÞ). However, in a reasonable
scenario, significantly much of ðB;CÞ appears in the result,
thus allowing for detection of the original watermark.7

However, if too few values from the ðB;CÞ data set are not
finding their way into the result, the watermark will not
survive either.

Now, if ðA;BÞ was also watermarked, the reasoning is
similar. In a favorable scenario, both of the original marks
can be recovered from the join result. On the other hand if
the join result size is (statistically speaking) much smaller
than the original, no significant watermark bias can be
detected.

6 EXPERIMENTS

We implemented a Java proof-of-concept of the water-
marking algorithm and deployed it on categorical attributes
in the Wal-Mart Sales Database. The Wal-Mart Sales
Database contains most of the information regarding item
sales in Wal-Mart stores nationwide. In the following, we
present some of our experiments in watermarking catego-
rical attributes within this database. Our experimental setup
included access to the 4 TBytes of Wal-Mart data, (formerly)
hosted on a NCR Teradata machine, one 1.6GHz CPU Linux
box with Sun JDK 1.4, and 384MB RAM. The amount of data
available is enormous. For example, the {ItemScan} relation
contains over 840 million tuples. For testing purposes, we
deployed our algorithmon a randomly selected subset of size
equal to a small percentage of the original data size (e.g., just a
maximum of 141,000 tuples for relation {UnivClassTables.

ItemScan}). The relational schema included the attributes:

Visit Nbr INTEGER PRIMARY KEY

Item Nbr INTEGER NOT NULL

To illustrate and test our watermarking algorithm, we
chose Item_Nbr, a categorical attribute, uniquely identify-
ing a finite set of products. The watermark considered was
10 bits long and all the presented data is the result of an
averaging process with 15 passes (each seeded with a
different key) aimed at smoothing out data-dependent
biases and singularities.

In the first experiment, we analyzed the behavior of
the embedded watermark in the presence of massive data
alterations. As the attack size grows (random alterations
to the data), the watermark distortion increases. The error
correction mechanism (majority voting in this case) does
a good job in error recovery. This is particularly so in the
case of random alterations to the underlying data, with
the only available data altering attack option as discussed
in Section 3.5. Fig. 15a depicts this phenomena for
two values of e.

In the next experiment, we explored the relationship
between the amount of data modifications required in the
watermarking phase and a minimum guaranteed water-
mark resilience. It can be seen in Fig. 15b that as e increases
(decreasing number of encoding modifications), the vulner-
ability to random alteration attacks increases accordingly.
This illustrates the trade-off between the requirement to be
resilient and the preservation of data quality (e.g., fewer
alterations). Fig. 16a represents the composite surface for
both experiments.

An experiment analyzing resilience to data loss is
depicted in Fig. 16b. We observe here the compensating
effect of error correction. Compared to data alteration
attacks, the watermark survives even better with respect to
the attack size (in this case loss of data).

In Fig. 17, various aspects of the implementation

execution times are illustrated. In Fig. 17a, it becomes clear

that there seems to be a minimal dependency of e of the

embedding (detection graph is virtually identical, thus
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Fig. 15. (a) The watermark degrades gracefully with increasing attack size (e ¼ 65). (b) More available bandwidth (decreasing e) results in a higher

attack resilience.

7. This is possible due to the detection process being independent of
actual data location (as long as some of the “fit” values of B are preserved in
the join result).



omitted) times. Execution time seems to be mainly linear in

the data size, as also expected. In Fig. 17b, it can be seen that

detection yields almost identical times as the embedding

process. The linear dependency is clear. An average of

25K tuples can be processed per second by our proof of

concept implementation. We expect a speed-up of orders of

magnitude in an optimized industry-level version.

7 CONCLUSIONS

In this work, we defined the problem of rights protection

for categorical data through watermarking. We proposed a

solution and analyzed it both in theory and in practice. We

outlined improvements and extensions (e.g., an alternative

for occurrence frequency encoding to survive extreme

vertical partitioning attacks) and discussed main associated

attacks and challenges. We implemented a proof-of-concept

for our algorithm and deployed it in experiments on real

Wal-Mart sales data. Our method proves (experimentally

and by analysis) to be extremely resilient to both alteration

and data loss attacks, for example, tolerating up to

80 percent data loss with a watermark alteration of only

25 percent.

Various issues remain to be explored. Additive water-

mark attacks need to be analyzed in more depth. Self-

reenforcing multilayered watermarks seem to be of impor-

tant potential for handling informed attackers and should be

explored. Also, while the concept of on-the-fly quality

assessment (see Section 4.2) has a good potential to function
well, as confirmed also by experiments in [25], another

interesting avenue for further research would be to augment

the encoding method with direct awareness of semantic

consistency (e.g., classification and association rules). This

would likely result in an increase in available encoding

bandwidth, thus, in a higher encoding resilience. One idea

would be to provide a way to express such constraints and

their propagation at embedding time (e.g., ”IF A.product
==’APPLES’ THEN ASSERT(A.price=’2.99’)”).
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