
Rigid 3D Geometry Matching for Grasping of
Known Objects in Cluttered Scenes

Chavdar Papazov∗, Sami Haddadin†, Sven Parusel†, Kai Krieger†, Darius Burschka∗

∗Robotics and Embedded Systems
Technische Universität München (TUM)

Boltzmannstr. 3, D-85748 Garching, Germany
{papazov, burschka}@in.tum.de

†Institute of Robotics and Mechatronics

German Aerospace Center (DLR)
P.O. Box 1116, D-82230 Wessling, Germany

{sami.haddadin, sven.parusel, kai.krieger}@dlr.de

✦

Abstract—In this paper, we present an efficient 3D object recog-
nition and pose estimation approach for grasping procedures
in cluttered and occluded environments. In contrast to common
appearance-based approaches, we rely solely on 3D geometry
information. Our method is based on a robust geometric descriptor, a
hashing technique and an efficient, localized RANSAC-like sampling
strategy. We assume that each object is represented by a model
consisting of a set of points with corresponding surface normals.
Our method simultaneously recognizes multiple model instances
and estimates their pose in the scene. A variety of tests shows
that the proposed method performs well on noisy, cluttered and
unsegmented range scans in which only small parts of the objects
are visible. The main procedure of the algorithm has a linear time
complexity resulting in a high recognition speed which allows a
direct integration of the method into a continuous manipulation task.
The experimental validation with a 7-degrees-of-freedom Cartesian
impedance controlled robot shows how the method can be used
for grasping objects from a complex random stack. This applica-
tion demonstrates how the integration of computer vision and soft-
robotics leads to a robotic system capable of acting in unstructured
and occluded environments.

1 INTRODUCTION

Robot manipulation tasks in non-industrial environ-
ments cannot rely on hard-coded knowledge about
the scene structure. Since especially human actions
modify the environment in a way which cannot be
foreseen, a vision-based object recognition and local-
ization system is very useful for providing the neces-
sary updates of the scene knowledge. In recent years,
advances in 3D geometry acquisition technology have
led to a growing interest in object recognition and
pose estimation techniques which operate on three-
dimensional data. Furthermore, the knowledge of the
3D geometric shape and the pose of an object greatly
facilitates the execution of a stable grasp. The 2D
appearance of an object may not provide reliable
information about its pose in space because surface

Fig. 1. A robot operating in a household environment.

texture elements may be misaligned (as it often hap-
pens to labels of household objects). Furthermore, 2D
techniques have to deal with changes in viewpoint
and illumination.

The 3D object recognition and pose estimation prob-
lem can loosely be defined as follows. Given a set
of object models and a scene, the task is to identify
the objects present in the scene and to estimate their
position and orientation. The output of an object
recognition and pose estimation algorithm is a list
of recognized model instances each one with a corre-
sponding transform which aligns the model instance
to the scene. For the sake of simplicity, in the rest of
the text, we mean by “object recognition” both object
identification and pose estimation. Furthermore, we

2

discuss a special instance of the problem, given by
the following assumptions.

1) Each model is a finite set of points with corre-
sponding surface normals.

2) Each model represents a non-transparent object.
3) The scene is a range image.
4) Each transform which aligns a recognized model

instance to the scene is a proper rigid transform.

Even under these assumptions the problem still re-
mains challenging for several reasons: it is a priori
not known which objects are present in the scene;
usually, there are scene parts not belonging to any of
the objects of interest, i.e., there is background clutter;
the input is typically corrupted by noise and outliers;
the objects are only partially visible due to occlusions
and scan device limitations.

1.1 Contributions and Overview

This paper demonstrates how our original
3D object recognition approach presented
in [Papazov and Burschka, 2010] can be used to
support a manipulation task. We introduce a vision-
based framework that allows a robotic manipulator to
grasp objects in unstructured, dynamically changing
environments.
Our object recognition approach operates directly

on unsegmented point clouds provided by a range
scanner. This does not require scene segmentation
which may be quite time consuming. More specifi-
cally, we make the following contributions. (i) A new
efficient, localized RANSAC-like sampling strategy is
introduced. (ii) We use a hash table for rapid retrieval
of pairs of oriented model points which are similar to
a sampled pair of oriented scene points. This allows
to efficiently generate object and pose hypotheses. (iii)
We provide a complexity analysis of our sampling
strategy and derive a formula for the number of
iterations required to recognize the objects with a
predefined success probability.
The proposed accelerations in our vision processing

allow a seamless integration into a grasping frame-
work, where the recognition interleaves with the ac-
tual manipulation task without causing noticeable
delays in the overall process. The method shows
its potential in a complex experimental use-case. We
employ the DLR Lightweight Robot III (LWR-III)
[Albu-Schäffer et al., 2007], which is equipped with a
Cartesian impedance control method and is able to re-
act to environment disturbances and to process faults
caused by unexpected contact forces in real-time.
Using the proposed 3D object recognition method,
impedance control with reactive recovery strategies,
and a simple grasp planner the robot quickly and
robustly grasps objects from unsorted and cluttered
piles. Furthermore, in case of failures, it reacts accord-
ingly and continues the process if possible1.

1. These experiments are enclosed as multimedia extensions (see
Extensions 1 and 2 in Appendix A).

The rest of the paper is organized as follows. Pre-
vious work is reviewed in Section 2. In Section 3, we
establish some notation and explain in more details
two algorithms important to our work. Our 3D object
recognition approach is introduced in Section 4. In
Section 5, the robot and its overall control concept for
robust and sensitive grasping is described. Section 6
presents experimental results. Conclusions and pos-
sible future topics of research are drawn in the final
Section 7 of the paper.

2 RELATED WORK

Object recognition is closely related to object classi-
fication/shape retrieval. However, the latter methods
only compute the similarity between shapes and not
an aligning transform. Furthermore, it is assumed
that the input represents a single shape whereas we
handle range images containing multiple objects and
background clutter.
The so-called voting approaches represent one

class of object recognition methods. Well-known rep-
resentatives are the generalized Hough transform
[Ballard, 1981], pose clustering [Stockman, 1987], ge-
ometric hashing [Lamdan and Wolfson, 1988] and
tensor matching [Mian et al., 2006]. Although these
methods perform well on complex scenes they tend
to be costly and their integration into a real-world
grasping system will lead to long delays in the overall
processing loop.
Another way to tackle the problem is to model

an object as an assembly of basic shapes (primitives)
and to recover these shapes and their spatial rela-
tionships from an input scene. Many types of primi-
tives can be used within this part-based framework:
generalized cylinders [Binford, 1971], superquadrics
[Barr, 1981], implicit polynomials [Keren et al., 1994],
geometric primitives [Taylor and Kleeman, 2003], and
parametric shapes [Schnabel et al., 2007]. Methods
for efficient recovering of superquadrics from range
data were introduced in [Solina and Bajcsy, 1990],
[Dickinson et al., 1997] and [Biegelbauer et al., 2010].
However, despite their efficiency, the part-based ap-
proaches are limited to a certain shape class, namely,
the one which can be described by the chosen set of
primitives.
The feature-based methods belong to a further

class of object recognition approaches. In a first
step, point-wise correspondences between the mod-
els and the scene are computed, usually using lo-
cal geometric descriptors. Next, the aligning trans-
form is calculated based on the established cor-
respondences. A list of geometric descriptors in-
cludes, without being nearly exhaustive, spin im-
ages [Johnson and Hebert, 1999], local feature his-
tograms [Hetzel et al., 2001], 3D/harmonic shape
context [Frome et al., 2004], intrinsic isometry invari-
ant descriptors [Sun et al., 2009] and manifold har-
monic bases [Wu et al., 2010]. All feature-based al-
gorithms rely on the assumption that the objects to

3

be recognized have distinctive feature points, i.e.,
points with rare descriptors. However, especially for
simple shapes, this assumption does not always hold
and the methods degenerate to brute force search
[Aiger et al., 2008].
In [Grewe and Kak, 1995], a hashing technique sim-

ilar to ours was proposed. It is a learning-based
method employing a multiple-attribute hash table for
efficient 3D object recognition. On the positive side,
attribute uncertainties are taken into account and the
number of attributes as well as the size of the hash
table bins are calculated automatically. However, the
system cannot handle free-form objects and in the
presented experimental results only objects composed
of single-colored surfaces are used. Furthermore, the
method relies on a segmentation to identify the planar
or cylindrical surface patches the objects are made of.
A further hashing technique was proposed in

[Matei et al., 2006]. Based on a hash table, a fast in-
dexing into a collection of geometry descriptors of
single model points is performed. In contrast, our
hash table stores descriptors of pairs of oriented
model points (called doublets). This allows to effi-
ciently query the model doublets similar to a sampled
scene doublet and it makes it very easy to compute
the aligning rigid transform since it is uniquely de-
fined by two corresponding doublets. Moreover, in
[Matei et al., 2006], multiple range images are aligned
to each other in order to build a more complete
scene representation and a foreground/background
segmentation is executed. In contrast, our method
operates on a single range image and does not require
segmentation. Furthermore, the test scenes used in
[Matei et al., 2006] contain a single object and some
background clutter.

3 NOTATION AND BASIC ALGORITHMS

An oriented point u = (pu,nu) consists of a point
pu ∈ R

3 and a corresponding surface normal nu ∈
R

3, ‖nu‖ = 1. Accordingly, an oriented point pair
(u,v) is a pair of two oriented points u = (pu,nu)
and v = (pv,nv).

3.1 Fast Surface Registration

In short, rigid surface registration consists of com-
puting a rigid transform which aligns two surfaces.
Assume S is a surface represented by a set of oriented
points. According to [Winkelbach et al., 2006], for a
pair of oriented points (u,v) = ((pu,nu), (pv,nv)) ∈
S× S, a descriptor f : S× S→ R

4 is computed as

f(u,v) =

f1(u,v)

f2(u,v)

f3(u,v)

f4(u,v)

=

‖pu − pv‖

∠(nu, nv)

∠(nu, pv − pu)

∠(nv, pu − pv)

,

(1)

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
��

��

� � �
��

�
��

��

�
� �

�

Fig. 2. Computing the rigid transform T which aligns
S1 to S2 based on the local coordinate systems Fuv

and Fwx of the oriented point pairs (u,v) and (w,x),
respectively. See text for details on Fuv and Fwx.

where ∠(a, b) is the angle between the vectors a and
b. In order to register two surfaces S1 and S2, each one
represented by a set of oriented points, the method
proceeds as follows. It samples uniformly oriented
point pairs (u,v) ∈ S1 × S1 and (w,x) ∈ S2 × S2

and computes and stores their descriptors f(u,v) and
f(w,x) in a four-dimensional hash table. This process
continues until a collision occurs, i.e., until f(u,v) and
f(w,x) end up in the same hash table cell. Computing
the rigid transform T which aligns (u,v) to (w,x)
gives a transform hypothesis which registers S1 to S2.
Fig. 2 illustrates the alignment. More formally,

T = FwxF
−1
uv (2)

is computed based on the pairs’ local coordinate
systems, each one represented by a 4 × 4 matrix
(homogeneous coordinates) Fuv respectively Fwx. We
have

Fuv =

puv×nuv

‖puv×nuv‖
puv

‖puv‖
puv×nuv×puv

‖puv×nuv×puv‖
pu+pv

2

0 0 0 1

(3)
where puv = pv−pu and nuv = nu+nv. Fwx is defined
analogously by replacing the indices u and v in (3)
with w and x, respectively. The transform hypothesis
T generated in this way is evaluated by transforming
the points of S1, i.e., p

′
i = Tpi, ∀pi ∈ S1 and counting

those p′
i which fall within a certain ǫ-band of S2.

According to [Winkelbach et al., 2006], this process
of generating and evaluating hypotheses is repeated
until either of the following stopping criteria is met:
(i) a hypothesis is good enough, (ii) a predefined time
limit is reached or (iii) all combinations are tested.
Unfortunately, non of these criteria is well-grounded:
the first two are ad hoc and the third one is computa-
tionally infeasible. In contrast, we derive the number
of iterations required to recognize model instances
with a pre-defined success probability. Furthermore,
we modify this technique in a way which allows for
the simultaneous matching of all object models to the
scene.

4

3.2 RANSAC

RANSAC [Fischler and Bolles, 1981] is an iterative
approach for model recognition. It uniformly draws
minimal point sets from the scene and computes a
transform which aligns the model with the minimal
point set. A minimal point set is the smallest point set
which uniquely determines a given type of transform.
In the case of rigid transforms, it is a point triple.
The score of the aligning transform is the number of
transformed model points which lie within an ǫ-band
of the scene. After a certain number of trials the model
is considered to be recognized at the locations defined
by the transforms which achieved a score higher than
a predefined threshold.
The probability PS of recognizing the model in

N trials equals the complementary of N consecutive
failures [Schnabel et al., 2007], i.e.,

PS = 1− (1− PM)N , (4)

where PM is the probability of recognizing the model
in a single iteration. Solving for N gives the number
of trials needed to recognize the model in the scene:

N =
ln(1− PS)

ln(1 − PM)
. (5)

Note that since PS ≈ 1 and PM ≈ 0, one can safely
assume that N ≥ 1.
The RANSAC approach is conceptually simple,

general and robust against outliers. Unfortunately, its
direct application to the 3D object recognition problem
is computationally expensive. In order to compute an
aligning rigid transform, we need two corresponding
point triples—one from the model and one from the
scene. Assuming that the model is completely con-
tained in the scene, the probability of drawing two
such triples in a single trial is PM (n) = 3!

(n−2)(n−1)n ,

where n is the number of scene points. Since PM (n)
is a small number we can approximate the denom-
inator in (5) by its Taylor series ln(1 − PM (n)) =
−PM (n)+O(PM (n)2) and obtain the number of trials
as a function of the number of scene points:

N(n) ≈
− ln(1 − PS)

PM (n)
= O(n3). (6)

In the next section of the paper, we will show that
using oriented point pairs and a localized sampling
strategy leads to a reduction of the time complexity
from O(n3) to O(n).

4 RIGID 3D GEOMETRY MATCHING

Our object recognition method consists of two phases.
The first one, the model preprocessing, is performed
offline. It is executed only once and does not depend
on the scenes in which the objects have to be recog-
nized. The online recognition is the second phase. It is
executed on the scene using the model representation
computed in the offline phase. In the rest of this
section, we describe both phases in detail and discuss
the time complexity of our algorithm.

4.1 Model Preprocessing Phase

We assume that each object model is represented by
a finite set M = {ui = (pu,nu)i}mi=1 of oriented
points. For a given object model M, we sample the
pairs of oriented points (u,v) = ((pu,nu), (pv,nv)) ∈
M×M having pu and pv approximately d units apart
from each other. For each such pair, the descriptor
f(u,v) = (f2(u,v), f3(u,v), f4(u,v)) is computed
according to (1) and stored in a three-dimensional
hash table. Note that f1 is not part of the descrip-
tor since a fixed distance d is used. In contrast
to [Winkelbach et al., 2006], not all pairs of oriented
points are considered, but only those with ‖pu−pv‖ ∈
[d− δd, d+ δd], for a given tolerance value δd. This has
several advantages. It reduces the space complexity
from O(m2) to O(m), wherem is the number of model
points (this empirical measurement is further dis-
cussed in [Aiger et al., 2008]). Using a large d results
in wide-pairs which allow a more stable computation
of the aligning rigid transform than narrow-pairs do
[Aiger et al., 2008]. Furthermore, a larger d leads to
fewer pairs which means that computing and storing
descriptors of wide-pairs results in less populated
hash table cells. Thus, we will have to test fewer
transform hypotheses in the online recognition phase
and will save computation time.
However, the pair width d should not be too large

since occlusions in real world scenes would prevent
sampling a pair with points from the same object.
For a typical value for d, there are still many pairs
with similar descriptors which leads to hash table cells
with too many entries. We avoid this overpopulation,
by removing as many of the most populated cells to
keep only a fraction K of the original number of pairs
(in our implementation K = 0.4). This results in an
information loss about the object shape which we take
into account in the online phase of the algorithm.
In order to compute the final representation of all

models M1, . . . ,Mq , each Mi is processed in the way
described above using the same hash table. In this way,
a simultaneous recognition of all models is possible
instead of sequentially matching each one of them
to the scene. Furthermore, in order to keep track of
which pair belongs to which model, every hash table
cell stores the pairs in separate model-specific lists.

4.2 Online Recognition Phase

The input to the online recognition algorithm is a
set M = {M1, . . . ,Mq} of object models and a
scene range image S. The output is a list T =
{(Mk1

, T1), . . . , (Mkr
, Tr)}, where Mkj

∈ M is a
recognized model instance and Tj is a proper rigid
transform (an element of the special Euclidean group
SE(3)) aligning Mkj

to the scene. Before turning
to the details, it is advisable to read Algorithm 1
although some of the steps may not be completely
clear at this point. In the rest of this section, the lines
we are referring to are the lines of Algorithm 1.

5

input : a setM = {M1, ...,Mq} of object models;
a scene range image S;
output: a list T = {(Mk1

, T1), ..., (Mkr
, Tr)}, with

Mkj
∈M and Tj ∈ SE(3);

// 1) initialization
1 compute an octree for the scene S to produce a
modified scene S∗;

2 T ← ∅; // an empty solution list
// 2) number of iterations

3 compute the number N of iterations;
4 repeat N times

// 3) sampling
5 sample a pu uniformly from S∗;
6 L = {x ∈ S∗ : ‖x− pu‖ ∈ [d− δd, d+ δd]};
7 sample a pv uniformly from L;

// 4) normal estimation
8 estimate normals nu at pu and nv at pv;
9 (u,v) = ((pu,nu), (pv,nv));

// 5) hash table access
10 fuv = (f2(u,v), . . . , f4(u,v)); // see (1)
11 access the model hash table cell at fuv and
12 get its oriented model point pairs (uj ,vj);

// 6) generate and test
13 foreach (uj ,vj) do
14 get the model M of (uj ,vj);
15 compute the rigid transform T that aligns

(uj ,vj) to (u,v); // see (2)
16 if µ accepts (M, T) then
17 T ← T ∪ (M, T);
18 end
19 end
20 end

// 7) removing conflicting hypotheses
21 remove conflicting hypotheses from T ;

Algorithm 1: Online recognition phase.

Searching for closest points (line 8) and for points
lying on a sphere around a given point (line 6) have
to be performed very often in the online recognition
phase. Thus, a fast execution of these operations is
of great importance for the runtime of the algorithm.
An efficient way to achieve this is to use an octree
[de Berg et al., 2000].

Step 1) Initialization

In step 1 of the algorithm, an octree with a fixed leaf
size L (the edge length of a leaf) is constructed for
the input scene points. The full octree leaves (the ones
containing at least one point) are voxels ordered in a
regular axis-aligned 3D grid and have unique integer
coordinates. Two full leaves are considered neighbors
if their corresponding integer coordinates differ by
not more than 1. Next, a down-sampled scene S∗ is
created by setting its points to be the centers of mass
of the full octree leaves. The center of mass of a full
leaf is the average of the points it contains. In this
way, a one-to-one correspondence between the points

in S∗ and the full octree leaves is established. Two
points in S∗ are neighbors if the corresponding leaves
are neighbors.

Step 2) Number Of Iterations

In this step, the number N of iterations is estimated
such that all objects in the scene will be recognized
with a certain user-defined probability. This will be
explained in detail in Section 4.3.

Step 3) Sampling

As in classic RANSAC, we sample minimal sets from
the scene. In our case, since we use normals, a min-
imal set consists of two oriented points. In contrast
to RANSAC, they are not sampled uniformly and
independently of each other. Only the first point, pu,
is drawn uniformly from S∗. The second one, pv, is
drawn uniformly from the scene points in S∗ which
are approximately within a distance d from pu. To
achieve this, we first retrieve the set L of all full leaves
intersecting the sphere with center pu and radius d,
where d is the pair width used in the offline phase (see
Section 4.1). This can be performed very efficiently
due to the hierarchical structure of the octree. Finally,
a leaf is drawn uniformly from L and pv is set to be
its center of mass.

Step 4) Normal Estimation

We estimate the normals nu and nv at the points
pu and pv by performing a PCA: nu and nv are set
to be the eigenvectors corresponding to the smallest
eigenvalues of the covariance matrix of the points
in the neighborhood of pu and pv . The result of
this step is the oriented scene point pair (u,v) =
((pu,nu), (pv,nv)).

Step 5) Hash Table Access

In line 10, fuv = (f2(u,v), f3(u,v), f4(u,v)) is com-
puted according to (1). Next, in lines 11 and 12, fuv
is used as a key to the model hash table to retrieve
all model pairs (uj ,vj) similar to (u,v).

Step 6) Generate and Test

For each (uj ,vj), its model M is retrieved (line 14)
and the rigid transform T which aligns (uj ,vj) to
(u,v) is computed according to (2) (line 15). This
results in the hypothesis that the model M is in
the scene at the location defined by T . Finally, the
hypothesis is saved in the solution list T if it is
accepted by the acceptance function µ (line 16).

Acceptance Function

µ consists of a visibility term and a penalty term.
Similar to RANSAC, the visibility term, µV , is pro-
portional to the number mV of transformed model
points which fall within a certain ǫ-band of the scene.
More precisely, we set µV (M, T) = mV /m, where m

6

(a) µV = 4/12, µP = 0. (b) µV = 3/12, µP = 2/12.

Fig. 3. A 2D top schematic view of the same scene
(blue dashed line) with two different model hypotheses
(models are shown as gray boxes). The lines of sight
are shown as thin black lines originating from the scan-
ning device. In (a), 4 (out of 12) model points match
the scene and no model points are occluding scene
points. In (b), 3 model points match the scene and
2 model points (marked by the ellipse) are occluding
scene points. The resulting values for µV and µP are
shown below the corresponding figure.

is the total number of model points. µV is an approx-
imation of the visible object surface area expressed as
a fraction of the total object surface area. Thus, µV can
be interpreted as an estimation of the object visibility
in the scene.
In contrast to RANSAC, our algorithm contains an

additional penalty term, µP , which is proportional to
the number of transformed model points which oc-
clude the scene. Obviously, a correctly recognized and
localized non-transparent object should not occlude
any visible scene points when the scene is viewed
from the viewpoint of the range scanner. In other
words, if we view the scene from the perspective
of the scanning device, we will not be able to see
scene points lying behind the localized model since
we cannot see through non-transparent surfaces. The
penalty term penalizes hypotheses which violate this
condition. It is computed by counting the number
mP of transformed model points which are between
the projection center of the range image and a range
image pixel and thus are “occluding” reconstructed
scene points. We set µP (M, T) = mP /m, where m is
the number of model points.
For (M, T) to be accepted by µ as a valid hypothesis

it has to fulfill

µV (M, T) > V and µP (M, T) < P, (7)

where V ∈ [0, 1] is a visibility and P ∈ [0, 1] a penalty
threshold. In Fig. 3, a simple scene is shown with two
different model hypotheses and the corresponding
values for µV and µP .
The visibility threshold is one of the most crucial

parameters in the algorithm. In the experimental part
of the paper, we examine how this threshold affects
the recognition and the false positives rates of our

method. In the case of perfect data, the penalty thresh-
old P should be 0. However, since we are dealing with
real range images, we use P = 0.05.

Step 7) Removing Conflicting Hypotheses

A hypothesis (M, T) “explains” a subset P ⊂ S∗ if
there are points from T (M) lying in the octree leaves
corresponding to P. After accepting (M, T), the points
explained by it are not removed from S∗ because there
could be a better hypothesis, i.e., one which explains a
superset of P. We call hypotheses conflicting if the in-
tersection of the point sets they explain is non-empty.
In other words, conflicting hypotheses transform their
models such that they intersect in space.
Since the scene points explained by the accepted

hypotheses are not removed from S∗, there are many
conflicting ones in the solution list T after the execu-
tion of the main loop (lines 4 to 20) of Algorithm 1.
To filter the weak hypotheses, we construct a so-called
conflict graph. Its nodes are the hypotheses in T and
an edge is connecting two nodes if the hypotheses are
conflicting ones.
To produce the final output, the solution list is

filtered by performing a non-maximum suppression
on the conflict graph. We borrow this technique from
image processing. To perform a non-maximum sup-
pression on a gray-scale image, the pixel under ob-
servation is set to zero (it is suppressed) if its value is
not a maximum in a window placed around that pixel.
In this case, the window defines the neighborhood
of each pixel. In the case of our conflict graph, the
neighborhood is defined by the graph structure. Using
the neighborhood of each node, we perform non-
maximum suppression essentially in the same way as
in image processing: a node η is suppressed if there
is a better one in its neighborhood, i.e., a node which
explains more scene points than η.

4.3 Time Complexity

The dominating factor in the complexity of the pro-
posed method is the number N of iterations needed
to recognize all models with a predefined success
probability (see the main loop of Algorithm 1, lines
4 to 20). In the following, we discuss the dependency
of N on the number of scene points.
Consider a scene S∗ consisting of |S∗| = n points

and a model instance M therein consisting of |M| = m
points. In Section 3.2 on RANSAC, we derived the

number N = ln(1−PS)
ln(1−PM) of iterations required to rec-

ognize M with a predefined success probability PS ,
where PM is the probability of recognizing M in a
single iteration. Again in Section 3.2, we obtained
PM ≈ 1/n3 which resulted in the cubic time com-
plexity of RANSAC. In the following, we show that
our sampling strategy and the use of the model hash
table lead to a significant increase of PM and thus to
a reduction of the complexity.

7

If P (pu ∈M,pv ∈M) denotes the probability that
both points are sampled from M (lines 5 and 7 of
Algorithm 1), then the probability of recognizing M

in a single iteration is

PM = KP (pu ∈M,pv ∈M), (8)

with K being the fraction of oriented point pairs for
which the descriptors are stored in the model hash
table (see Section 4.1). Using conditional probability
and the fact that P (pu ∈ M) = m/n we can rewrite
(8) to obtain

PM = (m/n)KP (pv ∈M|pu ∈M). (9)

P (pv ∈M|pu ∈M) denotes the probability to sample
pv from M given that pu ∈ M. Recall from Sec-
tion 4.2 that pv depends on pu because it is sampled
uniformly from the set L of scene points which are
close to the sphere Sd(pu) with center pu and radius
d, where d is the pair width used in the offline
phase. Assuming that the visible object part has an
extent larger than 2d and that the reconstruction is
not too sparse, L contains points from M. In this case,
P (pv ∈M|pu ∈M) = |L∩M|/|L| is well-defined and
greater than zero.
Let us discuss C := |L ∩M|/|L|. It depends on the

scene clutter, the number of outliers and the extent
and shape of the visible object part. If all scene points
originate from known objects (in particular there is no
background) and if the objects are well separated then
|L∩M| = |L| since the sphere Sd(pu) intersects scene
octree leaves containing only points from the object
pu belongs to. In this extreme case, C = 1. On the
other hand, occluded scenes with many outliers can
be constructed in which Sd(pu) intersects only objects
other then the one pu belongs to. This leads to C = 0
and simply means that the object is too occluded to
be recognized.
In our implementation, we estimate C by 1/4. This

accounts for up to 75% outliers and scene clutter.
Thus, we obtain for PM as a function of n (the number
of scene points)

PM (n) = (m/n)KC. (10)

Approximating the denominator ln(1 − PM (n)) in (5)
by its Taylor series −PM (n) + O(PM (n)2) we obtain
for the number of iterations

N(n) ≈
− ln(1 − PS)

PM (n)
=
−n ln(1 − PS)

mKC
= O(n). (11)

This shows that the number of iterations depends lin-
early on the number n of scene points. Furthermore,
Eq. (11) provides means for computing the number of
iterations required to recognize the model instances
with the desired success probability PS .

5 OBJECT MANIPULATION

The object recognition is only one link in the over-
all processing chain. In order to enable the robot

�������������	

���������������

��������������

������������

�������	��

��������	

��������

��������

��������

Fig. 4. Hybrid state automaton for controlling the over-
all object manipulation process. The logical clauses
A,B and C defining the transition conditions, are the
following: A = no − object, B = no − grasp and
C = collision ∨ failed− grasp. A grasp is considered
as a failure if the robot gripper completely closes.

to perform the recognition together with the object
manipulation in a loop and to recover from faulty
grasps, the overall process is controlled by a hy-
brid state automaton. The scheme is based on the
work in [Haddadin et al., 2009], [Parusel et al., 2011],
[Fuchs et al., 2010] and relies on the disturbance
observer introduced in [Haddadin et al., 2008]. The
high-level schematic is shown in Fig. 4 and consists
of the following phases:

1) Go to overview: The robot moves to an overview
pose in order to avoid scene occlusion.

2) Recognize objects: The object recognition
method recognizes the objects in the scene (see
Section 4).

3) Select a grasp: Select an object (from the list of
recognized ones) together with a suitable grasp
(see Section 5.1).

4) Grasp object: The robot performs the grasp on
the selected object (see Section 5.2).

5) Carry away: The robot carries the object to the
place designated for it.

6) Place down: The robot softly and safely puts the
object on its place (see Section 5.2).

Next, the phases 3), 4) and 6) are explained in detail.
Phase 5), bringing an object to a specified location,
is out of the scope of this paper and will not be
discussed any further.

5.1 Grasp Selection

The first step in the manipulation chain is the selec-
tion of an object (from the list of recognized objects
returned by the recognition method) together with a
suitable grasp. Each object in the database is asso-
ciated with a finite set of plausible grasps. A grasp

8

G (also called grasp frame) consists of an orientation
and a position of the robot end effector relative to
the object. The orientation is represented by a 3 × 3
rotation matrix. Its last column is a vector, called the
approach vector vappr , which is aligned with the z-
axis of the end effector and points towards the object.
The idea of the grasp selection is to go for the up

most object, i.e., the one whose center of mass has
the largest z-coordinate. This is measured according
to the world coordinate system which has its z-axis,
zw, perpendicular to the table the objects are placed
on. (More details on the scene setup will be given in
Section 6.3.) Next, among the grasp frames associated
with the selected object, the one with the lowest

cost(G) = w1crit1(G) + w2crit2(G), (12)

is chosen, where

crit1(G) = ∠(−vappr, zw) (13)

is the alignment of the end effector with respect to the
z-axis of the world coordinate system and

crit2(G) = |ϕwrist
0 − ϕwrist

req |, (14)

is the absolute difference between ϕwrist
0 , a desired

(neutral) wrist orientation, and ϕwrist
req , the one re-

quired to perform the grasp. In our implementation,
we set w1 = 3 and w2 = 1 (see (12)) which makes
the end effector alignment more important than the
wrist orientation. Note that (12) uses the negative of
vappr such that it shows in the same direction as zw.
Furthermore, the selected grasp is discarded if it is
“too parallel” to the table plane, i.e., if crit1(G) ≥ ϕz

(we set ϕz = 30◦). If this is the case, then the next
lower object is inspected.
The selected grasp frame G is projected 0.1 m

along the approach vector for acquiring the grasping
motion.

5.2 Impedance Control and Collision Detection
for Sensitive Grasping and Placing

To achieve robust and careful grasping and placing,
we employ the Cartesian impedance controlled LWR-
III [Albu-Schäffer et al., 2007]. Especially its soft-
robotics features are crucial for such a delicate task.
Since it is equipped with torque sensors in every joint,
both impedance and accurate position control are pos-
sible at the same time. In order not to damage its en-
vironment and in particular the objects it is supposed
to manipulate, the robot should be able to quickly
detect collisions and safely react to them. The collision
detection method we use was introduced and evalu-
ated in [De Luca et al., 2006], [Haddadin et al., 2008].
It provides not only binary contact information but
also an accurate estimation of the external torques.
Based on this additional input, we employ a decision
algorithm [Haddadin et al., 2009] which enables the
robot to react in an appropriate manner to unex-
pected interaction forces. For example, such forces

occur when the object pose estimated by the object
recognition algorithm is too imprecise such that the
robot collides with the object as it reaches for it.
However, since the robot quickly detects the collision
it is able to stop before damaging the object. After
that, the robot moves to a well-defined position and
restarts the recognition process (as depicted in Fig. 4).

In order to demonstrate the importance of
impedance control and collision detection for a safe
object manipulation, we conducted a series of ob-
ject grasping and placing experiments with different
impedances and with distinct collision behavior.

Fig. 5 and 6 illustrate the robot behavior while
grasping and placing an object using different stiffness
values and tip velocities with and without collision
detection. The plots depict the z-coordinates of the
desired (dashed curves) and measured (continuous
curves) contact force Fextz , position z and velocity ż.
In both figures, the left columns are obtained for a
high stiffness value while the right ones for a low
value. The red curves indicate a lower tip velocity
(about 0.1 m/s) while the blue ones a higher velocity
(about 0.8 m/s). The upper row is obtained without
collision detection and reaction, while the lower one
visualizes the binary collision detection signal, hf1,
together with a respective response which obviously
leads to different curves.

If collision detection and handling is activated, a
contact is classified as a collision if the magnitude of
the contact force exceeds a certain limit. According to
the figures, a high stiffness always leads to very high
contact forces which might destroy the object to be
handled. In contrast, low stiffness and collision de-
tection contribute to a significant reduction of contact
forces and practically eliminate the risk of damaging
the object if a planned grasp is misaligned.

Fig. 7 shows an image sequence of grasping a
bottle with low stiffness. We intentionally degraded
the pose estimation accuracy such that the end effector
collided with the bottle. Nevertheless, because of the
impedance control, the end effector was able to adjust
and successfully grasped the bottle.

Extension 1 exemplary shows some of the experi-
ments described in this section.

6 EXPERIMENTAL RESULTS

In this Section, we experimentally validate the pro-
posed geometry matching algorithm (Section 6.1), the
impedance controlled grasping strategy (Section 6.2)
and the grasping capabilities of the overall system
(Section 6.3). The object models involved in the tests
are shown in Fig. 8.

The algorithm presented in this paper is imple-
mented in C++ and all tests were performed on a
Linux PC with 4GB RAM and an Intel Xeon 2.67GHz
CPU with four cores.

9

−200

−100

0

F
e
x
t
z

[N
]

0.2

0.3

0.4

z
[m

]

0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

t [s]

ż
[m

/
s]

−150

−100

−50

0

F
e
x
t
z

[N
]

0.3

0.4

0.5

z
[m

]

−1

0

1

ż
[m

/
s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

t [s]

h
f
1

−100

−50

0

F
e
x
t
z

[N
]

0.2

0.3

0.4

z
[m

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

t [s]

ż
[m

/
s]

−100

−50

0

F
e
x
t
z

[N
]

0.2

0.3

0.4

z
[m

]
−0.5

0
0.5

1
1.5

ż
[m

/
s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

t [s]

h
f
1

Fig. 5. Grasping behavior with high stiffness (left) and low stiffness (right) without (top) and with (bottom) collision
detection and reaction.

−80

−60

−40

−20

0

F
e
x
t
z

[N
]

0.2

0.4

z
[m

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.8

−0.6

−0.4

−0.2

0

t [s]

ż
[m

/
s]

−40

−20

0

F
e
x
t
z

[N
]

0.3

0.4

0.5

z
[m

]

−0.5

0

0.5

ż
[m

/
s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

t [s]

h
f
1

−40

−20

0

F
e
x
t
z

[N
]

0.2

0.4

z
[m

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.8

−0.6

−0.4

−0.2

0

t [s]

ż
[m

/
s]

−20

−10

0

F
e
x
t
z

[N
]

0.3

0.4

0.5

z
[m

]

−0.5

0

0.5

ż
[m

/
s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.5

1

t [s]

h
f
1

Fig. 6. Placing behavior with high stiffness (left) and low stiffness (right) without (top) and with (bottom) collision
detection and reaction.

10

Fig. 7. Grasping behavior with low stiffness. Note that despite the imprecise object pose the robot is able to
grasp the bottle.

���� ������	�
�
��	� ���� ������� �	�����������
�����	�

��� ���

Fig. 8. (a) The models used in the tests of the geometric matching algorithm (models provided by
[Mian et al., 2006]). (b) The models involved in the grasping test scenarios (our own scans made with a low-
cost light intersection-based scanning device).

6.1 Rigid 3D Geometry Matching

The scenes used in the following test cases
were digitized with a Minolta VIVID 910
scanner [Konica Minolta, 2011] and provided by
[Mian et al., 2006]. Examples and more information
about the scenes will be given in the following
subsections.

6.1.1 Matching a Single Object in Occluded Scenes

In the first test scenario, we examined how the suc-
cess rate and the false positives rate of the geome-
try matching algorithm depend on the most impor-
tant parameter, namely, the visibility threshold (intro-
duced in Section 4.2) and the actual object occlusion
in a scene. According to [Johnson and Hebert, 1999],
the occlusion of an object model is given by

occlusion = 1−
visible model surface area

total model surface area
. (15)

The aim of this test was to establish a value for the
visibility threshold which, on the one hand, results in
a high success rate even in highly occluded scenes,
and on the other hand leads to as few as possible
false positives. In this experiment, only the model
of the Chef (Fig. 8(a)) was used for matching in
three different scenes each one containing a total of
three or four objects. The Chef was present in each
scene at different locations and at different levels of
occlusion (self-occlusion as well as occlusion caused

by the other objects). The three test scenes together
with typical recognition results are shown in Fig. 9.
Since the matching algorithm is a probabilistic one,

we ran 100 trials on each scene and computed the
recognition (success) rate and the mean number of
false positives in the following way. We visually in-
spected the result of each trial. If object A (in this case
only the Chef) was recognized k times (0 ≤ k ≤ 100),
then the recognition rate for A is k/100. The mean
number of false positives is (k1+ ...+k100)/100, where
ki is the number of false alarms in the i-th trial.
The results of the test are summarized in Fig. 10.

As expected, the visibility threshold had to fall below
a certain value, namely, 1 − occlusion in order to
achieve a positive recognition rate. More importantly,
the plots suggest that the number of false positives
practically does not depend on the actual level of
occlusion but mainly on the visibility threshold: in
all three cases it starts to grow when the visibility
threshold falls below 0.15. In summary, it can be said
that the method achieved a recognition rate of 1.0 in
highly occluded scenes (up to 85% occlusion) at the
cost of no false positives. In order to handle more
occlusion the visibility threshold had to fall below 0.15
which gave rise to some false positives.

6.1.2 Matching Multiple Objects in Noisy Scenes

In this scenario, we tested the algorithm under vary-
ing noisy conditions. The four models involved are
shown in Fig. 8(a) and the noise-free scene is shown in

11

(a) 62.3% object occlusion (b) 70.4% object occlusion (c) 86.2% object occlusion

Fig. 9. The test scenes used for the Chef model matching. The level of occlusion for the Chef is indicated for
each scene. On the left of each subfigure, the input scene is shown as a blue mesh, whereas on the right, the
recognized Chef model is placed at the location computed by our algorithm and rendered as a yellow mesh.

0.050.150.250.35
0

0.5

1

1.5

2

visibility threshold

s
u

c
c
e

s
s
 /

 f
a

ls
e

 p
o

s
.

success rate
false positives

(a) 62.3% object occlusion

0.050.150.250.35
0

0.5

1

1.5

2

visibility threshold

s
u

c
c
e

s
s
 /

 f
a

ls
e

 p
o

s
.

success rate
false positives

(b) 70.4% object occlusion

0.050.150.250.35
0

0.5

1

1.5

2

visibility threshold

s
u

c
c
e

s
s
 /

 f
a

ls
e

 p
o

s
.

success rate
false positives

(c) 86.2% object occlusion

Fig. 10. The success rate and the mean number of false positives as functions of the visibility threshold for three
different scenes each one containing the Chef model at an occlusion level of (a) 62.3%, (b) 70.4% and (c) 86.2%.

��������	
��		 �� ����
�
����� �

�
����

Fig. 11. (a) Noise-free scene. (b), (c) Typical recognition results for data sets degraded by zero-mean Gaussian
noise for different variance σ2 which is given as percentage of the bounding box diagonal length of the scene.
On the left side of each subfigure, only the noise-corrupted scene is shown, whereas the right side shows the
scene plus the recognized models placed at the locations estimated by the matching algorithm.

Fig. 11(a). We degraded the noise-free scene with zero-
mean Gaussian noise with different variance values
σ2. Again, 100 recognition trials on each noisy scene
were performed and the recognition rate, the mean
number of false positives and the Root Mean Square
error (RMSe) were computed as functions of σ2.
For two point sets P and Q and a transform T the

RMS error measures how close each point qi ∈ Q

comes to its corresponding point pi ∈ P after trans-
forming Q by T [Gelfand et al., 2005]. The smaller the
error the closer the alignment between the point sets.
More formally,

RMSe(P,Q, T) =

√

√

√

√

1

N

N
∑

i=1

‖pi − T (qi)‖2, (16)

with N being the number of points. Since the ground
truth location of each model in the test scene is
known, the RMS error of the rigid transform com-
puted by our method was easily calculated2. Note
that we did not compute the RMS error for the trans-
formed model and the scene but for the transformed
model and the same model placed at the ground truth
location. Fig. 11(b) and (c) exemplary show typical
recognition results for two of the twelve noisy scenes.
The results of the tests are reported in Fig. 12.

2. The ground truth rigid transform for the models is available
on http://www.csse.uwa.edu.au/∼ajmal/recognition.html

http://www.csse.uwa.edu.au/~ajmal/recognition.html

12

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

σ2

re
c
o

g
n

it
io

n
 r

a
te

(a)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

σ2

fa
ls

e
 p

o
s
it
iv

e
s

(b)

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

σ2

R
M

S
 e

rr
o

r

(c)

Fig. 12. (a) Recognition rate, (b) mean number of false positives and (c) RMS error as functions of the variance
σ2 of Gaussian noise. Note that the RMS error is computed for the successful trials only. Both σ2 and the RMS
error are given as percentage of the bounding box diagonal length of the scene.

6.1.3 Comparison with Spin Images and Tensor
Matching

Next, we compared the recognition rate of our ge-
ometry matching algorithm with the spin images
[Johnson and Hebert, 1999] and the tensor match-
ing [Mian et al., 2006] approaches on the same 50
data sets used in [Mian et al., 2006]. This made a
direct comparison possible without the need of re-
implementing either of the two algorithms. The mod-
els of the four toys involved in the tests are shown in
Fig. 8(a). The toys (not necessarily all four of them)
are present in the scenes in different positions and
orientations. Since each scene was digitized with a
laser range finder from a single viewpoint the back
parts of the objects were not visible. Furthermore,
the toys were usually placed such that some of them
occluded others which made the visible object parts
even smaller. Four (out of the 50) test scenes are
shown in Fig. 9 and Fig. 11(a). Again, we ran 100
recognition trials on each scene and computed the
recognition rate for each object in the way described
in Section 6.1.1. Since the occlusion of every object in
the test scenes was known we report the recognition
rate for each object as a function of its occlusion. The
result of the comparison is summarized in Fig. 13(a).
Note that the chef was recognized in all trials, even
in the case of occlusion over 91%. The blue dots
represent the recognition rate in the three chicken test
scenes in which our method performed worse than
the other algorithms. This was due to the fact that in
these scenes only the chicken’s back part was visible
which contains strongly varying normals which made
it difficult to compute a stable aligning transform.

Our method needed in average about 7.5 seconds
for the recognition of the objects in each scene and
sampled about 450 oriented point pairs per scene.
For a comparison, 250 tensors, respectively, 4000 spin
images per scene were used in the experiments per-
formed in [Mian et al., 2006].

6.1.4 Runtime

We experimentally validated the linear time complex-
ity of the matching algorithm in the number of scene
points. Eleven different data sets were involved in
this test case — a subset from the scenes used in the
comparison test case (Section 6.1.3). Note that we did
not take a single data set and down/up-sampled it to
get the desired number of points. Instead, we chose
eleven different scenes with varying scene extent, num-
ber of points and number of objects. This suggests that
the results will hold for arbitrary scenes. We report the
results of this test in Fig. 13(b).
Note that the iterations of the main loop of the

matching algorithm (lines 4 to 20 of Algorithm 1)
can be executed independently of each other which
makes it possible to run them in parallel. This is
a very important issue since parallel computing has
become the dominant paradigm in computing archi-
tectures, mainly in the form of multicore processors
[Asanovic et al., 2006]. In Fig. 13(c), we report the
processing time as a function of the used CPU cores.
Note that the parallel execution on four cores runs
more than three times faster than on a single core.
This indicates a great potential for further speed-up
when more CPU cores become available.

6.2 “Blind” Grasping with an Impedance Con-
trolled Robot

In contrast to Section 5.2, where the importance of
impedance control and collision detection for a safe
object manipulation was demonstrated, in this section,
we conducted a series of grasping experiments with
the aim to find a set of impedance parameters that
maximizes the grasping success in the presence of
simulated object pose errors. The robot altered its
Cartesian translation stiffness in y-direction (denoted
by Kt,y) and its rotation stiffness in x-direction (de-
noted by Kr,x). These directions are the lateral com-
pliance along the gripper motion and the rotation
perpendicular to this. Due to the inherent structure
of the gripper, they are the significant parameters

13

�� �� �� ��

���

���

���

���

��	

�
 �
 �

����

�������

����

����

���������������
 !���"#����

���

$%���&������#

��
�
�
�
�
��
��
�
��
�
��

'����&%����

(a)

55,000 100,000 145,000

5

7

9

11

13

15

num. of scene points

c
o

m
p

.
ti
m

e
 (

s
e

c
)

(b)

1 2 3 4

5

9

13

17

num. of CPU cores

c
o

m
p

.
ti
m

e
 (

s
e

c
)

(c)

Fig. 13. (a) Comparison with spin images [Johnson and Hebert, 1999] and tensor matching [Mian et al., 2006].
The recognition rate of our algorithm for each object as a function of its occlusion is indicated by the continuous
lines. The dashed lines give the recognition rate of the spin images and the tensor matching approaches on
the same scenes as reported in [Mian et al., 2006]. Note that our algorithm outperforms both other methods.
(b) Computation time as a function of the number of scene points for the simultaneous recognition of seven
models. The line indicates a linear complexity. (c) Runtime as a function of the number of used CPU cores for
the recognition of seven models in a scene consisting of around 60,000 points.

Kt,y[N/m] Kr,x [Nm/rad] success [%]

1 200 20 60

2 200 75 80

3 200 200 90

4 750 20 70

5 750 75 80

6 750 200 40

7 2000 20 50

8 2000 75 60

9 2000 200 70

TABLE 1
Grasping success with varying stiffness for a

translational object pose error of 1.5 cm.

governing the grasping process. The object involved
in this test scenario was the soda club bottle (Fig. 8(b)).
The object pose error was simulated by translating the
bottle by 1.5 cm in a random direction parallel to the
table in front of the robot. We performed ten grasping
trials for each of the following stiffness configurations:
“soft”, “moderately stiff” and “rigid”. The success
rate is listed in Table 1. The optimal values (line 3)
correspond to a soft (very compliant) translation and
a rigid rotation behavior. A soft translation and a
moderately stiff rotation (line 2) as well as a moderate
stiffness in both translation and rotation (line 5) led
to good success rates too.

6.3 Vision-Based Impedance Controlled Grasping

In this Section, we experimentally validate the overall
vision-based impedance controlled grasping system.
The models involved in these tests are shown in

Fig. 14. The setup of the vision-based grasping experi-
ments. The robot has grasped a green soda club bottle
and is about to put it in the further red bin. The Kinect
sensor can be seen in the upper right corner. In the
lower left corner, the range image and the recognized
models are shown (before the bottle has been taken
away) from a viewpoint close to the one of the sensor.

Fig. 8(b). We started with grasping single stand-
ing objects, moved on to object grasping from
an unsorted pile and finished with a more com-
plex task of cleaning up a table. We used the 7-
degrees-of-freedom Cartesian impedance controlled
DLR Lightweight robot III developed at the German
Aerospace Center (DLR). It was mounted on a table

14

object

test scenario Soda Club Amicelli Rusk

single standing objects 100% 95% 95%

object pile 95% 95% 90%

TABLE 2
Success rates in the grasping experiments.

Fig. 15. (Left) The single standing object grasping
scenario. (Middle, Right) two input range images (top)
and the recognition results (bottom) for the rusk and
the Amicelli box, respectively. The points off the plane
(used for matching) are shown in light blue.

and covered an area of approximately 2.5 square
meters. The scene was digitized with a Kinect sen-
sor [Kinect for Xbox 360, 2011]. Since all objects were
standing on or above the table, its plane was detected
in each range image (using a simple RANSAC proce-
dure) and all points belonging to the plane or lying
below were removed. The setup is shown in Fig. 14.

6.3.1 Grasping Single Standing Objects

In the first scenario, multiple grasps were performed
on single standing objects (see Fig. 15). We varied the
pose of the objects such that all pre-saved grasp poses
were executed. A grasp trial was considered success-
ful if the object was correctly recognized, grasped and
carried to the right place (table corner for the rusk
box or one of the red bins for the Amicelli box/soda
club bottle). We ran ten trials for each object pose and
recorded the number of successful trials. The results
are summarized in the first row of Table 2. One grasp
failed for the Amicelli and the rusk box, respectively.
This was due to the fact that the alignment computed
by the matching algorithm was too imprecise.

6.3.2 Grasping from an Object Pile

Next, the robot performed multiple grasps on a pile
consisting of seven objects placed next and on top
of each other. Again, we changed the positions of
the items such that the robot tried all pre-saved
grasp poses for each object. A grasp was considered
successful if the robot picked a correctly recognized
object and carried it to the right place. After an object
had been taken away, we built up a new pile, i.e.,
the robot had to deal every time with a full pile.

This experiment added some additional difficulties
to both the geometry matching and the robot control
algorithms. Obviously, the risk of recognition failures
increased since there were more objects in the scene.
Besides that, objects in a pile are in a more unstable
configuration (from a statics point of view) compared
to single standing ones. This made it more difficult
for the impedance-based control to compensate for
matching imprecision. We performed ten trials for
each grasp pose and recorded the number of success-
ful trials. The results are compiled in the second row
of Table 2. As to be expected, the failure rate increased
compared to the first grasping experiment.

6.3.3 Cleaning up the Table

In the last test scenario, we let the robot repeatedly
perform a more complex task, namely, cleaning up
the table in front of it. Seven objects were randomly
placed on a pile which resulted in highly cluttered
and occluded scenes. The task to the robot was to pick
each object, put it away and halt when it “believes”
that the table is empty. The recognition process was
restarted each time an object was carried away. Thus,
the robot had to deal with the changing scene and
with unforeseen situations which happened during
the cleanup like, e.g., an object falling off the pile. The
task was accomplished if at the end each object was
at the place designated for it. This time we did not
consider it a failure when an object slipped out of the
gripper as long as it was picked up later on and left
in the right place. After each cleanup trial we built up
a new pile and let the robot perform the task again.
We repeated this 15 times and counted the number of
successful trials. The robot achieved a success rate of
80%. Fig. 16 exemplary shows one cleanup process.
More examples can be seen in Extension 2.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a vision-based approach
for grasping of known objects. Our approach relies
on a robust 3D geometry matching algorithm for
the recognition and localization of multiple objects
in noisy, partially reconstructed and unsegmented
scenes. The matching algorithm is based on a ro-
bust geometric descriptor, a hashing technique and
an efficient, localized RANSAC-like sampling strat-
egy. We provided a theoretical complexity analysis
and derived a formula for computing the number
of iterations required to recognize the objects with
a predefined success probability. The result of the
complexity analysis, namely a linear time depen-
dency on the number of scene points, was exper-
imentally validated. Tests on real range data con-
firmed that our method performs well on complex
scenes in which only small parts of the objects are
visible. In a direct comparison with the spin images
[Johnson and Hebert, 1999] and the tensor match-
ing [Mian et al., 2006] approaches, our method per-
formed better in terms of recognition rate. A further

15

Fig. 16. (Left to right, top to bottom) A sequence of images showing the robot cleaning up the table. The first
and the last image show the beginning and the end of the task, respectively. Each in-between shot shows the
robot in the moment of grasping an object. Note that the first Amicelli box and all bottles are placed in a lying
orientation in the red bins and are not visible from this point of view.

experimental validation with the DLR Lightweight-
Robot III showed how well this new method can be
exploited for grasping in unstructured and cluttered
environments. The presented solution is capable of
quickly recognizing and robustly grasping known
objects from an unsorted pile of different everyday
items. This is extremely useful for typical service
robotics or industrial co-worker tasks.

One possible extension of the recognition algorithm
would be to incorporate higher dimensional geomet-
ric descriptors. We expect this to lead to more uni-
formly spread model point pairs in the feature space
and to further reduce the overpopulation of hash table
cells mentioned in Section 4.1. Furthermore, in the
current implementation of the recognition method, the
pair width d is selected manually based on the extent
of the object models stored in the hash table and on
the expected degree of object occlusion in the scene.
An elaborate way of automatically selecting the right
value for d is the current topic of our research.

ACKNOWLEDGMENTS

We would like to thank Tim Rokahr for his help.
This work has been partially funded by the Euro-
pean Commission’s Seventh Framework Programme
as part of the projects GRASP and SAPHARI.

APPENDIX A: INDEX TO MULTIMEDIA EXTEN-
SIONS

Extension Media Type Description

1 Video Impedance control and collision
detection for sensitive grasping
and placing.

2 Video Cleaning up a table full of grocery
items.

REFERENCES

[Aiger et al., 2008] Aiger, D., Mitra, N. J., and Cohen-Or, D. (2008).
4-points Congruent Sets for Robust Pairwise Surface Registra-
tion. ACM Trans. Graph., 27(3).

16

[Albu-Schäffer et al., 2007] Albu-Schäffer, A., Haddadin, S., Ott,
C., Stemmer, A., Wimböck, T., and Hirzinger, G. (2007). The
DLR lightweight robot - lightweight design and soft robotics
control concepts for robots in human environments. Industrial
Robot Journal, 34(5):376–385.

[Asanovic et al., 2006] Asanovic, K., Bodik, R., Catanzaro, B. C.,
Gebis, J. J., Husbands, P., Keutzer, K., Patterson, D. A., Plishker,
W. L., Shalf, J., Williams, S. W., and Yelick, K. A. (2006). The
Landscape of Parallel Computing Research: A View from Berke-
ley. Technical report, EECS Department, University of California,
Berkeley.

[Ballard, 1981] Ballard, D. H. (1981). Generalizing the Hough
Transform to Detect Arbitrary Shapes. Pattern Recognition,
13(2):111–122.

[Barr, 1981] Barr, A. (1981). Superquadrics and Angle-Preserving
Transformations. Computer Graphics and Applications, 1(1):11 –23.

[Biegelbauer et al., 2010] Biegelbauer, G., Vincze, M., and
Wohlkinger, W. (2010). Model-based 3D object detection.
Mach. Vis. Appl., 21(4):497–516.

[Binford, 1971] Binford, T. (1971). Visual Perception by a Com-
puter. In IEEE Conf. on Systems and Control.

[de Berg et al., 2000] de Berg, M., van Kreveld, M., Overmars, M.,
and Schwarzkopf, O. (2000). Computational Geometry: Algorithms
and Applications. Springer-Verlag, 2 edition.

[De Luca et al., 2006] De Luca, A., Albu-Schäffer, A., Haddadin, S.,
and Hirzinger, G. (2006). Collision detection and safe reaction
with the DLR-III lightweight manipulator arm. In IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS2006), Beijing, China,
pages 1623–1630.

[Dickinson et al., 1997] Dickinson, S. J., Metaxas, D. N., and Pent-
land, A. (1997). The Role of Model-Based Segmentation in the
Recovery of Volumetric Parts From Range Data. IEEE TPAMI,
19(3):259–267.

[Fischler and Bolles, 1981] Fischler, M. A. and Bolles, R. C. (1981).
Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Com-
mun. ACM, 24(6):381–395.

[Frome et al., 2004] Frome, A., Huber, D., Kolluri, R., Bülow, T.,
and Malik, J. (2004). Recognizing Objects in Range Data Using
Regional Point Descriptors. In ECCV, pages 224–237.

[Fuchs et al., 2010] Fuchs, S., Haddadin, S., Parusel, S., Keller, M.,
and Kolb, A. (2010). Cooperative bin-picking with time-of-flight
camera and impedance controlled DLR Lightweight robot III. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2008),
pages 4862–4867.

[Gelfand et al., 2005] Gelfand, N., Mitra, N., Guibas, L., and
Pottmann, H. (2005). Robust Global Registration. In Eurographics
Symposium on Geometry Processing, pages 197–206.

[Grewe and Kak, 1995] Grewe, L. and Kak, A. C. (1995). Interac-
tive Learning of a Multiple-Attribute Hash Table Classifier for
Fast Object Recognition. Computer Vision and Image Understand-
ing, 61(3):387–416.

[Haddadin et al., 2008] Haddadin, S., Albu-Schäffer, A., Luca,
A. D., and Hirzinger, G. (2008). Collision detection & reaction:
A contribution to safe physical human-robot interaction. In
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2008),
Nice, France, pages 3356–3363.

[Haddadin et al., 2009] Haddadin, S., Suppa, M., Fuchs, S., Bo-
denmüller, T., Albu-Schäffer, A., and Hirzinger, G. (2009). To-
wards the robotic co-worker. In International Symposium on
Robotics Research (ISRR2009), Lucerne, Switzerland.

[Hetzel et al., 2001] Hetzel, G., Leibe, B., Levi, P., and Schiele, B.
(2001). 3D Object Recognition from Range Images Using Local
Feature Histograms. In CVPR, pages 394–399.

[Johnson and Hebert, 1999] Johnson, A. and Hebert, M. (1999).
Using Spin Images for Efficient Object Recognition in Cluttered
3D Scenes. IEEE TPAMI, 21(5):433–449.

[Keren et al., 1994] Keren, D., Cooper, D. B., and Subrahmonia, J.
(1994). Describing Complicated Objects by Implicit Polynomials.
IEEE TPAMI, 16(1):38–53.

[Kinect for Xbox 360, 2011] Kinect for Xbox 360 (2011).
http://www.xbox.com/en-US/kinect. Accessed: 20/04/2011.

[Konica Minolta, 2011] Konica Minolta (2011). Minolta VIVID 910.
http://www.konicaminolta.com/instruments/products/3d/
non-contact/vivid910/index.html. Accessed: 18/09/2011.

[Lamdan and Wolfson, 1988] Lamdan, Y. and Wolfson, H. (1988).
Geometric Hashing: A General and Efficient Model-Based Recog-
nition Scheme. In ICCV, pages 238–249.

[Matei et al., 2006] Matei, B., Shan, Y., Sawhney, H. S., Tan, Y.,
Kumar, R., Huber, D. F., and Hebert, M. (2006). Rapid Object In-
dexing Using Locality Sensitive Hashing and Joint 3D-Signature
Space Estimation. IEEE TPAMI, 28(7):1111–1126.

[Mian et al., 2006] Mian, A. S., Bennamoun, M., and Owens, R. A.
(2006). Three-Dimensional Model-Based Object Recognition and
Segmentation in Cluttered Scenes. IEEE TPAMI, 28(10):1584–
1601.

[Papazov and Burschka, 2010] Papazov, C. and Burschka, D.
(2010). An Efficient RANSAC for 3D Object Recognition in Noisy
and Occluded Scenes. In Asian Conference on Computer Vision
(ACCV’10), pages 135–148.

[Parusel et al., 2011] Parusel, S., Haddadin, S., and Albu-Schäffer,
A. (2011). Modular state-based behavior control for safe
human-robot interaction: A lightweight control architecture for
a lightweight robot. In IEEE Int. Conf. on Robotics and Automation
(IROS2011), Shanghai, China.

[Schnabel et al., 2007] Schnabel, R., Wahl, R., and Klein, R. (2007).
Efficient RANSAC for Point-Cloud Shape Detection. Comput.
Graph. Forum, 26(2):214–226.

[Solina and Bajcsy, 1990] Solina, F. and Bajcsy, R. (1990). Recovery
of Parametric Models from Range Images: The Case for Su-
perquadrics with Global Deformations. IEEE TPAMI, 12(2):131–
147.

[Stockman, 1987] Stockman, G. (1987). Object Recognition and
Localization via Pose Clustering. Computer Vision, Graphics, and
Image Processing, 40(3):361–387.

[Sun et al., 2009] Sun, J., Ovsjanikov, M., and Guibas, L. J. (2009). A
Concise and Provably Informative Multi-Scale Signature Based
on Heat Diffusion. Comput. Graph. Forum, 28(5):1383–1392.

[Taylor and Kleeman, 2003] Taylor, G. and Kleeman, L. (2003). Ro-
bust Range Data Segmentation using Geometric Primitives for
Robotic Applications. In SIP, pages 467–472.

[Winkelbach et al., 2006] Winkelbach, S., Molkenstruck, S., and
Wahl, F. M. (2006). Low-Cost Laser Range Scanner and Fast
Surface Registration Approach. In Proceedings of the 28th DAGM
Symposium on Pattern Recognition, pages 718–728.

[Wu et al., 2010] Wu, H.-Y., Zha, H., Luo, T., Wang, X., and Ma,
S. (2010). Global and Local Isometry-Invariant Descriptor for
3D Shape Comparison and Partial Matching. In CVPR, pages
438–445.

http://www.xbox.com/en-US/kinect

	Introduction
	Contributions and Overview

	Related Work
	Notation and Basic Algorithms
	Fast Surface Registration
	RANSAC

	Rigid 3D Geometry Matching
	Model Preprocessing Phase
	Online Recognition Phase
	Time Complexity

	Object Manipulation
	Grasp Selection
	Impedance Control and Collision Detection for Sensitive Grasping and Placing

	Experimental Results
	Rigid 3D Geometry Matching
	Matching a Single Object in Occluded Scenes
	Matching Multiple Objects in Noisy Scenes
	Comparison with Spin Images and Tensor Matching
	Runtime

	``Blind'' Grasping with an Impedance Controlled Robot
	Vision-Based Impedance Controlled Grasping
	Grasping Single Standing Objects
	Grasping from an Object Pile
	Cleaning up the Table

	Conclusions and Future Work
	References

