
Rights Protection for Relational Data
Radu Sion, Mikhail Atallah, Fellow, IEEE, and Sunil Prabhakar

Abstract—In this paper, we introduce a solution for relational database content rights protection through watermarking. Rights

protection for relational data is of ever-increasing interest, especially considering areas where sensitive, valuable content is to be

outsourced. A good example is a data mining application, where data is sold in pieces to parties specialized in mining it. Different

avenues are available, each with its own advantages and drawbacks. Enforcement by legal means is usually ineffective in preventing

theft of copyrighted works, unless augmented by a digital counterpart, for example, watermarking. While being able to handle higher

level semantic constraints, such as classification preservation, our solution also addresses important attacks, such as subset selection

and random and linear data changes. We introduce wmdb.*, a proof-of-concept implementation and its application to real-life data,

namely, in watermarking the outsourced Wal-Mart sales data that we have available at our institute.

Index Terms—Rights protection, relational data, watermarking, information hiding.

�

1 INTRODUCTION

THEmain purpose of Digital Watermarking is to protect a
certain content from unauthorized duplication and

distribution by enabling provable ownership over the
content. It has traditionally [6], [12], [18] relied upon the
availability of a large noise domain within which the object
can be altered while retaining its essential properties. For
example, the least significant bits of image pixels can be
arbitrarily altered with little impact on the visual quality of
the image (as perceived by a human). In fact, much of the
“bandwidth” for inserting watermarks (such as in the least
significant bits) is due to the inability of human sensory
system (especially sight and hearing) to detect certain
changes. More recently, the focus of watermarking for
digital rights protection is shifting toward different data
types such as text, software, and algorithms. Since these
data types have very well-defined semantics (as compared
to those of images, video, or music) and may be designed
for machine ingestion, the identification of the available
“bandwidth” for watermarking is as important a challenge
as the algorithms for inserting the watermarks themselves.

A challenge of watermarking [21] is to insert an indelible

mark in the object such that 1) the insertion of the mark

does not destroy the value of the object (i.e., the object is

still useful for the intended purpose) and 2) it is difficult for

an adversary to remove or alter the mark beyond detection

without destroying the value of the object. Clearly, the

notion of value or utility of the object is central to the

watermarking process. This is closely related to the type of

data and its intended use. For example, in the case of

software, the value may be in ensuring equivalent compu-

tation and, for text, it may be in conveying the same

meaning (i.e., synonym substitution is acceptable). Simi-

larly, for a collection of numbers, the utility of the data may

lie in the actual or the relative values of the numbers, or in
the distribution (e.g., normal with a certain mean).

Although a considerable amount of research effort has
been invested in the problem of watermarking multimedia
data (images, video, and audio), there is relatively little
work on watermarking other types of data. Recent work has
addressed the problems of software watermarking [5], [17]
and natural language watermarking [2]. Here, we study the
issue of watermarking numeric relational content. Protect-
ing rights over outsourced relational data is of ever-
increasing interest, especially considering areas where
sensitive, valuable data is to be outsourced. Good examples
are data mining applications (e.g., Wal-Mart sales database,
oil drilling data, financial data, etc.), where a set of data is
usually produced/collected by a data collector and then
sold in pieces to parties specialized in mining that data.
Given the nature of most of the data, it is hard to associate
rights of the originator over it. Watermarking can be used to
solve this issue.

An important point about watermarking should be
noted. By its very nature, a watermark modifies the item
being watermarked. If the object to be watermarked cannot
be modified, then a watermark cannot be inserted. The
critical issue is not to avoid changing the data, but to limit
the change to acceptable levels with respect to the intended
use of the data. Clearly, one can always identify some use of
the data that would be affected by even a minor change to
any portion of it. It is therefore necessary that the intended
purpose of the data to be preserved is identified during the
watermarking process.

Whereas extensive research has focused on various
aspects of DBMS security, including access control techni-
ques as well as data security issues [3], [4], [8], [9], [10], [11],
[14], [15], [16], [19], little has been done to secure proof of
rights over relational data. Only one related simultaneously
published effort is available for comparison [13]. Numerous
fundamental differences distinguish our results from this
effort. A comparative discussion can be found in Section 5.1.

In this paper, we explore the issue of securing valuable
outsourced data through watermarking, enabling future

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004 1

. The authors are with the Department of Computer Sciences, 250 N.
University Street, West Lafayette, Indiana, 47907-2066.
E-mail: {sion, mja, sunil}@cs.purdue.edu.

Manuscript received 5 Feb. 2003; revised 26 Aug. 2003; accepted 9 Dec. 2003.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 118247.

1041-4347/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

court proofs assessing proper rights over the content. Thus,
the main contributions of the present work include:

1. a resilient watermarking method for relational data,
2. a technique for enabling user-level runtime control

over properties that are to be preserved as well as
the degree of change introduced,

3. a complete, user-friendly implementation for nu-
meric relational data, and

4. the deployment of the implementation on real data,
in watermarking the Wal-Mart Sales Database and
the analysis thereof.

Our solution starts by receiving as user input a reference
to the relational data to be rights-protected, a watermark to
be embedded as a copyright proof, a secret key used to
protect the embedding, and a set of data quality constraints
to be preserved in the result. It then proceeds to watermark
the data while continuously assessing data quality, poten-
tially backtracking, and rolling back undesirable alterations
that do not preserve data quality. Watermark embedding is
composed of two main parts: In the first stage, the input
data set is securely partitioned into subsets of items; the
second stage then encodes one bit of the watermark into
each subset. If more subsets (than watermark bits) are
available, error correction is deployed to result in an
increasingly resilient embedding. The algorithms intro-
duced here prove to be resilient to important classes of
attacks, including subset selection, linear data changes, and
random item(s) alterations.

The paper is structured as follows: Section 2 discusses
the main challenges for watermarking relational databases.
Section 3 introduces an initial idea to a primitive problem
(watermarking numeric collections) to be used later in the
global algorithm. Section 4 constructs a solution for
relational databases by building upon the primitive build-
ing block introduced earlier. Various issues, including
related work, algorithm extensions, and challenges for
watermarking nonnumeric relational data, are discussed
in Section 5. Section 6 presents implementation details as
well as experiments and evaluations of the proposed
watermarking technique on real outsourced Wal-Mart
warehouse data. Section 7 concludes.

2 CHALLENGES

While research related to the issue of embedding informa-
tion into a set of numbers [1] can be found (sometimes
implicitly) in different frameworks, associated with various
information hiding techniques (e.g., frequency domain
embedding, DCT, and Wavelet watermarking [6]), rela-
tional data presents a different set of challenges and
associated constraints. These challenges are novel and
directly related to the specifics of the domain, namely,
large sets of items organized in a relational framework, with
associated semantics to be preserved. This is not the case for
multimedia (mostly time-series type of) data, where
semantics are associated with the data stream only at a
much higher composite level. For example, in a multi-
megabit audio channel of news broadcast, the semantics to
be protected are likely to be in the broadcast speech text
rather than directly in the underlying audio stream bits;

thus, a fundamentally different and broader noise band
becomes available for watermark embedding, and with it
different (possibly less accurate) encoding and evaluation
methods. By contrast, the low noise bandwidth of major
relational framework data uses (e.g., data mining) require a
different approach, taking a more careful look at the actual
tolerated changes on the given data.

Whereas in the multimedia case, the data quality model
is usually at best fuzzy because of the relativity of any
model of human perception, one solution here is to define
the noise channel explicitly as part of the watermarking
solution, in terms of required customer constraints to be
preserved on the final data. At watermarking time, data
quality can be continuously assessed as an intrinsic part of
the marking algorithm in itself. In this respect, we can claim
that, as opposed to other watermarking algorithms in
various domains (e.g., image watermarking), we maintain
100 percent of the associated data value with respect to a set
of given required data “goodness” constraints. We believe
this is an essential part of any watermarking application in
this low-noise, high-fragility domain of relational data,
especially considering data mining issues, such as classifi-
cation and JOIN results preservation (see Section 6.2).

Additionally, the watermark encoding method needs to
feature a design suited to the new constraints, namely, the
ability to survive a maximum level of attacks and, at the
same time, accommodate the existence of required data
“usability” conditions to be satisfied by the result. Our
algorithm, deploying means for data distribution manip-
ulation and encoding the actual information in distribution
properties of the data rather than directly into the data
itself, is best suited for its purpose, and almost optimally so.
For, while allowing an adjustable degree of freedom in
alteration points selection, it provides at the same time a
surprisingly high level of resilience as evidenced by our
extensive validation experiments (See Section 6.2).

2.1 Available Bandwidth

An important first step in inserting a watermark into a
relational database (and thereby altering it), is to identify
changes that are acceptable. As was mentioned earlier, the
acceptable nature and level of change is dependent upon
the application for which the data is to be used.

With respect to particular data uses and metrics of
quality, it is of utmost importance that the watermarking
process not interfere with the final data consumer
requirements. This is why these requirements need to
be considered as an integral part of the watermarking
process, providing a feedback loop, in assessing the
quality of the final result.

To the best of our knowledge, our solution is the first to
recognize the importance of this essential desiderata and
provide a direct algorithm for it.

In the following, we define a functionality that will
enable us to determine the watermarking result as being
valuable and valid, within permitted/guaranteed error
bounds. The available “bandwidth” for inserting the bits
of the watermark text is therefore not defined directly.
Instead, we define allowable distortion bounds for the input
data in terms of consumer-defined metrics. If the water-
marked data satisfies the metrics, then the insertion of the

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

watermark is considered to be successful. This quality
assessment mechanism is part of the marking process.

Example. One simple but relevant example is the maximum
allowable mean squared error case, in which the usability
metrics are defined in terms of mean squared error
tolerances as

ðsi � viÞ2 < ti 8i ¼ 1; . . . ; n

and
P

ðsi � viÞ2 < tmax, where SS ¼ fs1; :::; sng � IR is the
data to be watermarked, VV ¼ fv1; . . . ; vng is the result,
TT ¼ ft1; . . . ; tng � IR, and tmax 2 IR define the guaran-
teed error bounds at data distribution time. In other
words, TT defines the allowable distortions for individual
elements in terms of mean squared error (MSE) and tmax

the overall permissible MSE.

Database Semantics. Specifying only allowable change
limits on individual values and possibly an overall limit,
fails to capture important semantic features associated with
the data—especially if the data is structured. Consider, for
example, age data. While a small change to the age values
may be acceptable, it may be critical that individuals that
are younger than 21 remain so even after watermarking if
the data will be used to determine behavior patterns for
under-age drinking. Similarly, if the same data were to be
used for identifying legal voters, the cut-off would be 18
years. Furthermore, for some other application, it may be
important that the relative ages (in terms of which one is
younger) not change. Other examples of constraints
include:

1. uniqueness—each value must be unique;
2. scale—the ratio between any two number before and

after the change must remain the same; and
3. classification—the objects must remain in the same

class (defined by a range of values) before and after
the watermarking.

As is clear from the above examples, simple bounds on the
change of numerical values are often not enough.

Structured Data. Structured collections, for example, a
collection of relations, present further constraints that must
be adhered to by the watermarking algorithm. Consider a
data warehouse organized using a standard Star schema
with a fact table and several dimension tables. It is
important that the key relationships be preserved by the
watermarking algorithm. This is similar to the “Cascade on
update” option for foreign keys in SQL and ensures that
tuples that join before watermarking also join after water-
marking. This requires that the new value for any attribute
should be unique after the watermarking process. In other
words, we want to preserve the relationship between the
various tables. More generally, the relationship could be
expressed in terms of an arbitrary join condition, not just a
natural join. In addition to relationships between tuples,
relational data may have constraints within tuples. For
example, if a relation contains the start and end times of a
Web interaction, it is important that each tuple satisfies the
condition that the end time be later than the start time.

Also, an adversary attempting to destroy a watermark
becomes much more effective if he can identify the values in
which the watermark has been embedded. In addition to

specifying properties of the data that should be preserved
for usability [21], constraints can be used to prevent easy
detection of watermark locations. For example, a tuple with
a start time later than its corresponding end time, or a
customer with an age less than 12 years are very likely to be
detected as resulting from watermarking.

2.2 Model of the Adversary

In order to be effective, the watermarking technique must
be able to survive a wide variety of attacks. These attacks
may be malicious with the explicit intent of removing the
watermark, or may be the result of normal use of the data
by the intended user.

A1. Subset Selection. The attacker (Mallory) can
randomly select and use a subset of the original data set
that might still provide value for its intended purpose
(subtractive attack).

A2. Subset Addition. Mallory adds a set of numbers to
the original set. This addition is not to significantly alter the
useful (from the Mallory’s perspective) properties of the
initial set versus the resulting set.

A3. Subset Alteration. Altering a subset of the items in
the original data set such that there is still value associated
with the resulting set. A special case needs to be outlined
here, namely, (A3.a) a linear transformation performed
uniformly to all of the items. This is of particular interest as
such a transformation preserves many data mining related
properties of the data, while actually altering it consider-
ably, making it necessary to provide resilience against it.

Given the attacks above, several properties of a success-
ful solution surface. For immunity against A1, the water-
mark has to be embedded in overall collection properties
that survive subset selection (e.g., confidence intervals). If
the assumption is made that the attack alterations do not
destroy the value of the data, then A3 should be defeatable
by embedding the primitive mark in resilient global data
properties. As a special case, A3.a can be defeated by a
preliminary normalization step in which a common divider
to all the items is first identified and applied. For a given
item X, for notation purposes, we are going to denote this
“normalized” version of it by NORMðXÞ. Since it adds new
data to the set, defeating A2 seems to be the most difficult
task, as it implies the ability to identify potential uses of the
data (for Mallory).

Subset Recovery. Another interesting requirement is the
ability to “recognize” all (or at least most) of the collection
items before and after watermarking and/or an attack. That
is, how do we “recognize” an item and its corresponding
subset after it has been changed slightly?

3 SIMPLIFIED PROBLEM: NUMERIC COLLECTIONS

This section deals with the foundations of a primitive
numeric collection watermarking procedure that will be
later deployed as a subroutine in the main watermarking
algorithm. Section 4 evolves this building block into a
complete solution in the relational framework.

Let SS be a set of n real numbers SS ¼ fs1; . . . ; sng � IR.
Then, the general simplified problem of watermarking the
set SS can be defined as the problem of finding a transforma-
tion from SS to another item set VV, such that, given all possible

SION ET AL.: RIGHTS PROTECTION FOR RELATIONAL DATA 3

imposed usability metrics sets GG ¼ [Gi for any and all subsets
Si � SS, that hold for SS, then, after the transformation yields VV,
the metrics should hold also for VV.1 we call VV the “water-
marked” version of SS.

Thus, VV ¼ fv1; . . . ; vng � IR is the result of watermarking
SS by minor alterations to its content. Let a string of bits w of
size m << n be the desired watermark to be embedded into
the data (jwj ¼ m). We will use the notation wi to denote the
ith bit of w.

But, how much of a change is to be allowed to the
content? For a numeric collection, a natural starting point
for defining the allowed change is to specify an absolute (or
relative) change in value. For example, each value may be
altered by no more than 0.0005 or 0.02 percent. Morever, a
bound on the cummulative change may be specified. Our
solution for the simplified problem consists of several steps.
First, we deploy a resilient method for item labeling,
enabling the required ability to “recognize” initial items at
watermarking detection time (i.e., after watermarking and/
or attacks). In the next step, we ensure attack survivability
by “amplifying” the power of a given primitive water-
marking method. The amplification effect is achieved by
deploying secrets in the process of selecting the subsets to
become input for the final stage, in which a primitive
encoding method is deployed.

3.1 Solution Summary

A summary of the solution for the simplified problem reads
as follows:

Encoding Phase: (E.1). Select a maximal number of
unique, nonintersecting (see below) subsets of the original
set, using a set of secrets, as described in Section 3.3. (E.2) For
each considered subset, (E.2.1) embed a watermark bit into it
using the encoding convention in Section 3.3 and (E.2.2)
check for data usability bounds. If usability bounds are
exceeded, (E.2.3) retry different encoding parameter varia-
tions or, if still no success, (E.2.3a) try to mark the subset as
invalid (i.e., see encoding convention in Section 3.3), or if still
no success, (E.2.4) ignore the current set.2 We repeat step E.2
until no more subsets are available for encoding. This results
in multiple embeddings in the data.

Decoding Phase: (D.1). Using the secrets from step E.1,
recover amajority of the subsets considered in E.1, (or all if no
attacks were performed on the data). (D.2) For each
considered subset, using the encoding convention in
Section 3.3, recover the embedded bit value and reconstruct
watermarks. (D.3) The result of D.2 is a set of copies of the
same watermark with various potential errors. This last step
uses a set of error correcting mechanisms (e.g., majority
voting schemes) to recover thehighest likelihood initialmark.

3.2 Selecting Subsets

Watermarking a collection of data items requires the ability
to “recognize” (i.e., rediscover, at detection time) most of the
items before and after watermarking and/or a security
attack. In other words, if an item was accessed/modified

before watermarking, e.g., being identified with a certain
label L, then, hopefully, at watermark detection time the
same item is identified with the same label L or a known
mapping to the new label. More generally, we would like to
be able to identify a majority of the initial elements of a subset
after watermarking and/or attacks. As we will see, our
technique is resilient to “missing” a small number of items.
For more details, see Section 3.4.2.

Our solution is based on lexicographically sorting the
items in the collection, sorting occurring based on a one-
way, secretly keyed, cryptographic hash of the set of most
significant bits (MSB) of the normalized (see Section 2.2)
version of the items. The secret one-way hashing ensures
that Mallory cannot possibly determine the ordering. In the
next step (see Section 3.3), subset “chunks” of the items are
selected based on this secret ordering. Chunk-boundaries
(“subset markers”) are then computed and stored for
detection time (for a more in-depth discussion of subset
markers see Section 4).

More formally, given a collection of items as above,
SS ¼ fs1; . . . ; sng � IR, and a secret “sorting key” ks, we
induce a secret ordering on it by sorting according to a
cryptographic keyed hash of the most significant bits of the
normalized items. Thus, we have:

indexðsiÞ ¼ Hðks;MSBðNORMðsiÞÞ; ksÞ:

The MSB space here is assumed to be a domain where
minor changes on the collection items (changes that still
satisfy the given required usability metrics) have a minimal
impact on the MSB labels. This is true in many cases (as
usually the usability metrics are related to preserving the
“important” parts of the original data). If not suitable, a
different labeling space can be envisioned, one where, as
above, minor changes on the collection items have a
minimal impact.

Note. In the relational data framework, the existence of a
primary key associated with the given attribute to be
watermarked can make it easier to impose a secret sorting.
For more details, see Section 4.

3.3 Amplifying Watermark Power

Current watermarking algorithms draw most of their court-
persuasion power [21] from a secret that controlled water-
mark embedding (i.e., watermarking key). Much of the
attack immunity associated with a watermarking algorithm
is based on this key and its level of secrecy. Given a weak
partial marking technique (e.g., (re)setting a bit), a strong
marking method can be derived by a method of “mark
amplification”—repeatedly applying the weak technique in
a keyed fashion on different parts of the data being
watermarked.

Generic Solution. Let KK ¼ fk1; . . . ; kmg be a set of m
keys of n bits each. We define

Si ¼ fsj 2 SSjðkiÞbitj ¼ 1g; i ¼ 1; . . . ;m:

In other words, each Si � SS is defined by selecting a subset
of SS fully determined by its corresponding key ki 2 KK.

The main purpose of this step is to amplify the power
[21] of the general watermark. The next step will simply
consider each Si to be marked separately by building on a

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

1. In other words, if GG is given and holds for the initial input data, SS,
then GG should also hold for the resulting data VV.

2. This leaves an invalid watermark bit encoded in the data that will be
corrected by the deployed error correcting mechanisms (e.g., majority
voting) at extraction time.

simple watermarking method. The result will be at least an
m-bit (i.e., i ¼ 1; . . . ;m) overall watermark bandwidth
(unless we consider multiple embeddings and majority
voting, for error correcting purposes) in which each bit is
embedded/hidden in each of the marked Si.

We presented the generic solution above for illustrative
purposes. It works well for cases when exact item labeling is
available and there are no concerns of attacks of the types
A2 and A1 (i.e., subset addition, selection). The following
idea takes also into account these concerns.

Actual Solution. Given a collection of items as above,
SS ¼ fs1; . . . ; sng � IR, and a secret “sorting key” ks, we first
induce a secret ordering on it by sorting according to a
cryptographic keyed hash of the most significant bits of the
normalized items, e.g.,

indexðsiÞ ¼ Hðks;MSBðNORMðsiÞÞ; ksÞ:

We then build the subsets, Si, as “chunks” of items, a
“chunk” being a set of adjacent items in the sorted version
of the collection. This increases the ability to defeat different
types of attacks including “cut” and/or “add” attacks (e.g.,
A1, A2), by “dispersing” their effect throughout the data, as
a result of the secret ordering. Thus, if an attack removes
5 percent of the items, this will result in each subset Si being
roughly 5 percent smaller. If Si is small enough and/or if
the primitive watermarking method used to encode parts of
the watermark (i.e., 1 bit) in Si is made resilient to these
kind of minor transformations (see Section 6.2), then the
probability of survival of most of the embedded water-
marks is accordingly higher (see Section 3.4.2). Addition-
ally, in order to provide resilience to massive “cut” attacks,
we will select the subset “chunks” to be of sizes equal to a
given percent of the overall data set (i.e., not of fixed
absolute sizes). This choice provides adaptability of our
subset selection scheme to such attacks, assuring subse-
quent retrieval of the watermark even from, say, half of the
original data. Thus, the main purpose of this step is to
amplify the power [21] of the general watermark. The next
step will simply consider each Si to be marked separately
by building on a simple watermarking method. The result
will be a m-bit (i.e. i ¼ 1; . . . ;m) overall watermark
bandwidth in which each bit is embedded/hidden in each
of the marked Si.

3.4 Embedding the Watermark

Once each of the to-be-watermarked secret (keyed) sets Si

are defined, the problem reduces to finding a reasonable,
not-very-weak (i.e., better than “coin-flip,” random occur-
rence) algorithm for watermarking a medium-sized set of
numbers.

A desired property of an encoding method is the ability
to retrieve the encoded information (“blindly”) without
having the original data. This can be important, especially
in the case of very large dynamic databases (e.g., 4-5 TBytes
of data) where data mining portions were outsourced at
various points in time. It is unreasonable to assume the
requirement to store each outsourced copy of the original
data. Our method satisfies this desiderata.

3.4.1 Single Bit Encoding

We now discuss how a single bit is encoded into a selected
subset of the data. We are given Si (i.e., one of the subsets

secretly selected in the previous step) as well as the value of
a watermark bit b that is to be encoded into Si. Let GG
represent the set of user specified change tolerance, or
usability metrics.

Let vfalse, vtrue, c 2 ð0; 1Þ, vfalse < vtrue be real numbers
(e.g., c ¼ 90%, vtrue ¼ 10%, vfalse ¼ 7%). We call c a confidence
factor and the interval ðvfalse; vtrueÞ confidence violators
hysteresis. These are values to be remembered also for
watermark detection time. We can consider them as part of
the encoding key.

Definition. Let avgðSiÞ and �ðSiÞ be the average and standard
deviation, respectively, of Si. Given Si and the real number

c 2 ð0; 1Þ as above, we define vcðSiÞ to be the number of
items of Si that are greater than avgðSiÞ þ c� �ðSiÞ. We
call vcðSiÞ the number of positive “violators” of the c

confidence over Si, see Fig. 2.

Mark encoding convention. Given Si, c, vfalse, and vtrue as
above, we define markðSiÞ 2 ftrue; false; invalidg to be true
if vcðSiÞ > ðvtrue � jSijÞ, false if vcðSiÞ < vfalse � jSij, and
invalid if vcðSiÞ 2 ðvfalse � jSij; vtrue � jSijÞ.

In other words, the watermark is modeled by the

percentage of positive “confidence violators” present in Si

for a given confidence factor c and confidence violators

hysteresis ðvfalse; vtrueÞ. Encoding the single bit (see Fig. 1), b,

into Si is therefore achieved by making minor changes to

some of the data values in Si such that the number of

positive violators (vcðSiÞ) is either 1) less than vfalse � jSij if
b ¼ 0, or 2) more than vtrue � jSij if b ¼ 1. Of course, the

changes made to the data must not violate the change

tolerances, GG, specified by the user.
Note. Encoding the watermark bits into actual data

distribution properties (as opposed to directly into the data
itself) presents a set of advantages, the most important one
being its increased resilience to various types of numeric
attacks (see Section 6.2) as compared to the fragility of direct
data domain encoding.

Performing the required item alterations while satisfying
the given “usability” metrics (i.e., GG) is one of the remaining
challenges. To do this, the algorithm deploys the primitive
watermarking step (e.g., for Si) and then checks for data
usability with respect to GG. If the tolerances are exceeded, it
simply ignores Si and considers the next secretly selected
subset to encode the rest of the watermark. This will result
in errors (misses) in the encoded marks but by deploying
error correcting techniques (e.g., majority voting, see
Fig. 3b), the errors are mostly eliminated in the result. For
more details, see [20].

A decision needs to be made regarding the size of the
subsets selected in the amplification step (i.e., jSij). Given
that our method embeds 1 bit per subset, a trade off is to be
observed between larger sets (tolerant to more data
alteration attacks) but a small bandwidth, and smaller sets
(more “brittle” to attacks) but a larger encoding bandwidth.
This can and should be considered as a fine-tuning step for
the particular data usability metrics provided. If those
metrics are too restrictive, more items will be needed inside
Si to be able to encode one bit while still preserving
required usability. On the other hand, if the usability
metrics are more on the relaxed side, Si can be very small,

SION ET AL.: RIGHTS PROTECTION FOR RELATIONAL DATA 5

sometimes even 10-15 items. This enables for more

encoding bandwidth overall.
At watermark detection time, after recovering all the

watermark copies from the given data majority voting over
all the recovered watermark bits (or any other error
correcting method for that matter, see Fig. 3a) can be
employed in order to determine the most likely initial
watermark bits.

Another interesting point to be made here is that (as

shown in [21]) bringing the watermarked data as close as

possible to the allowable distortion bounds (“usability

vicinity” limits) is of definite benefit in making the usability
of the watermarked data as fragile as possible to any attack.
An attacker with the intent of removing/altering the
watermark is now faced with the fact that any further
alterations performed have an increased likelihood of
making the data invalid with respect to the guaranteed
usability metrics,3 thus potentially removing its value. We
integrated this idea also in our implementation. As water-
mark embedding progresses, a certain embedding aggres-

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

3. Because the watermarking process already altered the data up to its
usability metrics limits.

Fig. 1. Single Bit Encoding Algorithm (illustrative overview).

Fig. 2. Distribution of item set Si. Encoding of the watermark bit relies on altering the size of the “positive violators” set, vcðSiÞ.

Fig. 3. (a) Different error correcting (wmdb.sys.RedundancyCoder) plugins can be added/removed at runtime in order to provide an increased level
of resilience for the original watermark to be embedded. (b) Example of majority voting over three recovered watermark copies for a 6 bit sized

siveness factor increases, resulting in actual changes to the
data to be performed more and more up to the permitted
limit and not only as required.

3.4.2 Resilience Analysis

Maybe the most important resilience-revealing questions in
evaluating watermarking algorithms can be formulated as
follows: What is the probability of success of Mallory aiming at
destroying at least one watermark bit, as a function of the amount
of data damage (i.e., number of surgeries)? The importance of
an answer to the above stems from the immediate ability to
compute resilience and attack-ability bounds of the water-
marking algorithm by relating the required damage for a
successful attack to the maximum permissible damage
levels.

Let us naturally assume a primitive 1-bit encoding
method for subsets (of subset size denoted by s) that is
resilient to a minimum s� l random “surgeries” (data item
removals and/or alterations), l 2 IR. This resilience can be
guaranteed by varying the encoding parameters presented
in Section 3.3. For now, we are going to assume a most
general scenario by not assigning values for l. Also, let us
consider an error correcting mechanism (e.g., majority
voting) able to correct e� n

s � 1
m bit errors where, as above,

n is the number of total items in the input set, m is the bit-
size of the watermark to be embedded, and e 2 IR, e � 2. In
other words, e naturally models the error correcting power
proportional to the ratio of total available bandwidth to
watermark size. In order to keep a maximum degree of
generality, we are not assigning values for e at this point.

Let P ðs; a00Þ be the average success probability (i.e., actual
bit-flip) of a random, a00 sized (i.e., a00 surgeries) attack on a
1-bit encoding subset of size s. The assumption of resilience
to l surgeries of the subset encoding can be thus also
expressed as P ðs; xÞ ¼ 0; 8x � l. First, let us compute the
local (i.e., at subset level) amount of surgeries required in
the case of an a-sized (i.e., a surgeries) global attack on the
entire marking scheme. Because of the additional sorting
and one-way hashing step (see Section 3.3), for illustrative
purposes, we introduce a simplifying assumption, namely,
that of a uniform distribution of all the surgeries among the
individual subsets. That is, in the following, a00 ¼ a� s

n . The
probability of an a-sized attack affecting (e.g., flipping)
exactly t bits in the underlying data bandwidth, before error
correction, Ptðs; aÞ is:

Ptðs; aÞ ¼ Ct
n
s
� P ðs; a00Þt � ð1� P ðs; a00ÞÞn�t:

Given our e-bit error correction ability, the probability that
one watermark bit is altered by an a-sized attack becomes:
P1ðaÞ ¼ 1�

Pe
i¼1ðPiðs; aÞÞ. Getting back to P ðs; a00Þ let us

recollect the fact that it actually represents the average
success probability (i.e., actual bit-flip) of a random, a00

sized (i.e., a00 surgeries) attack on a 1-bit encoding subset of
size s. There also exists the assumption of resilience to l
surgeries of the subset encoding.

Because the bit-encoding method is highly dependent on
input data, its distribution, and actual values of the
involved encoding parameters (e.g., c, vfalse, and vtrue), it
becomes impossible to provide an exact, in-depth analysis
of the actual value of P ðs; a00Þ for arbitrary input data. Given

a certain fixed data set, it might be possible to actually
exactly determine the value of P ðs; a00Þ but to no useful
effect, as much of the power of the encoding lies in its
ability to watermark arbitrary input.

Another method of analyzing P ðs; a00Þ could take the
form of an experiment, sampling its value over a large
number of potential different data inputs. We are proposing
to pursue this avenue in future research. For the scope of
the current analysis, given also associated space constraints,
we are going to reasonably approximate P ðs; a00Þ.

Remember that we introduced the assumed average l
tolerated surgeries per 1-bit encoding. We know that, on
average, P ðs; xÞ ¼ 0; 8x � l. Let us assume that a00 > l. Then,
we approximate P ðs; a00Þ ¼ q � a00�l

s ; 8a00 2 ðl; sÞ, where q 2
IR; q � 1 is a input data characteristic normalization con-
stant. Now, we can write Ptðs; aÞ ¼ Ct

n
s
� ðq � a00�l

s ÞÞn�t For
illustration purposes, by substituting

t ¼ 1; n ¼ 10; 000; s ¼ 50; a ¼ 1; 000; l ¼ 4; q ¼ 1;

and continuing the computation, we obtain,

P1ð50; 1; 000Þ ¼
1

200
� 1

50
� 49

50

� �9;999

’ 1:86� 10�92 ’ 0;

namely, that there is a surprisingly low probability of
destroying one bit in the underlying data by a 1,000-sized
attack on an input set of 10,000 where the subsets are of size
50 and subset encoding is tolerant to at least four item-
surgeries. In other words, for a 10,000 tuples item set, an
encoding with subsets of size 50 and an average 1-bit subset
encoding tolerance to 6 percent data item losses (experi-
mental results show much higher loss tolerance, see
Section 6.2), this probability is surprisingly low, virtually
zero. In Section 6.2, we present supporting experimental
results.

4 THE RELATIONAL DATABASE

As discussed in Section 2, in the relational database setting,
it is essential to preserve structural and semantic properties
of the data. Sometimes, it is undesirable or even impossible
to map higher-level semantic constraints into low-level
(combined) change tolerances for individual tuples or
attributes. It should be noted that not all constraints of the
database need to be specified. For example, in certain
scenarios, a practical approach would be to begin by
specifying a mean square error bound on individual items.
Further semantic or structural constraints that the final data
consumer (user) would like to preserve can be added to
these basic ones. The practically infinite nature of the set of
these potential constraints that can be desired/imposed on
a given data set makes it such that a different, more
versatile, “data goodness” (i.e., semantically) assessment
method is required. We propose a solution that handles
each of these constraints that need to be preserved as an
inherent component for the watermarking algorithm.

Constraints that arise from the schema (chiefly key
constraints) can easily be specified in a form similar to (or
derived from) SQL create table statements. In addition,
integrity constraints (e.g., such as end time being greater
than begin time) can be expressed. A tolerance (or usability

SION ET AL.: RIGHTS PROTECTION FOR RELATIONAL DATA 7

metric) is specified for each constraint. The tolerance is the
amount of change or violation of the constraint that is
acceptable. This is an important parameter since it can be
used to tailor the quality of the watermark (at the expense
of greater change in the data). As mentioned earlier, if the
tolerances are too low, it may not be possible to insert a
watermark in the data.

In order to handle a very wide variety of constraints, our
solutions allows various forms of expression, e.g., in terms
of arbitrary SQL queries over the relations, with associated
requirements (usability metric functions). For example, the
requirement that the result of the join (natural or otherwise)
of two relations does not change by more than 3 percent can
be specified. Thus, we can ensure that any changes made by
the watermarking algorithm do not violate the required
properties.

4.1 Algorithm

The algorithm outline for watermarking relational data
proceeds as follows (see Fig. 4):

1. User-defined queries and associated guaranteed
query usability metrics and bounds are specified
with respect to the given database.

2. User input determines a set of attributes in the
database considered for watermarking, possibly all.

3. For each selected attribute, we then deploy the
simplified algorithm where, in Step E.2.2, instead of
checking for local data usability, the algorithm
simply checks all global user-defined queries and
usability bounds by execution.

An additional benefit of operating in the relational data
domain is the ability to use the actual relation key in the
secret subset selection procedure, instead of the proposed
most significant bits of the data (i.e., watermarked attribute
data). It is highly unlikely that an attack will entirely change
the database schema and replace the key attribute. Thus, for

most applications, it might be a safe idea to use it (or it’s
MSB space), especially in cases where the actual data is
subject to lax usability metrics (i.e., making the data MSB
domain less reliable).

4.1.1 Subset Selection

Subset selection proceeds as follows: The input data tuples
are sorted (lexicographically) on a secret keyed crypto-
graphic hash of the primary key attribute K. Based on this
hash of the primary key attribute value in each tuple,
compose a criteria for selecting a set of “special” tuples such
that they are uniformly distributed and average a total
number of e ¼ lengthðattributeÞ

subset size . For example, this criteria could
be HðK; keyÞÞ mod e ¼ 0. These special tuples are going to
be used as subset “markers.” Each subset is defined as the
elements between two adjacent markers, having on average
subset size elements. The detection phase will then rely on
this construction criteria to rediscover the subset markers.

This scheme presents a drawback, namely, the fact that
alterations to the data (such as attacks) have a nonzero
probability of destroying one of the markers, thus making
recovery of the corresponding subset impossible. This will
result in a one bit loss in the underlying data (before error
correction), hopefully corrected by the error correction
mechanisms. For a more in depth discussion, see Section 5.

4.2 Embedding Optimizations

The embedding optimality of the solution presented above
is dependent on a set of parameters such as c, subset size,
vfalse, vtrue, etc. These parameters define a space in which
each point corresponds to a different embedding. Intui-
tively, the solution would benefit from a fine-tuning step in
which a certain optimum can be identified in this space, for
example, a set of values for which the encoding bandwidth
is maximized. Subject to further research is determining
potential shapes defined by optimal or close to optimal
points in this space. What are some criteria that could help

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Fig. 4. Watermark Embedding Algorithm (version using subset markers and detection maps shown).

in determining such a point? Furthermore, another optimi-
zation, time and storage permitting, would start by training
the watermarking process to be resilient to a set of
transformations expected from any potential attacker. The
training process would first watermark the input data only
to attack it afterward. If the postattack recovered watermark
is not of a satisfactory level, change the input parameters
and restart the process. While this might yield considerably
better embeddings, it is obviously time-consuming by
nature and can probably only be applied if time constraints
are not an issue.

4.3 On-the-Fly Update-Ability

In most scenarios, watermarking outsourced relational
content happens only once, at outsourcing time. The main
purpose of watermarking in this framework is rights-
protection and/or traitor tracing through fingerprinting.
Thus, there seems to be little to be gained from an ability to
watermark at runtime, in the presence of updates. More-
over, because watermarking inherently alters the data, it is
unreasonable to assume that a certain party would keep an
altered (i.e., watermarked) copy of the data as replacement
for the original.4

Nevertheless, our solution naturally supports on-the-fly
watermarking, especially in the presence of updates. Let us
analyze several different update scenarios:

1. updates that add fresh tuples to the already water-
marked data set,

2. updates that remove tuples from the already water-
marked data, and

3. updates that alter existing tuples.

In each of the cases, we assume that the watermarking
mechanism runs continuously as a dormant process and is
notified for each update, having full control over the
watermarked version of the relational data.

Item 3 is naturally handled. As altering updates come in,
the marking process lets all updates go through that are not
altering the watermark. In other words, if an update is to
alter a value that belongs to a certain subset set � SS, it first
verifies if the alteration is going to alter the vcðsetÞ value. If
this is the case, the marking process automatically recon-
structs the set from the original data (also updating the new
value), reembeds the corresponding watermark bit and then
updates the subset values in the watermarked version.
Otherwise, simply let the update go through. Item 1 is
similarly handled. If the added value is within a subset
set � SS, the process verifies if this addition (which increases
the set size) alters the vcðsetÞ value. Then, proceed as above.
Item 1 becomes more challenging if we consider the
insertion of new tuples containing primary key values that
would qualify them as subset markers. This can be handled
as follows: Before inserting, a simple check is performed if
indeed the new tuple could be mistaken for a marker. If this
is the case, there are two options available. In option (A), the
subset in which the tuple is to be inserted is split into two
parts, each part being used independently as a subset in
encoding one bit of the watermark. Another option (B) is to

simply keep a list of such fake markers (together with the

detection maps) at the detector’s site, awaiting the detection

process. At detection time, such markers are simply

ignored. While (A) would result in producing a cleaner

output, it presents the drawback of requiring a more

complex management of bit embeddings. More specifically,

these newly available, “‘out of bound,” bit “slots” (split

subsets) need to be managed in such a way as to not

interfere with the already embedded bits (for efficiency

purposes). This can be done by keeping a mapping between

each subset marker and it’s corresponding underlying

watermarking data bit index. This scheme allows for more

flexibility as subsequent data bits are to not be embedded in

subsequent subsets anymore. On the other hand, (B) is more

straightforward, but does not make use of the newly

available bandwidth.
Item 2 is also challenging. Its main difficulty derives from

the fact that some removed tuples could be actually subset

markers. If a subset marker is removed, then in the detection

phase, one bit in the underlying embedding bandwidth will

be destroyed. This does not necessarily result in awatermark

deterioration as this could hopefully be recovered in the

error correction phase. Furthermore, an improvement deal-

ing with this scenario is the use of an embedding map,

remembering exactly which subsets contain a watermark bit

and which not (see Section 5.3). In the case of a marker

removal, the embedding map bit for the subset correspond-

ing to this marker can be reset to signal any future detection

process that the marker was lost. Yet, another idea would be

to simply add a fake marker tuple (satisfying the marker

criteria) at the right point in the data.

5 DISCUSSION

5.1 Related Work

With respect to directly related work in the relational data

framework, one simultaneous published related effort [13]

is available for comparison. Its main algorithm proceeds as

follows: A subset of the initial data tuples are selected based

on a secret criteria; for each tuple, a secret attribute and

corresponding least significant (�) bit position are chosen.

This bit position is then altered according to yet another

secret criteria. The main assumption is that changes can be

made to any attribute in a tuple at any least significant � bit

positions. At watermark detection time, the process will

rediscover the watermarked tuples and, for each detected

accurate encoding, become more “confident” of a true-

positive detection.
There are many fundamental differences between this

effort and our work, including:

1. In [13], there is no provision for multibit watermarks.
2. Because the watermark is embedded in multiple

attributes at the same time, vertical partitioning
attacks become of concern. In a schema with a
primary key and two attributes, removing one of the
attributes will weaken the watermark embedding
50 percent (i.e., an amount proportional to the
number of total attributes used in embedding).

SION ET AL.: RIGHTS PROTECTION FOR RELATIONAL DATA 9

4. After all, how could it generate the outsourced version at the time of
outsourcing?

3. The actual bit encoding of the watermark is naturally
vulnerable to an entire set of trivial attacks in the
numeric domain (e.g., linear changes, see below).

4. Maybe the most important difference is the fact that
our solution is built around a framework consider-
ing higher-level semantics to be preserved in the
original data. Kiernan and Agrawal [13] only honor
limits to fractional change in individual attribute
values and there are no provisions for imposing any
constraints specific to relational databases, such as
preserving JOIN results, classifications, the relative
values of attributes, and other requirements such as
outlined in Section 2. Our solution was designed
around the concept of preservation of such higher
level semantic constraints. All of these and ad hoc
specified SQL constraints can be preserved and
honored in the result.

This is so because we believe that a sound and truly
resilient watermarking method has to start by assessing the
final purpose of the content to be watermarked, together
with its associated allowable alteration limits. These limits
are often times impossible to express as “least significant
bit” constraints and require a higher-level semantic expres-
sion power such as offered by the data goodness plugins.
As outlined in Section 2.1, one of the main challenges of
watermarking is the ability of the encoding method to not
interfere with the final data uses. This is why

5. the assumption that the least significant � bits in any
tuple can be altered, has limited applicability and is
often plain wrong.

It cannot be considered in many important applications,
such as data mining, that require the preservation of
classification. Consider a simple application where a
relational data set is used in conjunction with a classifier
clustering individuals into several categories based on age,
e.g., “preschool” (0-6 years), “child” (7-13), “teenager” (14-
18), “young male” (19-21), “adult” (22+). Naturally, there
are likely many scenarios in which any minor alteration to
the data should not change a person’s class, for various
reasons (e.g., adult movie rentals). If the rights protection
method deployed is not able to handle this semantic
constraint, using the watermarked result can lead to
potentially illegal situations in which a minor is able to
purchase alcohol and/or rent adult movies. By randomly
modifying least significant bits, changing an age of 20 into
21 becomes quite likely and produces a highly undesirable
result. A higher-level analogy can be constructed with the
image watermarking framework, where the LSB approach
to watermarking was among of the initial attempts and
immediately proved its limits. LSB information hiding was
immediately discarded as an effective technique for resilient
watermarking [6], [18]. Modern media (e.g., sound, image)
watermarking algorithms start from human perceptual
models of (assuming this is the final consumer of the
Works) and build on it by mapping the model into
allowable tolerances for data changes. The watermark
encoding needs to preserve data quality. Cross-domain
experience is required to deploy the same paradigm also in
the relational framework. Our approach builds on this
experience.

6. In [13], resilience to true data alterations (e.g., linear
changes to an arbitrary subset of the data, nonuni-
form scaling of all or part of the data, and epsilon-
attacks) is not analyzed and the encoding method
lacks fundamental provisions to resist such altera-
tions, many of which would certainly preserve value
in the result. Even minor-level epsilon-attacks, such
as the ones illustrated in Section 6.2 (where our
encoding survives up to 97 percent), would entirely
remove the mark. Consider, for example, the case of
a data mining application aiming to discover
association rules from a data set with a schema
composed of a primary key and two numeric
attributes. By multiplying all numeric values with
e.g., two, the resulting value bit strings are effec-
tively shifted, resulting in a total loss of the original
watermark. If the association rules are preserved in
the result, the data is still valuable and Mallory can
simply perform this attack on any and all suspected
watermarked data sets and completely remove the
watermark. Arguably, a majority of associations are
preserved if linear data changes are performed to the
underlying data consistently.

Aside from the issues outlined above, [13] also features
one difference that results in desirable properties of clear
benefit. Partly because of the assumption of single bit sized
watermarks, the encoding is independent of tuple ordering
(if the primary key attribute is preserved and unchanged).
The detection process is not required to reconstruct an
actual watermark string, but rather relies on the detection of
a statistical improbability in the result to return the one-bit
watermark; thus, data location-awareness is not necessary,
a partial reason for tuple ordering independency. This
independence results in two advantages of using an
encoding such as in [13]: the ability

7. to detect a watermark bias in small amounts of the
data and, in certain scenarios,

8. to handle multiple source data merging.5

There surfaces a trade off to be observed here. Handling
multiple source data merges and resisting massive data loss
attacks are desirable important properties. Preserving high-
er level semantics in the result and surviving value
preserving data alteration attacks (e.g., classification pre-
serving linear changes, random epsilon-attacks) are equally
or even more important. Our solution balances the trade off
between the ability to resist data loss up to 60-70 percent,
major value-preserving numeric attacks as well as preserve
guaranteed levels of data quality in the result. It naturally
handles a certain level of data merging (similar to data
addition). Nevertheless, an ability to handle increased
merging levels could be obtained by designing an encoding
scheme with all the advantages of our solution and
independent of tuple ordering. We are currently investigat-
ing this issue.

Another interesting related research effort is to be found
in [7] where the authors discuss theoretical links between
query result preservation and associated allowable input
data alterations.

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

5. This is the case if several watermarked data sources are combined, and
the primary key attribute that was used in the embeddings is preserved
(e.g., as the join attribute) in the result.

5.2 Trade Off between Resilience and Data Quality
Preservation

Watermarking, in general, (and in the relational framework,
in particular) features a trade off between the desired level
of marking resilience and resistance to attacks, and the
ability to preserve data quality in the result (with respect to
the original). Intuitively, to one extreme, if the embedded
watermark is to be very “strong” one can simply modify the
entire data set such that a majority of items feature the
watermark, probably also destroying the actual data value.
At the other extreme, a disproportioned concern with data
quality will hinder most of the watermarking alterations,
resulting in a weak, possibly nonexistent embedding.

If the process of watermarking can be expressed
metaphorically as a game between the watermarker and
Mallory, then this is not how it is played. In this game, the
watermarker and Mallory play against each other within
subtle trade off rules aimed at keeping the quality of the
result withing acceptable bounds. It is as if there exists an
impartial referee (the data itself) moderating each and every
“move” (this is why we are making this “referee” an explicit
part of the marking process).

The concept of value of the resulting data, is necessarily
relative and largely influenced by each semantic context it
appears in. For example, while a statistical analyst would be
satisfied with a set of feature summarizations (e.g., average,
higher-level moments) of the numeric data set, a data
mining application may need a majority of the data items,
for example, to validate a classification hypothesis.

We believe it is important that watermarking-related
alterations to not interfere with known customer require-
ments (or other advertised guaranteed properties of the
result). For a watermarking solution to be sound, it has to
operate inside these boundaries. This quality guarantee
principle will also impact the watermarking process in
itself.

5.3 Detection Maps

Storage space permitting, it might be helpful to store some
information about the validity of subsets embeddings. In
the detection phase, this information can be used to
eliminate unusable bit encodings, in the case of invalid or
unmarked subsets, thus increasing detection accuracy. At
watermarking time (including on-the-fly phase), a bit for
each encoding subset is maintained and updated by the
marking process. This map of bits is then used in the
detection process to avoid invalid subsets. If the bit is set,
the subset is signaled as being valid; otherwise, the
detection process ignores the corresponding subset.

In the case of small to medium data sizes, and arguably

for larger data sizes too, the detection map is not hard to

store and “remember” (at the detector’s site) for detection

time. An example of an embedding map used was only

2,000 bits long, barely 1.5KBytes of data, certainly small

enough to be stored together with the embedding key and

additional watermarking parameters awaiting detection

time. As a general rule, the detection map will be (naturally)
lengthðattributeÞ

subset size bits long.

5.4 Subset Markers

The use of subset markers (both stored and criteria-based)
increases the ability to accurately reconstruct the underlying
partitions corresponding to the individual bit embeddings.

While experimental results show the real-life resilience of
the embedding method, from a more theoretical viewpoint
we would like to ask: 1) What is the likelihood of Mallory
removing a subset marker? 2) What is the impact of this
likelihood on the final resulting watermark?

Let Pmðs; aÞ be the probability that an a-sized removal
attack eliminates a subset marker in the resulting data.
Naturally, for each subset (s items), there exists one subset
marker. Thus, each individual data removal has a prob-
ability of 1

s of succeeding in removing an actual subset
marker; for a < s, we have Pmðs; aÞ ¼ a

s . In other words, for
each “subset-worth” of data (s tuples) removed from the
data, on average, one subset marker is destroyed. An
eliminated subset marker directly results in the inability to
detect the corresponding subset (unless the adjacentmarkers
are preserved in which case something can still be done),
thus resulting in a lost bit in the underlying embedding
(before error correction). This result is intuitive and
encouraging because it shows a direct and linear behavior
between data value degradation (tuples removal) and subset
marker loss. Mallory has to remove at least this much data to
be able to eliminate amarker. In the experiments, we used an
implementation deployingmarkers; thus, the results include
this probability of marker loss.

Another interesting issue related to using subset markers
is that apparently the embedding method can get to a point
where it is difficult to find subset marker selection criteria
that would yield evenly sized sets in the data partitioning
phase. This can happen when the selection criteria do not
uniformly spread the selected markers over the input
tuples. In the case of HðK; keyÞ mod e ¼ 0, this is the case
iff. the HðK; keyÞ values are not uniformly distributed,
which, in turn, can happen (because of the one-way
randomized nature of the cryptographic hash) only if the
K values are identical or partitioned in large chunks of
values. But, the K values are by nature (primary key
attribute) different for each data tuple; thus, the marker
selection is naturally uniformly distributed and results in
almost identical subset sizes.

5.5 Primary Key Dependence

In Section 3.3, we presented a subset selection idea for the
case of the simplified problem. The solution was perform-
ing a lexicographical, secret, one-way sort on the most
significant bit (MSB) space in the considered items, in order
to then enable the selection of subsets. While this idea
provides a certain level of self-containment and is well
suited for the problem it was formulated in, where there
exist no external aids in defining an ordering on the data, in
the relational data framework, we chose to investigate the
use of the primary key as such an aide.

Thus, the solution as such features a certain dependency
on the primary database key. If attacks on the primary key
occur, there are two potential options: 1) the use of the
initial MSB space sort idea and/or 2) an initial normalizing
step that brings the primary key within a predefined range
in which the subset selection step in Section 4.1 (i.e.,

SION ET AL.: RIGHTS PROTECTION FOR RELATIONAL DATA 11

HðK0; keyÞÞ mod e ¼ 0) is performed on a MSB portion of

the primary key K, i.e., K0 ¼ MSBðKÞ. This is to be subject

to further investigation, hopefully resulting in primary key

independence.

6 EXPERIMENTAL RESULTS

This section presents our implementation and the experi-

mental results of watermarking real-life, commercial, data,

namely, the Wal-Mart Sales relational database.

6.1 Implementation: wmdb.*

wmdb.* is our test-bed implementation of the algorithms

presented in this paper. It is written using the Java language

and uses the JDBC API in accessing the data.
The package receives as input a watermark to be

embedded, a secret key to be used for embedding, a set of

relations/attributes to consider in watermarking as well as

a set of external usability plugin modules. The role of the

plugin modules is to allow user-defined query metrics to be

deployed and queried at runtime without recompilation

and/or software restart.6

Once usability metrics are defined and all other para-

meters are in place, the watermarking module (see Fig. 6)

initiates the process of watermarking. An undo/rollback log

is kept for each atomic step performed (i.e., 1-bit encoding)

until data usability is assessed and confirmed (by querying

the currently active usability plugins). This allows for

rollbacks in the case when data quality is not preserved by

the current atomic operation.
Watermark recovery takes as input the watermarking

key used in embedding, the set of attributes known to

contain the watermark as well as various other encoding

specific parameters (see Fig. 5). It recovers the set of

watermark copies initially embedded. A final step of error

correction (e.g., majority voting) over the recovered copies

completes the recovery process.

6.2 Experiments

The Wal-Mart Sales Database contains most of the informa-

tion regarding item sales in Wal-Mart stores nationwide. Its

main value lies in the huge commercial potential deriving

from mining buying patterns and association rules. In the

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Fig. 5. Watermark detection algorithm (version using subset markers and detection maps shown).

6. Usability metrics can be specified either as SQL queries, stored
procedures, or simple Java code inside the plug-in modules. Fig. 6. The wmdb.* package. Overview.

following, we present some of our experiments using the

wmdb.* package to watermark the Wal-Mart database.
Our experimental setup included access to the 4 TBytes

Wal-mart data, (formerly) hosted on a NCR Teradata

machine, one 1.8GHz CPU Linux box with Sun JDK 1.4

and 384MB RAM. The amount of data available is

enormous. For example, the ItemScan relation contains

more than 840 million tuples.
For testing purposes, we deployed our algorithm on a

randomly selected subset of the original data (e.g., just a

maximum of 141,075 tuples for relationUnivClassTables.Store

Visits).
We assessed computation times and observed an

intuitively (according to the O(n) nature of the algorithm)

linear behavior, directly proportional with the input data

size. Given the setup described above, in single-user mode,

with a local database we obtained an average of around 350-

400 tuples/second for watermark embedding, while detec-

tion turned out to be approximatively twice as fast. This

occurs in the nonoptimized, interpreted Java proof-of-

concept implementation. We expect major speedups (orders

of magnitude) in a real-life deployment version.
In the following, we present experiments involving

attacks (data loss, data alterations, linear changes, data

resorting) as well as the evaluation of the available

bandwidth in the presence of different data goodness

metrics (tolerable absolute change and data classification

preservation).

6.2.1 Data Loss Attacks (“Surgeries”)

In this attack scenario, we study the distortion of the

watermark as the input data is subjected to gradually

increasing levels of data loss.
In Fig. 7c, the analysis is performed repeatedly for single

bit encoding using the “confidence-violators” encoding

method outlined in Section 3.4.1. The results are then

averaged over multiple runs. The “confidence-violators”

primitive set encoding proves to be resilient to a consider-

able amount of randomly occurring uniformly distributed

surgeries (i.e., item removals by Mallory, with no extra

knowledge) before watermark alterations occur. Even then,

there exists the ability to “trace” or approximate the original

watermark to a certain degree (i.e., by trying to infer the

original mark value from an invalid set). The set size

considered was 35, experiments were performed on

30 different sets of close to normally distributed data. Other
parameters for the experiment include:

vfalse ¼ 5%; vtrue ¼ 9%; c ¼ 88%:

The average behavior is plotted in the graphs. Up to
25 percent and above data loss was tolerated easily by the
tested data, before mark alteration (i.e., bit-flip) occurred.

Figs. 7a and 7b depict more complex scenarios in which a
real multibit watermark is embedded into a larger data set
(both (a) uniform and (b) normal distributions in Fig. 7 were
considered). The input data contained 8,000 tuples, subset
size was 30, and the considered watermark was 12 bits long.
Other parameters: vfalse ¼ 15%; vtrue ¼ 35%; c ¼ 85%. This
set is then subjected to various degrees of data loss and the
watermark distortion is observed. The encoding method
again proves to be surprisingly resilient by allowing up to
45-50 percent data loss while still 40-45 percent of the
watermark survives. Also, in Fig. 7a, as data alteration
increases, the subset (i.e., secretly selected for encoding
1-bit, see Section 3.3) overlap (i.e., the “resemblance” to the
original content, the number of same elements in resulting
subsets) degrades.

Note on Data Dependency in Figures. Some of the
figures presented in this section feature “spikes.” This is a
result of the adaptive data-dependent nature of the
encoding. Different input data reacts differently to data
surgeries (for example) and feature slightly varying
behavior at distinct points. Averaging over multiple inputs
provides a solution for this issue. Nevertheless, we believe
that, while it might soften the spikes, it would also
(arguably) tone down distinct features for a given data
set, features that interrelate figures. Instead of focusing on
local variations, the figures should be interpreted as an
illustrative sample of the global governing trends.

6.2.2 Data Alteration Attacks (Epsilon-Attack)

Presented with the watermarked data Mallory is faced with
two contradictory tasks: preserving the inherent value of the
data while, at the same time, removing the hidden water-
mark. Given no knowledge of the secret watermarking key
nor of the original data, the only available choice is to
attempt (minor) random data modifications in the hope that,
at some point, the watermark will be destroyed. Because the
original data is unknown (thus, also the current watermark-
related distortion is unknown), it is impossible forMallory to
determine the real “minority” of changes he/she performs.

SION ET AL.: RIGHTS PROTECTION FOR RELATIONAL DATA 13

Fig. 7. Resilience to data surgeries: (a) uniform distribution, (b) normal distribution, and (c) single subset (1-bit) encoding.

In other words, because of the goal of preserving the data
value, Mallory cannot afford to perform significant change
to the data.

In this experiment, we analyze the sensitivity of our
watermarking scheme to randomly occurring changes, as a
direct measure for watermark resilience. To do this, we
define a transformation that modifies a percentage � of the
input data within certain bounds defined by two variables �
and �. We called this transformation epsilon-attack. Epsilon-
attacks can model any uninformed, random alteration—the
only available attack alternative. A normal epsilon-attack
modifies roughly �

2 percent of the input tuples by multi-
plication with ð1þ �þ �Þ and the other �

2 percent by
multiplication with ð1þ �� �Þ. A uniform altering epsilon-
attack modifies � percent of the input tuples by multi-
plication with a uniformly distributed value in the ð1þ ��
�; 1þ �þ �Þ interval.

In Fig. 9a, a comparison is made between the case of
uniformly distributed (i.e., values are altered randomly
between 100 and 120 percent of their original value) and
fixed alterations (i.e., values are increased by exactly
20 percent). In the case of fixed alterations, the behavior
demonstrates the effectiveness of the encoding convention:
As more and more of the tuples are altered linearly, the data
distribution comes increasingly closer to the original shape.
For example, when 100 percent of the data is modified
consistently and linearly, the mark data suffers only
6 percent alterations. A peak around 50 percent data
alterations can be observed indicating that an attack
changing roughly 50 percent of the data might have a

greater chance of success. This is also intuitively so (in the
case of randomly distributed alterations) as a maximal
change in distribution is expected naturally when close to
half of the data set is skewed in the same “direction” (by
addition or subtraction).

Parameter � models the average of the data alteration
distribution while � controls its width. Naturally, a zero-
average epsilon-attack (� ¼ 0) is a transformation that
modifies roughly �

2 percent of the input tuples by multi-
plication with ð1þ �Þ and the other �

2 percent by multi-
plication with ð1� �Þ.

Fig. 8 presents the behavior of our encoding algorithm to
this type of attack. This is particularly intriguing as it clearly
reveals a special feature of the watermarking method: Since
the bit-encoding convention relies on altering the actual
distribution of the data, it survives gracefully to any
distribution-preserving transformation. Randomly chan-
ging the data, while it can definitely damage the watermark
(e.g., especially when altering around 50 percent of the data,
see Fig. 9a), proves to be, to a certain extent, distribution-
preserving. A zero-average epsilon-attack is survived very
well. For example, altering 80 percent of the input data
within 20 percent of the original values still yields over
70 percent of the watermark.

Note. One could argue that, after all, if the watermark
encoding relies too much on the distribution of the data, one
successful attack could be the one that alters exactly this
distribution. But, this is not possible, as the power of the
watermarking scheme lies not only in the distribution itself
but also in the secrecy of the encoding subsets. In other
words, where the bits are encoded (i.e., subsets, see Section 3)

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Fig. 8. Epsilon-attack (zero-average) on normally distributed data.

Fig. 9. (a) Epsilon-attack (nonzero average) on a normally distributed data set. (b) Impact of guaranteeing a maximum allowable absolute change on

the available watermarking bandwidth.

is as important as how. Altering global data characteristics
would not only destroy probably much of the value of the
data but, as shown above, achieve little in destroying the
watermark.

In Fig. 8a, as the percentage of tuples altered and the
alteration factor goes up, so does the watermark distortion.
Nevertheless, it turns out to be surprisingly resilient. For
example, altering 100 percent of the data within 1 percent of
the original values can yield a distortion as low as 5-6 percent
in the resulting watermark. The watermark distortion
increases with increasing (b) alteration factor or (c) percen-
tage of data in Fig. 8. Fig. 8b presents a comparison between
the curves corresponding to the alteration of 40 percent of the
tuples versus 80 percent of the tuples.Naturally, the curve for
the higher tuples percentage appears “above.” In Fig. 7c, a
comparison ismade between curves for the alteration factor 1
or 5 percent. The higher alteration curve is intuitively
“above.” Note that the curves are slightly increasing but not
very steep: Mark alteration is less dependent on the
percentage of data altered than on the alteration factor (as
seen in Fig. 8b). Thus, the watermarking scheme proves a
natural resilience touninformedattacks (modeledbyepsilon-
attack transformations).

6.2.3 Data Quality (Goodness) Metrics

Here, we analyze the impact of data goodness preservation
on the available watermark encoding bandwidth. Intui-
tively, the more restrictive data constraints one imposes, the
less available bandwidth there is, as allowable data changes
are directly impacted.

In the following, we present two results. The first
analyzed goodness metric is a commonly considered one,
namely, upper bounds imposed on the total and local
tolerable absolute change (i.e., of the new data with respect
to the original).

Note: An identical experimental result was obtained for a
related metric, the maximum allowable mean squared error.

In Fig. 9b, as data goodness metrics are increasingly
restrictive, the available bandwidth (guaranteeing higher
resilience) decreases. In the illustrated experiment, the
allowed absolute change in the watermarked data (i.e.,
from the original) is decreased gradually (from 0.1 to
0.02 percent) and the decrease in available encoding
bandwidth is observed (depicted as a percent of total
potential bandwidth). The upper limit (approximately
90 percent) is inherently data imposed and cannot be

exceeded due to original data characteristics, making it
effectively the maximum attainable bandwidth.

Another important experiment analyzes a classifica-
tion-preserving data goodness metric. Classification is
extremely relevant in areas such as data mining and we
envision that many of the actual deployment scenarios for
our relational watermarking application will require
classification preservation.

Classification preservation deals with the problem of
propagation of the classes occurring in the original (input)
data in the watermarked (output) version of the data. Thus,
it provides the assurance that the watermarked version still
contains most (or within a certain allowed percentage) of
the original classes.

To perform the experiment, we designed and imple-
mented a data classifier which allows for runtime fine-
tuning of several important classification parameters such
as the number of (synthetic) classes to be associated with a
certain data set as well as the sensitivity of these classes. The
sensitivity parameter can be illustrated best by example.
Given a certain data set to be altered (e.g., watermarked)
and an item X in this data set, the classification sensitivity
models the amount of alterations X tolerates before it
“jumps” out of its original class.

Note: One different perspective on sensitivity can be
obtained by linking it to the notion of classification
selectivity. The more selective a classification is, the more
sensitive its behavior.

The tolerance factor in Fig. 10 represents the maximum
tolerated classification distortion (i.e., percentage of class
violators with respect to the original). In Fig. 10a, as the
classification tolerance and sensitivity go up, so does the
available bandwidth. Fig. 10b shows how the watermarking
algorithm adapts to an increasing data goodness tolerance
(classification sensitivity 0.01). Fig. 10c depicts how for
classification tolerance fixed at 1 percent, the sensitivity of
the classification impacts directly the available bandwidth.

Depending on classification sensitivity (e.g., 0.01 in
Fig. 10b), up to 90 percent of the underlying bandwidth
can become available for watermark encoding with a
restrictive 6 percent classification preservation goodness.

These results confirm the adaptability of our water-
marking algorithm. As classification tolerance is increased,
the application adapts and makes use of an increased
available bandwidth for watermark encoding. This also
shows that classification preservation is compatible with

SION ET AL.: RIGHTS PROTECTION FOR RELATIONAL DATA 15

Fig. 10. Impact of a classification preservation on the available watermarking bandwidth.

our distribution-based encoding method, an important

point to be made, considering the wide range of data-

mining applications that could naturally benefit from

watermarking ability.

7 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we introduced the problem of data security

through watermarking in the framework of numeric

relational data. We

1. designed a solution to a simplified version of our
problem, namely, watermarking a numeric collec-
tion by

a. defining a new suitable mark encoding method
for numeric sets and

b. building an algorithmic secure mapping (i.e.,
mark amplification) from a simple encoding
method to a more complex watermarking
algorithm, and

2. applied the concept to numeric relational databases.

We thus provided a solution for resiliently watermarking

relational databases. We also developed a proof of concept

implementation of our algorithms under the form of a Java

software package, wmdb.* which we then used to water-

mark a commercial database, extensively used for data-

mining in the area of customer trends and buying patterns.

In upcoming research, we are investigating new, nonnu-

meric encoding domains. Furthermore, a model of attacks

in this new domain needs to be devised and a more detailed

attack analysis performed. A full-fledged commercial

watermarking application could be derived from our

proof-of-concept software.

ACKNOWLEDGMENTS

Portions of this work were supported by Grants EIA-

9903545, IIS-0325345, IIS-0219560, IIS-0312357, IIS-9985019,

IIS-9972883, and IIS-0242421 from the US National Science

Foundation, Contract N00014-02-1-0364 from the US Office

of Naval Research, by sponsors of the Center for Education

and Research in Information Assurance and Security, and

by Purdue Discovery Park’s e-enterprise Center.

REFERENCES

[1] M.J. Atallah and S.S. Wagstaff Jr., “Watermarking with Quadratic
Residues,” Proc. IS-T/SPIE Conf. Security and Watermarking of
Multimedia Contents, SPIE, vol. 3657, pp. 283-288, 1999.

[2] M.J. Atallah, V. Raskin, C.F. Hempelmann, M. Karahan, R. Sion,
K.E. Triezenberg, and U. Topkara, “Natural Language Water-
marking and Tamperproofing,” Proc. Fifth Int’l Information Hiding
Workshop, 2002.

[3] E. Bertino, M. Braun, S. Castano, E. Ferrari, and M. Mesiti,
“Author-x: A Java-Based System for XML Data Protection,” Proc.
IFIP Workshop Database Security, pp. 15-26, 2000.

[4] E. Bertino, S. Jajodia, and P. Samarati, “A Flexible Authorization
Mechanism for Relational Data Management Systems,” ACM
Trans. Information Systems, vol. 17, no. 2, 1999.

[5] C. Collberg and C. Thomborson, “On the Limits of Software
Watermarking,” Technical Report #164, Dept. of Computer
Science, The Univ. of Auckland, http://citeseer.ist.psu.edu/
collberg98limits.html, Aug. 1998.

[6] I. Cox, J. Bloom, and M. Miller, “Digital Watermarking,” Digital
Watermarking, Morgan Kaufmann, 2001.

[7] D. Gross-Amblard, “Query-Preserving Watermarking of Rela-
tional Databases and XML Documents,” Proc. 19th ACM
SIGMOD-SIGACT-SIGART Symp. Principles of Database Systems,
2003.

[8] J. Hale, J. Threet, and S. Shenoi, “A Framework for High
Assurance Security of Distributed Objects,” IFIP Conference
Proceedings, 1997.

[9] E. Hildebrandt and G. Saake, “User Authentication in Multi-
database Systems,” Proc. Ninth Int’l Workshop Database and Expert
Systems Applications, R.R. Wagner, ed., pp. 281-286, 1998.

[10] S. Jajodia, P. Samarati, and V.S. Subrahmanian, “A Logical
Language for Expressing Authorizations,” Proc. IEEE Symp.
Security and Privacy, pp. 31-42, 1997.

[11] S. Jajodia, P. Samarati, V.S. Subrahmanian, and E. Bertino, “A
Unified Framework for Enforcing Multiple Access Control
Policies,” Proc. SIGMOD, 1997.

[12] Information Hiding Techniques for Steganography and Digital Water-
marking, S. Katzenbeisser and F. Petitcolas, eds. Artech House,
2001.

[13] J. Kiernan and R. Agrawal, “Watermarking Relational Databases,”
Proc. 28th Int’l Conf. Very Large Databases VLDB, 2002.

[14] N Li, J. Feigenbaum, and B.N. Grosof, “A Logic-Based Knowledge
Representation for Authorization with Delegation,” PCSFW: Proc.
12th Computer Security Foundations Workshop, 1999.

[15] M. Nyanchama and S.L. Osborn, “Access Rights Administration
in Role-Based Security Systems,,” Proc. IFIP Workshop Database
Security, pp. 37-56, 1994.

[16] S.L. Osborn, “Database Security Integration Using Role-Based
Access Control,” Proc. IFIP Workshop Database Security, pp. 245-
258, 2000.

[17] J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, and Y.
Zhang, “Experience with Software Watermarking,” Proc. ACSAC,
16th Ann. Computer Security Applications Conf., pp. 308-316, 2000.

[18] F.A.P. Petitcolas, R.J. Anderson, and M.G. Kuhn, “Attacks on
Copyright Marking Systems,” Proc. Information Hiding: Second Int’l
Workshop, D. Aucsmith, ed., pp. 218-238, 1998.

[19] D. Rasikan, S.H. Son, and R. Mukkamala, “Supporting Security
Requirements in Multilevel Real-Time Databases,” tr-95-21, 1995.

[20] R. Sion, M. Atallah, and S. Prabhakar, “On Watermarking
Numeric Sets,” Proc. Int’l Workshop Digital Watermaking, 2002.

[21] R. Sion, M. Atallah, and S. Prabhakar, “Power: Metrics for
Evaluating Watermarking Algorithms,” Proc. IEEE Int’l Conf.
Information Technology: Coding and Computing , 2002.

Radu Sion received the BSc degree from
Politehnica University of Bucharest in 1998 and
the MSc degree Politehnica University of Bu-
charest, Romania, in 1999, and Purdue Uni-
versity in 2000. He is a PhD student in computer
sciences at Purdue University. His main inter-
ests lie in information security with applications
in relational databases, rights protection, and
trust and purpose management. Recently, he
has been also working on various topics in the

areas of privacy preserving computing, hippocratic databases, and Web
service workflows. His PhD dissertation analyzes rights protection for
generalized data objects and introduces novel ideas in the area of rights
protection for streams, structures, and relational data with applications
ranging from database watermarking to stream fingerprinting.

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Mikhail (“Mike”) Atallah received the PhD
degree from the Johns Hopkins University in
1982, and has been on the faculty of the Purdue
University in the Computer Science Department
since then. His current research interests are in
information security (in particular, software
security, secure protocols, and watermarking).
A fellow of the IEEE, he has served on the
editorial boards of SIAM Journal on Computing,
the IEEE Transactions on Computers, the

Journal of Parallel and Distributed Computing, Information Processing
Letters, Computational Geometry: Theory and Applications, the Inter-
national Journal of Computational Geometry and Applications, Parallel
Processing Letters, and Methods of Logic in Computer Science. He was
guest editor for a special issue of algorithmica on computational
geometry, has served as editor of the Handbook of Parallel and
Distributed Computing (McGraw-Hill), as editorial advisor for the
Handbook of Computer Science and Engineering, (CRC Press), and
as editor-in-chief for Handbook of Algorithms and Theory of Computa-
tion (CRC Press).

Sunil Prabhakar’s research focuses on perfor-
mance and security issues in large-scale,
modern database applications such as multi-
media, moving-object, and sensor databases.
The efficient execution of I/O is a critical problem
for these applications. The scope of this re-
search ranges from main memory to disks and
tertiary storage devices. Sensor and moving
object applications are also faced with the need
to process large volumes of data in an online

manner. His current research effort addresses efficient continuous query
evaluation and novel techniques for managing the inherent lack of
accuracy for these applications. Dr. Prabhakar’s interest also lies in the
design and development of digital watermarking techniques for
structured (e.g., relational databases) and semistructured (e.g., XML)
data. Prior to joining Purdue, Dr. Prabhakar held a position with Tata
Unisys Ltd. from 1990 to 1994.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SION ET AL.: RIGHTS PROTECTION FOR RELATIONAL DATA 17

